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Robot locomotion is typically generated by coordinated integration of single-

purpose components like actuators, sensors, body segments and limbs. We

posit that certain future robots could self-propel using systems in which a de-

lineation of components and their interactions is not so clear, becoming robust

and flexible entities comprised of functional components which are redundant,

generic and can interact stochastically. Control of such a collective becomes a

challenge because synthesis techniques typically assume known input-output

relationships. To discover principles by which such future robots can be built

and controlled, we study a model robophysical system: planar ensembles of pe-

riodically deforming smart, active particles—smarticles. When enclosed, these

individually immotile robots can collectively diffuse via stochastic mechanical

interactions. We show experimentally and theoretically that directed drift of

such a supersmarticle can be achieved via inactivation of individual smarticles,

and use this phenomenon to generate endogenous phototaxis. By numerically
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modeling the relationship between smarticle activity and transport, we eluci-

date the role of smarticle deactivation on supersmarticle dynamics from little

data—a single experimental trial. From this mapping, we demonstrate that

the supersmarticle can be exogenously steered anywhere in the plane, signif-

icantly expanding supersmarticle capabilities while simultaneously enabling

decentralized closed-loop control. We suggest that the smarticle model system

can aid discovery of principles by which a class of future “stochastic” robots

can rely on collective internal mechanical interactions to perform tasks.

Introduction Self-propulsion (1) is a feature of living and artificial systems across scales—

from crawling cells to swimming spermatozoa (2) and micro-swimmers (3) and nano-swimmers (4),

to running cockroaches (5) and robots (6,7). It is generally assumed that self-propelling systems

require carefully orchestrated integration of many diverse components to perform the seemingly

simple behavior of spatial translation. Thus, artificial locomoting systems typically consist of

a central controller, a set of actuators and sensors to perform feedback control, and an objec-

tive function written in terms of individual system states; such designs have led to progress in

machines that robustly and nearly-autonomously roll (8), fly (9) and walk (10, 11) in relatively

predictable environments.

In contrast to such “deterministically” designed robotics, future more “stochastically” de-

signed robots could generate self-propulsion using systems in which a delineation of compo-

nents is not so clear, such that many redundant and generic elements fluidly interact and collab-

orate to achieve complex tasks (Fig. 1). While such designs are potentially advantageous due to

wide system reconfigurability and robustness to component damage, it is not yet clear how to

build such a system to operate in natural environments. There are several reasons for this, some

of which have been anticipated by insights from modular and swarm robotics (12–15), physics
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of active matter (13, 16–21), amorphous computing (22) and engineering of reliable systems

from unreliable components (23).

For one, future stochastically designed robots (and collectives/swarms) may contain so

many components (members) (24, 25) that it might be infeasible to carefully arrange and cou-

ple the elements to generate coordinated translation or rotation. Further, like in crawling cells

where locomotion is generated through cytoskeletal reconfigurations via shape changing pro-

teins, individual elements may be task-incapable (e.g., unable to move on their own, unlike in

collective robot locomotion via mechanical rectification of individual bristlebots in (26,27)). In

such situations, the robot’s objective should not depend on deterministic interactions between

components, but instead on emergent ensemble-level behaviors (25, 28). Thus, it becomes a

question of leveraging or mitigating the inherent uncertainty of internal component interactions

to develop reliable control schemes of the ensemble.

Traditional control synthesis techniques determine which inputs best, and most robustly,

enable a system to achieve an objective, such as self-propulsion. It can be challenging enough

to find control inputs that realize a well-defined objective in a deterministic system. In the case

of a robot composed of robots with highly complex interactions between the system and the

environment, and no single configuration of individual components necessary for the robot to

achieve locomotion, control synthesis using traditional methods is infeasible. The notion that an

ensemble may be able to accomplish a goal independently of the specification of its individual

states is incompatible with typical theories of control that assume a central control architecture

with full state information.

In this paper we seek to discover principles by which a collective can overcome individual

locomotor limitations via opportunistic but stochastic mechanical interactions among individ-

uals. Specifically, we study a simplified robophysical (29) model of controllable, smart, ac-

tive particles—smarticles—that are immotile but have mutable shape. An enclosed smarticle
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ensemble—a supersmarticle—however, can self-propel diffusively using interactions arising

from the shape modulation of smarticles. Despite stochastic interactions between elements, a

supersmarticle is capable of directed motion by selectively inactivating its constituents, which

we demonstrate by achieving endogenously steered phototaxis. To understand the supersmar-

ticle diffusion and its dependence on internal mechanical interactions, we developed a model

based on kinetic theory. To further explore the ensemble’s abilities, we introduce a data-driven

algorithm that enables decentralized control synthesis with respect to ensemble properties. Us-

ing this algorithm we model supersmarticle dynamics and demonstrate that the ensemble is

capable of rich locomotion by taking advantage of more complex control strategies.

We validate our algorithm by leading the supersmarticle on a simple path, demonstrating

that collective locomotors may be reliably controlled through their ensemble properties despite

being composed of stochastically interacting unreliable elements.

Results

Smarticle dynamics The smarticles’ form was inspired by Purcell’s three-link swim-

mer (30, 31), as seen in Fig. 2(a). See build properties in the Materials and Methods. This de-

sign was chosen based on insights from a previous study of rigid, non-active “u-particles” (32),

which demonstrated how material properties of a collective can vary based on slight changes

in the shape of their constituents. Smarticles, when active, perform a “square gait”, depicted in

Fig. 2(b). Outside of a frictional medium (e.g., (30, 31)), when resting in an orientation where

the links’ axis of rotation is parallel to the normal of the surface it rests on, smarticles are inca-

pable of significant translation or rotation (Fig. 2(c)) over hundreds of oscillation cycles. The

moving links rest above the central link and never interact with the surface (Movie S1).

Despite their inability to self-propel, an individual robotic smarticle’s position and orienta-

tion can change as a result of a collision, as shown in Fig. 2(d). When viewed as an ensemble, a
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“cloud” of self-deforming smarticles may display weak cohesion on short timescales, forming

a rudimentary collective flocking unit (Fig. 3(a,b), Movie S2). That is, unlike single smarticle

experiments, we find that the center of mass of the cloud can diffuse over scales comparable to

the size of a smarticle (see Fig. S1).

