Multicycle Broadside and Skewed-Load Tests for Test
Compaction

Irith Pomeranz

Abstract— This paper describes a test compaction procedure that
combines the advantages of using multicycle tests for test compaction
with the advantages of using both broadside and skewed-load tests
for increasing the fault coverage and achieving test compaction. The
procedure is the first to combine these two concepts in a single procedure.
The combination is made possible by a definition of a multicycle skewed-
load test that is suggested in this paper, and complements the definition
of a multicycle broadside test. Experimental results demonstrate the
effectiveness of multicycle broadside and skewed-load tests in achieving
test compaction for benchmark circuits.

Index Terms— broadside tests, skewed-load tests, multicycle tests, test
compaction, transition faults.

I. INTRODUCTION

An [-cycle scan-based test has [> 1 clock cycles between a scan-
in and a scan-out operation [1]-[17]. Typically, these clock cycles are
functional capture cycles. Functional capture cycles allow fault effects
that reach the next-state variables to be captured in the flip-flops.
Such fault effects can be either propagated further through additional
functional capture cycles, or scanned out if the test does not have
additional functional capture cycles. Each functional capture cycle
translates into an input pattern that is applied to the combinational
logic of the circuit. With more functional capture cycles, a test can
potentially detect more faults. This explains why multicycle tests
contribute to test compaction.

Three exceptions to the exclusive use of functional capture cycles
between scan operations are the following. (1) In a two-cycle skewed-
load test, the first clock cycle after the scan-in operation is a scan
shift cycle [1]. (2) The approach called transparent-scan uses arbitrary
sequences of scan shift and functional capture cycles [7]. (3) The
approach described in [9] combines broadside and skewed-load tests
into three-cycle tests that include scan shift and functional capture
cycles between the scan-in and scan-out operations.

Skewed-load tests require the scan enable input to change at
the circuit speed when a scan shift cycle is followed by a fast
functional capture cycle. This requirement is addressed in [18]-[19]
by generating fast scan enable inputs locally from the global scan
enable input.

A two-cycle broadside test has two functional capture cycles
between its scan operations. By extension, an [-cycle broadside test
has [> 2 functional capture cycles between scan operations. Between
the scan operations of a skewed-load test, a scan shift cycle is
followed by a functional capture cycle. A definition of an [-cycle
skewed-load test is suggested in this paper. Under this definition,
between scan operations, an [-cycle skewed-load test has [— 1 scan
shift cycles followed by a functional capture cycle. The rationale for
this definition is discussed later.

Even with two-cycle tests, the use of both broadside and skewed-
load tests has two advantages. (1) Considering transition faults (or
delay faults in general), some faults are only detectable by broadside
tests and some faults are only detectable by skewed-load tests.
Therefore, using both test types increases the transition fault coverage
[1]-[2]. (2) The use of both test types contributes to test compaction
because of the flexibility to select a test that detects more faults. A

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

This work was supported in part by NSF grant CCF-1714147

TABLE I
FORMAT OF A MULTICYCLE TEST

symbol | meaning
Si scan-in state
v primary input vector
li number of clock cycles between scan operations
e; test type (0 - broadside, 1 - skewed load)
c; scan-in values

test compaction procedure for transition faults that selects between
a broadside and skewed-load test the one that detects more faults is
described in [11].

The goal of this paper is to combine the advantages of using
multicycle tests for test compaction with the advantages of using both
broadside and skewed-load tests for increasing the fault coverage and
achieving test compaction. The test compaction procedure described
in this paper is the first to combine these two concepts in a single
procedure by suggesting a definition of multicycle skewed-load tests.

The test compaction procedure has the following features. Some
of these features also exist in other test compaction procedures as
described below. The unique feature of the procedure described in
this paper is that it uses both multicycle broadside and skewed-load
tests to achieve test compaction.

(1) The procedure is applied to a compact test set 7" that consists of
two-cycle broadside and skewed-load tests. It obtains multicycle tests
by adding clock cycles and modifying the tests using a simulation-
based process in order to avoid sequential test generation.

(2) To reduce the number of tests in a test set that is already
compact, the procedure considers pairs of tests ¢, 0 € T'and ¢, 1 € T
It attempts to modify ¢, 0 into a multicycle test that detects all the
faults that ¢, 0 and ¢, 1 detect in 7. When this is successful, ¢, 1 is
removed from 7.

(3) When the procedure modifies ¢, it allows its type to change
from broadside to skewed-load or vice versa. This is in addition
to changing its scan-in state and primary input sequence. All the
modifications occur as part of the same process that interleaves the
various types of modifications.

