
The Many Kinds of Creepware Used for

Interpersonal Attacks

Kevin A. Roundy∗, Paula Barmaimon Mendelberg†, Nicola Dell†, Damon McCoy‡, Daniel Nissani†,

Thomas Ristenpart†, Acar Tamersoy∗

∗NortonLifeLock Research Group †Cornell Tech ‡New York University

Abstract—Technology increasingly facilitates interpersonal at-
tacks such as stalking, abuse, and other forms of harassment.
While prior studies have examined the ecosystem of software
designed for stalking, there exists an unstudied, larger landscape
of apps—what we call creepware—used for interpersonal attacks.
In this paper, we initiate a study of creepware using access to
a dataset detailing the mobile apps installed on over 50 million
Android devices. We develop a new algorithm, CreepRank, that
uses the principle of guilt by association to help surface previously
unknown examples of creepware, which we then characterize
through a combination of quantitative and qualitative methods.
We discovered apps used for harassment, impersonation, fraud,
information theft, concealment, and even apps that purport to
defend victims against such threats. As a result of our work,
the Google Play Store has already removed hundreds of apps
for policy violations. More broadly, our findings and techniques
improve understanding of the creepware ecosystem, and will
inform future efforts that aim to mitigate interpersonal attacks.

I. INTRODUCTION

Technology is increasingly used as a vector for interper-

sonal attacks. One prominent example is in intimate partner

violence (IPV), where victims report abusers utilizing apps for

a range of harms, including text message “bombing” (sending

hundreds or thousands of messages), spoofing phone numbers

to hide the source of harassment, creating fake suggestive

images to hurt a victim’s reputation, and installing spyware

apps on victim devices [1]–[4]. Only the last category has

been studied: Chatterjee et al. [5] performed measurements

on official app stores and the web more broadly to discover

a large number of surveillance apps advertised to, and easily

used by, abusers. However, there has been no exploration of

the broader landscape of software enabling the many other

forms of harassment reported by victims.

This paper describes the first measurement study aimed at

illuminating the broader ecosystem of what we call creepware:

apps whose primary use case is enabling non-expert users to

mount interpersonal attacks. Apps only sometimes used for

harassment (e.g., email or messaging apps) fall outside our

purview. We find that the ecosystem surrounding creepware

also includes apps advertising the ability to defend against

interpersonal attacks, which we study in order to provide a

more holistic understanding of this problem space.

Unfortunately, the prior techniques [5] used to study spy-

ware are not helpful here. They rely on knowledge of spyware-

specific search terms, whereas a priori we do not know what

types of creepware apps people seek out. Instead, we turn to

the principle of guilt by association, which has previously been

used to discover new strains of conventional malware [6]–[8].

The key idea is that software that disproportionately appears

on the same device as known malware is, itself, likely to

be malicious. However, adapting such an approach to the

creepware context requires large amounts of data about app

installations and new algorithms.

We partnered with Norton, a major computer security firm,

to obtain anonymized data about billions of app installations

on 50 million Android devices over several years protected

by Norton Mobile Security.1 We couple this data with a

new algorithm, CreepRank, that, given a set of seed apps

known to be creepware, assigns scores to other apps. At its

core, CreepRank is a graph mining algorithm that computes

scores using maximum a posteriori estimation, which helps

suppress false positives among rare apps (a problem that

similar algorithms face in this context when not using a

skeptical prior, as we shall see). Intuitively, the higher the

CreepRank, the more the app is associated, via co-installation

data, with known creepware.

We applied CreepRank to the Norton dataset using as

seed set the overt spyware surveillance apps identified by

Chatterjee et al. [5]. The resulting ranking helped us discover

a wide variety of potential creepware apps. To make sense

of these results, we manually coded the 1,000 apps with

highest CreepRank. This involved iteratively developing a new

taxonomy of interpersonal attack and defense apps. Coders

used the app title, package name (app ID), description (when

available), and additional metadata, such as installation counts,

to label each app with a code from our taxonomy.

The findings from our manual coding analysis showed that

857 of CreepRank’s top 1,000 apps qualify as creepware,

fulfilling a clear purpose pertaining to interpersonal attack

or defense. Unsurprisingly, given the seed set, surveillance

apps were best represented in the rankings—372 of the top

1,000 apps—many of which were not identified by prior

work. Among these are 107 multifaceted surveillance apps

that affected 172 K Norton customers in 2017 alone. Overall,

CreepRank identified more than a million installs of diverse

creepware apps, including apps that enable spoofing (114 apps,

see an example in Figure 1), harassment (80, including SMS

bombers), hacking tutorials (63), and many more. We also

1We received IRB approval for our study.

1





only a few apps are known to be used for inter-personal attacks

(e.g., because they advertise as such), and for which there is

no obvious way to construct a representative set of benign

apps known to be unusable for such attacks.

Other algorithms may be more suitable for our task, such

as random walk with restart (RWR) [11], [12], which only

requires a small set of ground-truth labels for one class.

Although RWR is an exploratory method, we found it ill-

suited to our task because it assigns high scores to rare apps

that are installed alongside interpersonal attack apps due to

random chance. RWR lacks a way to add a skeptical prior

belief, i.e., to assume that apps are likely innocent until proven

guilty by numerous associations with “guilty” apps. Our need

to incorporate prior beliefs into an exploratory GBA algorithm

led us to design CreepRank, and proves to be its most

important characteristic, as discussed in Section VI. While the

techniques we develop for CreepRank may prove useful for

exploring other classes of apps, we have only investigated its

utility for discovering interpersonal attack and defense apps.

Finally, prior work has also explored what can be learned

from the apps installed on a device [30] or the set of apps

used at least once a month [31], including predicting a device

owner’s demographic information (e.g., gender). We explore

how the combination of creepware (and/or creepware defense)

apps installed on a device might point to user behaviors, such

as credit card fraud or interpersonal abuse (see Section VII-C).

III. DATASET DESCRIPTION AND PROPERTIES

We develop new data-driven approaches for discovering

apps used in interpersonal attack and defense that leverage

datasets consisting of anonymized Android app installations

recorded by NortonLifeLock’s Norton Mobile Security app.

For each device in our datasets, we have a list of <package

name, relative time> tuples reflecting the apps that were

installed on the device. The package name (Android app ID)

used to register apps in the Google Play store (if it has ever

been distributed there) is extracted from each APK file. For

apps exclusively distributed off-store, the app ID need not be

registered, and is therefore not necessarily a unique identifier

for an app. As a result, it is likely that our methods are most

effective for discovering abusive on-store apps, though we

have found that fixed package names are common for off-

store apps and that polymorphic package names are rare in

practice.

The relative time of each app installation is derived from

the time at which it was first scanned by the Norton app. Thus,

the relative time generally has a value close to 0 for all apps

installed prior to Norton’s app and, for subsequently installed

apps, indicates time relative to the installation of the Norton

app. The dataset does not include information on if and when

apps were removed from a device.

We use two different datasets: (1) data gathered from

devices active in calendar year 2017 and (2) data gathered

over a year-long period from May 1, 2018 to May 1, 2019. We

refer to these as the 2017 and 2018/2019 datasets, respectively.

The 2017 dataset includes 27.7 million devices with 10.9

million unique package names that were installed around 4

billion times across the devices (not counting duplicate app

installations and app updates). The 2018/2019 dataset has 22.6

million devices with 7.5 million unique package names that

were installed 1.9 billion times. The datasets are not disjoint,

4.5 million devices appear in both datasets.

We also use a dataset of marketplace data provided by

Norton that was periodically scraped from the Google Play

store over a period of several years. While this dataset is

missing data from some apps, it provides good coverage of

apps that have been retired or forcibly removed from the app

store and its website. For each app, it includes its genre, title,

description, and permissions.

Our data also has limitations. The devices in the dataset

are not necessarily representative of typical users, as by

definition they have Norton’s security app installed and are

therefore security conscious. For example, many IPV victims

face financial challenges [32] (Norton’s security app is not

free) and have limited awareness of digital security [1]. We do

investigate, within the limits of the data, when and (seemingly)

why the Norton app is used in relation to the types of

interpersonal attack apps found on a device (Section VII-D).

In addition, any dataset of this nature includes devices

that do not represent normal use. An example is devices

used by anti-virus (AV) testers and researchers, on which

many malicious apps will appear. To limit the impact of such

abnormalities, we removed from the dataset all devices on

which more than 1,000 apps were installed during the course

of one year, as these seem unlikely to represent real users’

devices. This removed about 18 thousand devices from the

2017 dataset and 9 thousand from the 2018/2019 dataset.

Finally, to make the dataset more manageable, we excluded

the top 1.1% most prevalent apps and then dropped devices

with only one app installation. These apps are likely benign

and are not interesting for our purposes, and would interfere

with the efficacy of our algorithms. This reduced the number

of app installations in the 2017 data from 4 billion to 546

million, for 10.8 million apps on 25 million devices. App

installations in the 2018/2019 dataset dropped from 1.9 billion

to 205 million, for 7.4 million apps on 17 million devices.

IV. USING GUILT BY ASSOCIATION

FOR APP DISCOVERY

We are interested in apps useful for interpersonal attack

and defense. These include apps that are used by one person

to monitor, harass, or otherwise harm another person (attack),

apps used to prevent such attacks (defense), and apps that are

useful for both attack and defense. The first category is what

we refer to as creepware. This paper will surface classes of

interpersonal attack and defense apps that were completely

new to the authors (and, we suspect, many others). We will

see many examples in subsequent sections.

Our hypothesis for discovering such apps is based on the

principle of guilt by association (GBA), which infers that apps

that tend to be installed on devices infected by malicious apps

tend to be malicious themselves. For an initial assessment of

3





CreepRank

Input: Per-device edge lists of installed apps and list of seed set apps

1: Initialize seed-set apps with app score=1, otherwise app score=0
2: Set each dev score = max(app scores) across connected apps
3: Set each app score = avg(dev score)
4: Normalize app scores
5: If not converged then goto step 2
6: Apply MAP formula to obtain final app scores

Output: Apps ranked in decreasing order of app scores

Fig. 3: The CreepRank algorithm to capture high-order corre-

lations between apps and devices they are co-installed on.

Device Scores Normalized App Scores

Round 0 1 A B C

0 – – 1 0 0

1 1 0 1 0.5 0

2 1 0.5 1 0.75 0.5

3 1 0.3 1 0.65 0.3

4 1 0.342 1 0.671 0.342

5 1 0.331 1 0.666 0.331

6 1 0.334 1 0.667 0.333

7 1 0.333 1 0.667 0.333

Table II: CreepRank applied to the graph of Figure 2a, showing

convergence to 3 significant digits by the 7th iteration.

applying the MLE method from Section IV-B to all apps that

appear on at least 100 devices (we do not include rare apps as

these may produce unreliable MLE values). We then model the

prior probability distribution as a beta distribution Beta(α, β)
that we fit to our MLE values, obtaining α = 1.09 and

β = 186. Our use of a beta distribution to model the prior is

convenient, as the beta distribution is a conjugate prior for the

binomial distribution with which we model our observations,

meaning that the posterior probability distribution is also a

beta distribution, with parameters Beta(α+ k, β + n− k), for

which the MAP estimate of the mode of this distribution is

readily derived as (k + α− 1)/(n+ α+ β − 2).
Note that for our prior of Beta(1.09, 186), the MAP esti-

mates contrast with MLE primarily by adding a large constant

to the denominator of the estimate. Practically, this means that

the MAP estimate assigns small CreepRank values to apps that

are not observed on infected devices in large numbers, but the

effect of the prior diminishes as k and n increase.