Because of interactions between smarticles, the area fraction φ typically decreased over

time as in Fig. 3(c). Here φ = nAp/Ac, where Ac is the area of convex hull of the smarticles

(bodies and arms) in the cloud (Fig. 3(a)), n is the number of smarticles in the system, and Ap

is the area of a single smarticle. Surprisingly, the decrease in φ was not always monotonic;

in certain trials, increases in φ occurred (Fig. 3(c)). Despite purely repulsive interactions at

surfaces, smarticles can both repel and attract their neighbors (see Fig. 3(b)). This emerges

from the particle geometry: collisions between particles in concave configurations can generate

attraction via arm entanglement (33).

After sufficient time, the cloud’s mobility slows as smarticles separate and no longer interact

strongly. We quantify collective mobility using the cloud’s “granular temperature,” defined as

〈V 2〉 = 1/3〈〈v2〉n − 〈v〉2n〉N , where v =
√
ẋ2 + ẏ2 + (2l + w)

√
θ̇2 sums the translational plus

rotational velocity of n smarticles of length l and widthw, and averages overN experiments (34,

35). On long timescales, a single experiment’s V 2 may approach the noise floor (36) (seen in

Fig. 3(d)), thereby limiting the flocking ability. For this study, we determined the noise floor

empirically by measuring the granular temperature of non-interacting smarticles.

Supersmarticle dynamics Given the correlation between φ (Fig. 3(c)) and 〈V 2〉 (Fig. 3(d)),

we hypothesized we could sustain locomotion on longer timescales by constraining φ of the

collective. To achieve this, we confined five smarticles within a ring, creating what we call a

supersmarticle. Each smarticle in the supersmarticle starts at a random phase in the square gait

and continuously performs a square gait inside an unanchored rigid ring of radius R = 9.6 cm
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and variable mass m ∈ [9.8 g, 207 g], Fig. 4(a). It takes t > 225τ (where τ = 1.6s) before two

smarticles are > π out of phase. The ring diameter was chosen such that φ and 〈V 2〉 remained

high, yet there was enough area that jamming was rare and self-resolvable.

The ring confinement maintained φ at approximately the value observed at the initiation

of the cloud trials (see Fig. 3(a)). Similarly, 〈V 2〉 of the supersmarticle system (Fig. 4(b))

remained at approximately the value found at the highest φ in cloud trials (Fig. 3(c,d)). This

led to persistent diffusive transport of the supersmarticle (Fig. 4(b)). Within the ring, individual

smarticles displayed complex interactions, often displacing an amount comparable to, or greater

than, the displacement of the ring itself, as shown in Fig. 4(c).

Tracking the supersmarticle’s motion for a ring of mass m = 68 g (Movie S3) revealed no

correlation between final angular position between trials (e.g., Fig. 4(d)). We used σ2(t), the

mean square displacement (MSD) of the ring, to characterize the motion: σ2(t) = 〈x2(t)〉 −

〈x(t)〉2, where σ2(t) ∝ tγ and γ specifies the type of diffusion the system undergoes. The

supersmarticle exhibited different types of diffusion—normal (0 < γ ≤ 1), superdiffusive (1 <

γ < 2), and even approximately ballistic (γ ≥ 2)—depending on the timescale observed (37).

The short timescale regime was consistent with γ = 1 (Fig. 4(e)), indicating normal diffusive

motion. The long timescale regime were best fit with γ ≈ 1.45 representing directionally

invariant superdiffusive motion.

We discovered that if a smarticle near the boundary maintained a fixed straight shape, or

became “inactive” (Fig. 5(a)), the supersmarticle displayed directed drift on short timescales

(Movie S4). Since the angular position of the inactive smarticle around the ring was not

fixed, drift in a constant direction was not observed on longer timescales in the lab frame (see

Fig. S2)When trajectories were examined in the frame of the inactive smarticle (Fig. 5(b)), the

bias in drift toward the inactive smarticle became clear. In Fig. 5(c) the cumulative displace-

ments are shown in the continuously rotating frame attached to the center link of the inactive
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smarticle such that S‖(t) =
∑t

i=0 ∆~si · R̂i
‖, and S⊥(t) =

∑t
i=0 ∆~si · R̂i

⊥. Here, ∆~si denotes

the vector connecting the center of the ring at consecutive instants in time, and R̂i
‖, R̂

i
⊥ the unit

vectors specifying the local frame (Fig. 5(b)). As with the fully active supersmarticle, the dy-

namics of the supersmarticle containing an inactive smarticle were superdiffusive, and at short

timescales approximately ballistic, as indicated by γ ≈ 2.

Statistical model To understand the supersmarticle diffusion and its dependence on in-

ternal mechanical interactions, we developed a model based on kinetic theory. Formally, the

average displacement of the ring would be given by 〈∆~R〉 =
∫
P (~Ω)∆~R(~Ω) d~Ω, where ~Ω rep-

resents the microstate (i.e., position, orientation, and heading) of the supersmarticle constituents

immediately before a collision, and ∆~R is the ring displacement due to an individual collision.

The resulting mean ring displacement, 〈∆~R〉, is then computed by integrating displacements

due to individual collisions over the microstate probability distribution. However, because we

do not have access to the detailed relation of ~Ω to the complicated smarticle-smarticle and

smarticle-ring collisions this calculation is intractable, demanding the development of a simpli-

fied ensemble model.

We imagine active smarticles rattling inside the ring and colliding against the ring and the

inactive smarticle. The role of the active smarticle in the supersmarticle is simplified as simple

contacts around the ring. The contacts are abstracted as nudges Fig. 6(a). Each nudge has a

uniform probability to act in any direction. As a result of symmetries in the system geometry,

we may partition the space of ~Ω into six distinct types of collisions. Six collisions arise from to

two independent factors: whether or not the inactive smarticle is in contact with the ring, and

which of three regions of the ring the active smarticle contacts (denoted by roman numerals in

Fig. 6(b)). Each of these individual collision types generates a unique response on the collective

system.
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This simplification leads to a model with two random variables. The first is an angle Θ

which represents the direction of an individual nudge and takes a value between 0 and 2π. The

second is a binary variable β which represents whether or not the inactive robot is in contact with

the ring. These variables together represent the various microstates Ω of the system. Depending

on the value of the random variables, an individual nudge can move either the ring or both the

ring and the inactive particle. Then, focusing on the movement of the ring, we must determine

RA and RB, which are the distances that a nudge will displace the ring when moving only the

ring, and when moving both ring and inactive smarticle, respectively. The possibilities for ring

movement are summarized in Tab. S1.