The test compaction procedure described in [14] also considers
pairs of tests when it attempts to remove a test. However, it does not
consider multicycle tests with more than two clock cycles between
scan operations. The procedure described in [16] also modifies tests
in a given test set in order to create multicycle tests without requiring
sequential test generation. However, it only considers broadside tests,
and it does not include the option of changing a test type. The
procedure described in [11] considers broadside and skewed-load
tests for test compaction. However, it only considers two-cycle tests.
In addition, it considers the two test types separately, and selects the
best of the two for every test that it adds to the test set.

The paper is organized as follows. A format for representing
multicycle broadside and skewed-load tests, and the assumptions
related to their application, are described in Section II. Section
III describes the test compaction procedure. Section IV presents
experimental results.

II. MULTICYCLE TESTS

A multicycle test ¢; is described by the five-tuple (s;, vi, l;, €;, ¢;)
as shown in Table I and described next. The scan-in state of the test is
si. The test has a single primary input vector v; that is held constant
for the duration of the test. The number of clock cycles between the
scan operations of the test is [;. For a broadside test, all the clock
cycles are functional capture cycles. For a skewed-load test, the first
l; — 1 clock cycles are scan shift cycles, and the last clock cycle is
a functional capture cycle. The type of the test is given by e;, with

TABLE II
MULTICYCLE SKEWED-LOAD TEST

si | vi | L | e | ci
TO0TT00110TT001T010T01 100110010000 | 0T | 7 | 1 [0001111

i (u)
1001100110110011010101100110010000
0100110011011001101010110011001000
0010011001101100110101011001100100
0001001100110110011010101100110010
1000100110011011001101010110011001
1100010011001101100110101011001100
1110001001100110110011010101100110
0110001001100010110010010101100110

ci(u)

o
IS

—_——_——_—0 oo

NNk W —O

e; = 0 for a broadside test, and e; = 1 for a skewed-load test. For
a skewed-load test, scan-in values are given by the sequence c;. For
uniformity, ¢; is included in the description of both test types even
though it is not needed for a broadside test, and its length is /; even
though the last clock cycle of a test is always a functional capture
cycle that does not require a scan-in value.

For illustration of the definition of a multicycle skewed-load test,
Table II shows a seven-cycle skewed-load test for ITC-99 benchmark
b05, and the states that the circuit traverses under the test. The circuit
has 34 state variables that are included in a single scan chain. The
scan chain is shifted to the right. The circuit has two primary inputs.
A clock cycle between the scan operations of the test is denoted by
u. The state of the circuit at clock cycle w is denoted by ;(u). The
state 1;(0) is the scan-in state s;. The state is shifted by one position
to the right in clock cycles 0 < u < 5. For ease of reference, the
scan-in value at clock cycle w is repeated under column ¢; (u). Clock
cycle u = 6 is a functional capture cycle. The state ;(7) is the
scan-out state of the test.

Fault detection occurs as follows. Under a multicycle broadside
test, a fault effect that reaches a next-state variable before the last
functional capture cycle of the test is captured in a flip-flop. Such
a fault effect continues to propagate through the circuit in the next
clock cycle. The fault is detected if the fault effect reaches a next-
state variable at the last clock cycle of the test. In this case, it is
scanned out.

To increase the likelihood that faults will be detected by a multi-
cycle broadside test, the primary outputs are observed at every clock
cycle between scan operations. In this case, a fault is detected if a
fault effect reaches a primary output. To avoid the need to observe
the primary outputs at speed, output compaction can be used, and
the compacted output response can be scanned out at the end of the
test together with the scan-out state.

For a multicycle skewed-load test, such as the one in Table II, faults
may be activated at any clock cycle between the scan operations. The
use of [; — 1 scan shift cycles ensures that different faults can be
activated by skewed-load and broadside tests. This contributes to the
effectiveness of using both test types.

When faults are activated by a multicycle skewed-load test, fault
effects may reach the primary outputs or next-state variables. A fault
effect that reaches a next-state variable is not captured in a flip-flop
during a scan shift cycle. Only the last clock cycle of the test is a
functional capture cycle, and can capture fault effects that reach the
next-state variables. Thus, the last two clock cycles of the test act as
a two-cycle skewed-load test.

To ensure that multicycle skewed-load tests with more than two
clock cycles are effective, it is important to observe the primary
outputs at every clock cycle between scan operations. In this case, a
fault whose fault effect reaches a primary output during a scan shift
cycle is detected.

