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Tunable strain soliton networks confine electrons
in van der Waals materials

Drew Edelberg', Hemant Kumar®2, Vivek Shenoy?, Héctor Ochoa'™ and Abhay N. Pasupathy ®>

Twisting or sliding two-dimensional crystals with respect to
each other gives rise to moiré patterns determined by the dif-
ference in their periodicities. Such lattice mismatches can exist
for several reasons: differences between the intrinsic lattice
constants of the two layers, as is the case for graphene on BN’;
rotations between the two lattices, as is the case for twisted
bilayer graphene?; and strains between two identical layers
in a bilayer®. Moiré patterns are responsible for a number of
new electronic phenomena observed in recent years in van der
Waals heterostructures, including the observation of super-
lattice Dirac points for graphene on BN', collective electronic
phases in twisted bilayers and twisted double bilayers*-¢, and
trapping of excitons in the moiré potential®>. An open ques-
tion is whether we can use moiré potentials to achieve strong
trapping potentials for electrons. Here, we report a tech-
nique to achieve deep, deterministic trapping potentials via
strain-based moiré engineering in van der Waals materials. We
use strain engineering to create on-demand soliton networks
in transition metal dichalcogenides. Intersecting solitons form
a honeycomb-like network resulting from the three-fold sym-
metry of the adhesion potential between layers. The vertices
of this network occur in bound pairs with different interlayer
stacking arrangements. One vertex of the pair is found to be
an efficient trap for electrons, displaying two states that are
deeply confined within the semiconductor gap and have a spa-
tial extent of 2nm. Soliton networks thus provide a path to
engineer deeply confined states with a strain-dependent tun-
able spatial separation, without the necessity of introducing
chemical defects into the host materials.

Our strain engineering for a transition metal dichalcogen-
ide (TMD) homobilayer is illustrated conceptually in Fig. la. At
zero strain, the layers will form a commensurate structure. When
large tensile strain is applied to only the bottom layer, the lat-
tice constants differ, resulting in an incommensurate structure.
In general, large changes in electronic structure are caused when
there are significant rearrangements to atomic positions within
each layer. This happens when the lattice mismatch between layers
is small, which corresponds to the intermediate case of not
too large heterostrain. In this regime, atoms try to adjust to the
new stacking landscape, forming commensurate regions at the
expense of elastic energy'"’. These commensurate regions are sep-
arated by topological solitons'*"'%, which are also corrugated in
the vertical direction. A lattice of such solitons has been observed
in very-small-angle twisted bilayer graphene'’~"". The electronic
properties of individual solitons have been studied by transport™
and tunnelling studies, and manipulation of individual solitons
has been achieved using a probe tip’"*>. Random networks of

solitons have also been observed previously in a variety of bilayer
graphene samples’.

Being able to create these solitons on demand opens up
new possibilities for studying their formation, reversibility and
strain-tunable properties. This requires the ability to tune the strain
between two adjacent layers of the TMD controllably while imag-
ing the result of this process over a single region of the sample. In
our work, we overcame these experimental challenges by devel-
oping a new apparatus that allowed us to apply controllable, large
uniaxial strain while simultaneously performing scanning tun-
nelling microscopy (STM) measurements. Our experiments were
conducted on vacuum-cleaved single crystals of MoSe,, the ends
of which were affixed to a strain bridge as shown in Fig. 1b,c (for
details see Methods). It is often found that the exfoliation process
results in several micrometre-sized flakes of monolayers that are not
bound to the edges of the sample, as illustrated in Fig. 1d. On appli-
cation of strain to the bridge, the top layer is only connected to the
rest of the sample via van der Waals interactions, while the rest of
the sample is uniformly strained, mimicking the situation in Fig. 1a.
To identify this scenario, we scanned across the surface of the crys-
tal until we found a monolayer on the top surface that was not
attached to the lateral ends of the crystal (see Supplementary Fig. 1
for a topographic scan across the edge of one such monolayer).
Such flakes were observed in 4 out of 15 samples studied in this
experiment, with lateral sizes that were at least several microme-
tres (larger than the range of our STM scanner). We then scanned
a large area (1.5Xx1.5pm?) of this top layer far (more than 1pm)
from any edge. The resultant topographic scan, obtained at zero
strain, is shown in Fig. le. This topograph is flat to within ~1 A, with
the residual roughness due to the presence of point defects in the
crystal”. On increasing the strain beyond a critical value (deter-
mined to be ~1.5%), clear signs of the formation of strain solitons
are seen in STM topographs. The density of solitons grows with
applied strain, as shown in Fig. 1f,g, corresponding to strains of 2%
and 3%, respectively. All three images (Fig. 1e—g) were obtained on
exactly the same region of the sample. The process of soliton forma-
tion is reversible—on removal of the strain, the solitons disappeared
and the system returned to its initial commensurate state. Some hys-
teresis was observed, but it is difficult to disentangle intrinsic hys-
teresis in the dynamics of the soliton lattice from hysteresis present
in the piezoelectric elements used for strain tuning.