With RA and RB we can describe the simplified model of the supersmarticle ensemble in

expectation, which we decompose into parallel and perpendicular components (see Fig. 5(b)).

Denoting the proportion of time that the inactive smarticle is in contact with the ring as λ,

the frequency of nudges as f , the amount of time the supersmarticle has been moving as T ,

the inactive smarticle’s angular diameter as Ψ (see Fig. 6(b)), and treating each nudge as an

independent event, the expected component of the velocity of the ring along R̂‖ of the inactive

smarticle is

〈v‖〉 = (f/π)[λ(RA −RB)(1− sin (Ψ))− (1− λ)RA sin (Ψ)]. (1)

The perpendicular component of the ring velocity is simplified significantly since we know

by symmetry that 〈∆~R〉 =
∑6

i=1〈∆~Ri〉 = 〈∆R̂‖〉. This is to say that the mean displacement of

the ring averaged over all distinct collisions is in the parallel direction. Hence,

〈v⊥〉 = 0. (2)

However, the variance along this direction is non-zero. The corresponding variances to the

expected parallel and perpendicular velocities, Var[v‖] and Var[v⊥], are detailed fully in the

Materials and Methods.
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Finally, to completely specify this model, we must calculate RA and RB. To this end, we

determine the relationship between the mass of the ring and the distance it moves from a nudge

by modelling the active smarticles as pistons pushing on a sliding mass (see Materials and

Methods). The predictions resulting from this model are plotted in Fig. 6(c) and Fig. S3.

The theory correctly predicts the supersmarticle’s drift speed relative to that calculated ex-

perimentally as 〈v‖〉 = S‖(T )/T with T = 75τ . In fact, the theory predicts that the direc-

tion of 〈v‖〉 will reverse for large enough ring mass. Directionality depends on the mass ratio

M = msmarticle/mring between the inactive smarticle and the ring, with reversal at a critical

value ofM ≈ 0.8. To test this prediction, we conducted experiments for a series of different

ring masses. The results are summarized in Fig. 6(c). The theory does an excellent job pre-

dicting the mean velocity, including direction reversal (Movie S5). While the theory predicts

〈v⊥〉 = 0 (Fig. S3), we observe slight discrepancies, particularly at larger M. We attribute

these discrepancies in variance to correlations between collisions, whereas the theory assumes

collisions are independent.

The model elucidates the physics governing the dependence of 〈v‖〉 on M, as a function

the ensemble’s internal mechanical interactions. Consider first the high-M limit. The three

collision types involving the (light) ring but not the (heavy) inactive smarticle dominate the

net motion (see Fig. 6(b)). Both of the forward collisions (region II) are of this type, as is

one rearward (region III) collision, resulting in a relatively large positive 〈∆R̂‖〉. Conversely,

in the low-M limit, five of the six collision types give rise to nearly equal magnitude ring

displacements, the exception being the forward collision (region I) of the active smarticle with

the inactive smarticle when the latter is not in contact with the ring, in which case the ring

displacement is exactly zero. This deficit in the forward-directed ring displacement results in a

(small) negative value for the net displacement.

The excellent agreement between theory and experiment for the drift speed velocity is per-
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haps surprising: with only N = 4 active smarticles, it is not clear that a purely statistical

kinetic theory approach should work. In fact, the theory overestimates the observed fluctuations

in Fig. 6(c), an indication of substantial correlations in the smarticle swarm collisions, which

will be the focus of future work. Yet, despite this incongruity with the variance, the derived

theoretical model is still capable of generating the directed motion of the ensemble observed

experimentally in the frame of the inactive smarticle.

Directing a phototaxing supersmarticle Based on intuition gained from the kinetic model,

we programmed a smarticle to inactivate when light detected from its photosensor exceeded

a threshold. When illuminated at low angles (i.e., in the plane of the smarticle light sensors),

photo-inactivated smarticles occlude light from neighbors further from the source, Fig. 7(a, in-

set), creating a situation similar to that analyzed in the previous section. The inactivated smar-

ticle occludes the light from its neighbors: the straightening and resulting occlusion of light

serves as a decentralized and stigmergic directive. The inactive smarticle is affecting the mo-

tion of the ring by affecting the motion of the remaining smarticles. This decentralized strategy

has been used in prior swarm robotic collectives to generate group movement and transport

without requiring explicit communication between agents (38, 39).

However, we discovered that rather than regulate the angular location of an individual inac-

tive smarticle, the static light source induced a switching sequence of inactive smarticles leading

to supersmarticle phototaxis. Since collisions in the ring can cause an inactive smarticle’s po-

sition to shift, when an inactive smarticle was dislocated from its lighted position, it switched

to the active state. Consequently, an active smarticle could then be nudged into a position to

receive enough light to become inactive. As such, the supersmarticle phototactic drift was via

endogenous steering, that is, where smarticle immobilization was spontaneously selected for

without external feedback, see Fig. 7(a) (Movie S6).
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The endogenously forced system drifted in a preferred direction in the laboratory frame with

a similar 〈v‖〉 to that of the non-light driven system (Fig. 6(c)), whose drift was only observ-

able in the frame of the inactive smarticle. This is remarkable given the complex switching

dynamics of the inactive smarticle: for example, depending on distance and orientation relative

to the light, it was possible for multiple smarticles to be simultaneously inactive as depicted in

Fig. 7(b). Moreover, the rotational symmetry of the supersmarticle allows one to infer that if the

supersmarticle can translate in one direction it should be able to translate in another direction

by selecting different inactive smarticles.