Observation of primary output values is assumed in this paper for

assign L =3

1

set a target for the
level of test compaction

find a ranked set P of test pairs ‘

i

‘ assign p=0 ‘

modify ¢, to detect
the faults in F,,0\U F

1

if £, o was modified
remove unnecessary tests

1

assign p=p+1 ‘

Y

assign L = L +1 ‘

compaction

at target

p<|P|

Fig. 1.

Test compaction procedure

all the clock cycles between the scan operations of a test. The circuits
are assumed to have a single scan chain that is shifted to the right.
The only difference between this case and the case of multiple scan
chains is that ¢; is a sequence of scan-in vectors when the circuit has
multiple scan chains.

As in [1]-[2], the tests in this paper use a slow clock for the first
clock cycle after the scan-in operation. A fast clock is used for the
remaining clock cycles. The target faults are transition faults with an
extra delay of a single clock cycle.

III. TEST COMPACTION PROCEDURE

This section describes the test compaction procedure, which is
outlined in Figure 1.

A. Procedure Outline

The test set that the test compaction procedure considers is denoted
by T'. This is initially a compact two-cycle test set that consists of
broadside and skewed-load tests. The set of target faults that are
detected by 7' is denoted by F'. Fault simulation with fault dropping
of F' under T yields the first test that detects every fault in F'. For a
fault f € F, the index of this test is denoted by ind(f). Atestt; € T
is associated with a set of faults F; = {f € F : ind(f) = ¢} that
are detected by ¢;. The procedure may move a fault f € F' between
different tests that detect it by changing the value of ind(f).

The procedure uses a parameter that is denoted by L to limit the
number of clock cycles in a multicycle test. With a given value of L,
an l;-cycle test that it generates is such that [; < L. The procedure
increases L gradually up to a limit that is denoted by Lasax. For
the experiments in this paper, Lysax = 8. The gradual increase of
L ensures that the procedure does not consider multicycle tests with
more clock cycles than necessary for achieving test compaction.

The procedure defines a set P of test pairs that it will consider
for test compaction. The test pair with index p is mp = (tp,0, tp,1)-
When the procedure considers 7, it attempts to modify ¢, 0 into a
multicycle test that detects all the faults in F, o and Fj ;. If this is
successful, ¢, 1 is removed from 7" without losing fault coverage.

The test pairs in P are ranked by increasing number of detected
faults. This is based on the expectation that, if a pair 7, = (tp,0, tp,1)
detects fewer faults, then ¢, is easier to modify such that ¢, can
be removed. The procedure considers the pairs from P one by one in

this order. If the consideration of a test pair mp = (¢p,0, tp,1) results
in the modification of ¢, 0 and the removal of ¢, 1, pairs that include
the modified test ¢, o or the removed test ¢, 1 are not considered.

To ensure that modified tests are considered as well, and that the
ranking of the test pairs in P is up-to-date, the procedure starts a
new iteration when the level of test compaction reaches a target. The
target used in this paper is a reduction of 5% in the number of clock
cycles required for applying the test set. Specifically, let Cinit be
the number of clock cycles required for applying the initial test set.
Let Ccomp be the number of clock cycles required for applying the
compacted test set. The first target that the procedure uses is Ceomp <
0.95Cni. Once this target is achieved, the procedure changes the
target t0 Ceomp < 0.90Cinst, then to 0.85Cni¢, and so on. If the
target is not reached after considering all the test pairs in P, the
procedure terminates for the current value of L.

The number of clock cycles is used for measuring the level of
test compaction, and not the number of tests, since tests may have
increased numbers of clock cycles that are accounted for in Ceomp.

Details related to the set of test pairs, the removal of tests, and the
modification of a test are given next.

B. Test Pairs

Initially, the set P consists of every test pair 7, = (tp,0,tp,1) for
every tpo € T and tp,1 € T such that t, 0 # tp,1. This includes
cases where ¢, 0 and t, 1 have different types. Thus, a broadside
test may be modified to detect all the faults that are detected by a
skewed-load test, and vice versa. It also includes cases where ;0
and ¢p,1 detect faults with conflicting detection conditions, such as
the 0 — 1 and 1 — O transition faults on the same line. Such faults
can be detected by a multicycle test using different clock cycles for
activation and propagation. For every test pair ¢, 0 € T and ¢, 1 € T,
both (¢p,0,tp,1) and (tp,1,%p,0) are included in P.