D. Capturing High-Order Correlations Among Apps

The final component of CreepRank reduces the algorithm’s

sensitivity to the small seed sets for which it is designed

by enabling it to capture high-order correlations between the

seed set and the broader ecosystem of creepware apps. We

considered alternative high-order graph-based methods, such

as random walk with restart (RWR) [11], [12], which provides

no mechanism to suppress false positives among rare apps,

causing it to include many irrelevant apps.

The steps of our algorithm, CreepRank, are shown in

Figure 3. Iterative application of these steps to the graph

shown in Figure 2a results in the values shown in Table II.

The input to CreepRank is a list of the apps installed on

each device, and a list of seed set apps. From this input, a

bipartite graph between device and app nodes is constructed,

with edges indicating an app’s presence on a particular device.

CreepRank’s first step initializes the seed set apps with score

1 and all other apps with score 0. In Step 2, each device

receives an infection score that is the maximum value of all

apps installed on the device (these scores are binary in the

first iteration). In Step 3, apps are assigned a score based on

the average score of the devices on which the app appears,

and the scores are normalized in Step 4 to ensure that the

sum of the app scores is equal to the sum of all MLE values

obtained by the first-order method described in Section IV-B.

In the absence of normalization, the max function applied in

Step 2 would cause app scores to increase with each iteration

of the algorithm. Any desired convergence criteria can be set

for Step 5. We ran our algorithm for 10 iterations, since by

then the rankings became stable even for graphs of 500 million

edges. For instance, the maximum score delta was .00085 in

the algorithm’s 10th iteration for 2017 data, for a seed set of

18 apps (scores range from 0 to 1).

E. Implementation

Our datasets are quite large. For example, the graph cor-

responding to the 2017 installation dataset consists of 546

million edges, 25 million device nodes, and 10.6 million app

nodes. We therefore implemented CreepRank for use in a

distributed setting. The algorithm required only 77 lines of

code, which consist of 29 Scala commands that make ample

use of Spark. The algorithm ran on 100 Spark worker nodes

on an AWS cluster, each node consisting of a single CPU

core and 10GB of RAM, plus a driver node with 15GB of

RAM. These workers ran on a mix of AWS instances of type

m5.12xlarge (48 cores and 192GB RAM) and r5.4xlarge (16

cores and 128GB RAM). The average execution time, taken

over 10 executions of CreepRank on the 2017 dataset, was 24

minutes, 21 seconds with a standard deviation of 115 seconds.

Writing out the ranking scores of all 10 million apps to a

Hadoop File System takes an additional 90 seconds.

V. CATEGORIZING CREEPWARE

After running CreepRank on 2017 data with a seed set of

18 covert surveillance apps, we wanted to characterize the

categories of apps discovered. To achieve this, we manually

coded 1,000 apps that (1) were highest ranked by the algorithm

and therefore most risky, and (2) had at some point been

available on the Google Play store and for which we could

therefore obtain sufficiently detailed data via Internet searches.

The overarching question we sought to answer was: What cat-

egories of creepware exist beyond interpersonal surveillance

apps, and how prevalent are those categories?

A. Manual Coding Methods

We used a manual coding process to iteratively develop and

refine a codebook of app categories. For each of the 1,000

highest-ranked apps, we presented coders with (1) the app

title and ID, (2) a link to a Google query for a marketplace

5



description of each app, and (3) additional metadata for each

app (e.g., installation counts, permissions, genre, etc.).

Our team consisted of four coders. We began by randomly

choosing a set of 25 apps that all team members coded

independently. The guidelines were to (1) assign each app

one and only one code, and (2) assign codes using a two-level

hierarchy of categories and sub-categories that were developed

in the process of coding (e.g., Surveillance - Location). When

no sub-category was appropriate, apps were assigned the most

relevant top-level category (e.g., Surveillance - Misc).

After independently coding the first round of 25 apps, the

group met to establish consensus and converge on appropriate

code names. The results of the team’s discussion were captured

in a codebook that was refined in subsequent rounds of coding.

We proceeded in this fashion for 4 rounds of 25, 25, 25,

and 35 apps, jointly coding 110 apps. Having found that

the codebook had largely stabilized after two rounds, we

measured inter-coder agreement over the last 60 apps coded

by the whole group. Fleiss’ kappa statistic [33] indicated the

coders’ agreement was 0.77 when assigning apps to high-level

categories, and 0.75 when assigning apps to sub-categories,

indicating substantial agreement in both cases.

The remaining 890 apps were split evenly among the four

coders. We took multiple precautions to ensure that coding

consistency on the remaining apps would be at least as high as

that attained on the 60 apps on which we measured agreement.

Team members assigned a code of “other-discuss” for any

app that did not fit into any category, and tagged all apps

they were uncertain about as “unsure”, providing explanatory

comments about such apps. All apps tagged as “other-discuss”

or “unsure” were reviewed by a second coder. In addition, all

apps that fit into a high-level category and in a miscellaneous

sub-category were reviewed to identify any trends that might

only become apparent once all 1,000 apps had been reviewed.

All coding modifications that resulted from this review process

were discussed by the team to ensure agreement.

B. Results of Manually Coding Apps

Our algorithm captures both first-order correlation between

apps that are highly likely to directly appear on devices on

which our seed set of overt surveillance apps are installed,

as well as apps that indirectly but strongly correlate with the

seed set. The coding process revealed remarkably few apps

that are not part of a clear trend; even among apps that have

no obvious abusive use cases. All apps mentioned by their title

here and elsewhere in the paper are listed under the code to

which they pertain in Appendix C’s Table IX.

The final codebook consisted of 10 high-level categories

(e.g., Surveillance, Harassment, Spoof ) and 50 sub-categories

(e.g., Surveillance - Location, Harassment - Social Media,

and Spoof - SMS). Figure 4 shows apps assigned to sub-

categories, with the legend indicating the counts in parenthesis

for the corresponding high-level categories. The three most

prevalent sub-categories are all part of the Surveillance high-

level category: Surveillance - Social Media, Surveillance -

Location, and Surveillance - Thorough.

The rest of this section summarizes categories that suggest

apps are used to facilitate interpersonal attacks, categories that

suggest apps are used to defend against such attacks, and

categories without an immediate abusive or defensive purpose.

A comprehensive description of every code category, sub-

category, and examples is provided in Appendix C.

Characterizing potentially abusive apps. The largest cate-

gory of potentially abusive apps that we coded was Surveil-

lance, which is unsurprising given that the seed set we selected

consisted of surveillance apps. Apps in this category include

those that (1) both covertly and overtly track someone’s

location, (2) record phone call audio, call metadata and call

logs, (3) forward or snoop on SMS messages, (4) continu-

ously surveil social media accounts (mostly WhatsApp and

Facebook), (5) turn on the phone’s camera and microphone

and forward a stream to a remote device, and (6) apps that

record, stream, and/or take a snapshot of a device’s screen.

Although CreepRank’s discovery of so many surveillance apps

will clearly be useful in terms of warning users about such

apps or recommending that they be blocked from the app store,

the nature of such surveillance apps has also been the focus

of prior work [5] and thus we focus this discussion on other

categories of apps, relegating the details of our surveillance-

app findings to Appendix C.

We found 115 apps that enabled a variety of ways to spoof

information, including faking images, call logs, web content,

SMSs, WhatsApp messages, voice, and more. We coded 41 of

these apps as Spoof - Burner Phone because they support the

ability to make anonymous calls or SMS messages, with many

explicitly advertising as useful for evading call blocking. Even

more concerning and unambiguously malicious are apps that

enable impersonation. Many such apps enable abusers to bait

victims into a compromising response, sometimes allowing

entire conversations of messages to be faked. Developers

recommend their apps for putting words into the mouths

of unsuspecting victims, as in the case of the “Spoof Text

Message” app (see Figure 1), whose YouTube trailer2 says,

“Don’t like you buddy’s girlfriend? Well, break them up! Just

send a fake text message!”. Further scrutiny of SMS spoofing

apps and their malicious use cases is provided in Section

VII-B.

We used Harassment codes to categorize apps that could be

used to harass people in ways other than the mechanisms cap-

tured under surveillance, spoofing, control, and information-

extraction codes (discussed elsewhere). One unexpected and

prevalent type of app in this category were fake surveillance

apps, usually marketed as prank apps, that are typically

designed to be installed on a prankster’s phone and briefly

shown to a victim as the app simulates hacking the victim’s

device or accounts. Anecdotal evidence that fake-surveillance

apps can cause real stress is provided by the following user

review for “Other Number Location Tracker”, which was on

the Google Play store as of June 1, 2019 and subsequently

removed after we reported it to Google:

