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Twisting or sliding two-dimensional crystals with respect to 
each other gives rise to moiré patterns determined by the dif-
ference in their periodicities. Such lattice mismatches can exist 
for several reasons: differences between the intrinsic lattice 
constants of the two layers, as is the case for graphene on BN1; 
rotations between the two lattices, as is the case for twisted 
bilayer graphene2; and strains between two identical layers 
in a bilayer3. Moiré patterns are responsible for a number of 
new electronic phenomena observed in recent years in van der 
Waals heterostructures, including the observation of super-
lattice Dirac points for graphene on BN1, collective electronic 
phases in twisted bilayers and twisted double bilayers4–8, and 
trapping of excitons in the moiré potential9–12. An open ques-
tion is whether we can use moiré potentials to achieve strong 
trapping potentials for electrons. Here, we report a tech-
nique to achieve deep, deterministic trapping potentials via 
strain-based moiré engineering in van der Waals materials. We 
use strain engineering to create on-demand soliton networks 
in transition metal dichalcogenides. Intersecting solitons form 
a honeycomb-like network resulting from the three-fold sym-
metry of the adhesion potential between layers. The vertices 
of this network occur in bound pairs with different interlayer 
stacking arrangements. One vertex of the pair is found to be 
an efficient trap for electrons, displaying two states that are 
deeply confined within the semiconductor gap and have a spa-
tial extent of 2 nm. Soliton networks thus provide a path to 
engineer deeply confined states with a strain-dependent tun-
able spatial separation, without the necessity of introducing 
chemical defects into the host materials.

Our strain engineering for a transition metal dichalcogen-
ide (TMD) homobilayer is illustrated conceptually in Fig. 1a. At 
zero strain, the layers will form a commensurate structure. When 
large tensile strain is applied to only the bottom layer, the lat-
tice constants differ, resulting in an incommensurate structure. 
In general, large changes in electronic structure are caused when 
there are significant rearrangements to atomic positions within  
each layer. This happens when the lattice mismatch between layers  
is small, which corresponds to the intermediate case of not  
too large heterostrain. In this regime, atoms try to adjust to the 
new stacking landscape, forming commensurate regions at the 
expense of elastic energy13. These commensurate regions are sep-
arated by topological solitons14–16, which are also corrugated in 
the vertical direction. A lattice of such solitons has been observed 
in very-small-angle twisted bilayer graphene17–19. The electronic 
properties of individual solitons have been studied by transport20 
and tunnelling studies, and manipulation of individual solitons 
has been achieved using a probe tip21,22. Random networks of 

solitons have also been observed previously in a variety of bilayer 
graphene samples3.

Being able to create these solitons on demand opens up 
new possibilities for studying their formation, reversibility and 
strain-tunable properties. This requires the ability to tune the strain 
between two adjacent layers of the TMD controllably while imag-
ing the result of this process over a single region of the sample. In 
our work, we overcame these experimental challenges by devel-
oping a new apparatus that allowed us to apply controllable, large 
uniaxial strain while simultaneously performing scanning tun-
nelling microscopy (STM) measurements. Our experiments were 
conducted on vacuum-cleaved single crystals of MoSe2, the ends 
of which were affixed to a strain bridge as shown in Fig. 1b,c (for 
details see Methods). It is often found that the exfoliation process 
results in several micrometre-sized flakes of monolayers that are not 
bound to the edges of the sample, as illustrated in Fig. 1d. On appli-
cation of strain to the bridge, the top layer is only connected to the 
rest of the sample via van der Waals interactions, while the rest of 
the sample is uniformly strained, mimicking the situation in Fig. 1a.  
To identify this scenario, we scanned across the surface of the crys-
tal until we found a monolayer on the top surface that was not 
attached to the lateral ends of the crystal (see Supplementary Fig. 1  
for a topographic scan across the edge of one such monolayer). 
Such flakes were observed in 4 out of 15 samples studied in this 
experiment, with lateral sizes that were at least several microme-
tres (larger than the range of our STM scanner). We then scanned 
a large area (1.5 × 1.5 μm2) of this top layer far (more than 1 μm) 
from any edge. The resultant topographic scan, obtained at zero 
strain, is shown in Fig. 1e. This topograph is flat to within ~1 Å, with 
the residual roughness due to the presence of point defects in the  
crystal23. On increasing the strain beyond a critical value (deter-
mined to be ~1.5%), clear signs of the formation of strain solitons 
are seen in STM topographs. The density of solitons grows with 
applied strain, as shown in Fig. 1f,g, corresponding to strains of 2% 
and 3%, respectively. All three images (Fig. 1e–g) were obtained on 
exactly the same region of the sample. The process of soliton forma-
tion is reversible—on removal of the strain, the solitons disappeared 
and the system returned to its initial commensurate state. Some hys-
teresis was observed, but it is difficult to disentangle intrinsic hys-
teresis in the dynamics of the soliton lattice from hysteresis present 
in the piezoelectric elements used for strain tuning.

