
Conner Sharpe1

Walker Department of Mechanical Engineering,
The University of Texas at Austin,

Austin, TX 78701-2982
e-mail: c_sharpe@utexas.edu

Tyler Wiest1

Walker Department of Mechanical Engineering,
The University of Texas at Austin,

Austin, TX 78701-2982
e-mail: tylerwiest@utexas.edu

Pingfeng Wang
Department of Industrial and Enterprise Systems

Engineering,
University of Illinois at Urbana-Champaign,

Champaign, IL 61801
e-mail: pingfeng@illinois.edu

Carolyn Conner Seepersad
Walker Department of Mechanical Engineering,

The University of Texas at Austin,
Austin, TX 78701-2982

e-mail: ccseepersad@mail.utexas.edu

A Comparative Evaluation of
Supervised Machine Learning
Classification Techniques for
Engineering Design Applications
Supervised machine learning techniques have proven to be effective tools for engineering
design exploration and optimization applications, in which they are especially useful for
mapping promising or feasible regions of the design space. The design space mappings
can be used to inform early-stage design exploration, provide reliability assessments,
and aid convergence in multiobjective or multilevel problems that require collaborative
design teams. However, the accuracy of the mappings can vary based on problem factors
such as the number of design variables, presence of discrete variables, multimodality of
the underlying response function, and amount of training data available. Additionally,
there are several useful machine learning algorithms available, and each has its own set
of algorithmic hyperparameters that significantly affect accuracy and computational
expense. This work elucidates the use of machine learning for engineering design explora-
tion and optimization problems by investigating the performance of popular classification
algorithms on a variety of example engineering optimization problems. The results are syn-
thesized into a set of observations to provide engineers with intuition for applying these
techniques to their own problems in the future, as well as recommendations based on
problem type to aid engineers in algorithm selection and utilization.
[DOI: 10.1115/1.4044524]

Keywords: design automation, simulation-based design, classifiers, machine learning,
design exploration

1 Introduction
Design engineers are often required to synthesize information,

solve intertwining problems, and elegantly present the best
designs. The nature of this design process has changed dramatically
over the past several decades, driven largely by growth in compu-
tational capabilities. By harnessing computational models, an engi-
neer can solve increasingly difficult problems and gather a wealth of
information about them, but designing in a computational landscape
requires an expanded suite of tools for generating information and
learning from it to make better design decisions. In light of this chal-
lenge, machine learning algorithms, and specifically classification
techniques, have emerged as a particularly useful class of tools
for engineering design exploration and optimization. This paper is
intended to help design engineers develop a basic understanding
of classification and build intuition for the suitability of common
classification algorithms for engineering design exploration and
optimization applications.
In engineering design exploration and optimization, classification

algorithms or classifiers can be used for identifying, bounding, or
mapping the feasible design space. In a typical engineering design
optimization problem, the task is to identify values of design vari-
ables, x, that satisfy a set of constraints, g(x), and maximize or min-
imize a set of potentially conflicting objectives, f(x). The constraint
and objective functions could be based on simulation-based predic-
tions, experimental or historical data, or human assessment. Classi-
fiers that map the feasible design space are focused on identifying
feasible and/or preferable values of the design variables that satisfy

the constraints and/or meet preferred thresholds for the objective
functions, respectively. This task is an example of inverse
mapping, which is very different from the forward mapping strate-
gies that are used pervasively in engineering design. An inverse
mapping of the design space seeks to identify the comprehensive
set of design variable values that meet a set of performance require-
ments or thresholds. A forward mapping, in contrast, accepts unique
design variable values as input and predicts their performance. Sur-
rogate or meta models (e.g., kriging, regression) are often used to
establish computationally efficient forward mappings, but they
have limited applicability to inverse mappings that are often non-
unique (i.e., a specific level of performance is associated with more
than one candidate design) and discontinuous (i.e., disjoint regions
of the design spacemay provide similar levels of performance). Clas-
sification methods are well suited to this task because they are
designed to predict whether candidate designs are members of a spe-
cific class, which could include the set of feasible designs or the set of
feasible designs that satisfy preferred performance thresholds [1].
A design engineer may seek to map the design space directly for

several reasons. One example is the set-based design, which focuses
on solving distributed design problems by delaying commitment to
a single point solution and preserving a diversity of options for iden-
tifying mutually satisfactory cross-disciplinary solutions [2]. In this
context, classifiers have been used to solve distributed, multidisci-
plinary design problems, which are decomposed into interdepen-
dent subproblems that share coupled design variables [3]. A
similar set-based approach may be applied to a multiscale or multi-
level design problem in which it is important to map the input
design space for an upper-level subproblem because it may define
the performance constraints of a lower-level subproblem. This
approach has been utilized for both materials design [4–6] and addi-
tive manufacturing [7] applications.
Classifiers can also be used as a means of guiding and potentially

improving the efficiency of design exploration. Classification can

1Conner Sharpe and Tyler Wiest share first authorship.
Contributed by the Design Automation Committee of ASME for publication in the

JOURNAL OF MECHANICAL DESIGN. Manuscript received March 6, 2019; final manuscript
received August 5, 2019; published online September 4, 2019. Assoc. Editor: Mark
Fuge.

Journal of Mechanical Design DECEMBER 2019, Vol. 141 / 121404-1Copyright © 2019 by ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

mailto:c_sharpe@utexas.edu
mailto:tylerwiest@utexas.edu
mailto:pingfeng@illinois.edu
mailto:ccseepersad@mail.utexas.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4044524&domain=pdf&date_stamp=2019-10-03

be combined with active learning and other adaptive sampling strat-
egies, for example, to map the boundaries of the feasible design
space accurately and efficiently [6,8–10]. Mapping the boundaries
of the feasible design space accurately can be especially important
for improving the efficiency of design exploration because it pre-
vents potentially expensive simulation- or experiment-based explo-
ration of infeasible designs [11]. For highly nonlinear, nonconvex
design problems, these spaces can be disjoint and assume arbitrary
shapes, making it difficult to capture them with simple techniques
such as intervals [3,8]. These types of classifiers can also be used
as computationally efficient filters for identifying robust designs
that meet feasibility constraints or performance thresholds even
when the designs themselves are subject to uncontrolled variation,
such as manufacturing tolerances [5].
Classification methods are used widely to map feasible design

spaces as a means of improving the efficiency of reliability analysis
[12–17] and reliability-based [18–20] design. For example, support
vector machines (SVMs) can be used as a classification tool to con-
struct mappings of the limit state surfaces that identify safe design
regions for reliability assessment [12,13]. Classification with
enhanced probabilistic neural networks (NNs) has demonstrated sig-
nificant improvements in computational efficiency for reliability
analysis of structural systems [14]. Similarly, adaptive classification
tools and sequential sampling strategies have been used to focus on
important design regions and to gradually identify implicit constraint
boundaries, thereby improving the efficiency of solving reliability-
based design problems [19,21]. To leverage their efficiency advan-
tages, classification methods have also been employed for reliability
analysis for high-dimensional problems [15], system reliability anal-
ysis consideringmultiple failuremodes [16], reliability-based design
considering time-variant probabilistic constraints [18], and
reliability-based design of aircraft wings [20] and thermal protec-
tions systems in planetary entry vehicle design [22].
Given that classification tools have proven useful in several engi-

neering design exploration and optimization contexts, the aim of this
paper is to aid the engineering design community in leveraging them
by providing insight into algorithm selection and utilization. Toward
this end, we compare the performance of four common classifiers on
six example problems with characteristics of broad interest in the
engineering design optimization community. Section 3 describes
important aspects to consider when implementing a classifier and
how the attributes of the design optimization problem can inform
algorithm selection and configuration. Section 4 provides a brief
technical overview of the popular classifiers considered in this
work. Section 5 outlines the various design problems selected to
test classifier performances. These problems are simple to implement
and contain different combinations of the attributes discussed in Sec.
3, allowing them to serve as benchmarks for future research in the
field. Section 6 presents results with varying levels of training data
and algorithm adjustment. Finally, Secs. 7 and 8 summarize the
results into insights to inform future design activities.