A test pair mp = (tp,0,tp,1) is associated with the number of faults
that the pair detects together. This number is denoted by nge:(7p).
This number can be computed by using the subsets of faults that the
tests detect, F}, o and F}, 1, after fault simulation with fault dropping
of F under T'. Using these subsets, nget(7p) = |Fp,o| + |Fp,1]-

However, after fault simulation with fault dropping, some of the
faults in Fj, o and F), 1 may also be detected by other tests in 7.
Before the procedure considers the pair 7, for modification and
removal, it moves as many faults as possible from Fj, o and F}, 1
to other tests. It is thus important to also move faults from F} o and
F), 1 to other tests for the computation of nges(7p).

To find the minimum subsets F}, o and F}, 1, the faults in F}, oUF} 1
are simulated under the tests in T'\ {¢p,0, tp,1}. If a fault f € F, oU
F,,1 is detected by a test t; € T'\ {tp,0,tp,1}, det(f) =1 is assigned
in order to move f to F;.

This computation is carried out before 7, is considered for
modification and removal. For the ranking of the test pairs in P,
an estimate of nge:(mp) is used, whose computation requires a lower
computational effort, but whose accuracy is better than using fault
simulation with fault dropping. For the estimate, every test t; € T
is considered individually, instead of considering test pairs. For ¢;,
the procedure moves faults from F; to other tests by simulating F;
under 7"\ {¢;}, and updating ind(f) if a test ¢; other than ¢; detects
it. Let the number of faults that remain in F; be nget(t;). For every
mp € P, the procedures uses nget (Tp) = Ndet (€p,0) + Ndet (tp,1) as
an estimate of the number of faults that 7, detects.

Experimental results indicate that most of the test pairs that
contribute to test compaction have low values of nge:(mp), typically
2 < nget(mp) < 8. Therefore, a constant bound Np g7 is introduced,
and only test pairs with ngei(mp) < Nppgr are included in P. In

TABLE III
MODIFICATION OF A TEST

i Si vi | li | ei ci
61 1000011001101100111101001011111101 00 2 1 00
53 0000111111010001110111110011001011 10 2 0 00
mod 0000111111010001110111110011001011 10 3 0 000
mod 0000111011010001110111110001001011 10 3 1 000

addition, the number of test pairs in P is limited to a constant that
is denoted by Nparrs. If P contains more than Nparrs test pairs,
only Nparrs test pairs are kept in P, with the lowest numbers of
detected faults. For the experiments in this paper, Nprpr = 16 and
Nparrs = 10000.

C. Removing Unnecessary Tests

After the procedure modifies a test ¢, o successfully such that a
test ¢p,1 can be removed from 7', it checks whether the modification
of t,,0 allows other tests to be removed as well. For this purpose, the
procedure places ¢, 0 at the beginning of the test set, and ¢,,1 at the
end of the test set. In this order, it performs fault simulation with fault
dropping of F' under 7T'. The procedure removes every test t; € T
for which F; = () is obtained. In addition to tp,1, this condition may
be satisfied for other tests. All such tests are removed from 7'

D. Modifying a Test

The main part of the procedure is the modification of a test ¢,
such that it would detect all the faults in the set Fj, o U Fj 1. Let
tp,0 = (Sp,05Up,0,lp,0,€p,0,Cp,0). As the procedure modifies .0, it
stops as soon as it finds that ¢, o detects all the faults in F}, o U F} 1.

The test is first modified into an L-cycle test by adding L — [0
random values at the end of ¢, and assigning I, o = L.

With [, o = L, the candidates for modification are the bits of s, 0,
Up,0, and cp 0, and the test type e, 0. All the entries are considered in
a random order a constant number of times. The constant four is used
for the experiments in this paper. When an entry is considered, its
value is complemented. Let tgfgd be the modified test. The procedure
simulates F}, oU F} 1 under t;’fgd, If the modification does not reduce
the number of detected faults, it is accepted by assigning t, 0 = t;,’fgd.
Otherwise, t;’fgd is discarded.

Table III shows an example where a test pair of ITC-99 benchmark
b05 is considered for modification and removal. The pair is (53, t61)
in a test set that initially consists of 67 tests. The test t53, which is
shown in the second row of Table III, is a broadside test, while the
test ts1, which is shown in the first row of Table III, is a skewed-load
test. The set F53 U Fp1 consists of two faults after faults are moved
to other tests in the test set. Initially, {53 detects one of the two faults
in F53 U Fg1. The test ts3 is extended into a three-cycle broadside
test as shown in the third row of Table III. Several entries of the
test are complemented next before the number of detected faults is
increased to two, and the modification terminates. The resulting test
is shown in the fourth row of Table IIl. As part of the modification,
the type of the test was changed from broadside to skewed-load by
changing the value of e;. The procedure accepts to replace ¢s53 with
the modified test in order to remove tg1.