2https://www.youtube.com/watch?v=3MB1dVpSuRk

6



C
al

le
rI
D

-
M

is
c

C
al

le
rI
D

-
Loc

at
io

n

C
on

tro
l -

H
id

e
Ic

on

C
on

tro
l -

U
se

Lim
ita

tio
ns

D
ef

en
se

-
M

is
c

D
ef

en
se

-
A

nt
i H

ar
as

sm
en

t

D
ef

en
se

-
A

nt
i Sur

ve
ill

an
ce

Eva
si
on

-
A

lte
rn

at
iv

e
In

pu
t

Eva
si
on

-
H

id
de

n
C
on

te
nt

Eva
si
on

-
Ste

ga
no

gr
ap

hy

H
ar

as
sm

en
t -

M
is
c

H
ar

as
sm

en
t -

A
ut

om
at

io
n

H
ar

as
sm

en
t -

B
om

be
r

H
ar

as
sm

en
t -

Fak
e

Sur
ve

ill
an

ce

In
fo

Ext
ra

ct
io

n

In
fo

Ext
ra

ct
io

n
-
D

um
p

In
fo

Ext
ra

ct
io

n
-
Fra

ud

In
fo

Ext
ra

ct
io

n
-
H

ac
k

Too
ls

In
fo

Ext
ra

ct
io

n
-
Peo

pl
e

Sea
rc

h

In
fo

Ext
ra

ct
io

n
-
Sys

te
m

Spo
of

-
M

is
c

Spo
of

-
B
ur

ne
r
Pho

ne

Spo
of

-
Fak

e
C
al

l

Spo
of

-
H

tm
l

Spo
of

-
Im

ag
e

Spo
of

-
SM

S

Spo
of

-
Soc

ia
l M

ed
ia

Spo
of

-
Sup

pr
es

s
C
al

le
rI
D

Spo
of

-
Tho

ro
ug

h

Spo
of

-
Voi

ce

Sur
ve

ill
an

ce
-
M

is
c

Sur
ve

ill
an

ce
-
C
al

ls

Sur
ve

ill
an

ce
-
C
am

er
a

Sur
ve

ill
an

ce
-
Loc

at
io

n

Sur
ve

ill
an

ce
-
M

ic
ro

ph
on

e

Sur
ve

ill
an

ce
-
Scr

ee
n

Sur
ve

ill
an

ce
-
SM

S

Sur
ve

ill
an

ce
-
Soc

ia
l M

ed
ia

Sur
ve

ill
an

ce
-
Soc

ia
l M

ed
ia

C
ov

er
t

Sur
ve

ill
an

ce
-
Tho

ro
ug

h

Tut
or

ia
l -

H
ac

ki
ng

Tut
or

ia
l -

R
oo

t

Tut
or

ia
l -

Set
tin

gs

N
on

e
-
M

is
c

N
on

e
-
A

nd
ro

id
M

od
s

V
m

N
on

e
-
C
om

m
un

ic
at

io
n

N
on

e
-
In

de
x

N
on

e
-
Pai

d
In

st
al

ls

N
on

e
-
Tut

or
ia

l D
ev

el
op

m
en

t

N
on

e
-
Tut

or
ia

l M
is
c

0

50

100

6

40

9
4 1 3

38

4
9

15

3
11 10

56

3

35

7
11 12

7 4

41

6 5
9

20

8
4

8 10
5

19
15

90

12
5

9

105

23

89

63

6

17

52

23
14

9

27

12
6

N
u
m

b
er

o
f

ap
p
s

Caller ID (46 / 114 K) Control (13 / 80 K) Defense (42 / 175 K) Evasion (28 / 87 K) Harassment (80 / 62 K)

Info Extraction (75 / 173 K) Spoof (115 / 379 K) Surveillance (372 / 913 K) Tutorial (86 / 205 K) None (143 / 388 K)

Fig. 4: Count of top 1,000 apps in each of the 50 sub-categories of our codebook. Legend shows high-level app categories

and for each, the number of apps in the category and the number of app installations for that category.

“You say this is a joke . . . there is absolutely nothing funny

about me looking up the number of my ex abuser who i

have a restraining order against and it showing me he is

1 block away from my home. So i freak out panicking and

call the cops and show them the location on my phone and

they search the area and cant find him. They come back

. . . and then . . . click on it just to see it is a f*cking joke!!

. . . i hope they get shut down.”

Another concerning set of apps that we coded as Harass-

ment - Bomber enable users to send high volumes of texts,

calls, emails, posts, etc., to a victim. For many of these apps,

such as “Message Bomber -send 5000+ sms”, it is difficult

to envision a non-malicious use case. Section VII-B examines

these apps and the context in which they are used.

We coded 86 apps as relevant tutorials, most of which

provide hacking tips. Manual inspection confirmed that hack-

ing tutorials recommend many of the attack apps that we

coded (see Section VII-B), in addition to generic hacking

tips, hacking term glossaries, and forums. In addition, several

apps either provided tutorials for rooting phones, or actually

rooted them, which is a vital step that enables many of the

interpersonal attack apps we found.

Many of the 74 apps coded as Information Extraction are

similar to surveillance apps in that they extract device and

personal information, but not on an ongoing basis. Instead,

many of these apps perform one-time dumps of content

(e.g., dumping and decrypting WhatsApp databases, extracting

forensic information, hidden or encrypted content caches,

call logs, social media data, location history, deleted SMS

messages, etc). We also found apps that directly provide

hacking tools (e.g., pen-testing apps), as well as a cluster of

apps that seemed most useful for fraud, particularly related

to credit cards, which included card-number revealers, detail

finders, validators, and generators. Two concerning apps are

“Bank Card Validator” and “Credit Card Revealer”, both of

which regularly appear alongside an app that generates fake

ID card images (coded as Spoof - Image).

A few app categories seemed useful for both attackers and

victims. For example, a cluster of apps selectively hide content

or are designed around privacy-focused messaging platforms,

which we coded as Evasion - Hidden-Content. Most of these

apps selectively hide images, WhatsApp content, contacts,

communications, etc. They often appear alongside attack apps

and are possibly used by surveillants to hide their activities

from victims. In many cases these apps either hide their icons

or pose as an unsuspecting app, as in the case of the “Smart

Hide Calculator”. We also discovered general purpose Control

- Hide-Icon apps that hide the presence of other apps (see

Section VII-B for more analysis of these apps).

Finally, we note that the above discussion of attack apps is

intended to describe illustrative categories of attack apps and

examples that came up in our analysis. Appendix C provides

a description of every code sub-category.

Characterizing potentially defensive apps. Our coding re-

vealed clear signs of victims protecting themselves and/or

finding ways to evade restrictions imposed upon them. Al-

though many apps assigned to other categories could plausibly

have utility to both attackers and victims, we only coded apps

under defense sub-categories when they seem to be exclusively

designed to defend against surveillance or other attacks.

The most prevalent category of defense apps we discovered

contained 38 anti-surveillance apps that prevent, block, or

detect surveillance that may be conducted remotely or through

physical proximity. These apps use a wide range of anti-

surveillance mechanisms that includes access control, counter-

7



surveillance of failed login attempts, and shoulder-surfing

defense. For example, “Incoming Call Lock - Protector” is

an access-control app that password protects incoming phone

calls so that they cannot be answered by an attacker. As

another example, “Oops! AppLock” enables access codes that

lock the phone with no UI indications that the phone is locked,

giving the impression that the phone is frozen in an open state.

The unlocking mechanism is sometimes covert and subtle,

such as a specific pattern of key volume presses.

A smaller category of defense apps seems to be primarily

useful for victims experiencing SMS or call bombing, and

remotely triggered alarms. Two such apps provided the ability

to easily and temporarily disable system volume or vibrations

during set times. Finally, “Hidden Apps” is a unique defensive

app that reveals the presence of undesirable apps whose icons

have been hidden, such as covert surveillance apps.

Characterizing apps coded as “None”. Among CreepRank’s

top 1,000 apps are 143 that are indicative of creepware users

and victims but that do not directly relate to attack or defense.

Most of these apps rank towards the bottom of the top 1,000,

with only 2 in the top 200. Among these, 23 apps implement

Android modifications or virtual machines, which appeal to the

hacker community and to anti-virus testers. We also observed

18 tutorial apps, mostly pertaining to Android modification

and development, but also to catching cheating love interests.

14 communication apps provide group chat functionality for

social-media platforms, platforms for local dating, or appear

to promise free burner-phone capabilities.Finally, we found 9

index apps and 27 pay-per-install (PPI) apps, which link to

many apps and incentivize users to install them. The index

apps either directly recommend other apps, or index deals and

coupons offered by other apps. The business model of PPI apps

is to charge app developers who wish to artificially inflate the

install counts of their apps, and then incentivize PPI app users

to install these apps. Among the remaining 52 miscellaneous

apps are several trends including money-making, social media,

dating, and accessibility.

VI. UNDERSTANDING CREEPRANK’S EFFICACY

The prior section highlights the wide variety of interper-

sonal attack and (in a few cases) defense apps identified

by CreepRank’s exploratory algorithm. We now discuss in

more detail why CreepRank was able to find these apps by

examining two questions: (1) Does CreepRank outperform

alternative algorithms such Random Walk with Restart and

the MLE-based or first-order MAP approach (described in

Section IV)? and (2) Why did some irrelevant apps show

up in CreepRank’s results? In subsequent sections we further

highlight CreepRank’s efficacy by using it to facilitate a deeper

measurement study of the creepware ecosystem.

A. CreepRank versus Alternative Algorithms

CreepRank is a single-class semi-supervised exploratory

algorithm based on the principle of GBA. It differs from

most malware analysis algorithms in that it does not use any

descriptive features that would constrain the nature of the

C
al

le
r
ID

C
on

tro
l

D
ef

en
se

Eva
si
on

H
ar

as
sm

en
t

In
fo

Ext
ra

ct
io

n

Spo
of

Sur
ve

ill
an

ce

Tut
or

ia
l

N
on

e
0

200

400

600

800

N
u

m
b

er
o

f
ap

p
s

CRNMAP
CR1MAP
CRNMLE
RWR

Fig. 5: Category counts for CreepRank (CRNMAP), RWR,

and CreepRank variants CR1MAP and CRNMLE.

creepware apps it discovers. We compare CreepRank to Ran-

dom Walk with Restart (RWR) [11], [12], another exploratory

GBA algorithm that is applicable to our setting due to its use

of a single class of labeled examples. The two main elements

of CreepRank are its MAP estimates based on a data-driven

prior belief about the scarcity of creepware apps (CRNMAP),

and its ability to measure nth-order correlations between app

installations. To understand which of these contributes most to

CreepRank, we compare to an iterative version of CreepRank

that uses maximum likelihood estimation (CRNMLE) and to a

first-order correlation using maximum a posteriori probability

estimation (CR1MAP) (see Section IV-C).

For the purposes of comparing these algorithms, we treat the

apps coded under None categories as false positives, and all

other apps as true positive creepware. We measure algorithmic

quality based on the percentage of creepware apps in each

algorithm’s top 1,000 rankings. Two authors coded the top

1,000 apps produced by each algorithm, discussing possible

changes to the codebook as they went, but ultimately finding

that all trends were already captured by our existing codebook

(Section V). Our coders achieved high inter-rater reliability

over creepware categories with Cohen’s kappa equal to 0.87.

A histogram of app categories in the top 1,000 results of

each algorithm is shown in Figure 5. CRNMLE and RWR have

the most None apps in their top 1,000. On the 2017 data, the

top 1,000 produced by CR1MAP and CRNMAP differ by only

67 apps, yet 25 of CR1MAP’s 67 are None apps, compared

to only 5 of CRNMAP’s. This suggests that for large datasets

such as ours, running CreepRank iteratively until convergence

yields a modest improvement in the rankings.

More important to CreepRank is the use of MAP estimation,

as seen in the comparison between CRNMLE and CRNMAP.

CRNMLE gave high scores to many rare apps that co-occur

with creepware due to random chance, resulting in 857 None

apps in its top 1,000 rankings, 853 of which were observed

fewer than 10 times. While RWR performs moderately better

than CRNMLE, it too is insufficiently skeptical of rare apps,

resulting in 693 None apps in its top 1,000 rankings.

To see if different algorithms detected qualitatively different

creepware, we examined the 307 creepware apps detected

8



by RWR, of which 223 are not in CRNMAP’s top 1,000.

These FN’s were typical creepware apps that fit cleanly within

existing code categories, among which were 62 defensive

anti-surveillance apps, 2x more detections than any other

app type found by RWR. Meanwhile, CRNMLE detected

143 creepware apps, of which 122 were FN’s for CRNMAP.