2 General Background on Classification Techniques
As described in Sec. 1, classification can be used in engineering

design exploration and optimization problems to map regions of the
design space that satisfy requirements or constraints of interest.
These requirements can be formulated mathematically as an
inequality constraint as follows:

Decide c = c1 if f (x) ≤ fthresh ; else decide c = c2 (1)

where x is a candidate design, f is the performance function of inter-
est, and c1 and c2 represent two classes of interest, for example, fea-
sible and infeasible, respectively. The true classification designation
can be known exactly by evaluating a particular design for a deter-
ministic performance function of interest. The performance function
is often expensive to evaluate, however, motivating a more efficient
alternative for predicting whether a candidate design meets the
desired inequality condition. Many classifiers use previously

evaluated points to estimate the probability that a new design
meets the desired criteria without explicitly evaluating the perfor-
mance function. A typical probabilistic decision criterion for classi-
fication algorithms is shown as follows:

Decide c = c1 if p(c1|x) > p(c2|x); else decide c = c2 (2)

where p(c|x) is the conditional probability of the class given the can-
didate design, x.
A number of factors should be considered when implementing a

classification approach to support the decision criteria defined in
Eqs. (1) and (2). The first consideration is the type of classifier to
implement. There are two broad categories of classifiers: generative
and discriminative [23]. Examples of generative classifiers include
naive Bayes (NB) classifiers and Bayesian network classifiers.
Support vector machines and neural networks are examples of discri-
minative classifiers. Discriminative classifiers directly model the
conditional probability p(c|x) that a data point, x, is a member of a
specific class, c. Generative classifiers instead model the joint prob-
ability of data and class p(c, x) which can then be transformed into the
posterior probability of a class by using Bayes’ rule p(c|x)= ((p(x|c)
p(c))/p(x)). In many cases, the direct approach of the discriminative
classifiers yields better classification accuracy [23], but not in all
cases. The generative classifiers can offer different advantages,
such as utilizing the joint probability provided by generative classi-
fiers for sampling combinations of class and data, which may be of
interest in sequential sampling approaches. In this study, both gener-
ative and discriminative classifiers are implemented and compared.
Computational expense is also an important concern. The compu-

tational expense for training classifiers grows with the number of
training points and the number of design variables, and the scaling
of training time with respect to these factors varies for different algo-
rithm types. Table 1 summarizes theworst case theoretical time com-
plexity of the algorithms considered in this work, where n is the
number of training points, m is the number of variables, t is the
number of trees in a random forest (RF), p is the number of variables
randomly sampled at each node of the random forest decision trees, h
is the number of neurons (assumed to be constant in each layer for
simplicity), k is the number of layers in a neural network, and i is
the number of backpropagation iterations [24–26]. The linear time
scaling of Gaussian naive Bayes (GNB) makes it the most efficient
algorithm to train. Random forests and support vector machines
exhibit exponential scaling with the number of training points,
causing their computational expense to increase quickly for large
datasets. The efficiency of the fully connected neural network
depends heavily on the number of layers and neurons present in the
network, but manymodern networks utilize large numbers of param-
eters that result in computational expense significantly greater than
the other algorithms presented here. It is important to note that the
computational complexity in Table 1 refers to the cost of training the
classifiers. All of these classifiers require less computational expense
for prediction relative to the computational cost of training them.
In addition to training complexity, many algorithms also require

significant tuning of hyperparameters to achieve good performance.
The tuning process requires searching through various hyperpara-
meter values to determine the values that lead to the best classifica-
tion performance for a specific problem. This parameter search
requires retraining the classifier for each combination of hyperpara-
meters considered, thus making the tuning effort required to reach
acceptable performance an important factor in the overall

Table 1 Computational complexity for training classifiers

Algorithm Computational complexity

Gaussian naive Bayes O(nm)
SVM O(n2m) to O(n3m)
Neural network (perceptron) O(nmhki)
Random forest O(pn2t log(n))

121404-2 / Vol. 141, DECEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

computational expense of implementing an algorithm. Tuning is
commonly performed using a cross-validation scheme, in which
rotating subsets of the training data are excluded from the training
set and used to evaluate the classifier (Chap. 5 of Ref. [1] provides
more in-depth background discussion of cross-validation). The per-
formance is then aggregated to find the hyperparameter values that
yield the best results throughout the entire space. Cross-validation
schemes are used to prevent overfitting data on a single test set.
Hyperparameter values can be tuned by simply testing a fixed
grid of hyperparameter values or a random set of hyperparameter
values, or by implementing sequential techniques such as Bayesian
optimization to direct the search toward higher performing hyper-
parameter values at the expense of longer training time. A simple
threefold cross-validation grid search approach is used in this
work. Some algorithms are more robust to hyperparameters and
offer relatively consistent performance across a range of settings,
while others are very sensitive to parameter settings. The impor-
tance of tuning will be discussed further in Sec. 6.
Every classification approach expresses a set of underlying

assumptions about the data via its mathematical form and the
types of hyperparameters that help define its underlying model.
Consequently, classifier performance can vary widely depending
on the characteristics of the problem, including the number of var-
iables, variable type (continuous and discrete), the strength of inter-
actions between variables, and the modality of the design space.
The benchmark design problems in this study are selected as repre-
sentative engineering design optimization and/or exploration prob-
lems that satisfy a few important criteria. Table 2 in Sec. 4 presents
the problems and associated characteristics examined in this study.
First, they are intuitive engineering problems that require only brief
explanation, making prolonged study of the problems unnecessary.
Second, each problem embodies one or more features that are often
encountered in design optimization problems and are known to
affect classifier performance. For thoroughness, there are multiple
problems that share many of the important characteristics. In partic-
ular, the study investigates the effects of dimensionality, variable
types, multimodality in the design space, dependencies between
design variables, and the presence of multiple objectives. The pres-
ence of multiple objectives does not necessarily affect how the clas-
sifier algorithms perform mathematically, but applying different
constraints or thresholds for multiple objectives can change the size,
shape, and connectivity of the design space to be mapped. Finally,
the problems are amenable to binary classification of designs based
on a performance threshold. Classifying designs in this way enables
the classifiers’ predictions to be compared with the true class of each
design for the evaluation of the classifiers’ performance.
A multitude of scoring metrics have been defined to quantify

classifier performance [27], but they all seek to express the degree
of similarity between the true and predicted classes of each test
sample. The simplest statement of the similarity between the pre-
dicted and true classes of a sample set is represented by a confusion
matrix [1], as shown in Fig. 1. P and N are the two classes: positive
and negative. The positive class is typically associated with feasible
or promising designs in an engineering design context. A correctly
identified member of class P is called a true positive and represented
by TP. FP is a false positive, which corresponds to a member of
class N that is incorrectly identified as a member of class P. It
follows that TN and FN are true negative and false negative predic-
tions, respectively.
Most metrics used to score classifiers use some combination of

the entries in the confusion matrix. For many classification tasks,
accuracy (ACC), as defined in Eq. (3), is a useful starting point
for evaluating overall classifier performance, and it is reported for
all of the benchmark problems in Sec. 5.