The worst-case computational complexity of the test compaction
procedure is determined by the modification procedure as follows.
With a constant number of test pairs in P, the procedure modifies
a constant number of tests in every iteration. For B bits in a test,
the modification of a test requires fault simulation of at most Npgr
faults under O(B) modified tests. The number of iterations is O(|T'|).
The worst case is obtained if the procedure removes a single test in
every iteration. Considering all the iterations, the procedure simulates

TABLE IV
EXPERIMENTAL RESULTS

circuit sV len iter pair det | tests | 2brd 2skw | mbrd mskw | mix mod ave cycles ratio f.c. ntime
s38417 1636 - 0 - - 663 337 326 0 0 - - 2.000 1087630 1.000 | 98.254 -
s38417 1636 4 1 7392 2 629 289 307 32 1 17 0 2.070 1031982 0.949 | 98.254 357.25
s38417 1636 6 1 8972 2 596 241 289 63 3 31 0 2227 978019 0.899 | 98.255 1121.64
b21 494 - 0 - - 360 137 223 0 0 - - 2.000 179054 1.000 | 84.688 -
b21 494 4 1 647 2 341 111 212 18 0 11 0 2.059 169650 0.947 84.688 69.06
b21 494 8 1 1608 3 329 100 201 28 0 22 0 2.161 163731 0914 | 84.688 509.33
b20 494 - 0 - - 288 106 182 0 0 - - 2.000 143342 1.000 | 88.544 -
b20 494 3 1 8241 4 273 83 175 15 0 7 0 2.055 135917 0.948 | 88.544 67.97
b20 494 8 1 7337 5 262 69 168 25 0 14 0 2.164 130489 0910 | 88.544 1096.82
bl15 447 - 0 - - 440 121 319 0 0 - - 2.000 198007 1.000 | 93.715 -
bl5 447 4 1 7699 3 417 94 304 15 4 11 0 2.070 187709 0.948 | 93.718 135.79
bl5 447 8 1 8877 5 397 73 292 26 6 19 0 2.244 178797 0.903 | 93.721 792.98
$9234 228 - 0 - - 275 119 156 0 0 - - 2.000 63478 1.000 | 85.229 -
$9234 228 4 1 2860 4 261 100 148 13 0 8 1 2.061 60274 0.950 | 85.229 122.58
59234 228 6 1 6584 7 250 83 146 20 1 8 1 2.164 57769 0910 | 85.229 638.22
$38584 1452 - 0 - - 473 206 267 0 0 - - 2.000 689194 1.000 | 82.192 -
$38584 1452 3 1 8405 2 449 166 261 20 2 2 0 2.049 654320 0.949 | 82.192 68.72
$38584 1452 4 1 7704 3 425 138 246 34 7 4 0 2.125 619455 0.899 | 82.202 212.51
$38584 1452 5 1 8458 4 412 123 244 37 8 4 0 2.182 600575 0.871 82.205 381.01
tv80 359 - 0 - - 706 166 540 0 0 - - 2.000 255225 1.000 | 96.330 -
tv80 359 8 1 2303 2 687 137 532 18 0 0 2.079 248420 0.973 | 96.330 391.92
b22 709 - 0 - - 335 89 246 0 0 - - 2.000 238894 1.000 | 87.716 -
b22 709 8 1 1763 2 318 68 233 17 0 13 0 2.094 226837 0.950 | 87.731 424.11
systemcaes 670 - 0 - - 160 40 120 0 0 - - 2.000 108190 1.000 | 95.602 -
systemcaes 670 3 1 3132 7 151 28 114 9 0 6 0 2.060 102151 0.944 | 95.602 134.71
systemcaes 670 5 1 1530 8 143 22 108 13 0 12 0 2.140 96786 0.895 | 95.602 1100.46
systemcaes 670 8 1 2359 14 137 17 105 15 0 15 0 2.299 92775 0.858 | 95.602 | 3483.54
aes_core 530 - 0 - - 275 88 187 0 0 - - 2.000 146830 1.000 | 97.452 -
aes_core 530 4 1 31 6 261 77 174 10 0 7 4 2.050 139395 0.949 | 97.452 48.04
aes_core 530 5 1 4 7 260 77 173 10 0 8 4 2.058 138865 0.946 | 97.452 75.95
bl4 247 - 0 - - 219 75 144 0 0 - - 2.000 54778 1.000 | 84.162 -
bl4 247 3 1 7133 5 210 60 141 9 0 3 0 2.043 52546 0.959 | 84.162 61.47
i2c 128 - 0 - - 72 15 57 0 0 - - 2.000 9488 1.000 | 81.841 -
i2c 128 3 1 2297 13 68 11 53 4 0 4 1 2.059 8972 0.946 | 81.841 226.05
i2c 128 6 1 1849 14 64 6 50 7 1 5 1 2.250 8464 0.892 | 82.005 1869.01
i2c 128 6 2 1767 16 63 6 49 7 1 5 1 2.254 8334 0.878 | 82.005 | 2315.96
wb_dma 523 - 0 - - 177 53 124 0 0 - - 2.000 93448 1.000 | 83.233 -
wb_dma 523 5 1 4965 3 168 43 118 6 1 5 1 2.065 88734 0.950 | 83.233 899.53
wb_dma 523 8 1 5578 4 160 33 117 8 2 6 2 2.244 84562 0.905 83.233 | 3325.36
systemcdes 190 - 0 - - 81 24 57 0 0 - - 2.000 15742 1.000 | 96.404 -
systemcdes 190 5 1 23 7 76 18 54 4 0 3 0 2.092 14789 0.939 | 96.404 210.38
systemcdes 190 8 1 44 9 75 16 54 5 0 3 0 2.173 14603 0.928 | 96.404 578.60
s1423 74 - 0 - - 58 16 42 0 0 - - 2.000 4482 1.000 | 85.278 -
51423 74 3 1 1062 7 55 11 41 3 0 1 0 2.055 4257 0.950 | 85.278 79.79
s1423 74 4 1 180 4 52 8 39 4 1 1 0 2.115 4032 0.900 | 85.278 384.10
s1423 74 7 1 66 3 48 5 35 6 2 3 0 2.396 3741 0.835 85.278 1714.78
51423 74 8 1 0 2 46 5 32 6 3 4 0 2.630 3599 0.803 85.278 | 2201.60
s15850 597 - 0 - - 328 101 227 0 0 - - 2.000 197069 1.000 | 90.437 -
515850 597 4 1 6028 3 311 81 214 12 4 8 0 2.058 186904 0.948 | 90.437 199.23
515850 597 8 1 9195 4 300 74 203 13 10 9 0 2.197 180356 0.915 | 90.446 1326.33
spi 229 - 0 - - 494 69 425 0 0 - - 2.000 114343 1.000 | 91.009 -