These too were typical creepware apps, but of low prevalence.

Recall that our MAP estimate deliberately sacrifices its ability

to detect rare creepware apps so as to avoid CRNMLE’s

propensity for FP detections, which seems sensible given that

rare apps affect fewer people than prevalent apps.

B. Analysis of False Positives

CreepRank’s top 1,000 apps include 143 non-creepware

apps that we categorized as None. We identified three causes

for their appearance in CreepRank’s top 1,000 rankings. First,

the presence of None apps that are routinely co-installed with

creepware to which they bear similarities is more or less

unavoidable. For example, 18 apps were tutorials on tech and

software development, which were often installed alongside

hacking and creepware-focused tutorials. Another 14 other

communication apps either bear similarities to burner-phone

apps or provide private communications services. Among

miscellaneous apps, 26 are similar to existing creepware apps,

while the other 26 are more random, whose presence is

explained by other reasons.

Second, 27 pay-per-install (PPI) and 9 index apps act as

hubs [34] in the app store and would therefore be highly

ranked by nearly any graph-propagation algorithm. To assess

their impact on the rankings, we dropped all devices with any

of the 27 PPI apps and re-ran CreepRank. The result was that

47 apps (and the 27 PPI apps) dropped from the rankings, 23 of

which were None apps. Eight of the dropped None apps were

money-making apps similar to PPI apps, and we conjecture

that other dropped apps were advertising through PPI apps.

Finally, 23 apps create VMs or modify/emulate Android,

which impact the rankings by introducing devices used for AV-

testing and other atypical purposes. Through experiments de-

scribed in Section VII-D, we found that eliminating 8 Android-

mod apps indicative of AV-testing results in the disappearance

of 15 additional None - Android Mods VM apps and other

None apps. We also experimented with eliminating both PPI

and AV-test apps prior to running CreepRank. This drops both

FP None apps and TP creepware from the top 1,000, 64% of

which are creepware. These lost TP’s are replaced by apps that

are 85% creepware, which would have improved the rankings

while making them more representative of normal devices.

VII. MAKING SENSE OF THE CREEPWARE ECOSYSTEM

The investigations described thus far uncovered a larger

than expected ecosystem of creepware apps that includes many

varieties of abuse apps of which we were previously unaware.

Here we perform a sequence of small analyses to try to

better understand this ecosystem. First, we use the context in

which apps are installed to infer the most probable creepware-

relevant use of apps whose intent was ambiguous or unclear

(Section VII-A). Next, we seed CreepRank with various seed

sets to examine the extent and character of interesting sub-

categories of the creepware ecosystem (Section VII-B). We

contrast profiles of attacker and victim devices in Section

VII-C, and conclude this section with an investigation into

the role that Norton’s security app seems to play with respect

to creepware (Section VII-D). Finally, we look for changes in

creepware trends over time by analyzing a more recent year

of data, in Section VII-E.

A. Potential Use Cases of Creepware

While coding, we hypothesized about how various types

of creepware might be used. Although we have no data that

directly measures usage, app installation patterns yield circum-

stantial evidence about how people might intend to use an app.

For each category of creepware apps, we examined the context

in which individual apps pertaining to the category appear. To

this end, for each pair of creepware apps a and b that we coded,

we calculated the pointwise mutual information (PMI) [35]

measure, which represents the amount of information that the

existence of app a has on the appearance of app b on the same

device. More precisely, pmi(a; b) = log p(a,b)
p(a)p(b) where p is the

probability function. For apps in each category and those that

were not confidently coded, we examined the apps that had

the highest PMI values with respect to that app. To remove

noise we excluded PMI values for apps that co-occurred once.

There were several instances in which our initial hypotheses

about the purposes of individual apps were shown to be

incorrect. In some instances, coders had envisioned a malicious

use for an app that was not observed in practice. More often,

we discovered unsuspected malicious uses. We now describe

several examples of apps that we either re-categorized as a

result of their PMI scores (these are correctly reflected in

Figure 4) or that confirmed our hypotheses (see Appendix B

for additional PMI data and Table IX for details of these apps):

The “Lodefast Check Cashing App” allows users to cash

checks without visiting a bank. It has high PMI values with

the “Card Details Finder”, “Bin Checker”, and “Bank Card

Validator” apps, indicating that the app is likely used for fraud

by some users despite good intentions by its developers.

“SMS Retaliator” seems useful for both attack and defense.

We initially coded it as an anti-harassment tool because of

its SMS blocking features, but PMI values indicate that it is

typically used alongside message-bombing and attack apps.

We saw no signs of it appearing alongside victim-side apps.

The “Unseen - No Last Seen” app is the most prevalent app

for covert access to social media. This app co-occurs primarily

with other covert access apps, but also with fake surveillance

apps, suggesting that it is sometimes used by attackers.

The “Edit Website” app is one of several that enable users to

make temporary website edits that persist until the browser is

refreshed. This app provides a WYSIWIG editor for websites

and is routinely installed alongside with users of spoofing,

surveillance, and fake surveillance apps. Its description states

that “The obvious use of this application would be to prank

friends by changing headlines of news articles or paragraphs.”

9



Apps with similar functionality that advertise for web devel-

opment seem not to be used for attacks.

Finally, correlation data shows that many apps that purport

to be intended for child online safety have highest PMI with

apps that are unambiguously intended for intimate partner

surveillance. It is unsurprising that the “Family Locator for

Android” app appears alongside abuse apps, as its previous ti-

tle was “GirlFriend Cell Tracker.” “Cell Tracker”, on the other

hand, is the most prevalent app with thorough surveillance

capabilities in the top 1,000 list and its marketing focuses

on child safety. Although it does seem likely to be used in

this way, it also correlates strongly with “Cheating Spouse”,

“Where the hell are you?”, and “Boyfriend Tracker Free,” none

of which seem indicative of use on a child’s phone.

B. Finding More Creepware with Alternate Seed Sets

CreepRank can also be used to surface other classes of

apps. We now describe how we further explored the creepware

ecosystem by running CreepRank with different app seed sets.

Seeding with Harassment - Bomber Apps. We selected the 7

bombing apps that had been most confidently coded as being

entirely designed for harassment. We ran CreepRank using

these apps as the seed set and coded the top 50 results (see

Table IIIa). We discovered 15 more bomber apps in the top

50. We found 26 more bombers in the top 1,000 by examining

the 49 apps with the following search terms in their title or

app ID: SMS, bomb, dial, blast, spam, empty, blank.

Users that install bomber apps are also likely to install apps

that auto-like or auto-comment on social media, presumably

to bomb and harass. Interestingly, nearly all auto-liking apps

do not appear to deliver on their promise, self-identifying as

“pranks”, with the notable exception of “404liker”, which is

often installed alongside malware. We found that several apps

coded under Evasion - Steganography, because they could

help abusers evade censoring, are typically co-installed with

bombers. These apps create huge strings of text or emojis

out of short messages or images that are sent repeatedly by

bombers to amplify the impact of their attacks. These bombing

attacks would be costly for victims that do not have unlimited

SMS messaging. Other apps in the top 50 are in unrelated

creepware categories, except perhaps for “SMS-encryption”,

which might be used for large string generation.

Seeding with Spoof SMS apps. To better understand how

SMS Spoofing apps are used, we seeded CreepRank with 18

Spoof - SMS apps and coded their intent and that of the top

50 apps (see Table IIIb). Among these 68 apps, we found 32

that enable impersonation. Pernicious use of these apps, such

as to damage a victim’s relationships, is directly suggested

in marketing materials for some of these apps (see Figure 1).

Such apps could also be used to elicit compromising responses

from intimate partners that are suspected of infidelity, similar

to the attack suggested by the tutorial app in Figure 6b. Of

particular interest are eight impersonation apps that enable

entire conversations to be falsified, which seem to be mostly

about constructing false evidence, such as the “Sending Fake

SMS app”, which markets itself to unfaithful intimate partners

for falsifying alibis. Several others are intended for installation

on a victim’s phone, where mimicked SMS, Facebook, or

WhatsApp notifications sent by the abuser can cause the

victim to open the spoofing app thinking that they have

received a genuine message from whomever the abuser chose

to impersonate. These apps have clear parallels to phishing

attacks but are under-studied.

PMI values indicate that the 15 anonymity-focused apps are

used by abusers more than victims, possibly to send anony-

mous messages that are difficult to block. “SMS Receive”

and similar apps enable users to receive messages at shared

anonymized numbers, such as for 2-factor authentication no-

tifications, and in conjunction with apps that provide burner-

phone and temporary email services. Rounding out the top 50

are 19 attack apps (mostly surveillance) and 2 defensive apps.

Seeding with Control-Hide Icon apps. Table IIIc shows

the top 50 results when we seed CreepRank with nine icon-

hiding apps. The top 50 includes 12 app-hiders, three of which

camouflage other apps by changing their icons or metadata,

while the rest hide app icons from the user interface. Several

apps hide their own icons, while others camouflage themselves

by posing as a calculator, currency exchanger, or flashlight.

Three of the hidden apps can only be opened by calling a

fake phone number, while most other hidden-content apps

require some sort of passcode. Users of app-hiders frequently

install apps that hide content, many of which provide dual

public and secret channels for content and/or communication.

Also noteworthy is “Hidden Apps”, a defensive app that

reveals the presence of hidden apps. The top 50 contained 9

additional defensive apps that provide access control for some

combination of the device itself, its apps, and incoming phone

calls. Eight other attack apps round out the top 50 results.

Hacking Tutorials. For further confirmation of our hypotheses

about how creepware apps are used, we turned to hacking

tutorial apps. We installed the hacking tutorials that were

prominent in CreepRank’s results or had high PMI scores with

abusive apps. We now describe three such tutorials.

“SpyBoy” was notable for its high PMI scores with at-

tack apps across many categories. It confirmed many of our

hypotheses by describing interpersonal attacks that cover a

remarkably large fraction of the creepware categories we

identified, including: email, HTML, SMS, and caller spoofing,

use of hack tools, remote control of devices, secret settings for

attack and defense, steganography, imposing WiFi use limita-

tions on other devices, and several categories of surveillance.

“Top Spy Apps” gives a ranked list of interpersonal surveil-

lance apps in general, and intimate partner surveillance apps

in particular (see Figure 6a). Each app has a page where it is

described and extolled for it’s best spying features.

“Cheating spouse tracker” includes vivid descriptions of

how to entrap a cheating spouse, recommending specific

surveillance apps (see Figure 6b).