We next consider the atomic-scale structure of a single soliton 
(Fig. 2a). Each bright spot in this topograph corresponds to a Se 
atom on the surface of the top layer. The long axis of the soliton 
coincides with an armchair direction of the crystal. By taking a 
topographic line cut along the short zigzag axis, we can extract the 
height profile for the corrugation (Fig. 2b). The maximum apparent  
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height was measured to be 3 Å, with a lateral width of 3.3 nm. We 
can also use the distance between adjacent peaks and troughs in 
atomically resolved topographs to estimate the local lattice constant. 
The blue curve in Fig. 2c represents the local interatomic distance 

recorded across a soliton, while the red curve is the lattice con-
stant in a region without a soliton; both regions are highlighted in  
Fig. 2d. In the line cut without the soliton, the average lattice spac-
ing is ~3.4 Å, consistent with a MoSe2 layer under tensile strain.  
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Fig. 1 | Strain soliton networks in MoSe2. a, Schematics of the commensurate, partially incommensurate (strain solitons) and totally incommensurate 
bilayer structures. b, Piezoelectric-based device for performing STM measurements under large uniaxial strain. c, Optical image of a MoSe2 crystal affixed 
across the two independent piezoelectric stacks. The sample is bonded to each stack by epoxy. d, Schematic of a free monolayer on the top surface of the 
crystal after cleaving in vacuum. Strain was transmitted only through the bulk material underneath. VdW, van der Waals. e–g, STM topographic images 
of a 1.5 × 1.5 μm2 region of the top monolayer at strains of 0% (e), 2% (f) and 3% (g) (V = 0.8 V, I = 100 pA). Before applying strain, the residual height 
variations are due to crystal defects. Above a critical strain of 1.5%, solitons begin to form, increasing in density as strain increases.
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Fig. 2 | Atomic structure of a single soliton. a, Atomically resolved STM topographic image (V = 1 V, I = 100 pA) of one of the solitons, where the top lattice 
of Se atoms is well resolved. b, Height profile across the soliton, extracted from a. c, Local lattice spacing (projected on the horizontal plane) across the 
soliton (blue line) and in the background region (red line). In the soliton region, the local lattice spacing is reduced, corresponding to a release of tensile 
strain in the top layer. d, Topographic image of three solitons crossing at a vertex. The lattice spacings on and off the soliton shown in c come from the 
regions bounded by the blue and red boxes, respectively. e, Excerpts from d showing atomic resolution on (blue) and off (red) a soliton. A count of atoms 
across the soliton contains one extra atomic row, indicating a discommensuration of one lattice spacing across the soliton. f, Free-energy landscape of 
stacking configurations (for details of the calculation see Supplementary Section 2). g,h, Soliton solutions deduced from our numerical simulations when 
strain is applied along the zigzag (g) and armchair (h) directions.
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The lattice spacing at the soliton centre is smaller, ~3.05 Å, indicat-
ing that stress is relieved. The integrated difference in lattice spacing  
across the soliton is found to be near one lattice constant. We 
can further confirm this by counting atomic rows parallel to the  
soliton in the blue and red regions. Figure 2e shows side-by-side 
comparisons of the corresponding topographic excerpts. The 
region across the soliton contains exactly one extra atomic row, 
implying that the corrugation is a discommensuration of one lat-
tice spacing along a zigzag axis.