We next consider the atomic-scale structure of a single soliton
(Fig. 2a). Each bright spot in this topograph corresponds to a Se
atom on the surface of the top layer. The long axis of the soliton
coincides with an armchair direction of the crystal. By taking a
topographic line cut along the short zigzag axis, we can extract the
height profile for the corrugation (Fig. 2b). The maximum apparent
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Fig. 1| Strain soliton networks in MoSe,. a, Schematics of the commensurate, partially incommensurate (strain solitons) and totally incommensurate
bilayer structures. b, Piezoelectric-based device for performing STM measurements under large uniaxial strain. ¢, Optical image of a MoSe, crystal affixed
across the two independent piezoelectric stacks. The sample is bonded to each stack by epoxy. d, Schematic of a free monolayer on the top surface of the
crystal after cleaving in vacuum. Strain was transmitted only through the bulk material underneath. VdW, van der Waals. e-g, STM topographic images
of a 1.5x 1.5 um? region of the top monolayer at strains of 0% (e), 2% (f) and 3% (g) (V=0.8V, I=100 pA). Before applying strain, the residual height
variations are due to crystal defects. Above a critical strain of 1.5%, solitons begin to form, increasing in density as strain increases.
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Fig. 2 | Atomic structure of a single soliton. a, Atomically resolved STM topographic image (V=1V, =100 pA) of one of the solitons, where the top lattice
of Se atoms is well resolved. b, Height profile across the soliton, extracted from a. ¢, Local lattice spacing (projected on the horizontal plane) across the
soliton (blue line) and in the background region (red line). In the soliton region, the local lattice spacing is reduced, corresponding to a release of tensile
strain in the top layer. d, Topographic image of three solitons crossing at a vertex. The lattice spacings on and off the soliton shown in € come from the
regions bounded by the blue and red boxes, respectively. e, Excerpts from d showing atomic resolution on (blue) and off (red) a soliton. A count of atoms
across the soliton contains one extra atomic row, indicating a discommensuration of one lattice spacing across the soliton. f, Free-energy landscape of
stacking configurations (for details of the calculation see Supplementary Section 2). g h, Soliton solutions deduced from our numerical simulations when
strain is applied along the zigzag (g) and armchair (h) directions.

height was measured to be 3 A, with a lateral width of 3.3nm. We  recorded across a soliton, while the red curve is the lattice con-
can also use the distance between adjacent peaks and troughs in  stant in a region without a soliton; both regions are highlighted in
atomically resolved topographs to estimate the local lattice constant. ~ Fig. 2d. In the line cut without the soliton, the average lattice spac-
The blue curve in Fig. 2c represents the local interatomic distance  ing is ~3.4 A, consistent with a MoSe, layer under tensile strain.
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The lattice spacing at the soliton centre is smaller, ~3.05 A, indicat-
ing that stress is relieved. The integrated difference in lattice spacing
across the soliton is found to be near one lattice constant. We
can further confirm this by counting atomic rows parallel to the
soliton in the blue and red regions. Figure 2e shows side-by-side
comparisons of the corresponding topographic excerpts. The
region across the soliton contains exactly one extra atomic row,
implying that the corrugation is a discommensuration of one lat-
tice spacing along a zigzag axis.

The preferential direction of solitons separating different com-
mensurate areas can be understood from the symmetry of the
adhesion potential shown in Fig. 2f (for details of the calculation
see Supplementary Section 2). The minimum of this potential cor-
responds to the hexagonal (2H) stacking of the bulk material, while
the maximum corresponds to a configuration where Se atoms lie
on top of each other (XX); the configuration with transition-metal
sublattices sitting on top of one another (MM) is a local minimum,
close in energy to a saddle point (the stacking at the centre of the
soliton). Away from the solitons, the system is in the 2H stacking
configuration (darkest areas, Fig. 2f). Going across a single soliton
therefore corresponds to moving from one 2H potential minimum
to a nearby one. Moving along the zigzag direction (horizontal
arrow, Fig. 2f) avoids XX stacking configurations (brightest areas,
Fig. 2f), resulting in a lower energy cost. This is also borne out in
our finite-element method simulations for soliton formation shown
in Fig. 2g,h. Tensile heterostrain applied along the zigzag direction
results in the formation of solitons along the perpendicular direc-
tion. For tensile heterostrain along the armchair direction, the
resulting solitons are still perpendicular to zigzag directions, along
which stress is relieved.