ACC =
TP + TN

(TP + FP + FN + TN)
(3)

There are some cases for which other classifier scoring metrics
are more appropriate. For example, when there are many more

instances of one class compared to the other in a data set, the clas-
sification problem is imbalanced. In these cases, an accuracy metric
can be misleading, as a classifier that blindly predicts the majority
class will show high accuracy but have limited predictive value.
Specifically for designers, scoring metrics formulated to prioritize
the prediction of feasible or high-performing solutions may be pre-
ferred at the expense of overall accuracy. One such metric that pro-
vides information on the classification of the positive (P) class is
true positive rate (TPR), also commonly referred to as sensitivity
or recall. Maximizing TPR increases the likelihood of identifying
a true member of the positive class of interest.

TPR = recall =
TP
P

=
TP

(TP + FN)
(4)

Another metric that may be of interest is precision or positive pre-
dictive value. The precision metric provides a measure of the pre-
diction accuracy specific to the positive class by reporting the
proportion of positive predictions that match with true class mem-
bership.

precision =
TP

(TP + FP)
(5)

The F1 score is a common scoring metric for binary classification
that balances precision and recall using a harmonic mean. The F1
score is especially popular for assessing classifier performance in
cases with a class imbalance or with greater importance placed on
classifier performance for the positive class.

F1 = 2 *
precision * recall
precision + recall

(6)

Finally, false negative rate (FNR) can also be utilized to assess
whether the classifier is missing potential members of positive
class. Minimizing FNR allows designers to maximize their
chances of identifying all potential designs of interest.

FNR =
FN
P

=
FN

TP + FN
= 1 − TPR (7)

In combination, these metrics capture how well a classifier is
identifying regions of the design space containing positive (typically,
feasible high performance) designs. Section 5 provides an example
of the importance of these metrics, in addition to accuracy, as the
design process progresses to later design stages in which tighter
design requirements result in greater imbalance between classes.

3 Description of Classification Techniques
In this section, four of the most popular classification techniques

for engineering design exploration and optimization problems are
briefly reviewed. These techniques represent the pool of algorithms
to be used for the comparison study in subsequent sections.

3.1 Support Vector Machine. The SVM is a machine learn-
ing technique for classification that separates incoming data by a
maximum margin [28]. A two-class case with an optimal separating
hyperplane and a maximum margin is shown in Fig. 2. If the two
classes are linearly separable, as shown in Fig. 2, the optimal

Fig. 1 Confusion matrix for organizing classifier predictive
performance

Journal of Mechanical Design DECEMBER 2019, Vol. 141 / 121404-3

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

hyperplane separating the data can be expressed as

g(x) = wT * x + b = 0 (8)

where w is a normal vector that is perpendicular to the hyperplane
and b is the offset of the hyperplane. As shown in Fig. 2, the param-
eter b/||w|| determines the offset of the hyperplane from the origin
along the normal vector w. In the training procedure, the SVM opti-
mizes w and b to maximize the margin (or distance) between the
parallel hyperplanes while still separating the data.
The optimization problem and the corresponding hyperplane

constraint for nonlinear separable classes can be formulated as

min
1
2
wTw + C

∑m
i=1

εi

subject to yi(w
Txi + b)≥ 1 − εi

εi ≥ 0, i = 1, 2, . . . , m

(9)

where the regularization parameter, C, specifies the error penalty; ɛi
is a slack variable that represents the error; and y is the classification
output. Classification involves determining on which side of the
separating hyperplane a test instance x lies and assigning the corre-
sponding class.
SVMs can also be constructed as nonlinear classifiers using

kernel functions to replace the product of w and x. To this end,
the normal vectors are written as a linear combination of the training
data with a weight factor α and a feature map ϕ(x) introduced.

w =
∑N
i

αiyixi (10)

g(x) =
∑N
i

αiyi(x
T
i xj) + b (11)

g(x) =
∑N
i

αiyiϕ(xi)
Tϕ(xj) + b (12)

The scalar product of the feature map of each training point xi
with the test point xj can then be expressed as a kernel function
of the training and testing samples, as shown here in the form of
the Gaussian radial basis function.

ϕ(xi)
Tϕ(xj) = k(x, x′) = exp (−γx − x′2) (13)

By using nonlinear kernels, classification accuracy improves on
data that is not linearly separable in the space. The SVM is not
limited to two-class classification problems but can also be used
for classification of multiclass problems. The primary approach
for the classification of multiclass problems is to reduce them to
multiple binary classification problems.

3.2 Random Forest. The RF is a supervised learning method
that uses an ensemble of decision trees for classification. RF builds
multiple decision trees and merges them to generate a more accurate
and stable prediction of class membership [1]. Figure 3 shows the
working principle of the RF classifier. The training algorithm
applies the general technique of bootstrap aggregating [1] or
bagging. Given a training set X= {x1, …, xn} with responses Y=
{y1, …, yn}, bagging selects a random sample with replacement
of the training set repeatedly for B times and fits decision trees to
these samples. After training, the class prediction for an unseen
sample, x′, is determined by taking a majority vote [30] as follows:

C(x′) = argmax
i

∑B
j=1

wjI(hj(x
′) = i) (14)

where w1,…, wB are weights that sum to 1, which are usually set to
1/B; I(·) is an indicator function; and hj(·) is the prediction function
for the jth decision tree. In general, employing an RF classifier for
classification includes four steps: (1) select random samples from a
given dataset, (2) construct a decision tree for each sample and
obtain a prediction result from each decision tree, (3) take a vote
from each decision tree, and (4) select the prediction with the
most votes as the final prediction of class membership.
The RF technique is generally very effective in preventing over-

fitting, even when the ensemble contains thousands of individual
trees. The error rate of RF on unseen samples tends to converge
slowly to a limiting value when the number of trees grows rapidly.

3.3 Gaussian Naive Bayes. Bayesian classifiers, which are
based on Bayes’ theorem, have been found to perform well on a
variety of classification problems [3,31,32]. The NB classifier is a
well-known representative of the Bayesian classifiers. To formulate
a NB classification problem, X= {x1, x2,…, xn} is assumed to be the
feature vector and Y= {y1, y2, …, yn} the class variable. According
to Bayes’ theorem,

P(Y = yk|x1, . . . , xn) = P(Y = yk)P(x1, . . . , xn|Y = yk)∑
j P(Y = yj)P(x1, . . . , xn|Y = yj)

(15)

Equation (15) requires an accurate estimate of conditional prob-
ability P(x1, …, xn|Y= yk), but this requirement can be eliminated
by assuming conditional independence as follows:

P(Y = yk|x1, . . . , xn) = P(Y = yk)
∏

i P(xi|Y = yk)∑
j P(Y = yj)

∏
i P(xi|Y = yj)

(16)

Fig. 2 Concept of a two-class support vector machine (adapted
from Ref. [29])

Fig. 3 The working principle of the random forest classifier

121404-4 / Vol. 141, DECEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

Equation (16) requires only an estimate of the probability of
each feature value conditioned upon each class in order to estimate
the conditional probability, and therefore, the calculation of joint
probabilities can be avoided. Thus, in the training stage, the naive
Bayes classifier estimates the P(Y= yk) for all classes and P(xi|Y=
yk) for all features i= 1,…, n and all feature values xi from the train-
ing set.
In the test stage, the class of a test instance X′ is predicted with

label Y if it leads to the largest value among all the class labels as

C(X′) = argmax
yk

P(Y = yk)
∏n
i=1

P(x′i|Y = yk) (17)

A GNB algorithm is a special type of NB algorithm, which is
used specifically when the features are defined by continuous
values. It assumes that all the features follow a Gaussian distribu-
tion. Thus, the conditional probability distribution can be written
precisely as

P(xi = x|Y = yk) =
1������
2πσ2ik

√ e−(1/2)((x−μik)/σik)
2

(18)

where σik represents the kernel width parameter for each feature i
and class k. The kernel width can be set heuristically or with an opti-
mization scheme. σik can be defined to scale with respect to the fea-
tures of the training data. One effective way to define σik is

σik =
ασ̂ik

N1/n
k

(19)

where α is a heuristic scalar, σ̂ik is the measured standard deviation
of feature i for designs belonging to class k, Nk is the number of
samples in class k, and n is the number of features (design
variables).