To further highlight the supersmarticle systems indifference towards which smarticle is in-

active, we plotted the cumulative distribution of total inactivity time in the form of a Lorenz

curve 7(c). The curve presents the share of inactive time covered by the smarticle spending

the least time being inactive (40). The shape of the Lorenz curve reflects the inequality in the

distribution of the inactivity times of the smarticles: the more concave the curve, the more un-

equal the distribution. To characterize the Lorenz curve, we introduce the Gini coefficient G,

defined as the ratio of the area between the Lorenz curve and a line representing equality to the

total area under the line of equality (40, 41). A value of 0 representing equality, and a value of

1 is perfect inequality. In a single endogenous experiment lasting 25 minutes where the light

changed directions five times (see Movie S6), we found G = 0.21 (see bolded line in Fig. 7(c)).

The Lorenz curve using data from all trials shows 57% of the inactivity time was accounted for

by 43% of the smarticles.

Interestingly, by considering each of the five excursions independently, the Gini coefficient

and Lorenz curve can change dramatically (see unbolded lines in Fig. 7(c)). For singular excur-

sions, certain smarticles may remain in the inactive position for extended periods of time with

a static light source, thus giving the Lorenz curves high values of inequality. This is a result of

aforementioned correlations which can happen in smarticle collisions. On shorter timescales,
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the correlations may incorrectly lead one to believe a smarticle hierarchy exists, however, on

long timescales, it becomes apparent that the smarticles are indeed commutable.

Thus, while crude, the endogenously drifting supersmarticle result demonstrates that the col-

lective can perform a task/behavior (41) such that locomotor control of the system is decentral-

ized and offloaded completely to mechanical interactions (42) in response to highly-structured

environmental signals (i.e., smarticle inactivity patterns).

Discovering emergent control authority Most control synthesis techniques from the

past six decades rely on a deterministic understanding of actuation and its effect on system

states (43). But to create an organized system out of disorganized components, it is necessary

to understand what the collective can accomplish as a function of uncertain subsystem interac-

tions (44). To enable the discovery of control strategies for collective locomotors, control must

be synthesized with respect to ensemble properties rather than individual states.

We expect an ensemble’s control authority to be an emergent property rather than intrinsic.

To address this, we introduce the notion of a candidate control signal to hypothesize actuation

mechanisms based on broken symmetries in the system (45). Using control signals, we can take

a system with symmetry—and associated conserved quantities—and apply control to break the

symmetry, thereby asserting authority over otherwise conserved quantities. When actuation

mechanisms are unknown, symmetry breaking can be used as a way to hypothesize candidate

control signals contributing to a system’s emergent control authority.

Given a candidate control signal, we apply a nonparametric, unsupervised learning algo-

rithm, Dynamical System Segmentation (DSS), to discover ensemble-level behaviors in relation

to the signal. DSS extracts distinct system dynamics from the interactions of internal states, and,

when present, the effect of candidate control signals on states (46). Initially, the algorithm con-

structs a set of system models over sequential windows in time—each locally capturing the
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net effect of interactions between internal states and candidate control signals on the ensemble

dynamics.

In constructing the set of models, we represent elements of the set using the Koopman

operator, K—an infinite-dimensional linear operator describing measure-preserving nonlinear

dynamical systems through the evolution of observables (47). This choice of model is important

because the Koopman operator does not explicitly require state information to describe the

evolution of the system. Instead, the operator depends on observables, which may be any time-

varying sensor measurement or property of the system such as mass, volume, or temperature.

Formally, observables g are real-valued functions drawn from an infinite-dimensional Hilbert

space, H, that take measurements as their argument. The evolution of an observable through

the infinite-dimensional Koopman operator is

Kg(xk) = g(F (xk)) = g(xk+1), (3)

where K : H → H acts directly on the observables in the function space. We approximate

K in finite-dimensions with a data-driven operator K : H → H, by choosing a basis for

some subspace H ⊂ H, and applying least-squares optimization to compute K. The finite-

dimensional operator, K, is then an N ×N matrix for a given choice of N -dimensional basis.

The algorithm then condenses the set of Koopman operators into a set of non-redundant ex-

emplars by applying nonparametric clustering (48) directly onto the set of models—where each

element is itself a matrix. The resulting compressed set contains all unique dynamical system

behaviors observed in the dataset of sequential measurements. DSS achieves this without as-

suming how many behaviors the system exhibits—an important property when the cardinality

is generally unknown a priori.

The output of DSS is a set of distinct, yet related, ensemble behaviors represented by a

probabilistic graphical model G = (K,E). The graph’s node set is specified by the compressed
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set of system behaviors, and its edge set is determined empirically by the transitions observed

in the training dataset. In this model, the ensemble behaviors, each of which is a deterministic

description of the ensemble dynamics at a given configuration, are random variables whose

joint probabilities are in G. We refer to the information encoded by G as the system’s behavioral

patterns.

While the literature of learning control is evolving rapidly, existing methods are not immedi-

ately well-suited for a problem as ill-posed as discovering emergent control authority. For one,

it is not clear that it is possible to reliably design payoffs rewarding emergence, making it diffi-

cult to directly apply most reinforcement learning approaches (49–51). Moreover, techniques in

inverse reinforcement learning, such as learning from demonstration (52) and imitation learn-

ing (53), typically suffer from a lack of generalizability, limiting the use of learned behaviors.

DSS avoids these pitfalls by directly analyzing distinct system behaviors and constructing a

predictive model from these subsystem interactions, leading to a generalizable model. Addi-

tionally, DSS is extremely data efficient, which is critical given that emergence is typically a

rare phenomenon.

Decentralized control of supersmarticles Based on observations made in previous sec-

tions, we know the switching sequence of inactive smarticles (Fig. 7(b)) is causally related

to system behavior via the breaking of symmetries in the internal collision distribution of the

supersmarticle. We use this sequence as a candidate control signal and model its effect on su-

persmarticle dynamics with DSS. By taking data from a single endogenous phototaxis demon-

stration (such as Fig. 7(a)), we instantiate two separate models of the supersmarticle dynamics

with DSS—one with candidate control information, and one without—and study their respec-

tive behavioral patterns. The basis functions used in DSS were selected based on their ability

to represent information about the relative locations of inactive smarticles within the ring, and
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their effect on the motion of the supersmarticle (see Supplementary Materials for details).