The preferential direction of solitons separating different com-
mensurate areas can be understood from the symmetry of the 
adhesion potential shown in Fig. 2f (for details of the calculation 
see Supplementary Section 2). The minimum of this potential cor-
responds to the hexagonal (2H) stacking of the bulk material, while 
the maximum corresponds to a configuration where Se atoms lie 
on top of each other (XX); the configuration with transition-metal 
sublattices sitting on top of one another (MM) is a local minimum, 
close in energy to a saddle point (the stacking at the centre of the 
soliton). Away from the solitons, the system is in the 2H stacking 
configuration (darkest areas, Fig. 2f). Going across a single soliton 
therefore corresponds to moving from one 2H potential minimum 
to a nearby one. Moving along the zigzag direction (horizontal 
arrow, Fig. 2f) avoids XX stacking configurations (brightest areas, 
Fig. 2f), resulting in a lower energy cost. This is also borne out in 
our finite-element method simulations for soliton formation shown 
in Fig. 2g,h. Tensile heterostrain applied along the zigzag direction 
results in the formation of solitons along the perpendicular direc-
tion. For tensile heterostrain along the armchair direction, the 
resulting solitons are still perpendicular to zigzag directions, along 
which stress is relieved.

Based on this potential landscape, the critical strain for the for-
mation of solitons can be estimated as (Supplementary Section 3)

uc ¼
ηφ8

π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V

λþ 2μ

s
 1:7� 2% ð1Þ

where λ and μ ≈ 3 eV Å−2 are the Lamé coefficients of the mono-
layer24, V ≈ 43 meV nm−2 is the scale characterizing the free-energy 
difference between stacking configurations, and ηφ is a numeri-
cal factor depending on the orientation of the sample (η0 = 1 if the 
tension is along a zigzag axis, ηπ/6 ≈ 1.22 in the case of an armchair 
direction). The soliton width is
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where ~a � 3:4
I

 Å is the lattice constant of strained MoSe2. The criti-
cal strain �uc

I
 decreases with temperature25, which is not considered 

in our estimates. Moreover, both thermal fluctuations and disorder 
break positional long-range order in the soliton system. Pinning 
by lattice defects is not efficient, as the solitons are extensive 
objects and the range of these forces is likely to be only atomistic. 
Nevertheless, disorder can also create inhomogeneous distributions 
of strain, favouring the appearance of dislocations in the soliton 
system. A large-scale image of one of these dislocations is shown 
in Supplementary Fig. 2. Additionally, the three-fold symmetry of 
the adhesion potential (only weakly broken by the uniaxial strain) 
implies the existence of more than one easy direction for the soli-
tons. Even at low temperatures and despite the energy cost of soliton 
crossings, thermal fluctuations can stabilize two-dimensional (2D) 
networks as these structures carry large configuration entropy.

We next consider the formation and properties of soliton cross-
ings. Figure 3a–c shows a sequence of STM images over the same 
region of the sample at strains of 1.8%, 2.0% and 2.2%, respec-
tively. At the smallest of these strains, solitons are already formed 