3.4 Neural Network. An artificial neural network is a
common supervised learning method for classification. It employs
a network learning structure that consists of three types of layers:
an input layer, an output layer, and some number of hidden
layer(s) [33,34]. The size of the input layer depends on the dimen-
sions of the inputs for the classification problem, while the size of
the output layer changes based on the number of different output
classes of interest. The size of each hidden layer and the number
of hidden layers are determined based on the complexity of the
problem. A general feed-forward neural network model is shown
in Fig. 4. The output of the kth output node of the network can
be represented as

yk = ϕo αk +
∑
j

w jkϕh αj +
∑
i

wijxi

(){ }
(20)

where w and α denote the weights and biases of the neural network,
respectively, and ϕ represents the activation function. Common
activation functions include linear mappings, such as the identity
function that returns the input value, and nonlinear mappings,
such as rectified linear units (ReLUs) and logistic functions that
can model more complex mappings [35]. When training a neural
network, the weights and biases are determined with the use of
training sample points together with a training algorithm. The back-
propagation neural network (BNN) is one type of the artificial
neural network that uses backpropagation as a supervised learning
technique for the network training [36]. In the BNN training, the
inputs are propagated to the output layer via the hidden layers,
and the errors are back propagated to the input layer. Errors are
reduced iteratively by adjusting the synaptic weights and biases.
To use the BNN as a classification technique, a new data point to
be classified serves as an input to the trained BNN model, and the
outputs of the trained BNN are the conditional probabilities of
class membership that are interpreted according to the decision cri-
terion of Eq. (2) to produce the predicted binary class label.

Neural networks can be structured in many ways. A general fully
connected feed-forward neural network model known as the multi-
layer perceptron (schematic shown in Fig. 4) is utilized in this work
for simplicity and generality. Convolutional neural networks are
alternate network architectures that have gained popularity when
working with spatially structured data such as images or topologies
[37,38]. Since spatially structured data are not the focus of the
example problems, they are not implemented in this study. Deep
learning [39] refers to neural networks with a large number of
hidden layers. Deep learning has gained significant popularity in
recent years as advances in computing power, such as massively
parallel GPU architectures, and custom software, such as TENSOR-

FLOW [40], have enabled the training of deep neural networks to
process large datasets with impressive results in the machine learn-
ing [38,41] and design communities [37,42]. However, training
deep learning networks requires access to very large amounts of
training data to fit thousands of associated network parameters. In
contrast, as would be the case in many engineering design applica-
tions, this study focuses on training classifiers with training sets of
only a few hundred to a few thousand samples, which are not suf-
ficient for training deep learning networks. As a result, neural net-
works with only one or two hidden layers are considered in this
work.

4 Methodology for the Comparison Studies
A set of example problems was selected to test the performance

of the algorithms outlined in Sec. 3 on problems that represent a
cross section of the characteristics discussed in Sec. 2. As described
in the Supplemental Materials on the ASME Digital Collection, all
problems are specified with continuous and/or discrete variables
and performance objectives and constraints that make them amena-
ble to design optimization and exploration. The problem attributes
are summarized in Table 2. Further details on problem formulations
and performance thresholds for classification can be found in
Supplemental Material A available in the Supplemental Materials
on the ASME Digital Collection.
For each problem (with the exception of the heavily constrained

welded beam problem, see Supplemental Material A.5 for more
details), a set of 10,000 samples was generated to serve as training
data. Continuous variables were sampled from the Hammersley
sequence, and integer variables were assigned from a pseudoran-
dom uniform distribution using the randint function in SciPy.
Grid search with threefold cross-validation was used to tune the
hyperparameters shown in Table 3, and the best model configura-
tion was chosen based on mean accuracy. The available settings
for the grid search were chosen based on the Sci-kit learn user
guide and previous experience with these classifiers. Higher

Fig. 4 A general feed-forward neural network model

Journal of Mechanical Design DECEMBER 2019, Vol. 141 / 121404-5

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

http://dx.doi.org/10.1115/1.4044524
http://dx.doi.org/10.1115/1.4044524
http://dx.doi.org/10.1115/1.4044524
http://dx.doi.org/10.1115/1.4044524

resolution parameter grids would be expected to yield further per-
formance improvements at the cost of greater computational
expense associated with tuning.
After each algorithm was tuned, its performance was evaluated

by predicting the class membership of a static test set of 5000
points. The continuous variables in the test set were sampled
from the Halton sequence so that the test set would be distinct
from the training set, and integer variables were assigned by the
randint function in SciPy. All variables were scaled between 0
and 1 for classifier training and testing.
As discussed in Sec. 2, the proportion of training data in each

class can have a significant effect on classifier performance and
the informational value of classification metrics. The performance
thresholds used for binary classification in the example problems
tested in this study were chosen to yield reasonably balanced dis-
tributions between high- and low-performance training points.
The problem specific figures for the proportion of total training
data falling in each class can be seen in Table 4. No more than
70% of the training points fell within a given class for any
example problem. The presence of reasonably balanced datasets
motivated the use of accuracy as the primary metric for comparing
classifier performance.
The customizability of classifier algorithms leads to slight dif-

ferences in implementation. As a result, it is often difficult to rep-
licate results without utilizing the exact same software and
computational environment of the original implementation. This
conflict has led to the development of standardized software

packages with the goal of increasing repeatability. To provide a
meaningful benchmarking study of the classifiers, it is important
for the study to be repeatable. For that reason, the SVM, NN,
RF, and GNB algorithms are implemented from the very
popular Sci-kit learn package for PYTHON [35]. The one exception
is a custom implementation of the GNB algorithm for tuning pur-
poses, because the GNB algorithm in Sci-kit learn uses maximum
likelihood estimation to automatically learn kernel widths and
does not permit manual tuning.

5 Classifier Performance on Example Problems
The first investigation focuses on the effect of tuning on the per-

formance of the classification algorithms.2 Although tuning is rec-
ommended for enhancing the performance of a classifier, it is
helpful to understand the impact of that tuning on classifier perfor-
mance versus the use of default tuning parameter values. The
selected tuning parameters can vary based on the random data
splits used for cross-validation, yielding variations in model perfor-
mance across instantiations. Classifier performance and sensitivity
to tuning parameters can also vary drastically depending on the
amount of available training data for the problem. In order to
capture this variation, tuning runs were repeated 15 times for con-
vergence plots with low training data (ranging from 50 to 1000
points in increments of 50) and 5 times for convergence plots
with high training data (ranging from 500 to 10,000 points in incre-
ments of 500). The resulting mean accuracies were plotted with
error bars corresponding to the standard error as calculated in
Eq. (21), where s is the sample standard deviation and n is the
number of observations in the sample.