The resulting graphical models are shown in Fig. 8(a-c) along with a graph constructed

from the observed smarticle switching sequence. We refer to the switching sequence of inac-

tive smarticles observed in the given experimental trial as the Experimental Inactivity Patterns,

shown in Fig. 8(a) as a graph. Each node in the graph of Fig. 8(a) represents a unique combi-

nation of smarticles that were experimentally observed to be simultaneously inactive, and the

numbers in each node refers to the unique label of the respective inactive smarticles. For exam-

ple, in Fig. 8(a) the green node labelled 4 indicates that, at some point in the experimental trial,

smarticle number 4 was inactive, and subsequently smarticle 1 also became inactive, changing

the supersmarticle to the dark blue node labelled 1 & 4. We use the complexity (i.e., graph

complexity) of the Experimental Inactivity Patterns graph to represent an estimated baseline

complexity of supersmarticle behaviors. If the candidate control signal is causally related to the

ensemble dynamics, the system should respond to actuation leading to behaviors identifiable by

DSS.

Without candidate control information, DSS is unable to identify a set of behaviors ex-

plaining the observed drift, as seen in the Nominal Behavioral Patterns in Fig. 8(b). However,

when candidate control information is incorporated, DSS extracts a set of Emergent Behavioral

Patterns of equal cardinality to the inactive smarticle switching sequence (Fig. 8(c)), where

numbered nodes correspond to distinct behaviors identified by DSS. We note that there is no

one-to-one correspondence between identified behaviors and elements of the candidate control

signal. This is to be expected because the ensemble dynamics are not exclusively determined

by the candidate control signal and are also driven by uncertainty, which is captured by the

probabilistic transitions in the generated graphs.

Through endogenous steering, we showed that the supersmarticle is capable of directed

transport towards a fixed objective. To improve on the controllability of the ensemble shown in

xv



previous sections, we look for alternative locomotion strategies in simulation by synthesizing

control to directly manipulate the algorithmically extracted ensemble behaviors. Previous work

in control of interconnected stochastic systems has shown that integral control can often be a

simple and robust strategy (54). However, due to the discontinuous nature of supersmarticle

inactivations, model-based control is necessary to directly optimize system actions.

We designed a simple decentralized model-predictive controller that greedily searches for

inactive smarticle switching sequences to alter the ensemble’s behavior—as determined by its

DSS model—in order to achieve a collective objective. The collective objective was expressed

as a quadratic cost on the position of the supersmarticle centroid with respect to a desired goal

location in the world frame. The supersmarticle centroid was calculated via distributed consen-

sus in a fully-connected topology (see Supplementary Materials for additional details) (55). We

conducted four sets of Monte Carlo simulations (40 trials each), over distinct goal locations—

left, right, up, down—with randomized initial conditions for a duration of T = 75τ per trial

(where τ = 1.6 s). The objectives were always equidistant and located directly vertically or

horizontally from the initial conditions.

The resulting trajectories shown in Fig. 8(d) were exogenously steered in the world frame by

the independent decision-making of individual smarticles. The simulation results confirm the

symmetry-based theoretical predictions: the ensemble should be capable of locomotion any-

where in the plane via exogenously selected smarticle inactivations—even when we train the

model using only a single trajectory moving in a single direction. The supersmarticle provides

a test case for whether DSS can detect emergent behavior and whether DSS (or related algo-

rithms) should be used in more general settings where symmetry-based inference about control

authority is not possible. By allowing an external source of feedback to inactivate smarticles,

the decentralized controller manipulated ensemble behaviors to achieve more complicated goals

than the model trained on, thereby predicting entirely emergent behavior. As a result of the
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generalizability of our machine learning model we are able to make predictions and control

the supersmarticle in entirely new settings, thereby harnessing the system’s emergent control

authority to accomplish brand new tasks. We note that extending the smarticle hardware to ac-

commodate for the proposed control algorithm can be done in a practical and computationally

efficient way, and will be explored in future work.

Based on the simulation results, we experimentally validate the exogenous controllability

predictions by guiding the supersmarticle through a simple maze using external feedback from

an experimenter with a light source (Fig. 8(e)). Here, the experimenter is capable of direct-

ing the supersmarticle by freely shining a light source onto the ensemble, thereby using more

complex inactivity sequences to achieve locomotion anywhere in the plane, just as the pro-

posed decentralized control scheme did. While the supersmarticle was provided with external

guidance, it was able to achieve directed transport without state information or specifying indi-

vidual objectives for its constituents. All movement was directly emergent from morphological

computations in response to environmental signals (56). Hence, by framing the discovery of

emergent control authority as a learning problem, we were able to hypothesize and model un-

conventional actuation leading to expressive controllable motion.

Conclusion Inspired by a future in which a class of task-capable robots could be formed

from myriad redundant and task-incapable components, we have created a primitive “robot

made of robots” which can perform rudimentary phototaxis, despite none of its components—

smarticles—possessing locomotor capabilities. A generic statistical model accurately captures

the fundamental drift dynamics, rationalizing how the supersmarticle can sense an aspect of

its environment—light—and use this to endogenously steer itself via asymmetric inactivation

of individuals. Further, through the introduction of novel machine learning techniques, we

constructed a data-driven model of the ensemble, which enabled discovery and proof of control
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alternatives for generating exogenous steering when agents are capable of computation.

We emphasize that unlike other mobile robots, the supersmarticle displays phototaxis with-

out a central processor or dedicated motor components. The key ingredient, and what differen-

tiates our collective from other robot swarms and locomoting collectives, is that our system is

made of components that have very low control authority—they cannot locomote individually—

and are highly unpredictable—they create emergent behavior from the highly-complex interac-

tions of their internal degrees of freedom. While such a system might seem idiosyncratic, we

note that it bears similarities to cascades of conformational changes in the nanomachines that

regulate many cellular processes: proteins (57). Inspired by the ubiquity of such processes in

these tiny machines, we posit that our model smarticle system could provide inspiration for the

generation of significantly more complex task-capable ensembles like those pictured in Fig. 1,

including perhaps three-dimensional collective locomotors and manipulators. Enabling robots

to flexibly reconfigure to collectively perform tasks in the presence of environmental noise

and individual component malfunction or degradation (23) could enhance robustness in robot

swarms across scales, from intravenous delivery (58–60) to search-and-rescue (61). Further,

insights from collective robophysical systems (15, 62, 63) could elucidate principles by which

biological collectives (like slime molds (64)) perform tasks in complex natural environments.