10



Count Code

15 Bomber
14 Auto-Liking
10 Evasion-Steganograpy
6 Info Extraction
1 SMS Encryption
1 Harassment
1 Spoof
1 Surveillance

(a) Seed set of 7 Bomber apps

Count Code

13 (+11 seed set) Impersonate Sender
5 (+3 seed set) Impersonate Conversation

11 (+4 seed set) Anonymity
13 Surveillance and Dumping

4 Fake Surveillance
2 Spoof - Call Logs
1 SMS Blacklist
1 Evasion - Hidden Content

(b) Seed set of 18 SMS Spoofing apps

Count Code

20 Hidden Content
12 Hide Apps

9 Access Control
6 Surveillance
1 Hidden App Finder
1 Info Extraction
1 Fake Surveillance

(c) Seed set of 9 App Hiders

Table III: Coding results of the top 50 apps produced by CreepRank on 2017 install data when seeded with apps of different

categories. In the case of SMS spoofing apps, we re-coded the apps to capture their nuanced functionality.

(a) (b)

Fig. 6: (a) “Top Spy Apps” lists spyware apps and their uses

for interpersonal surveillance. (b) “Cheating spouse tracker”

includes guides recommending specific surveillance apps.

Y = Harassment – Bombers Y = Surveillance – Location

App Category X ∆XY App Category X ∆XY

Evasion – Steganography 5.79 CallerID – Location 1.52

Harassment – Automation 5.59 Harassment – Fake Surveillance 1.27

Spoof – HTML 3.19 Surveillance – Thorough 0.62

Spoof – Misc 2.71 Surveillance – SMS 0.38

Defense – Anti-harassment 2.59 Defense – Misc 0.17

Surveillance – Calls -0.11 None – Android Mods VM -0.63

Surveillance – Camera -0.13 Evasion – Steganography -0.63

CallerID – Misc -0.15 Harassment – Misc -0.68

Surveillance – Location -0.58 Tutorial – Root -0.75

CallerID – Location -0.60 Spoof – Misc -0.75

Table IV: Relative difference ∆XY between probabilities that

a device has an app from category X given that it has an app

from category Y = Harassment – Bombers or Y = Surveillance

– Location vs. it has an app from category X .

C. Characterizing Devices via Creepware

To better understand the nature of devices with creepware

installed, we analyze correlations between different categories

of apps co-installed on devices. For example, we hypothesize

that certain apps are typically installed on devices being used

by an abuser, while other apps are primarily installed on

victim devices. Let Y be a category of apps conjectured to be

indicative of a device’s role. We focus on Y being Harassment

– Bombers (likely installed on the device of abusers) or

Surveillance – Location apps (likely installed on the device

of a victim). The tables in Table IV show the five highest and

lowest app categories X for the two Y categories, where the

ranking for category X is calculated as the relative difference

∆XY = (Pr(X|Y ) − Pr(X))/Pr(X) where Pr(X) is the

probability of observing at least one app with category X on

a device, and Pr(X|Y ) is the probability of observing at least

one app with category X on a device given that the device

has at least one app with category Y .

As can be seen, harassment apps tend to be installed on the

same device as other harassment apps: the top four apps for Y
being Harassment – Bombers are all categories of apps useful

for sending harassing messages. For Y being Surveillance –

Location the situation is almost exactly reversed, with the top

four app categories being spyware related. This suggests that,

in some cases, it may be possible to characterize devices as

attacker-owned or victim-owned based on the types of apps

installed. Whether such predictions can be made accurate or

useful remains an open question.

D. Role of the Norton Mobile Security App

By obtaining our dataset from a security vendor, we only

have data from devices on which the vendor’s app is installed.

We wanted to investigate if the Norton app was most often

used preventatively or for post-infection cleanup. We iden-

tified 172 K devices on which the Norton app was installed

alongside one or more of the 107 thorough surveillance apps

we identified (including apps in CreepRank’s seed set). We

then dropped about 8 K potentially anomalous devices that had

more than 1 K apps installed in any one year. In 22 K of the

remaining 164 K devices, the Norton app was installed after

a surveillance app, suggesting post-infection cleanup. For the

rest of the devices, the security app was installed before the

surveillance app, suggesting it is being used preventatively.

This leads us to ask why an attacker would install a security

app on their device? A possible reason is that attackers are

frequently engaging in risky behaviors, such as installing ques-

tionable or off-store apps and rooting devices. Thus, they may

use the security app to guard against possible compromise.

11



No Device Filtering AV Device Filtering

Count Code Count Code

19 Malware 4 Malware
1 Not Found 3 Not Found

11 Surveillance
1 Spoof Social Media
1 Anti-Surveillance

Table V: Coding of top 20 apps for which we lacked market-

place data, with and without AV-test device filtering

AV-Testing Devices and Offstore Apps: To identify devices

used in AV-testing, we examined apps coded as None - Android

Mods / VM that may be used for AV testing. Seven of these

apps (e.g., apps that emulate Linux or Chromium or enable

software development) seemed unlikely to be installed on

typical user devices. We also noticed that the Appium Mobile

App Automation toolkit [36] often appeared on devices with

malware and other Android-modification apps, which suggests

its use in AV testing. Thus, we added Appium to the other

seven AV-testing apps, removed devices containing any of

these eight apps from the data, and re-ran CreepRank. The ef-

fects on the overall rankings of apps that appeared in Norton’s

marketplace data were modest, except for a few additional

Android-modification apps that dropped precipitously in the

rankings, likely because they were also used in testing.

We expected that filtering out AV-test devices would have

a large impact on CreepRank’s rankings of malware apps.

To analyze this, we compared the top 20 ranked apps, both

with and without filtering, for which Norton did not have

marketplace data (see Table V). We found that filtering devices

with apps indicative of AV testing has a dramatic impact on

the rankings, with no overlapping apps between its top 20

list and the unfiltered top 20 list. The unfiltered top 20 list

consists primarily of malware apps on devices where Appium

automation apps appear. By contrast, CreepRank’s top 20 list

for filtered devices consists of apps that appear to have existed

on the Google Play store at one time, but probably only briefly,

as few of the sites that scrape the Google Play store have

records of these apps. Most were surveillance apps, a few

were malware, and there was one defense and one spoofing

app. We could not find any useful information about 3 apps.

E. Creepware over Time

We now examine how creepware evolves over time by

running CreepRank on the 2018/19 dataset (spanning May 1st

2018 to May 1st 2019) and comparing the results to the 2017

dataset. As noted above, CreepRank tends to perform better

as the number of devices infected by its seed set increases.

However, the 18 surveillance apps used as the original seed

set on the 2017 data had declined in popularity by 2018/19. To

compensate, we added another 32 thorough surveillance apps

that CreepRank identified in the 2017 data, selecting apps that

were prevalent in 2018/19. This resulted in a seed set of 50

apps installed on 32,719 devices in 2018/19, compared to 18

apps installed on 35,811 devices in 2017.

Category Counts Largest Sub-Category Change

Category 2017 2018/19 Sub-Category 2017 2018/19 ∆

CallerID 46 11 Location 40 11 29

Control 13 1 Hide Icon 9 0 9

Defense 42 58 Anti-Surveil 38 51 13

Evasion 28 16 Steganography 15 0 15

Harassment 80 39 Fake-Surveil 56 24 32

Info extraction 75 164 Hack-Tools 11 70 59

Spoof 115 54 Burner-Phone 41 15 26

Surveillance 372 445 Social-Media 105 179 74

Tutorial 86 72 Hacking 63 44 19

None 143 140 Pay-Per-Install 27 1 26

Table VI: Count of app categories in CreepRank’s top 1,000

for 2017 and 2018/19 data and, within each category, the sub-

category with the greatest change (growth in bold).

We ran CreepRank on the 2018/19 data and following the

same procedures as before, three authors coded the 2018/19

top 1,000 ranked apps. We then reviewed the top 1,000

to identify trends and determine if any new categories of

creepware had emerged, but found that the existing codebook

covered all common cases. Many 2017 apps fell out of use

in 2018/19 and the two top 1,000 lists overlap by only 110

apps, suggesting there are significant changes to the creepware

ecosystem over time.

Table VI shows the total number of apps in each category

across 2017 and 2018/19, as well as, for each category, the

sub-category with the largest change between the time periods.

From the table, it is clear that the privacy of creepware victims

is still under assault. The information extraction category more

than doubled, with hacking tools the largest area of growth.

The number of surveillance apps also grew substantially, with

increases in social media, microphone, SMS, and thorough

surveillance apps more than making up for a nearly 50% drop

in location surveillance apps. Interestingly, we did not find

many new spoofing apps, although 21 apps from the 2017

data were still active and among the most popular apps, by

installation count, in 2018/19.

On a more positive note, although the number of social

media surveillance apps grew in 2018/19, our analysis of

these new spying apps suggests that new security precautions

by WhatsApp in particular have curtailed access to message

content, leaving these apps to report on usage statistics and

little else. We also noticed an increase in the fraction of

surveillance apps that are recommended for child safety use

relative to intimate partner surveillance, which could indicate

a change in how developers are advertising their surveillance

apps, perhaps in response to Google’s policy and enforcement

changes as a consequence of recent studies [5].

VIII. DISCUSSION

Practical impact. The analyses described in previous sections

suggest that CreepRank is a valuable tool for discovering and

making sense of a broad range of apps used in interpersonal

attacks and, to a lesser extent, defense. These findings have

already proven practically useful. Thus far, Norton has begun

to scan and warn customers about CreepRank-identified apps

that were verified as creepware by our manual coding. These

12



apps are also now flagged as potentially dangerous by the

IPV Spyware Discovery tool, which is used in Cornell Tech’s

computer security clinic for IPV survivors [9], [10].

We also went through a responsible disclosure process with

Google to report 1,095 apps we discovered that may have

been on the Google Play store in violation of their policies.

Google Play provides policies designed to prevent abusive

apps like creepware. Its Potentially Harmful Applications

policy [37] focuses mostly on malware prevention. More

related is the “Privacy, Security, and Deception” portion of

Google’s Developer Policy Center [38], whose sub-policies

on “Device and Network Abuse”, “Malicious Behavior”, and

“Deceptive Behavior” contain many rules that prohibit creep-

ware functionality. Particularly prohibited are spoofing and

fake-surveillance apps that “attempt to deceive users or enable

dishonest behavior”; fraud-based fake-ID apps that “generate

or facilitate the generation of ID cards”; hacking tools and

tutorials that “facilitate or provide instructions on how to

hack services, software or hardware, or circumvent security

protections”; and surveillance and commercial spyware apps.

The policy also states that “Any claim that an app is a

‘prank’, ‘for entertainment purposes’ (or other synonym) does

not exempt an app from application of our policies.” Google

ultimately determined that 813 of the 1,095 creepware apps we

reported violate their policies, and those have been removed.

The creepware problem moving forward. CreepRank en-

abled the first measurement study of the broad creepware

ecosystem, and this measurement study has, in turn, already

had positive practical impact by surfacing a large set of verified

creepware. Our results suggest that creepware is a widespread

problem and this raises a number of tricky questions about

how to mitigate their harms moving forward.

Keeping creepware out of app stores will be challenging.

New apps tend to rise in the place of removed apps, and

developers attempt to obfuscate their app’s purpose in order to

evade policy enforcement. For example, recent bombing apps

use the term “text repeater” and avoid direct references to

bombing. While this may make these apps harder for attackers

to find, it also makes it harder to enforce policy at scale.