σx = ±
s��
n

√ (21)

Some classification algorithms enable more self-tuning than
others, leading to different levels of robustness to tuning among
the various classifiers. Figure 5 illustrates this phenomenon, as
RF dominates on the illustrated example problems when the algo-
rithms are untuned, indicating that RF provides reasonably good
performance without manual tuning. However, SVMs become com-
petitive and typically outperform the RF when tuned, and tuned
NNs also exhibit performance on par with or better than RF on
two of the problems. Because the GNB includes fewer tunable
parameters, its performance increases only modestly with tuning.
An interesting observation from Fig. 5 is that the accuracy of

some of the algorithms did not increase monotonically with the
number of training points. Despite the use of grid-based tuning

Table 3 Tunable parameters for each classification algorithm

Algorithm Tuned parameters Available settings

SVM C 1, 10, 100, 1000
γ (gamma) 0.01, 0.1, 1, 10

RF Number of trees 200, 400, 600, 800, 1000
Maximum tree depth 10, 20, 50, none

NN Number of neurons in
hidden layers

(100), (500), (100, 100), (500, 500)

Activation function Logistic, ReLU, identity

GNB α (alpha) 0.001, 0.005, 0.01, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.8, 1, 2, 3, 5, 6

Table 4 Class balance of the training data for the performance
thresholds chosen for each example problem in the study

Problem High performance (%) Low performance (%)

2D Rastrigin 44.79 55.21
4D Rastrigin 42.7 57.3
6D Rastrigin 40.78 59.22
3 bar truss 30.15 69.85
5 bar truss 38.85 61.15
20 bar truss 39.26 60.74
Welded beam 43.94 56.06
Solar heat exchanger 46.3 53.7
Disjointed 30.94 69.06
Thin plate 49.0 51.0

Table 2 Problem characteristics for the test bed of example
problems

Problem Characteristics

Rastrigin Single objective
Continuous variables
Multimodal
Scalable dimensionality

Truss Multiobjective
Mixed continuous/discrete variables
Scalable dimensionality

Welded beam Single objective
Continuous variables
Heavily constrained

Solar heat exchanger Multiobjective
Mixed continuous/discrete variables
Monotonic performance

Disjointed Single objective
Continuous variables
Multimodal

Thin plate with hole Single objective
Continuous variables
Monotonic performance

2Convergence plots of classifier accuracy were generated with small and large quan-
tities of training data, Ntrain, for every problem described in Section 4 and Supplemental
Material A. Selected convergence plots and other specific investigations are included in
this section for discussion of classifier performance. Since there are too many plots to
display and discuss individually, all remaining convergence plots are included as sup-
plementary data in Supplemental Material B.

121404-6 / Vol. 141, DECEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

http://dx.doi.org/10.1115/1.4044524
http://dx.doi.org/10.1115/1.4044524
http://dx.doi.org/10.1115/1.4044524

and cross-validation, some of the classifiers, especially the NN and
SVM algorithms, showed significant variation and dips in accuracy,
while others such as the RF algorithm showed smoother conver-
gence curves. To investigate this phenomenon, hyperparameter set-
tings and cross-validation mean accuracy scores were examined for
classifiers that showed significant variation. It was found that in
many of these cases, hyperparameter settings selected during the
tuning process changed significantly from point to point as Ntrain

varies. Figure 6 shows an example of this examination for a tuned
NN classifying the disjointed problem. As shown in the figure,
the decrease in accuracy at 1000 training points is accompanied
by a reasonably large value for cross-validation accuracy (0.88) rel-
ative to neighboring trials. It is likely that these local decreases in
accuracy are the result of overfitting, such that the classifier per-
forms well on the training data but more poorly on the test data.
The degree of overfitting can vary with the locations of new data
points in the training and testing sets and the randomness of the
division of training data into cross-validation training sets. Other
authors in the engineering design literature have observed similar
nonmonotonic decreases in classification performance (e.g., [6,8]).
The next investigation focused on the performance of the tuned

classification algorithms with increasing problem dimensionality.
Figure 7 plots the accuracy of the tuned algorithms with respect
to the number of training points for the 3 bar, 5 bar, and 20 bar
truss problems. The Bayesian approach exhibits high asymptotic
error for these problems, which may be due to the independence

assumptions inherent in its formulation. The smoothing kernel-
based approach may also be a poor fit with the presence of coarsely
discretized material-type variables in these problems. The SVM and
NN perform the best in this mixed-variable problem, performing
better than GNB and RF for the 3 and 5 bar problems at all levels
of training data. The classifiers are largely bunched together at
low training data for the most complex case of 20 truss links with
40 design variables, but the NN and SVM eventually converge to
higher accuracies with thousands of training points. The NN, in par-
ticular, takes thousands of data samples to obtain competitive accu-
racy on the 20 bar problem, which may be attributed to the difficulty
of fitting the thousands of weights and biases in the larger architec-
tures for the more complex higher-dimensional setting.
The next investigation focuses on a highly multimodal problem;

in this case, the 6D Rastrigin function. Figure 8 shows the accuracy
of the tuned classification algorithms with respect to the number of
training points. Mapping the highly nonlinear function as dimen-
sionality increases is a difficult challenge. Most of the algorithms
reach only a modest accuracy of approximately 75% and are
unable to improve their mapping of the space with additional train-
ing data. The only exception is the GNB approach, which is natu-
rally well suited to represent the regularly distributed, sinusoidal
modes of the function with its Gaussian kernels.
Identifying regions of the design space with classifiers becomes

more difficult as the performance requirements become stricter
and the size of the design space of interest decreases.

Fig. 5 Convergence plots displaying accuracies for tuned and untuned algorithm instantiations at
varying levels of training data for three of the example problems

Fig. 6 Variation in hyperparameter settings and cross-validation accuracy for a neural
network trained at varying levels of training data for the disjointed example problem

Journal of Mechanical Design DECEMBER 2019, Vol. 141 / 121404-7

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

The combination of strict performance requirements and training
sets with low sampling density may lead to a classifier that predicts
very few instances of the positive class even if designs of positive
class exist. In multimodal design spaces, this phenomenon can
lead to a failure to identify regions of interest. By increasing the per-
formance threshold on the disjointed problem such that high-
performance regions shrink and then disappear, the change in
each classifier’s ability to identify those regions can be observed.
For this purpose, the FNR metric is useful to indicate whether
each classifier fails to identify high-performance designs. Figure 9
shows the response surface and contour of the disjointed function
at the arbitrary performance threshold, G= 0.9, such that all candi-
date designs with performance G≥ 0.9 are considered high-
performance designs. The high-performance regions are numbered,
so they can be referenced during the discussion.
Figure 10(a) shows the high-performance regions shrinking as

the performance threshold increases incrementally from G= 0.9

Fig. 7 Accuracy convergence plots for the classification of mixed-variable truss structure problems as
the number of design variables increases

Fig. 8 Accuracy convergence at low data for the highly nonlin-
ear 6D Rastrigin function

Fig. 9 Surface and contour plot of the disjoined problem at performance thresholdG=0.9
with high-performance regions numbered

Fig. 10 Illustration of shrinking high-performance regions as performance threshold
increases