spi 229 8 1 8266 3 4717 56 408 8 5 10 1 2.075 110452 0.966 | 91.009 663.62
simple_spi 131 - 0 - - 63 14 49 0 0 - - 2.000 8510 1.000 | 89.215 -
simple_spi 131 3 1 953 5 59 9 46 4 0 3 0 2.068 7982 0.938 89.215 75.28
simple_spi 131 3 2 716 6 56 8 43 3 2 4 1 2.089 7584 0.891 89.267 149.50
simple_spi 131 6 1 415 6 54 5 43 4 2 4 1 2.185 7323 0.861 89.267 1326.87
sasc 117 - 0 - - 36 8 28 0 0 - - 2.000 4401 1.000 | 93.636 -
sasc 117 3 1 40 2 34 6 26 1 1 0 0 2.059 4165 0.946 | 93.636 12.97
sasc 117 5 1 18 3 32 5 24 1 2 0 0 2.188 3931 0.893 | 93.636 295.50
sasc 117 7 1 69 5 31 3 24 2 2 0 0 2.355 3817 0.867 | 93.636 716.62
s13207 669 - 0 - - 445 167 278 0 0 - - 2.000 299264 1.000 | 94.859 -
513207 669 3 1 9716 2 422 144 255 11 12 5 0 2.055 283854 0.949 | 94.859 166.52
513207 669 4 1 1565 2 400 127 228 21 24 10 0 2.120 269117 0.899 | 94.859 367.68
513207 669 5 1 3223 2 377 113 200 27 37 16 0 2.268 253737 0.848 | 94.859 660.27
513207 669 7 1 4877 3 355 98 180 35 42 21 0 2.470 239041 0.799 | 94.859 1367.23
513207 669 8 1 7475 3 343 92 169 36 46 24 0 2.627 231037 0.772 | 94.859 | 2042.50
s5378 179 - 0 - - 233 96 137 0 0 - - 2.000 42352 1.000 | 83.513 -
s5378 179 3 1 2484 2 221 82 127 7 5 2 0 2.054 40192 0.949 | 83.513 45.41
s5378 179 3 2 6303 3 209 72 115 11 11 3 0 2.105 38030 0.898 | 83.513 122.43
s5378 179 4 1 583 2 197 64 101 15 17 3 0 2.168 35869 0.847 83.513 267.02
s5378 179 5 1 6447 6 185 60 86 15 24 5 0 2.303 33720 0.796 | 83.513 608.04
s5378 179 7 1 9415 7 174 58 72 15 29 5 0 2.529 31765 0.750 | 83.513 1524.56
s5378 179 8 1 9059 8 172 57 69 16 30 6 0 2.599 31414 0.742 | 83.513 | 2303.99