A next step would be to create and deploy a system capable

of detecting creepware in a (semi-)automated fashion. Creep-

Rank provides a starting point and could be used as a first step

to identify candidate creepware apps, manually verify them to

generate labeled training data, and then use this data to train

machine learning classifiers to detect surveillance, spoofing,

harassment, and other pernicious app categories. Further work

is needed to develop and evaluate such an approach, including

gauging how often one would need to update CreepRank’s

output, how many labeled apps are needed, what types of

features are effective to use, and more.

A particular challenge facing such an approach would

be dealing with data poisoning attacks, in which attackers

attempt to evade detection by, for example, gaming an app’s

CreepRank. This is related to the challenge of detecting

emulated testing and research devices, since such emulation

could be used to inject malicious co-installation patterns. As

discussed in Section VII-D, we observed in our dataset some

devices that could fall into this category. While we do not

believe these affected our measurement study results thus

far, should CreepRank or similar approaches be put to use

moving forward, we may have to contend with deployment

of malicious emulation or research devices that pollute data.

Ancillary measures such as the detection of cloned devices

may help, and we leave exploring these issues to future work.

Even with good detection capabilities, deploying detection

tools raises a host of questions. In addition to screening of app

stores, we would like to directly integrate creepware detection

into a commercially available anti-virus software. But making

creepware detection actionable for users remains a challenge.

Much of the creepware we discovered are harassment apps

that are installed on abuser devices, and issuing creepware

notifications to abusers may not be useful. Whether and how

one can craft messaging to deter interpersonal attackers are

important questions for future work.

For creepware that is installed on a victim’s device, ques-

tions remain regarding how and when to notify them. For

instance, if the AV notifies the user immediately (as done

currently), an abuser with physical access to the device might

dismiss or ignore the warnings and disable the detection

software. But if the detection software attempts to wait until

it is more certain that the original owner has possession of

the device, there are still issues of victim safety. For instance,

removal of creepware could result in escalation of interper-

sonal attacks to physical violence in cases of IPV. This threat

might be mitigated by designing notifications that attempt to

take safety planning into consideration, which would require

additional exploration.

IX. CONCLUSION

We explored the landscape of apps that are likely to be

used in interpersonal attacks, called creepware. We created

CreepRank, an exploratory algorithm based on the principle

of guilt by association, and ran it on a dataset of billions of

app installations. We discovered and explored many categories

of apps that enable surveillance, harassment, impersonation,

information theft, concealment, and more. Our methods and

analysis of creepware are useful for app stores and anti-virus

vendors seeking to improve safety for mobile device users.

ACKNOWLEDGEMENTS

The authors would like to thank our shepherd Emily Stark

and the anonymous reviewers of our study for their feedback

and suggestions to improve the quality of our manuscript.

We acknowledge funding support under NSF award numbers

1717062, 1916096, 1916126, and gifts from Google.

REFERENCES

[1] D. Freed, J. Palmer, D. Minchala, K. Levy, T. Ristenpart, and N. Dell,
“Digital technologies and intimate partner violence: A qualitative anal-
ysis with multiple stakeholders,” PACM: Human-Computer Interaction:
Computer-Supported Cooperative Work and Social Computing (CSCW),
vol. 1, no. 2, p. Article 46, 2017.

13



[2] ——, “A Stalker’s Paradise: How Intimate Partner Abusers Exploit
Technology,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI). New York, NY, USA: ACM,
2018, pp. 667:1–667:13.

[3] T. Matthews, K. O’Leary, A. Turner, M. Sleeper, J. P. Woelfer, M. Shel-
ton, C. Manthorne, E. F. Churchill, and S. Consolvo, “Stories from
survivors: Privacy & security practices when coping with intimate part-
ner abuse,” in 2017 CHI Conference on Human Factors in Computing
Systems (CHI), 2017, pp. 2189–2201.

[4] N. Sambasivan, A. Batool, N. Ahmed, T. Matthews, K. Thomas, L. S.
Gaytan-Lugo, D. Nemer, E. Bursztein, E. F. Churchill, and S. Consolvo,
““They Don’t Leave Us Alone Anywhere We Go”: Gender and Digital
Abuse in South Asia,” in CHI Conference on Human Factors in
Computing Systems (CHI), 2019.

[5] R. Chatterjee, P. Doerfler, H. Orgad, S. Havron, J. Palmer, D. Freed,
K. Levy, N. Dell, D. McCoy, and T. Ristenpart, “The spyware used in
intimate partner violence,” in IEEE Symposium on Security and Privacy
(S&P), 2018, pp. 441–458.

[6] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu,
“Combining file content and file relations for cloud based malware
detection,” in International Conference on Knowledge Discovery and
Data Mining (KDD), 2011, pp. 222–230.

[7] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş, “The
dropper effect: Insights into malware distribution with downloader graph
analytics,” in Conference on Computer and Communications Security
(CCS), 2015, pp. 1118–1129.

[8] A. Tamersoy, K. A. Roundy, and D. H. Chau, “Guilt by association: large
scale malware detection by mining file-relation graphs,” in International
Conference on Knowledge Discovery and Data Mining (KDD), 2014,
pp. 1524–1533.

[9] S. Havron, D. Freed, R. Chatterjee, D. McCoy, N. Dell, and T. Ris-
tenpart, “Clinical computer security for victims of intimate partner
violence,” in USENIX Security Symposium, 2019, pp. 105–122.

[10] D. Freed, S. Havron, E. Tseng, A. Gallardo, R. Chatterjee, T. Ristenpart,
and N. Dell, ““Is my phone hacked?” Analyzing clinical computer
security interventions with survivors of intimate partner violence,”
PACM: Human-Computer Interaction: Computer-Supported Cooperative
Work and Social Computing (CSCW), vol. 3, pp. 202:1–202:24, 2019.

[11] L. Grady, “Random walks for image segmentation,” IEEE Transactions
on Pattern Analysis & Machine Intelligence, no. 11, pp. 1768–1783,
2006.

[12] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu, “Automatic mul-
timedia cross-modal correlation discovery,” in International Conference
on Knowledge Discovery and Data Mining (KDD), 2004, pp. 653–658.

[13] SpoofBox, “Spoof text message trailer,” https://www.spoofbox.com/en/
preview/spoof-text, 2019, online; accessed 18 Nov 2019.

[14] N. E. Willard, Cyberbullying and cyberthreats: Responding to the
challenge of online social aggression, threats, and distress. Research
press, 2007.

[15] P. K. Smith, J. Mahdavi, M. Carvalho, S. Fisher, S. Russell, and
N. Tippett, “Cyberbullying: Its nature and impact in secondary school
pupils,” Journal of child psychology and psychiatry, vol. 49, no. 4, pp.
376–385, 2008.

[16] B. Farinholt, M. Rezaeirad, P. Pearce, H. Dharmdasani, H. Yin,
S. Le Blond, D. McCoy, and K. Levchenko, “To catch a ratter:
Monitoring the behavior of amateur DarkComet RAT operators in the
wild,” in IEEE Symposium on Security and Privacy (S&P), 2017, pp.
770–787.

[17] S. Le Blond, A. Uritesc, C. Gilbert, Z. L. Chua, P. Saxena, and E. Kirda,
“A Look at Targeted Attacks Through the Lens of an NGO,” in USENIX
Security Symposium, 2014, pp. 543–558.

[18] W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson,
“When governments hack opponents: A look at actors and technology,”
in USENIX Security Symposium, 2014, pp. 511–525.

[19] P. Kotzias, L. Bilge, and J. Caballero, “Measuring PUP prevalence and
PUP distribution through pay-per-install services.” in USENIX Security
Symposium, 2016, pp. 739–756.

[20] K. Thomas, J. A. E. Crespo, R. Rasti, J. M. Picod, C. Phillips, M.-
A. Decoste, C. Sharp, F. Tirelo, A. Tofigh, M.-A. Courteau, M.-A.
Courteau, L. Ballard, R. Shield, N. Jagpal, M. A. Rajab, P. Mavromma-
tis, N. Provos, E. Bursztein, and D. McCoy, “Investigating commercial
pay-per-install and the distribution of unwanted software.” in USENIX
Security Symposium, 2016, pp. 721–739.

[21] Y. Hu, H. Wang, L. Li, Y. Guo, G. Xu, and R. He, “Want to
earn a few extra bucks? a first look at money-making apps,” in
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2019, pp. 332–343.

[22] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey
of mobile malware in the wild,” in ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), 2011, pp. 3–14.

[23] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “DREBIN: Effective and explainable detection of android
malware in your pocket.” in Network and Distributed Systems Security
Symposium (NDSS), 2014, pp. 23–26.

[24] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: Android malware char-
acterization and detection using deep learning,” Tsinghua Science and
Technology, vol. 21, no. 1, pp. 114–123, 2016.

[25] M. Hatada and T. Mori, “Detecting and classifying Android PUAs by
similarity of DNS queries,” in IEEE Annual Computer Software and
Applications Conference (COMPSAC), vol. 2, July 2017, pp. 590–595.

[26] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming
information-stealing smartphone applications (on Android),” in Trust and
Trustworthy Computing (TRUST), 2011, pp. 93–107.

[27] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining API-level features
for robust malware detection in Android,” in International conference on
security and privacy in communication systems (SecureComm), 2013,
pp. 86–103.

[28] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, , and C. Faloutsos,
“Polonium: Tera-scale graph mining and inference for malware detec-
tion,” in SIAM International Conference on Data Mining (SDM), 2011.

[29] J. Yoo, S. Jo, and U. Kang, “Supervised belief propagation: Scalable
supervised inference on attributed networks,” in 2017 IEEE International
Conference on Data Mining (ICDM), 2017, pp. 595–604.

[30] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Your
installed apps reveal your gender and more!” SIGMOBILE Mobile
Computing Communications Review (SIGMOBILE), vol. 18, no. 3,
pp. 55–61, Jan. 2015. [Online]. Available: http://doi.acm.org/10.1145/
2721896.2721908

[31] E. Malmi and I. Weber, “You are what apps you use: Demographic
prediction based on user’s apps,” in International Conference on Web
and Social Media (ICWSM), 2016, pp. 635–638.

[32] M. J. Breiding, M. C. Black, and G. W. Ryan, “Prevalence and risk
factors of intimate partner violence in eighteen U.S. states/territories,
2005,” American Journal of Preventative Medicine, vol. 34, no. 2, pp.
112–118, 2008.

[33] J. L. Fleiss, “Measuring nominal scale agreement among many raters,”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[34] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM, vol. 46, no. 5, pp. 604–632, Sep 1999.

[35] K. Ward Church and P. Hanks, “Word association norms, mutual infor-
mation, and lexicography,” Computational Linguistics, vol. 16, no. 1,
pp. 22–29, 1990.

[36] N. Verma, Mobile Test Automation With Appium. Packt Publishing,
2017.