Materials and Methods

Smarticle robots Each smarticle’s outer shell and arms, or outer links are 3D printed. The

arms that are controlled by HD-1440A servomotors to a precision of < 1◦ and with an accuracy

of ± 6◦. All processing and servomotor control is handled by an Arduino Pro Mini 328 (3.3

V/8 MHz model), which allows smarticles to be programmed to deform to specific configura-

tions and gaits, where we define gaits as periodic trajectories in the configuration space (see

Fig. 2(b)). When assembled, each a single smarticle has a mass m = 34.8± 0.5 g. The system
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is powered by a 3.7 V, 150 mAh, 30 C, LiPo battery (Venom; Rathdrum, ID) enabling hours

of testing. Smarticle positions and orientation were tracked using an infrared video record-

ing hardware/software suite (OptiTrack; Corvallis, OR). All experiments were conducted on a

60× 60 cm2 aluminum plate leveled flat to < 0.1◦.

Smarticle experiments The Gini coefficient (G) is a statistical measure derived from the

shape of the Lorenz curve. A value of G = 0 represents a situation of perfect equality, or

in the case of the supersmarticle, all smarticles spent an equal amount of time being inactive.

Conversely, a value of G = 1 is a maximally unequal trial, or one where only a single smarticle

was inactive over the course of the experiment.

Statistical model Below we detail the full form of the variance of v‖:

Var[v‖] = −(f/4π3T )[π2 sin(2Ψ)
(
R2
A −R2

Bλ
)

+R2
A

(
(−4λ3 + 2λ2 + 2)Ψ + π3

(
(4λ2 + 2)/(π2) + λ− 2 + (2Ψ)/π

))
− 4RARBλ(2λ+ 1)(−λΨ + Ψ + π)

−R2
Bλ
(
6(λ− 1)λΨ− 6πλ+ 2π2Ψ + π3

)
− 2(−λΨ + Ψ + π)(RA −RBλ)(4λ(RA −RB) sin(Ψ)

+ cos(2Ψ)(RA −RBλ))].

Furthermore, the full form of variance of v⊥ is shown below:

Var[v⊥] = −(f/4πT )[R2
Bλ(π + 2Ψ)−R2

A(π(λ− 2) + 2Ψ)

+ (R2
A −R2

Bλ) sin(2Ψ)].

To calculate the values of RA and RB, we must start with masses m1 and m2, such that the

relative distance between them, x1 − x2, is specified by the actuation of the smarticles. The

first mass, m1, represents the arm of a smarticle, and m2 represents the body. The mass of the

boundary they push on is mb. Both m2 and mb have friction between them and the surface
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they are sitting on. This is shown in Fig. 6(a). Based on this model we arrive at the following

equations of motion

F2 − fs = m2ẍ2

fs − Fb = (mb+m1)ẍ1,
(4)

where F2 and Fb are the friction force on m2 and mb respectively, and fs is the force between

m1 and m2. By specifying, x1 − x2 = A0 sin(ωt + γ), F2 = (m2 + 2m1)gµ, and Fb = mbgµ

these equations can be integrated to find how far mb moves. Then, by plugging in for mb—the

mass of just the ring—and the mass of the ring and the inactive smarticle, we can find RA and

RB, respectively, as well as 〈v‖,⊥〉 and Var[v‖,⊥].

Dynamical System Segmentation The DSS algorithm is comprised of three primary sub-

routines. First, the calculation of Koopman operators over sequential windows of time via least-

squares optimization. Second, nonparametric clustering over the space of Koopman operators to

determine unique system behaviors. Finally, training a supervised learning model (e.g. support

vector machine) to learn relationships between system behaviors and construct the complete

probabilistic graphical model. In the following sections we expand on these subroutines, and a

full outline of the algorithm can be found in the Supplementary Materials.

Koopman operators The DSS algorithm first requires calculating finite-dimensional Koop-

man operators over sequential windows of the dataset. While there are many ways to frame

Koopman operator synthesis, we implement it as a least-squares optimization (65). Given a

choice of nonlinear basis function ψ(x), and a data sample X = {x1, ..., xM}, we can formu-

late the Koopman operator synthesis problem problem as solving

min
K

1

2

M−1∑
k=1

||ψ(xk+1)−Kψ(xk)||2.
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This optimization has a closed form solution of the following form

K = AG†,

where † denotes the Moore-Penrose pseudoinverse and the individual matrix components are

G =
1

M

M−1∑
k=1

ψ(xk)ψ(xk)
T

A =
1

M

M−1∑
k=1

ψ(xk+1)ψ(xk)
T .

Nonparametric clustering Given a set of Koopman operators, DSS looks for distinct

dynamical behaviors by applying nonparametric clustering directly onto the set of operators. In

particular, we apply Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN) (48), which is a nonparametric clustering algorithm that specializes in problems

subject to noisy and sparse measurements. By using HDBSCAN we are able to discern distinct

behaviors from the set of Koopman operators. From these clustered classes we construct class

exemplars as a means of creating a set of distinct Koopman operators corresponding to observed

system behaviors.

Supervised model Once DSS has compiled a condensed set of exemplar behaviors, the

algorithm must then determine the dependencies between each behavior and the states of the

system. To this end, we train a support vector machine (SVM). We do this by using the clustered

class labels from HDBSCAN to label the state-space data. Then, using this newly labeled

dataset we train a soft-margin SVM that assigns discerned behaviors to state observations. The

SVM in conjunction with the condensed set of exemplar behaviors give rise to the probabilistic

graphical model, where the dynamics of the system are described by stochastically shifting

Koopman operators.
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Movie S3. Supersmarticle:M=0.51, five active smarticles.

Movie S4. Supersmarticle:M=0.51, one inactive, four active smarticles.

Movie S5. Supersmarticle:M=3.6, one inactive, four active smarticles.