121404-8 / Vol. 141, DECEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

to G= 1.01. Figure 10(b) shows the FNR produced by SVM classi-
fiers trained with 1000 training points and tested with the static test
set as performance requirements increase. The false negative rates
are examined for each region separately based on the proximity
of false negatives to the center of each cluster.
When regions of interest are small, the classifier struggles to iden-

tify them as evident in the cumulative FNR curve in Fig. 10(b).
Notice that the total FNR reaches a peak for G= 1.0 when
regions 1, 2, and 3 are extremely small and then declines for G=
1.01 when those regions have disappeared entirely and therefore
do not contribute to the FNR.
Changing the performance threshold changes the balance of the

class proportions, leading to imbalanced designs with an over-
whelming majority of points belonging to one class, which can
affect the predictive power of classifiers. However, some classifiers
are more sensitive to class imbalance than others. For the disjointed
problem, the degree of imbalance can be adjusted using a range of
performance thresholds between the global maximum and
minimum. Table 5 shows performance thresholds and the associ-
ated class proportions.
TPR and false positive rate (FPR) are compared to measure the

predictive capability of a classifier when imbalanced. Figure 11
shows TPR versus FPR for the thresholds shown in Table 5. The
SVM and RF algorithms appear to be most robust, as they maintain
good classification performance with high TPR and low FPR across
all performance thresholds for this problem. Recent work in the
engineering design literature has focused on more efficiently sam-
pling the design space for imbalanced problems similar to this
one, with the goal of accurately defining the boundaries of a feasible
design space with very limited data [6,8], but a comprehensive
review of imbalanced classification problems is beyond the scope
of this paper.
Asmentioned in the introduction, classifiers canbe used to identify

promising regions of the design space, especially for set-based design
applications. If those promising regions are defined by performance
thresholds for multiple, conflicting objectives, the overall design
space of interest becomes the intersection of promising design

spaces for each performance objective. A simplified illustration of
this concept is shown for the heat exchanger problem in Fig. 12.
The abscissa is the pipe diameter, and the ordinate is the number of
pipe loops in the heat exchanger. The top-left subfigure shows the
region of the design space with an enclosure volume less than the
allowable limit while the top-right subfigure shows the region of
the design space that achieves the desired head loss. The bottom-left
subfigure shows the mutually satisfactory intersection of these
regions, which shrinks the region of interest more than either objec-
tive individually. The bottom-right figure shows the classification
accuracies on the combined objectives at the current thresholds.
This simplemultiobjective designoptimizationproblemhas a contin-
uous convex region of performance for each metric. More complex
problems with nonlinear relationships between variables are likely
to produce nonconvex disjoined regions of performance, further
increasing the utility of the classifier mappings.

6 Aggregated Results Across Example Problems
Accuracy convergence plots for all example problems (cf. see

Supplemental Material for plots in addition to those presented
here) were examined to compare relative levels of performance
for each algorithm at low, medium, and high levels of training
data for each test problem. In addition to quantitative classification
accuracy, relative performance of the classifiers on each problem is
important since every problem presents a unique set of interacting
characteristics. For this reason, the classifier accuracy is provided
along with a qualitatively assigned cluster to show which classifiers
performed similarly on each given problem. The clusters are
assigned red, yellow, or green labels with green representing the
best and red representing the worst performance. Figure 13 shows
how classifier performance was scored for the disjoint problem
with a moderate amount of training data (N= 1000). As shown in
the figure, the classifiers with the highest accuracy earn the green
labels. Classifiers with accuracy approximately 5 percentage
points lower than those with the highest accuracy earn the yellow
label, and those with accuracy approximately 5 percentage points
lower than those with moderate accuracy (yellow) or 10 percentage
points lower than those with high accuracy (green) earn the red
label. Classifiers that cluster together with similar levels of accuracy
(i.e., with accuracies within approximately 5 percentage points of
one another) earn the same label. If the best classifiers achieve accu-
racies of less than 80% for a specific scenario, then none of them
earn green labels. Tables 6–8 show the performance scores for all
problems and classifiers with low (N= 200), medium (N= 1000),
and high numbers of training points (N= 10,000) as determined
with the same method as for Fig. 13.
As shown in Tables 6–8, none of the classifiers perform particu-

larly well with small quantities of training data. The RF classifier
performs better than the others, earning green or yellow labels for
all problems. Highly multimodal problems, such as the 4D and
6D Rastrigin, and mixed continuous–discrete problems with rela-
tively large numbers of variables, such as the truss problems, are
particularly difficult to classify with small amounts of data. With
larger amounts of training data, RF classifiers continue to perform
relatively well, with fewer red labels than alternative classifiers.
SVM and NN are a close second to the RF in terms of overall per-
formance with larger amounts of training data. However, for highly
multimodal and regular problems, such as the Rastrigin function,
GNB performs exceptionally well and much better than other
algorithms.

7 Discussion
As a general rule, the GNB algorithm is only competitive for

highly complex problems with a small amount of data available
for training. If computational resources are available to obtain a
high number of samples, GNB is likely not the best choice for accu-
racy. An exception to this rule is the Rastrigin function, where the

Table 5 Class membership proportions for various
performance thresholds

Performance threshold
(G)

High performance
(%)

Low performance
(%)

G= 0.054 91.6 8.4
G= 0.162 81.0 19.0
G= 0.324 62.4 37.6
G= 0.593 31.5 68.5
G= 0.862 12.8 87.2
G= 1.131 3.8 96.2

Fig. 11 Classifier performance for five different performance
thresholds producing varying rates of imbalance between high-
and low-performance classes

Journal of Mechanical Design DECEMBER 2019, Vol. 141 / 121404-9

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

http://dx.doi.org/10.1115/1.4044524

tunable Gaussian kernels capture the high nonlinearity in the sinu-
soidal space quite well. Another exception is the suitability of GNB
for sequential sampling as mentioned in the discussion of generative
algorithms in Sec. 2. The NN performs well on the mixed-variable
problems for large datasets, but the convergence plots show that the
NN often requires more data than other algorithms to converge to a
relatively high accuracy on these problems and is among the worst
performers for moderate and small quantities of data. This is a
common theme for NNs, as the large number of model parameters
often requires a significant amount of data to obtain a reasonable fit.

The RF shows its versatility by performing well on all problems and
particularly well on the nonlinear problems such as the Rastrigin
and the disjoint example. In addition, the RF is generally the
most robust algorithm in the sense that it performs the best
without tuning the hyperparameters. RF may, therefore, be a good
candidate for beginners or time-crunched users who do not wish
to undertake the tuning process to achieve satisfactory accuracy.
However, the performance of RF seems to degrade as the number
of design variables increases. Finally, the SVM also performs
well on most problems with the exception of the Rastrigin. The
SVM converges quickly on simple problems and can continue con-
verging to higher accuracies for complex problems as thousands of
training points are accrued. However, the SVM is very sensitive to
parameter tuning and engineers should keep this in mind when
selecting the best approach for their needs.
Overfitting is a concern for any classifier algorithm but some are

more susceptible than others. It is very difficult to quantify and
compare algorithms’ likeliness to overfit because there is no
general definition that is model independent. As a good practice,
tuning hyperparameters with cross-validation works to mitigate
overfitting by incentivizing out-of-sample performance. For better
results, a high resolution grid of hyperparameter settings or an
advanced sequential selection technique should be used when
tuning. Observed variation with respect to the number of training
points in convergence plots shows that algorithms that self-tune
such as RF generally suffer less from overfitting to training data.
On the other hand, algorithms that self-tune but have a very large
number of parameters (like NN) may require prohibitively large
quantities of training data.

Fig. 12 Design space mappings and convergence plot for the multiobjective heat
exchanger problem

Fig. 13 Tuned classifier performance with example scores as
seen in aggregated results table (Color version online.)