[37] “Google play protect - potentially harmful application (PHAs)
categories,” https://developers.google.com/android/play-protect/
phacategories, online; accessed 18 Nov 2019.

[38] “Google play store - developer policy center,” https://play.google.com/
about/developer-content-policy/, online; accessed 18 Nov 2019.

APPENDIX

A. Seed Set Apps

Table VII shows the 18 covert surveillance apps that we used

as the seed set for running CreepRank on 2017 Norton app

installation data. These apps were identified by Chatterjee et

al. [5] as covert surveillance apps that are primarily distributed

outside of Android app stores such as Google Play.

B. Examples of PMI Analyses

In Section VII-A we provide examples of apps whose

primary use case was unclear during coding, and for which the

Pointwise Mutual Information (PMI) metric gave us valuable

insights into the context in which these apps are most often

14



Title Package Name

System Service com.android.system

Wi-Fi Settings com.wifiset.service

Data Backup com.spy2mobile.light

Sync Service com.android.core.monitor.debug

System Service com.mxspy

Backup com.spappm mondow.alarm

SystemTask! com.spytoapp.system

System Service com.guest

System Services com.topspy.system

UPreferences com.android.preference.voice

Secure Service com.safesecureservice

Mobile Spy com.gpssettings.src.v65

System Service com.ispyoo

Update service sys.framework

com.android.devicelogs com.android.system.devicelogs

Internet Service com.sec.android.internet.service.ik

System Services com.hellospy.system

System Update Service com.ws.sc

Table VII: Seed set of surveillance apps used by CreepRank

on 2017 app installation data [5].

used in practice. Here we provide more details in Table VIII

which lists, for the five apps described in that section, the ten

apps with the highest corresponding PMI scores. To remove

noise from the PMI rankings, we exclude PMI values for apps

that co-occurred with with the target app only once.

C. Description of Codebook

This appendix describes the codes developed during analysis

of the top 1,000 apps produced by CreepRank on 2017 data.

All counts provided here are in reference to the CreepRank

2017 top 1,000 apps. Further coding of 2018/2019 data did

not require modifications to the codebook.

Caller ID - Misc: 6 apps provide caller ID functionality that

did not fit into other sub-categories. These apps often enable

call blocking or claim to reveal private phone numbers.

Caller ID - Location: 40 apps bundle caller-id functionality

with location tracking of placed calls, usually claiming cell-

tower information as the source of location information (when

the source is specified at all). Many of these apps claim to be

able to use cell tower information to determine the location

of incoming calls. Co-occurrence data suggests these apps are

used by attackers and victims alike.

Control – Hide Icon: 9 apps hide the icons of other apps

from the home screen or app launcher screen (usually both),

rendering their presence sufficiently covert as to be unlikely

to be noticed and removed.

Control – Use Limitations: 4 apps enable the user to

interrupt the internet access of other devices on the WiFi

network, typically by staging ARP-spoofing network attacks.

The “NetCut” app is one of many such apps.

Defense – Misc: “Hidden Apps” is the sole miscellaneous

defense app among the 2017 top 1,000 apps. It is a hidden

app-icon revealer used to counter Control - Hide Icon apps.

Defense – Anti Harassment: We found 3 apps that appear

to be used to mitigate call and SMS bombing. These apps

are frequently co-installed with other bombing-defense apps,

such as apps with caller-id and caller blacklisting functionality.

Two of these apps facilitate muting the device’s system volume

and/or vibration alerts during set times or for a period of time,

while another app blacklists SMS senders.

Defense – Anti Surveillance: 38 apps counter surveillance

attempts through a variety of means, including access con-

trol for incoming phone calls and individual apps, counter-

surveillance, and shoulder-surfing defense. Specific examples

are provided in Section V-B.

Evasion – Alternative Input: 4 apps provide accessibility-

focused mechanisms for enabling user input, such as control

of a mouse-style pointer based on the tracking of face or

eye movement. These apps are routinely installed alongside

surveillance apps that monitor the device and enable it to be

controlled remotely.

Evasion – Hidden Content: Most apps in this category

selectively hide content including images, WhatsApp content,

contacts, and communications. We found 9 apps when coding

2017 data, and many more when seeding CreepRank with

Control - Hide Icon apps. Many of these apps either hide

their icons or pose as an unsuspecting app, as in the case of

the “Smart Hide Calculator”. We also found several messaging

platform apps designed specifically for secrecy, both through

heavy use of encryption and ephemeral messaging.

Evasion – Steganography: A few apps, such as “Pixel-

knot”, use steganography to hide messages in images such

that a human would not perceive them, suggesting a desire for

secrecy. However, most of the apps we found created messages

that can be interpreted by humans but not readily interpreted

by machines, such as emojifying apps and apps that convert

words to images or ASCII art. We were surprised to find that

most of these were being used by attackers, possibly to avoid

censorship on social media platforms.

As discussed in Section VII-B, there are several apps that

we coded initially as steganography apps that actually seem to

be used to amplify the effect of SMS bombing attacks. These

apps create ASCII art or do image-to-text conversion, creating

huge strings that are sent over and over by bombing apps.

Harassment – Automation: 11 apps automate social media

activity, such as auto-reply, schedule-based message senders,

auto-commenting, and chatbots. These apps show varying

degrees of malicious intent, typically correlating most strongly

with social media surveillance apps, bombing apps, or mal-

ware. Most of these apps focus on WhatsApp.

Harassment – Bomber: 10 apps are designed to send high

volumes of texts, calls, emails, social media posts, etc., though

a few instead send messages that are so large as to cause a

serious nuisance or cost to the victim. These apps seem to

have a short shelf life on app stores, but new apps rise to take

their place. Recent apps of this ilk are more likely to refer to

themselves as “text repeaters” than as “bombers.”

Harassment – Fake Surveillance: The most prevalent

harassment apps are the 56 apps that scare victims by giving

them a false impression that they are being surveilled. Most

of these self-described “prank” apps can be installed on the

abuser’s device and shown briefly to the victim while the app

simulates hacking of the victim’s device or accounts.

Information Extraction – Misc: 3 apps did not fit into sub-

15



Cell Tracker Call Spoofer Lodefast Check Cashing App SMS Retaliator Unseen No Last Seen

Mobile Phone Tracker Fake Call (1) Card Details Finder AirMon No Last Seen or Read

Cell Phone Tracker Tutorial Spoof Call Bin Checker Droidbug Pentesting Forensic FREE Private Read for FB Messenger

Mobile Phone Tracked Phone Gangster Coupon Bank Card Validator PirateBox SpyGo For Whatsa Prank

TangTracker e-Safety App Spoof my Phone Free People Search Peek You Manual Hacker Gold Invisible Chat for Facebook

Free Cell Phone Tracker Spoof Caller Credit Card Revealer Bugtroid Pentesting FREE Unseen: no seen marks

Cheating Spouse Untraceable Calls Credit Card Validator with CVV Bugtroid Pentesting PRO Last seen online hider for whatsapp

Cell Phone Tracker Number Spoof SMSPhone Free People Search Public Records IPConfig Blue tick

Mobile Tracker Phone Id Faker CallLog & SMS Tracker HTTP Tools hack and pirate face prank

GuestSpy: Mobile Tracker Spoof SMS Sender SpyFly Wicap. Sniffer Demo ROOT WhatsOn for Whatsapp

Where the hell are you? Fake Call (2) AWS Code Viewer Super Download - Booster WhatsSpy VIP! PRANK

Table VIII: For five example apps, we show the top 10 apps that co-occur at least twice, in order of descending PMI scores.

categories, including two with decryption functionality and

one that captures extended screenshots of content.

Information Extraction – Dump: 32 apps perform large-

scale dumps of a broad variety of content, which include

WhatsApp database decryptors and dumpers, extractors of

forensic information, call logs, social media contacts, location

history, deleted content, hidden or encrypted content, etc.

Information Extraction – Fraud: We found 6 apps with

use cases that pertain to fraud, such as credit card num-

ber revealers, details finders, validators, and generators. Two

examples are the “Bank Card Validator” and the “Credit

Card Revealer” app. Apps that generate fake ID card images

routinely appear alongside credit card revealing apps, which

strengthens the hypothesis that they the card revealers are used

for fraud. The “Lodefast Check Cashing App” enables the

cashing of checks without visiting a bank, and we re-classified

it under fraud when PMI values revealed that it is usually

installed alongside fraud apps in our dataset (see Table VIII).

Information Extraction – Hack Tools: 11 apps provide

hacking tools, three of which focus on extracting passwords,

while one looks passwords up in public data breach repos-

itories. The remainder enable sniffing of wireless network

traffic or provide pen-testing and attack functionality. There

was a noticeable increase in the number of hacking apps

in 2018/2019 data, among which sniffing apps were very

prevalent.

Information Extraction – People Search: 12 apps look

up personal details pertaining to individuals. Searches may

be keyed off of phone number, names, email addresses, etc,

frequently providing extensive personal information. The most

unique app in this category is “BaeList”, which advertises as

a tool to catch cheaters by alerting its users if a suspected

cheater’s phone number has been searched for by another user.

Information Extraction – System: 7 apps extract Android

system details, such as IP address, IMEI, and SIM cards. The

purposes of such apps are usually left unspecified, but they

are useful for Control - Use Limitations apps and for network-

based surveillance tools.

None – Misc: 124 apps have no discernible utility for an

attacker or victim. Most of these apps fit cleanly into sub-

categories described below. Of the 55 apps that do not fit

into sub-categories, around half are false positives introduced

by Pay-Per-Install apps, AV-testing (some of these apps are

used extensively as benign examples), and cloned devices. In a

few cases, app titles suggest malicious functionality that is not

delivered, such as the deceptively named “Spy Mobile” app.

The remainder of these apps correlate strongly with malicious

creepware, and the presence of some apps, such as the “Blue

Whale Game,” is alarming, as it issues a series of self-harm

challenges and culminates in a suicide challenge.

None – Android and OS Mods: 21 apps modify or

extend Android, such as emulating the Chromium OS, adding

windowing support, etc. It is evident from the number of

hacking-related apps and tutorials in the data that the hacker

community makes ample use of creepware, and co-occurrence

data suggests such users are likely to root their devices and

experiment with OS modification. Also contributing to the

presence of these apps are significant numbers of AV-testing

and researcher devices, as discussed in Section VII-D.

None – Communication: 13 apps provide communica-

tion functionality, such as extending WhatsApp with group

messaging capabilities, providing free SMS or phone calls,

or enabling walkie-talkie functionality. Many of these apps

advertise as ways to meet local singles.

None – Index: The primary purpose of 9 apps is to provide

indices of items on sale or of money-making opportunities.

The former primarily index online deals, though many indi-

rectly encourage the installation of additional apps.

None – Pay Per Install (PPI): 27 apps incentivize users to

install other apps on their devices, primarily by offering pay-

ments or free calling services. App developers that advertise

through PPI apps are able to artificially increase the installation

counts of their apps and receive fake favorable reviews.