Movie S6. Supersmarticle:M=3.6, endogenous phototaxing.

Movie S7. Supersmarticle:M=3.6, exogenous phototaxing.
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Figure 1: Future robots may be comprised of components whose delineation is neither clear nor
deterministic, yet are capable of self-propulsion via the expression of ensemble-level behaviors
leading to collective locomotion. In such a robot, groups of largely generic agents may be able
to achieve complex goals, as we routinely observe in biological collectives.
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Figure 2: Smarticle (smart active particle) robot dynamics. (a) Top view schematic l = 5.3
cm and w = 4.9 cm. (b) Clockwise (CW) square gait, with key configurations enumerated.
(c) Drift of a single smarticle on a flat surface, executing a square gait over 38τ . (d) Tracked
trajectory of a smarticle within an ensemble of other self-deforming smarticles; color gradient
(blue to red) represents passage of time 47τ , with τ = 1.6 s.
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Figure 3: Smarticle cloud cooling and diffusion. (a) Snapshot of experimental trial with the
dashed line indicating the boundary of the convex hull area AC . The cloud’s CoM trajectory is
illustrated in red, beginning at the black dot and ending at the red dot. Experiment ran for 113τ .
(b) Center link trajectory of geometrically repulsive (top) and attractive interactions (bottom).
(c) The evolution of φ averaged over 20 trials (black, with gray shaded region representing a
single standard deviation); four individual trials are shown in blue, red, green, and brown lines.
(d) 〈V 2〉 averaged over 20 cloud trials. Raw data is in black, the blue line is moving mean with a
window size of 1τ . Red line and area surrounding it represents mean value and single standard
deviation of 〈V 2〉 noise of an experiment lasting 10τ with seven moving, but non-interacting,
smarticles. Here gait period τ = 1.6 s.
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Figure 4: Collective confined diffusion. (a) Supersmarticle top view, ring inner radius is 9.6 cm.
The four gray spheres were used to track the motion of the ring. (b) The granular temperature
of five active smarticles confined in a ring; black line is raw data over 10 trials, blue is a moving
window mean with a window size of 1τ (c) Trajectories, from an experiment, of a smarticle
inside the ring (purple), and the ring’s center of geometry (blue). (d) Experimental tracks of
ring trajectory for 50 trials; mring = 68 g. The black ring represents the size and initial position
of the ring. (e) The MSD averaged over 50 and 80 trials, for the active and inactive systems
respectively, all lasting 75τ . The inset shows the average change of γ for active (black) and
inactive (blue) systems. The oscillation seen in both the MSD and γ are related to the gait
period τ (where τ = 1.6 s).
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Figure 5: Biasing supersmarticle transport. (a) Supersmarticle schematic, with the inactive
smarticle in red. (b) Supersmarticle trajectory frame transformation from lab to inactive smar-
ticle frame. (c) Supersmarticle trajectories rotated into the lab frame where axes are now the
perpendicular and parallel components to the frame of the inactive particle.

Figure 6: Statistical model of supersmarticle transport. (a) Schematic of the theoretical collision
model. (b) Three regions with distinct collision types for the theory as described in the text.
(c) Theoretical (red) and experimental (black, blue) data for velocity vs. mass ratioM, showing
mean and standard deviation. The blue data point is offset inM for visibility, and represents
an experiment where the inactive particle was endogenously chosen by light (see text) for 40
trials. (d) Distribution of drift speed probabilities forM regimes.
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Figure 7: Endogenous supersmarticle phototaxis. (a) Trajectory from an experiment of a
self-directed (endogenously forced) photophilic supersmarticle tracking a static light source
(Movie S6). (inset) Schematic showing how a smarticle in the straight configuration can occlude
light from smarticle behind it. (b) Map depicting when and which smarticles endogenously
inactivate. (c) Lorenz plots detailing general equality of smarticle inactivity over 25 minute en-
dogenous trial consisting of five separate excursions in different directions (see Movie S6). Over
the complete trial we found a G = 0.21 as shown in the bolded line. The unbolded lines are the
Lorenz curves for the five separate excursions where we found G = [0.28, 0.4, 0.42, 0.34, 0.49].
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Figure 8: Comparison between observed and numerically generated behavioral patterns. (a) The
model shown is a graphical representation of a single inactive smarticle switching sequence ob-
served in a phototactic experiment (such as Fig. 7(a)). We extract graphical models using the
Dynamical System Segmentation algorithm from the same experiment with and without can-
didate control information shown in subfigures (c) and (b), respectively. Numerical prediction
and experimental demonstration of exogenous supersmarticle control. (d) Simulated supers-
marticle trajectories predict that the ensemble is capable of movement anywhere in the plane
while receiving exogenous feedback from an external controller. (e) Experimental trajectory
of a photophilic supersmarticle where the system was exogenously steered through a maze by
an experimenter (Movie S7), validating the simulation’s predictions. The trajectory evolves in
time from blue to red and the black ring represents the initial and final ring configurations.
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Supplementary Materials

Smarticle cloud The center of mass trajectory of the cloud was computed by averaging the

location of all the center links of all smarticles at each timestep. In Fig. S1, all trajectories were

started at t = 0 at the origin. While a lack movement of the center of mass does not necessarily

indicate zero movement of each of the smarticles, non-zero movement of the center of mass

does indicate that there is some collective smarticle motion.

Supersmarticle The supersmarticle trajectory before being rotated into the lab frame appears

similar to the results from the all active system. As seen in Fig. S2, there is no clear directional

bias for any of the mass distributions.

Statistical model Tables S1, and S2 delineate the types of collisions in the kinetic theory

model, as well as list model parameters, respectively. The theory predicts the perpendicular

component of velocity as function of mass ratio (Fig. S3) has an expected value of zero at all

mass ratios. The red bars represent the results from the theory, the standard deviation increases

monotonically as a function of the mass ratio. Alternatively, the experimental system (in black)

has an asymmetry, and is non-zero. Furthermore, the standard deviation does not match the

theory: the theory under-predicts at low mass ratios and over-predicts high mass ratios.

A github repository containing all of the files necessary for building a smarticle can be found

at https://github.com/wsavoie/ArduinoSmarticle.