Based on this potential landscape, the critical strain for the for-
mation of solitons can be estimated as (Supplementary Section 3)

_ "8 v
ox \ A+ 2u

~ 1.7 —2% (1)

Uc

where A and p~3eV A2 are the Lamé coefficients of the mono-
layer*, Va~43meV nm™ is the scale characterizing the free-energy
difference between stacking configurations, and 7, is a numeri-
cal factor depending on the orientation of the sample (r,=1 if the
tension is along a zigzag axis, #,,,~ 1.22 in the case of an armchair
direction). The soliton width is

a [A+2u

= — ~ 4 2
w\ nm (2)
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where & ~ 3.4A is the lattice constant of strained MoSe,. The criti-
cal strain . decreases with temperature®, which is not considered
in our estimates. Moreover, both thermal fluctuations and disorder
break positional long-range order in the soliton system. Pinning
by lattice defects is not efficient, as the solitons are extensive
objects and the range of these forces is likely to be only atomistic.
Nevertheless, disorder can also create inhomogeneous distributions
of strain, favouring the appearance of dislocations in the soliton
system. A large-scale image of one of these dislocations is shown
in Supplementary Fig. 2. Additionally, the three-fold symmetry of
the adhesion potential (only weakly broken by the uniaxial strain)
implies the existence of more than one easy direction for the soli-
tons. Even at low temperatures and despite the energy cost of soliton
crossings, thermal fluctuations can stabilize two-dimensional (2D)
networks as these structures carry large configuration entropy.

We next consider the formation and properties of soliton cross-
ings. Figure 3a—c shows a sequence of STM images over the same
region of the sample at strains of 1.8%, 2.0% and 2.2%, respec-
tively. At the smallest of these strains, solitons are already formed
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Fig. 3 | Soliton crossings and vertices. a-c, STM topographic images
(V=1V, I=50pA) at strains of 1.8% (a), 2.0% (b) and 2.2%(c), showing
the evolution from a pinned soliton endpoint (a) to formation of a second
soliton with a soliton crossing (b) to splitting of the soliton crossing into two
vertices (¢). d, Schematic of the soliton crossing in b. e, Corresponding path
of the system in configuration space in the various regions. Across each of
the solitons, the system transits from one 2H minimum to a neighbouring
one, as indicated by the green and blue coloured arrows. In the region

of the crossing, the system explores all possible stacking configurations,
including XX and MM extremes. f, Schematic of the two vertices in c.

g, Corresponding path of the system in configuration space. Paths (blue

and orange dashed lines) connecting commensurate regions with the third
soliton (red arrow) indicate how the two vertices correspond to XX and
MM stackings. h, STM topographic image (V=1V, I=50pA) of a short
soliton connecting to two vertices with XX and MM stacking configurations.
i,j, STM topographic images (V=1V, I=50pA) of the XX (i) and MM

(j) soliton vertices. For the XX soliton in i, the topographic height decays
quickly on the atomic scale. For the MM soliton vertex in j, the triangular
lattice is blurred on a longer length scale, replaced by a honeycomb pattern
at the centre of the crossing.

in stripes. Figure 3a shows the endpoint of one of these solitons,
corresponding to the core of a dislocation in the stripe order. On
increasing the strain (Fig. 3b), a new soliton nucleates, forming an
intersection where discommensurations along two zigzag direc-
tions coincide. On increasing the strain further (Fig. 3¢), the soli-
ton crossing is seen to split into two separate vertices where three
solitons meet. A consideration of how the stacking order evolves
across soliton crossings can help us to understand the splitting of
the initial intersection into two three-fold vertices. Shown in Fig. 3d
is a schematic of the soliton crossing of Fig. 3b. Each of the soli-
tons corresponds to a phase slip of one lattice constant along the
green and blue arrow directions, respectively. The corresponding
paths in the configuration space of stacking orders are visualized
by arrows of the same colours in Fig. 3e; the soliton crossing itself
corresponds to the shaded region, where all stackings are sampled,
resulting in a high energy cost. This soliton crossing is therefore
unstable and relaxes quickly (shown in Fig. 3c) into two separate
vertices connected by a third soliton. The schematic for this image
and the corresponding paths in configuration space are shown in
Fig. 3f,g. The formation of the honeycomb-like soliton network or a
multi-domain stripe phase as seen in Fig. 1 is a consequence of these
relaxation processes.