in stripes. Figure 3a shows the endpoint of one of these solitons, 
corresponding to the core of a dislocation in the stripe order. On 
increasing the strain (Fig. 3b), a new soliton nucleates, forming an 
intersection where discommensurations along two zigzag direc-
tions coincide. On increasing the strain further (Fig. 3c), the soli-
ton crossing is seen to split into two separate vertices where three 
solitons meet. A consideration of how the stacking order evolves 
across soliton crossings can help us to understand the splitting of 
the initial intersection into two three-fold vertices. Shown in Fig. 3d  
is a schematic of the soliton crossing of Fig. 3b. Each of the soli-
tons corresponds to a phase slip of one lattice constant along the 
green and blue arrow directions, respectively. The corresponding 
paths in the configuration space of stacking orders are visualized 
by arrows of the same colours in Fig. 3e; the soliton crossing itself 
corresponds to the shaded region, where all stackings are sampled, 
resulting in a high energy cost. This soliton crossing is therefore 
unstable and relaxes quickly (shown in Fig. 3c) into two separate 
vertices connected by a third soliton. The schematic for this image 
and the corresponding paths in configuration space are shown in 
Fig. 3f,g. The formation of the honeycomb-like soliton network or a 
multi-domain stripe phase as seen in Fig. 1 is a consequence of these 
relaxation processes.

The two separate vertices have rather different properties. 
Consider the configuration of the system as one traverses along 
the soliton across each of the two vertices (blue and orange dashed 
lines, Fig. 3f). The corresponding path in configuration space is 
shown by the dashed lines in Fig. 3g. For one of the intersections 
(blue dashed line), going across the soliton vertex results in the 
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Fig. 3 | Soliton crossings and vertices. a–c, STM topographic images 
(V = 1 V, I = 50 pA) at strains of 1.8% (a), 2.0% (b) and 2.2%(c), showing 
the evolution from a pinned soliton endpoint (a) to formation of a second 
soliton with a soliton crossing (b) to splitting of the soliton crossing into two 
vertices (c). d, Schematic of the soliton crossing in b. e, Corresponding path 
of the system in configuration space in the various regions. Across each of 
the solitons, the system transits from one 2H minimum to a neighbouring 
one, as indicated by the green and blue coloured arrows. In the region  
of the crossing, the system explores all possible stacking configurations, 
including XX and MM extremes. f, Schematic of the two vertices in c.  
g, Corresponding path of the system in configuration space. Paths (blue 
and orange dashed lines) connecting commensurate regions with the third 
soliton (red arrow) indicate how the two vertices correspond to XX and 
MM stackings. h, STM topographic image (V = 1 V, I = 50 pA) of a short 
soliton connecting to two vertices with XX and MM stacking configurations. 
i,j, STM topographic images (V = 1 V, I = 50 pA) of the XX (i) and MM 
(j) soliton vertices. For the XX soliton in i, the topographic height decays 
quickly on the atomic scale. For the MM soliton vertex in j, the triangular 
lattice is blurred on a longer length scale, replaced by a honeycomb pattern 
at the centre of the crossing.
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system going through the XX stacking configuration, while for the 
other soliton vertex the system goes through the MM stacking con-
figuration. We term these the XX and MM vertices, respectively. 
We imaged several of these shorter solitons with STM with high 
resolution (one representative example is shown in Fig. 3h). The 
two vertices show a distinct topographic contrast (one brighter or 
higher than the other), which was systematically reproduced over 
the sample. Figure 3i,j shows atomic-resolution images taken at 
each vertex. Figure 3i shows a triangular pattern at the bright ver-
tex, the apparent height of which decays fast on the atomic scale. 
This suggests that Se atoms are lifted by the local XX stacking in 
this region, and therefore are lifted with respect to the surrounding 
commensurate regions. In contrast, at the darker vertex (Fig. 3j), 
the topographic contrast resembles two interpenetrating triangu-
lar lattices, resulting in a honeycomb geometry. A plausible reason 
for this is that the Mo atoms in this region are pushed upward by 
the local MM stacking, allowing them to be visible in the topo-
graph. This identification of the two vertices based on local topog-
raphy is also compatible with our previous observation that the 

darker vertices are more extended in space: the adhesion potential 
is flatter around the MM stacking, so the system explores other 
configurations close in energy.