Table S1: List of all six different types of collisions which are possible in the theoretical super-
smarticle model

Region β = 1 β = 0
I RB 0
II RA RA

III RB RA
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Figure S1: Unrotated center of mass trajectory of the smarticle cloud; each line represents a
different trial. The shared colors in Fig. 3(c) represent the same trial shown here.

Figure S2: Unrotated trajectories of the supersmarticle (displayed in the lab frame) for three
different mass ratio rings. (a) M < 1 (experiments ran for 120 s) (b) M ≈ 1 (experiments ran
for 120 s) (c) M > 1 (experiments ran for 90 s).
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Figure S3: Theoretical (red) and experimental (black, blue) data for the perpendicular com-
ponent of the drift speed. The blue data point is offset in M for visibility, and represents an
experiment where the inactive particle was endogenously chosen by light for 40 trials.

Table S2: List of all parameters used and their values in the theoretical model
Parameter Value
A0 0.05 m
ω 6π(rad/s)
γ π/4
f 5 Hz
λ 0.864
m 34.78 g
m1 3.48 g
m2 m−m1 g
µ 0.37
Ψ π/3.8
g 9.81(m/s2)
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Dynamical System Segmentation algorithm Here we provide a detailed outline of the DSS

algorithmic procedure expanding on the content found in the Materials and Methods of the main

manuscript.

Algorithm S1 Dynamical System Segmentation (DSS)
Input: Sequential dataset X = [x1, ..., xM ] consisting of realizations of a dynamical system defined

over some manifoldM, and basis functions {ψ(x)| ψ :M→ RN}
Procedure:

1: Transform the X dataset into ΨX = [ψ(x1), ..., ψ(xM )]T using selected basis
2: Split ΨX into a set of W (possibly disjoint) subsets, themselves comprised of sequential data
3: Calculate a Koopman operator Ki for each subset of ΨX using least-squares optimization to con-

struct the set S = {K1, ...,KW }
4: Construct a feature array Sflat by flattening all Ki ∈ RN×N in K into points in RN2

and appending
them together

5: Apply nonparametric clustering on Sflat and label all Ki’s from one of B discerned classes
{C1, ..., CB}

6: Construct a set K = {K1, ...,KB} of class exemplars by taking a weighted-average of all Ki ∈
Cj , ∀j ∈ {1, ..., B}, according to p(Ki|Ki ∈ Cj)

7: Label all points in ΨX with the label l ∈ {1, ..., B} of the Koopman operator they were used in
training

8: Train an SVM Φ(ψ(x)) on the labeled points
9: Construct set of observed transitions E by tracking all sequential labels in the dataset

10: Construct a graph G = (K, E) encoding system behaviors as well as transition probabilities between
each one

Return: Probabilistic graphical model G, and trained SVM Φ(ψ(x))

Supersmarticle DSS model and controller design In order to apply DSS to the supersmarti-

cle system, we must first make a choice of basis functions for representing the system dynamics

with Koopman operators. For a given smarticle i ∈ S such that S = {1, 2, 3, 4, 5}, its state in-

formation is given by qi = [xi, yi, θi]
T , where the states are the agent’s position and orientation

in the world frame. Additionally, each smarticle has a binary logical value ui ∈ {0, 1} repre-

senting whether the respective smarticle is active or inactive. Let the full supersmarticle state

be ~q = [qT1 , q
T
2 , q

T
3 , q

T
4 , q

T
5 ]T , and the supersmarticle activity vector be ~u = [u1, u2, u3, u4, u5]

T ,
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then we can describe the basis functions used in the following vector-valued function

ψ(~q, ~u) = [~q TCM , ~u
T ,

5∑
i=1

ui, OrBool2, AndBool2, OrBool3, AndBool3]
T ,

where ~qCM represents the state of the supersmarticle as expressed from the frame of the su-

persmarticle centroid. Hence, ~qCM contains information regarding the relative position of each

smarticle with respect to the supersmarticle centroid, which is important for modeling the evolu-

tion of the ensemble. Then, OrBool2, AndBool2, OrBool3 and AndBool3 are sets of several

functions consisting of logical operations of two and three smarticle activity states. More rigor-

ously, we can define these sets of logical basis functions in the following way

AndBool2 = {ui ∩ uj, | ∀i, j ∈ S s.t. i 6= j}

OrBool2 = {ui ∪ uj, | ∀i, j ∈ S s.t. i 6= j}

AndBool3 = {ui ∩ uj ∩ uk, | ∀i, j, k ∈ S s.t. i 6= j 6= k}

OrBool3 = {ui ∪ uj ∪ uk, | ∀i, j, k ∈ S s.t. i 6= j 6= k}.

Then, with the basis functions as defined above we can learn a model of the supersmarticle

dynamics from data using DSS. This model allows one to represent system dynamics in the

following form, ~qk+1 = fDSS(~qk, ~uk), and apply them in model-predictive control.

We developed a simple, fully-decentralized model-predictive controller that allows each

smarticle to individually determine whether it should deactivate in order to greedily optimize

an objective. Assuming that each smarticle is capable of local communications with neighbors

and has access to their state as well as their activity status at the current instant in time, each

agent will determine its next action according to

ui,k+1 = argmin
ui,k∈{0,1}

s.t.
~qk+1=fDSS(~qk,~uk)

(xgoal − xC, k+1)
2 + (ygoal − yC, k+1)

2,
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where each (xC , yC) is the predicted location of the supersmarticle centroid as estimated by

each smarticle. This is to say that a smarticle chooses its next action based on its individual pre-

diction of how it will affect the motion of the collective. This algorithm is fully-decentralized

in the sense that each smarticle’s decision making is independent of the rest given that it has

access to information about the state of the other agents. However, this does not imply that

the algorithm requires a fully-connected communication network topology. Using distributed

consensus each agent is capable of both estimating the ensemble centroid, and storing each

neighbor’s state as long as they are uniquely labeled. Alternatively, if a centralized architecture

is desired, a central controller could trivially optimize the activity of all smarticles simultane-

ously.

A github repository containing all of the files and data necessary for running DSS with the

supersmarticle can be found at https://github.com/MurpheyLab/Smarticles_

SR19.
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