The two separate vertices have rather different properties.
Consider the configuration of the system as one traverses along
the soliton across each of the two vertices (blue and orange dashed
lines, Fig. 3f). The corresponding path in configuration space is
shown by the dashed lines in Fig. 3g. For one of the intersections
(blue dashed line), going across the soliton vertex results in the
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Fig. 4 | Spectroscopic properties of soliton vertices. a, STS spectra recorded on bulk MoSe,. The indirect gap closes as the strain grows. The dependence
of the gap on strain is shown in the inset. b, LDOS within the semiconducting gap recorded on an XX soliton crossing (solid line) and commensurate 2H
region (dashed line) at a strain of 2.5%. The XX vertices display clear midgap states. The inset shows the LDOS on larger energy scales, also showing
that the MM soliton crossing does not display midgap states. Additionally, the spectra at both vertices display smaller resonances in the semiconductor
bands, which are more clearly resolved in the conduction band. ¢, 3D spectroscopic image in the region of the two soliton crossings at V=75mV,
corresponding to the energy of the lower bound state in b. The 3D height in this image is the topographic height of the tip, showing the location of the
MM and XX soliton crossings. The colour scale is the magnitude of the differential conductance, showing that the resonance is localized in the vicinity of
the XX soliton crossing while the rest of the area is gapped. d, Angular-averaged STS maps in the conduction band around an XX crossing. The conduction
band edge is indicated by the arrow on the y axis. The resonances in the conduction band have alternating odd-even parity, as expected for a harmonic
oscillator. The two midgap states do not follow this sequence. e, Model for a stacking defect on an XX soliton vertex: passivation of the Se (blue) orbitals
due to a strong interlayer coupling interrupts the effective hopping between Mo (red) orbitals, which dominate the low-energy bands, leading to an
effective vacancy. f, Calculated density of states at different distances from the stacking defect for a monolayer (for details of the model and calculation

see Supplementary Section 7).

system going through the XX stacking configuration, while for the
other soliton vertex the system goes through the MM stacking con-
figuration. We term these the XX and MM vertices, respectively.
We imaged several of these shorter solitons with STM with high
resolution (one representative example is shown in Fig. 3h). The
two vertices show a distinct topographic contrast (one brighter or
higher than the other), which was systematically reproduced over
the sample. Figure 3i,j shows atomic-resolution images taken at
each vertex. Figure 3i shows a triangular pattern at the bright ver-
tex, the apparent height of which decays fast on the atomic scale.
This suggests that Se atoms are lifted by the local XX stacking in
this region, and therefore are lifted with respect to the surrounding
commensurate regions. In contrast, at the darker vertex (Fig. 3j),
the topographic contrast resembles two interpenetrating triangu-
lar lattices, resulting in a honeycomb geometry. A plausible reason
for this is that the Mo atoms in this region are pushed upward by
the local MM stacking, allowing them to be visible in the topo-
graph. This identification of the two vertices based on local topog-
raphy is also compatible with our previous observation that the

darker vertices are more extended in space: the adhesion potential
is flatter around the MM stacking, so the system explores other
configurations close in energy.

Having identified the two distinct vertices in the honeycomb
soliton network, we now consider the consequences for the
electronic structure of the material, using scanning tunnelling
spectroscopy (STS) measurements of the local density of states
(LDOS). Figure 4a shows STS spectra averaged on the commensu-
rate 2H regions of the material (far from the solitons) as a function
of strain. The gap decreases with increasing strain (inset to Fig. 4a
and values in Supplementary Table 1). In Fig. 4b and its inset,
we compare the spectra recorded on a commensurate region (2H),
a dark soliton vertex (MM) and a bright vertex (XX) at a strain
of 2.5%. The most prominent feature is the presence of electronic
states deep inside the gap at 75 and 175meV in the XX vertex
(main panel, Fig. 4b), which are absent for both the commensurate
2H regions as well as the MM soliton vertex (see inset for zoomed
out versions of the spectra). States at similar energies are observed
in all XX vertices. We note that the width of the in-gap resonances
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in our spectra is large due to the relatively high temperature of
our measurement. To confirm the spatially bound nature of the
in-gap states, we performed spectroscopic imaging at the energy of
the stronger resonance, the results of which are shown in Fig. 4c.
In this image, the colour scale depicts the magnitude of the LDOS,
while the simultaneously acquired topography is rendered in
the 3D height map. It is clearly seen that the in-gap resonance is
confined solely to the XX soliton vertex that has the higher topo-
graphic height, while it is absent on the MM vertex. The spatial
width of the resonance is ~2nm.