Table 6 Relative classifier performance on each example problem with 200 training points (Color version online.)

3 bar 5 bar 20 bar 2D Rastrigin 4D Rastrigin 6D Rastrigin Disjointed Welded beam Heat exchanger Thin plate

RF 0.799 0.708 0.684 0.800 0.759 0.717 0.929 0.896 0.955 0.969
NN 0.797 0.671 0.651 0.735 0.750 0.720 0.767 0.931 0.696 0.981
SVM 0.768 0.656 0.661 0.756 0.752 0.735 0.948 0.931 0.785 0.974
GNB 0.741 0.664 0.674 0.844 0.764 0.733 0.749 0.826 0.923 0.917

121404-10 / Vol. 141, DECEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

All of the convergence studies in this work are based on the
assumption that training data are acquired from a simple space-
filling sampling strategy. More focused sampling strategies could
provide superior information to the algorithms and improve classi-
fication performance for smaller data sets, especially for imbalanced
data sets. For instance, some recent work has been conducted on
heuristic strategies that sample near existing class boundaries to
help resolve these boundaries more clearly within a limited sam-
pling budget (e.g., [6,8]).

8 Conclusion
This work presented a set of simple engineering-related example

problems that can serve as testbeds for future research in machine
learning for engineering design exploration and optimization. The
problems covered a range of characteristics that designers often
encounter in engineering optimization applications. The accuracy
of four common classification algorithms was tested on each
problem with varying levels of training data. No single classifica-
tion approach emerged as universally dominant, underscoring the
need to select the appropriate machine learning tool depending on
the nature of the problem.
The results of this study can help inform engineers in choosing an

appropriate algorithm for their problem by inspecting classifier per-
formance on similar problems. The results can also give engineers
an intuition for the amount of training data that may be required
to reach satisfactory accuracy levels depending on problem com-
plexity and dimensionality. This knowledge would be useful for
planning experiments in the early stages of design. Further work
extending the study to include more design problems would be
valuable to increase the coverage of the example problems and
ensure that engineers can glean even more relevant insight from per-
formance across a wider array of problem characteristics. Those
design problems could include design spaces of higher dimension-
ality, greater imbalance between classes in the training data set, and
problems for which greater numbers of classes might be useful (e.g.,
infeasible, feasible with moderate performance, and feasible with
high performance).

Acknowledgment
The authors gratefully acknowledge funding from the National

Science Foundation (NSF) (Grant No. EFRI-1641078; Funder ID:
10.13039/501100008982) and the Defense Advanced Research
Projects Agency (DARPA; Funder ID: 10.13039/100000185).
The DARPA-sponsored work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National
Laboratory (Grant No. DE-AC52-07NA27344; Funder ID:
10.13039/100006227) with funding from the DARPA. The views,

opinions, and/or findings expressed are those of the authors and
should not be interpreted as representing the official views or poli-
cies of the Department of Defense or the U.S. government.

References
[1] James, G., Witten, D., Hastie, T., and Tibshirani, R., 2013, An Introduction to

Statistical Learning, Springer, New York.
[2] Sobek, D., Ward, A., and Liker, J., 1999, “Toyota’s Principles of Set-Based

Concurrent Engineering,” Sloan Manage. Rev., 40(2), pp. 67–84.
[3] Shahan, D., and Seepersad, C., 2012, “Bayesian Networks for Set-Based

Collaborative Design,” ASME J. Mech. Des., 134(7), p. 071001.
[4] Matthews, J., Klatt, T., Morris, C., Seepersad, C., Haberman, M., and Shahan, D.,

2016, “Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian
Network Classifier,” ASME J. Mech. Des., 138(4), p. 041404.

[5] Morris, C., Bekker, L., Haberman, M., and Seepersad, C., 2018, “Design
Exploration of Reliably Manufacturable Materials and Structures With
Applications to Negative Stiffness Metamaterials and Microstereolithography,”
ASME J. Mech. Des., 140(11), p. 111415.

[6] Galvan, E., Malak, R., Gibbons, S., and Arroyave, R., 2016, “A Constraint
Satisfaction Algorithm for the Generalized Inverse Phase Stability Problem,”
ASME J. Mech. Des., 139(1), p. 011401.

[7] Rosen, D., 2015, “A Set-Based Design Method for Material-Geometry Structures
by Design Space Mapping,” ASME IDETC, Boston, MA. Paper No. DETC2015-
46760.

[8] Chen, W., and Fuge, M., 2017, “Beyond the Known: Detecting Novel Feasible
Domains Over an Unbounded Design Space,” ASME J. Mech. Des., 139(11),
p. 111405.

[9] Galvan, E., and Malak, R., 2015, “P3GA: An Algorithm for Technology
Characterization,” ASME J. Mech. Des., 137(1), p. 011401.

[10] Malak, R., and Paredis, C., 2010, “Using Support Vector Machines to Formalize
the Valid Input Domain of Predictive Models in Systems Design Problems,”
ASME J. Mech. Des., 132(10), p. 101001.

[11] Backlund, P., Shahan, D., and Seepersad, C., 2015, “Classifier-Guided Sampling
for Discrete Variable, Discontinuous Design Space Exploration: Convergence
and Computational Performance,” Eng. Optim., 47(5), pp. 579–600.

[12] Basudhar, A., and Missoum, S., 2013, “Reliability Assessment Using
Probabilistic Support Vector Machines,” J. Reliab. Saf., 7(2), pp. 156–173.

[13] Basudhar, A., Missoum, S., and Sanchez, A., 2008, “Limit State Function
Identification Using Support Vector Machines for Discontinuous Responses
and Disjoint Failure Domains,” Probabilistic Eng. Mech., 23(1), pp. 1–11.

[14] Patel, J., and Choi, S.-K., 2014, “An Enhanced Classification Approach
for Reliability Estimation of Structural Systems,” J. Intell. Manuf., 25(3),
pp. 505–519.

[15] Song, H., Choi, S.-K., Lee, I., Zhao, L., and Lamb, D., 2013, “Adaptive Virtual
Support Vector Machine for Reliability Analysis of High-Dimensional
Problems,” Struct. Multidiscipl. Optim., 47(4), pp. 479–491.

[16] Wang, Z., and Wang, P., 2015, “An Integrated Performance Measure Approach
for System Reliability Analysis,” ASME J. Mech. Des., 137(2), p. 021406.

[17] Hu, Z., and Du, X., 2018, “Integration of Statistics- and Physics-Based
Methods—A Feasibility Study on Accurate System Reliability Prediction,”
ASME J. Mech. Des., 140(7), p. 074501.

[18] Wang, P., Wang, Z., and Almaktoom, A., 2014, “Dynamic Reliability-Based
Robust Design Optimization With Time-Variant Probabilistic Constraints,”
Eng. Optim., 46(6), pp. 784–809.

[19] Zhuang, X., and Pan, R., 2012, “A Sequential Sampling Strategy to Improve
Reliability-Based Design Optimization With Implicit Constraint Functions,”
ASME J. Mech. Des., 134(2), p. 021002.

[20] Wang, Y., Yu, X., and Du, X., 2015, “Improved Reliability-Based Design
Optimization With Support Vector Machine and Its Application in Aircraft
Wing Design,” Math. Probl. Eng., 1, pp. 1–14.

Table 7 Relative classifier performance on each example problem with 1000 training points (Color version online.)