O(|T'|B) faults and tests. In practice, the procedure does not consider IV. EXPERIMENTAL RESULTS

all the test pairs in every iteration, and it terminates after a small
number of iterations with every value of L. These effects are captured
by the normalized run time defined in Section IV.

The test compaction procedure is applied to transition faults. The
initial test set consists of two-cycle broadside and skewed-load tests,
and it is compacted by the procedure from [11].

The results are shown in Table IV. Considering the multicycle tests
with three or more clock cycles in the final compacted test set, let
Tmira be the subset of broadside tests, and let 15, sk be the subset
of skewed-load tests. The circuits are arranged by decreasing order
of |Tmbrd| - |Tmskw|~

The first row for every circuit describes the initial two-cycle
test set. The next rows describe the test set obtained by the test
compaction procedure for every 5% reduction in the number of clock
cycles for test application, as well as the final test set. Reductions of
5% may be obtained for different values of L in different circuits. For
example, when L = 3 is effective for a circuit, the first 5% reduction
may be obtained with this value of L. For other circuits, the first 5%
reduction may be obtained for a larger value of L.

After the circuit name, column sv shows the number of state
variables. Column len shows the value of L. Column ¢ter shows
the iteration of the procedure, where a zero stands for the initial
test set. Column pair shows the index of the test pair from P for
which the test set is obtained. Column det shows the estimate for
the number of faults that this pair detects.

Column tests shows the number of tests in the test set. Columns
2brd and 2skw show the numbers of two-cycle broadside and
skewed-load tests, respectively. Columns mbrd and mskw show the
numbers of multicycle broadside and skewed-load tests with three or
more clock cycles, respectively.

Column miz shows the number of test pairs of different types that
resulted in the removal of a test. Column mod shows the number of
tests that were modified to remove another test, and the modification
included a type change.

Column ave shows the average number of clock cycles between the
scan operations of a test. Column cycles shows the total number of
clock cycles required for applying the test set. Column ratio shows
the fraction of clock cycles required for the test set produced by
the test compaction procedure relative to the initial two-cycle test
set. The ratio measures the level of test compaction achieved by the
procedure as discussed earlier.

Colmn f.c. shows the transition fault coverage. The procedure does
not allow the fault coverage to decrease as it compacts the test set.

Column ntime shows the normalized run time of the procedure.
Since the procedure is based on fault simulation, the run time for
fault simulation with fault dropping of the initial test set divides the
cumulative run time of the test compaction procedure to obtain the
normalized run time.

The following points can be seen from Table IV. The test com-
paction procedure reduces the number of tests, and the number
of clock cycles required for test application, for all the circuits
considered. The level of test compaction is different for different
circuits because multiple clock cycles are effective to different extents
in detecting additional faults. This applies to both broadside and
skewed-load tests.

Test pairs consisting of broadside and skewed-load tests are used
effectively by the test compaction procedure, such that the modifica-
tion of a test of one type results in the removal of a test of the other
type. In addition, the type of a modified test is changed in several
cases to achieve test compaction. Overall, the number of two-cycle
tests of both types is reduced.

The normalized run time does not increase with the size of the
circuit. Thus, the procedure scales similar to a fault simulation
procedure. Moreover, there is typically a point where the run time
increases abruptly before an additional test is removed. It is possible
to terminate the procedure for the current value of L when the
removal of another test does not occur after a preselected increase in
the run time.

V. CONCLUDING REMARKS

This paper suggested a definition of a multicycle skewed-load
test that complements the definition of a multicycle broadside test,
and described a test compaction procedure that produces compact
multicycle test sets consisting of broadside and skewed-load tests. The
procedure combines the advantages of using multicycle tests for test
compaction with the advantages of using both broadside and skewed-
load tests for increasing the fault coverage and achieving test com-
paction. Experimental results for benchmark circuits demonstrated
the effectiveness of multicycle broadside and skewed-load tests in
achieving test compaction.