None – Tutorial Misc: 11 tutorial apps did not fit into a

strong trend, including apps that teach skills useful for hacking

but that do not mention hacking explicitly (e.g., DOS CMD

commands). Those that seem most benign use the word “hack”

in their titles, which may have led to their being downloaded

under false expectations.

None – Tutorial Development: 6 apps focus on app de-

velopment, half of which provide the ability for non-technical

users to create their own apps (e.g., by providing templates).

Spoofing – Misc: 4 apps that provide spoofing functionality

do not fit cleanly into prominent sub-categories of spoofing

apps: two that enable email spoofing, and two that spoof the

device’s MAC address.

Spoof – Burner Phone: 41 apps provide the ability to

place anonymous calls or SMS messages, with many explicitly

advertising for use in evading call blocking. These apps can be

16



used both by abusers who intend to harass and by surveillance

victims seeking to evade surveillance. These apps function as

“burner phones” in that they provide phone numbers that can

be used once and then discarded.

Spoof – Fake Call: 6 apps provide the ability to fake

incoming calls or call logs, enabling users to spoof both the

source phone number and caller-id. Fake incoming calls are

often advertised as useful for getting out of “sticky situations”,

but other abusive purposes can be readily imagined.

Spoof – HTML: 5 apps enable the browser’s rendered

content to be altered, including changing the targets of HTML

tags, which could be used to phish a victim.

Spoof – Image: 9 apps modify or create false images or

videos, including face-swapping tools that can be used for

impersonation attacks or for revenge porn [4]. Two apps enable

images to be shared on WhatsApp for which the thumbnail

provided by the app differs from the underlying image. Two

others generate fake ID card images.

Spoof – SMS: 20 apps mask the true sender of SMS

messages. Unlike burner-phone apps, the intent of many SMS

spoofing apps is to pose as another individual. Many allow

entire chains of text messages to be faked.

Spoof – Social Media: We found social media spoofing

apps that impersonating senders and construct fake message

chains. 7 of the 8 apps in this category spoof WhatsApp

messages, while the 8th spoofs Facebook Messenger.

Spoof – Suppress Caller ID: 4 apps allow senders to fake

or block caller ID information on the device where the app is

installed. Most apps enable selective disabling or spoofing of

caller ID on a per-call or per-sender basis.

Spoof – Thorough: 8 apps spoof in multiple ways. Most

common were apps that combine burner-phone functionality

with the ability to spoof caller-ID and voice spoofing. One app

bundles fake email and SMS functionality.

Spoof – Voice: 10 apps use voice modification to mask

identity or make a voice sound scary. Many of these are

playful, but they do appear regularly alongside abusive apps.

Surveillance – Misc: Surveillance apps were the largest

category in our data. While most surveillance apps fit cleanly

into sub-categories, four apps were not part of any trend. These

include two key-loggers, one app that is a viewer for keylogger

installed on a PC, and one that logs touch input patterns.

Surveillance – Calls: These apps provide ongoing access to

call histories or continual or selective on-demand recordings of

phone calls without the victim’s consent. 13 of the 18 apps in

this category enable call-recording, with all but one claiming

the ability to perform covert automated recording of calls. The

remaining five provide ongoing access to call logs.

Surveillance – Camera: 15 apps turn on the camera and

microphone, typically forwarding a stream to a remote device.

Roughly half are marketed for covert use. Others re-purpose

devices as security cameras or baby monitors, although PMI

data suggests that many of these are also used for covert

surveillance.

Surveillance – Location: 90 apps track location and little

else, though location tracking is also offered by most thorough

surveillance apps, making it the most common type of surveil-

lance overall. Some of these apps are not covert and seem to

be for child safety or business use cases, but most of the apps

surfaced by CreepRank explicitly state, or strongly hint, that

they are designed for covert tracking.

Surveillance – Microphone: 11 apps record the device’s

microphone, often to remotely turn on the microphone on a

victim’s device. Four apps use the microphone to enhance

hearing, with titles like “Ear Agent: Super Hearing.” While

many of these apps market themselves for people with hearing

disabilities, most encourage spying.

Surveillance – Screen: 5 apps allow the device’s screen to

be recorded, streamed, or snapshotted as their main purpose.

Surveillance – SMS: 9 apps focus exclusively on forward-

ing or snooping on SMS messages.

Surveillance – Social Media: Fully 105 apps enable con-

tinuous surveillance of social media accounts. Most prevalent

are apps that enable access to multiple WhatsApp accounts

on a single device, which can be used for benign purposes.

However, malicious use of such apps is apparent in co-

installation data and some of the apps themselves, as with

“Clone Whatsweb Pro” which prompts, “Enter WhatsApp

Victim’s Device.” Another group of apps provides users with

digests of who viewed their social media profile.

Surveillance – Social Media Covert: 26 apps explicitly

market their ability to surveil social media accounts covertly,

such as by turning off indicators that abusers are logged into

victim accounts and reading their WhatsApp messages.

Surveillance – Thorough: 90 apps provide multiple means

of surveillance. App descriptions are often generic explana-

tions of the app’s capabilities without reference to illegal use

cases, though in deference to app store policies or public

pressure, some have since renamed themselves, as in the case

of “GirlFriend Cell Tracker”, which is now known as “Family

Locator for Android.” Suggested uses are most often anti-theft

and parental supervision, but some mention remote control of a

device or explicit “Spy”, “Family”, and “GirlFriend” tracking.

Tutorial – Hacking: 61 apps are hacking tutorials and

provide device-hacking advice, tips, news, glossaries, and

forums. “Spyboy” is both the most popular and most likely

to be on devices with apps that appear to have abusive intent.

Tutorial – Rooting: 6 apps teach users how to root a device

or actually do so. One such app, the “Kingo ROOT” app, is

the 4th most prevalent app in the top 1,000, and is 5 times as

prevalent as the other 5 rooting apps put together.

Tutorial – Settings: 16 apps provide guides and tools

for changing Android “Secret Codes”. These apps correlate

strongly with hacking-focused tutorials.

17



Category Sub-Category Title Package name

CallerID Misc Hello — Caller ID & Blocking com.facebook.phone

Location Mobile Number Call Tracker com.bhimaapps.mobilenumbertraker

Control Use-Limitations NetCut com.arcai.netcut

Hide-Icon Hide App-Hide Application Icon com.thinkyeah.apphider

Defense Misc Hidden Apps soo.project.findhidden

Anti-Harassment Sms Retaliator com.openwave.smsretaliator

Anti-Surveillance Oops! Applock com.keybotivated.applock

Incoming Call Lock - Protector com.freesmartapps.incoming.call.lock.manager

Evasion Alternative-Input EVA Facial Mouse com.crea si.eviacam.service

Hidden-Content Smart Hide Calculator com.ids.smartcalculator

Steganography PixelKnot: Hidden Messages info.guardianproject.pixelknot

Harassment Misc Blue Whale Game us.bluewhalegame.free

Automation AutoResponder for WhatsApp NEW tkstudio.autoresponderforwa

Bomber Message Bomber -send 5000+ sms com.logicup.messagebomber

SMS Retaliator com.openwave.smsretaliator

Fake-Surveillance Other Number Location Tracker com.trackyapps.other number location tracker

SpyGo For Whatsa Prank com.spygo.espiagowhatsa

WhatsSpy VIP! PRANK com.adm.whatsspyvipprank

Info-Extraction Misc Decrypto info.valky.decryptor

Dump Inkwire Screen Share + Assist com.koushikdutta.inkwire

Fraud Lodefast Check Cashing App com.lodestar.checkcashing.lodestar

Bank Card Validator com.ndquangr.cardreader

Credit Card Revealer com.stb.cch

Card Details Finder carddata.carddatafinder.com.carddatafinder

Hack-Tools Droidbug Pentesting & Forensic FREE com.droidbugfree.es

People-Search BaeList com.baelist.www

System Mobile Sim and Location apptrends.mobile sim and location info

None Misc Spy Mobile it.linergy.spymobilewifi

Android-Mods-VM Never Uninstall Apps - SpaceUp com.spaceup

Communication WhatsFriend for Whatsapp com.bondrr.whatappfriends.chat

Index FileChef-OpenDirectory Finder com.zqlabs.filechef

Pay-Per-Install Qbucks com.company.qbucks

Tutorial-Development Master Android net.androidsquad.androidmaster

Tutorial-Misc Mobile Software Flashing Vol—2 com.wMobileSoftwareCrackBoxall 4969181

Spoof Misc Fake Mailer: Send and Receive Fake Email gq.fakemailer.fakemailer

Burner-Phone SMS Receive com.smsreceive

Fake-Call Fake Call caller.phone.id.fakecall

HTML Edit Website web.dassem.websiteprank

Image Splitvid — Split Video Camera com.niltava.javana.split

SMS Sending Fake SMS br.com.ideatech.smsfakepro

Spoof Text Message com.spoofbox.spooftext

Fake Text Message com.neurondigital.FakeTextMessage

Social-Media Fake Chat Conversations f.industries.fakemessages

Suppress-CallerID Caller id changer Sim another.caller.id.changer

Thorough Fake Call fakecall.fake.call.yo

Voice FunCall voice changer in call com.rami bar.fun call

Surveillance Misc Hackers Keylogger hack.hackit.pankaj.keyboardlisten

Calls Hidden Call Recorder com.mrecorder.callrecorder

Camera IP Webcam com.pas.webcam

Location Track a Phone by Number com.androidaplicativos.phonetrackerbynumber

Cheating Spouse Tracker spouse sms.tracker app

Find My Friends info.com.dev.hkmobile.chatonline

Where the hell are you? com.where.the.hell.are.you

Boyfriend Tracker Free com.androidaplicativos.boyfriendtracker

Microphone Ear Agent: Super Hearing com.microphone.earspy

Screen Screen Recorder No Root eng.example.hatiboy.gpcapture

SMS SMS Forwarder cz.psencik.smsforwarder

Social-Media Clone WhatsWeb Pro clone.whatsapp.pro

Social-Media-Covert Unseen - No Last Seen com.tda.unseen

Thorough GirlFriend Cell Tracker com.omrup.cell.tracker

Cell Tracker es.cell.tracker.kids

Family Locator for Android com.omrup.cell.tracker

Top Spy Apps com.topgpapps.l

Spy Mail com.countmyapp.com.spymail

Spy sms call controler com.dspark.phone.modefind

Control By SMS smartmob.com.controller

GirlFriend Cell Tracker com.omrup.cell.tracker

Tutorial Hacking spyboy info.androidhive.spyboy

Cheating Spouse com.eclipseboy.CheatingSpouse

Cheating spouse tracker catching.cheating.spouse

Root Kingo ROOT com.kingoapp.apk

Settings Phone Secret Codes com.neetu.ussdstrings

Table IX: For each category and sub-category of the codebook, we list all apps referenced in this work, or where no app

pertaining to a category was referenced, we cite the app that was most prevalent in the 2017 data.

18