3 bar 5 bar 20 bar 2D Rastrigin. 4D Rastrigin. 6D Rastrigin. Disjointed Welded beam Heat exchanger Thin plate

RF 0.849 0.757 0.753 0.842 0.789 0.760 0.971 0.947 0.986 0.969
NN 0.897 0.828 0.695 0.755 0.754 0.747 0.904 0.935 0.884 0.982
SVM 0.888 0.792 0.714 0.755 0.761 0.757 0.985 0.965 0.903 0.982
GNB 0.727 0.684 0.742 0.940 0.883 0.849 0.772 0.831 0.933 0.952

Table 8 Relative classifier performance on each example problem with 10,000 training points (Color version online.)

3 bar 5 bar 20 bar 2D Rastrigin 4D Rastrigin 6D Rastrigin Disjointed Welded beam Heat exchanger Thin plate

RF 0.933 0.871 0.792 0.951 0.829 0.792 0.990 0.999 0.995 0.973
NN 0.963 0.958 0.852 0.755 0.766 0.763 0.978 0.976 0.994 0.991
SVM 0.965 0.944 0.854 0.755 0.767 0.769 0.996 0.986 0.948 0.996
GNB 0.711 0.729 0.774 0.971 0.951 0.943 0.774 0.832 0.926 0.966

Journal of Mechanical Design DECEMBER 2019, Vol. 141 / 121404-11

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

http://dx.doi.org/10.1115/1.4006323
http://dx.doi.org/10.1115/1.4032774
http://dx.doi.org/10.1115/1.4041251
http://dx.doi.org/10.1115/1.4034581
http://dx.doi.org/10.1115/1.4037306
http://dx.doi.org/10.1115/1.4028101
http://dx.doi.org/10.1115/1.4002151
http://dx.doi.org/10.1080/0305215X.2014.908869
http://dx.doi.org/10.1504/IJRS.2013.056378
http://dx.doi.org/10.1016/j.probengmech.2007.08.004
http://dx.doi.org/10.1007/s10845-012-0702-1
http://dx.doi.org/10.1007/s00158-012-0857-6
http://dx.doi.org/10.1115/1.4029222
http://dx.doi.org/10.1115/1.4039770
http://dx.doi.org/10.1080/0305215X.2013.795561
http://dx.doi.org/10.1115/1.4005597
http://dx.doi.org/10.1155/2015/569016

[21] Xiong, B., and Tan, H., 2017, “New Structural Reliability Method With Focus on
Important Region and Based on Adaptive Support Vector Machines,”Adv. Mech.
Eng., 9(6), pp. 1–12.

[22] White, L. M., West, T. K., and Brune, A. J., 2018, “Reliability-Based Design of
Thermal Protection Systems With Support Vector Machines,” 2018 Joint
Thermophysics and Heat Transfer Conference, p. 3440.

[23] Ng, A. Y., and Jordan, M. I., 2002, “On Discriminative vs. Generative Classifiers:
A Comparison of Logistic Regression and Naive Bayes,” Advances in Neural
Information Processing Systems, pp. 841–848.

[24] sci-kit learn Developers, 2019, “scikit-learn v0.20.3 User Guide,” https://
scikit-learn.org/stable/user_guide.html, Accessed February 2019.

[25] Louppe, G., 2014, “Understanding Random Forests From Theory to Practice,”
PhD dissertation, University of Liege, Liege.

[26] Elkan, C., 1997, Boosting and Naive Bayesian Learning, University of California,
San Diego, CA.

[27] Saliya, N., Khoshgotaar, T., and Van Hulse, J., 2009, “A Study on the
Relationships of Classifier Performance Metrics,” IEEE International
Conference on Tools With Artificial Intelligence, Newark, NJ, pp. 59–66.

[28] Cristianini, N., and Shawe-Taylor, J., 2000, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge University
Press, Cambridge.

[29] Wang, P., Tamilselvan, P., and Hu, C., 2014, “Health Diagnostics Using
Multi-Attribute Classification Fusion,” Eng. Appl. Artif. Intell., 32, pp. 192–202.

[30] Tamilselvan, P., and Wang, P., 2013, “Failure Diagnosis Using Deep Belief
Learning Based Health State Classification,” Reliab. Eng. Syst. Saf., 115,
pp. 124–135.

[31] Rish, I., 2001, “An Empirical Study of the Naive Bayes Classifier,” Proceedings
of IJCAI-01 Workshop on Empirical Methods, Aug. 4, pp. 41–46.

[32] Zhang, M., Pena, J., and Robles, V., 2009, “Feature Selection for Multi-Label
Naive Bayes Classification,” J. Inform. Sci., 179(19), pp. 3218–3229.

[33] Heermann, P., and Khazenie, N., 1992, “Classification of Multispectral Remote
Sensing Data Using a Back-Propagation Neural Network,” IEEE Trans. Geosci.
Remote Sens., 30(1), pp. 81–88.

[34] Li, J., Du, Q., and Li, Y., 2016, “An Efficient Radial Basis Function Neural
Network for Hyperspectral Remote Sensing Image Classification,” Soft
Comput., 20(12), pp. 4753–4759.

[35] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., and Vanderplas, J., 2011,
“Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., 12(Oct.), pp.
2825–2830.

[36] Rumelhart, D., Hinton, G., and Williams, R., 1986, “Learning Representations by
Back-Propagating Errors,” Nature, 323(6088), pp. 533–536.

[37] Banga, S., Gehani, H., Bhilare, S., Patel, S., and Kara, L., 2018, “3D Topology
Optimization Using Convolutional Neural Networks,” e-print arXiv:1808.07440.

[38] Krizhevsky, A., Sutskever, I., and Hinton, G., 2012, “ImageNet ClassificationWith
Deep Convolutional Neural Networks,” NIPS, Lake Tahoe, NV, pp. 1097–1105.

[39] LeCun, Y., Bengio, Y., and Hinton, G., 2015, “Deep Learning,” Nature,
521(7553), pp. 436–444.

[40] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.
S., Davis, A., Dean, J., Devin, M., and Ghemawat, S., 2015, “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems,”.

[41] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y., 2014, “Generative Adversarial Networks,”
Advances in Neural Information Processing Systems, pp. 2672–2680.

[42] Chen, W., Chiu, K., and Fuge, M., 2019, “Aerodynamic Design Optimization and
Shape Exploration Using Generative Adversarial Networks,”AIAA Scitech Forum.

121404-12 / Vol. 141, DECEMBER 2019 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/141/12/121404/6424769/m
d_141_12_121404.pdf by R

utgers U
niversity Libraries user on 28 July 2020

http://dx.doi.org/10.1177/1687814017710581
http://dx.doi.org/10.1177/1687814017710581
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
http://dx.doi.org/10.1016/j.engappai.2014.03.006
http://dx.doi.org/10.1016/j.ress.2013.02.022
http://dx.doi.org/10.1016/j.ins.2009.06.010
http://dx.doi.org/10.1109/36.124218
http://dx.doi.org/10.1109/36.124218
http://dx.doi.org/10.1007/s00500-015-1739-9
http://dx.doi.org/10.1007/s00500-015-1739-9
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/nature14539

	1 Introduction
	2 General Background on Classification Techniques
	3 Description of Classification Techniques
	3.1 Support Vector Machine
	3.2 Random Forest
	3.3 Gaussian Naive Bayes
	3.4 Neural Network

	4 Methodology for the Comparison Studies
	5 Classifier Performance on Example Problems
	6 Aggregated Results Across Example Problems
	7 Discussion
	8 Conclusion
	 Acknowledgment
	 References