REFERENCES

[1] J. Savir and S. Patil, ”Scan-Based Transition Test”, IEEE Trans. on

Computer-Aided Design, Aug. 1993, pp. 1232-1241.

J. Savir and S. Patil, ”"Broad-Side Delay Test”, IEEE Trans. on Computer-

Aided Design, Aug. 1994, pp. 1057-1064.

[3] S. Y. Lee and K. K. Saluja, "Test Application Time Reduction for
Sequential Circuits with Scan”, IEEE Trans. on Computer-Aided Design,
Sept. 1995, pp. 1128-1140.

[4] 1. Pomeranz and S. M. Reddy, ”Static Test Compaction for Scan-Based

Designs to Reduce Test Application Time”, in Proc. Asian Test Symp.,

1998, pp. 198-203.

J. Rearick, ”Too Much Delay Fault Coverage is a Bad Thing”, in Proc.

Intl. Test Conf., 2001, pp. 624-633.

X. Lin and R. Thompson, “Test Generation for Designs with Multiple

Clocks”, in Proc. Design Autom. Conf., 2003, pp. 662-667.

I. Pomeranz and S. M. Reddy, “Transparent Scan: A New Approach to

Test Generation and Test Compaction for Scan Circuits that Incorporates

Limited Scan Operations”, IEEE Trans. on Computer-Aided Design, Dec.

2003, pp. 1663-1670.

[8] G. Bhargava, D. Meehl and J. Sage, ”Achieving Serendipitous N-Detect
Mark-Offs in Multi-Capture-Clock Scan Patterns”, in Proc. Intl. Test
Conf, 2007, Paper 30.2.

[9] I Park and E. J. McCluskey, “Launch-on-Shift-Capture Transition Tests”,
in Proc. Intl. Test Conf., 2008, pp. 1-9.

[10] E. K. Moghaddam, J. Rajski, S. M. Reddy and M. Kassab, ”At-Speed
Scan Test with Low Switching Activity”, in Proc. VLSI Test Symp., 2010,
pp. 177-182.

[11] I. Pomeranz, “Static Test Compaction for Delay Fault Test Sets Con-
sisting of Broadside and Skewed-Load Tests”, in Proc. VLSI Test Symp.,
2011, pp. 84-89.

[12] I. Pomeranz, ”Generation of Multi-Cycle Broadside Tests”, IEEE Trans.
on Computer-Aided Design, Aug. 2011, pp. 1253-1257.

[13] Y. Sato, H. Yamaguchi, M. Matsuzono and S. Kajihara, "Multi-Cycle
Test with Partial Observation on Scan-Based BIST Structure”, in Proc.
Asian Test Symp., 2011, pp. 54-59.

[14] I. Pomeranz, “Static Test Compaction for Scan Circuits by Using
Restoration to Modify and Remove Tests”, IEEE Trans. on Computer-
Aided Design, Dec. 2014, pp. 1955-1964.

[15] D. Erb, K. Scheibler, M. Sauer, S. M. Reddy and B. Becker, ”"Multi-cycle
Circuit Parameter Independent ATPG for Interconnect Open Defects”, in
Proc. VLSI Test Symp., 2015, pp. 1-6.

[16] I. Pomeranz, ”A Multi-Cycle Test Set Based on a Two-Cycle Test Set
with Constant Primary Input Vectors”, IEEE Trans. on Computer-Aided
Design, July 2015, pp. 1124-1132.

[17] S. Wang, H. T. Al-Awadhi, S. Hamada, Y. Higami, H. Takahashi,
H. Iwata and J. Matsushima, “Structure-Based Methods for Selecting
Fault-Detection-Strengthened FF under Multi-Cycle Test with Sequential
Observation”, in Proc. Asian Test Symp., 2016, pp. 209-214.

[18] N. Ahmed, M. Tehranipoor, C. P. Ravikumar and K. M. Butler, "Local
At-Speed Scan Enable Generation for Transition Fault Testing Using Low-
Cost Testers”, IEEE Trans. on Computer-Aided Design, May 2007, pp.
896-905.

[19] G. Xu and A. D. Singh, "Scan Cell Design for Launch-on-Shift Delay
Tests with Slow Scan Enable”, IET Computers & Digital Techniques,
May 2007, pp. 213-219.

[2

—

[5

—

[6

—_

[7

—