Besides the in-gap states, weaker resonances are present in both
soliton vertices starting at the band edges (better resolved in the
conduction band than in the valence band). To show the nature of
these band resonances, we performed an angular average of spectra
around the XX site; the angular-averaged spectra are displayed as
a function of distance from the XX site in Fig. 4d for a range of
energies. The conduction band edge is indicated by the arrow on
this image. Spatial profiles at energies of the first four resonances
in the conduction band are also displayed in Supplementary Fig. 3.
The resonances within the conduction band are equally spaced by
~75meV, and their spatial structure resembles the wavefunctions
of a 2D harmonic oscillator, with alternating resonances display-
ing opposite parities. These features are also present in STS maps
around MM crossings, but are much more attenuated in that case
(Supplementary Fig. 4). Apart from the vertices, the soliton itself
does not display strong spatially dependent features in the LDOS at
the temperature of our measurement.

In TMDs, strain-induced pseudo-magnetic fields and
potentials associated with corrugations® can give rise to confined
states. Spatially modulated interlayer couplings due to changes in
the atomic registry also affect the position of the band edges. This
effect, as well as the deformation potential®, contribute to create a
smooth (on the scale of the microscopic lattice) confining potential
within the solitons. Its microscopic origin is thus the same as the
moiré superlattice potentially created by lattice mismatch in TMD
heterobilayers, where the same kind of features in the LDOS*"*
are observed. The two in-gap states, however, do not belong to this
sequence of odd—even parity associated with the smooth confining
potential. Instead, these electronic states are deeply confined within
the bandgap, as shown above, pointing to a sharper perturbation on
the atomic scale related to local registry.

Figure 4e presents a simple model for this scenario, in which these
states originate from multiple scattering off a sharp stacking defect
at XX soliton crossings. In TMD semiconductors, conduction and
valence bands are dominated by orbitals localized on the metal sites
(red, Fig. 4e). The effective hopping between these orbitals (rep-
resented by dashed green arrows) is assisted by Se orbitals (local-
ized on blue sites in Fig. 4e). At the XX soliton vertex, the strong
coupling between Se atoms sitting on top of each other can lead
to passivation of their orbitals, interrupting these virtual hopping
processes and mimicking the effect of a Mo vacancy. This assump-
tion is supported by the density functional calculations presented
in the Supplementary Information, which show a partial flattening
of the Mo-dominated valence band in the XX stacking with respect
to the preferred 2H configuration. Scattering off such a defect can
transfer spectral weight from the electron-hole continuum to build
resonances within the bandgap. To model this quantitatively, we
used a simple tight-binding model with hopping parameters for
monolayer MoSe, (ref. ** for details see Supplementary Section 7).
Bonds around a single Mo atom are passivated by assuming an
infinite energy on the central Mo site. Figure 4d shows the LDOS
calculated at different distances from the stacking defect. Although
the true experimental situation is undoubtedly more complex, this
simple model reproduces the presence of two in-gap states that are
localized well within the soliton vertex. The use of one or more such
trapped electrons to realize optical and electrical based quantum

26,27
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manipulations is an exciting new alternative to traditional litho-
graphic and defect-based engineering of quantum states.
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Methods

To achieve high strains (above 1%) in situ while performing STM measurements, we
constructed a novel piezoelectric device that is compatible with flag-type STM sample
holders (Fig. 1b). This device is based on similar designs used recently for transport
measurements under high uniaxial strain®. In brief, a sample was bridged between
two stacks of piezoelectric actuators that formed the two ends of a movable bridge. By
application of a voltage to the piezoelectric device, the two ends of the bridge could be
moved further apart or closer together, creating uniaxial strain in the sample. Our
experiments were carried out on bulk crystals of 2H-MoSe,, which were glued firmly
onto ruby substrates to form the ends of the strain bridge, giving the structural rigidity
necessary for STM measurements. The resting separation of the ends of the bridge was
100 pm with a maximum variance of +3 pm under the application of a voltage
(maximum uniaxial strain of +3%, beyond which sample damage occurred).
Following the construction process, the sample was mechanically exfoliated in ultra-
high vacuum (UHV) conditions, immediately before the experiment, to avoid expo-
sure to ambient. The crystal was secured at its edges and at the bottom with epoxy, and
the bulk crystal was strained uniformly by application of a voltage to the piezoelectric.
The experiments were conducted in a homemade STM at a temperature of 77K,
which was sufficient to avoid carrier freeze-out in the semiconducting crystals.

Data availability

Source data are provided with this paper. All other data that support the
plots within this paper and other findings of this study are available from the
corresponding author upon reasonable request.
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