Having identified the two distinct vertices in the honeycomb 
soliton network, we now consider the consequences for the 
electronic structure of the material, using scanning tunnelling 
spectroscopy (STS) measurements of the local density of states 
(LDOS). Figure 4a shows STS spectra averaged on the commensu-
rate 2H regions of the material (far from the solitons) as a function 
of strain. The gap decreases with increasing strain (inset to Fig. 4a  
and values in Supplementary Table 1). In Fig. 4b and its inset,  
we compare the spectra recorded on a commensurate region (2H), 
a dark soliton vertex (MM) and a bright vertex (XX) at a strain 
of 2.5%. The most prominent feature is the presence of electronic 
states deep inside the gap at 75 and 175 meV in the XX vertex 
(main panel, Fig. 4b), which are absent for both the commensurate 
2H regions as well as the MM soliton vertex (see inset for zoomed 
out versions of the spectra). States at similar energies are observed 
in all XX vertices. We note that the width of the in-gap resonances 

8.25 Å 

6.60 Å 

Distance from XX (nm)

d f

Pristine

LDOS (eV–1)

E (eV)

e

b

dI
/d
V

 (
pS

)

0

25

50

0 55

0–0.5 0.5 1.0
0

400

200

100

300

50

150

250

350

a

dI
/d
V

 (
pS

)

1010

0–0.2 0.2 0.4

–0.6 0.8

0

dI
/d
V

 (
pS

)

V (V)

8

4

6

2

c
XX
MM
2H

3.30 Å 

1.65 Å 

4.95 Å 

1 2

1

2

0

Bias voltage (V)

0

75

150

75 meV

0

0.4

B
ia

s 
vo

lta
ge

 (
V

)

0.8

0.6

0.2

dI
/d
V

 (
pS

)
0

4

dI
/d
V

 (
pS

)0 1 2 3

Strain (%)

0.4

0.6

0.8

G
ap

 (
eV

)

0%

3%

≈

Fig. 4 | Spectroscopic properties of soliton vertices. a, STS spectra recorded on bulk MoSe2. The indirect gap closes as the strain grows. The dependence 
of the gap on strain is shown in the inset. b, LDOS within the semiconducting gap recorded on an XX soliton crossing (solid line) and commensurate 2H 
region (dashed line) at a strain of 2.5%. The XX vertices display clear midgap states. The inset shows the LDOS on larger energy scales, also showing 
that the MM soliton crossing does not display midgap states. Additionally, the spectra at both vertices display smaller resonances in the semiconductor 
bands, which are more clearly resolved in the conduction band. c, 3D spectroscopic image in the region of the two soliton crossings at V = 75 mV, 
corresponding to the energy of the lower bound state in b. The 3D height in this image is the topographic height of the tip, showing the location of the 
MM and XX soliton crossings. The colour scale is the magnitude of the differential conductance, showing that the resonance is localized in the vicinity of 
the XX soliton crossing while the rest of the area is gapped. d, Angular-averaged STS maps in the conduction band around an XX crossing. The conduction 
band edge is indicated by the arrow on the y axis. The resonances in the conduction band have alternating odd–even parity, as expected for a harmonic 
oscillator. The two midgap states do not follow this sequence. e, Model for a stacking defect on an XX soliton vertex: passivation of the Se (blue) orbitals 
due to a strong interlayer coupling interrupts the effective hopping between Mo (red) orbitals, which dominate the low-energy bands, leading to an 
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in our spectra is large due to the relatively high temperature of 
our measurement. To confirm the spatially bound nature of the 
in-gap states, we performed spectroscopic imaging at the energy of 
the stronger resonance, the results of which are shown in Fig. 4c.  
In this image, the colour scale depicts the magnitude of the LDOS, 
while the simultaneously acquired topography is rendered in 
the 3D height map. It is clearly seen that the in-gap resonance is 
confined solely to the XX soliton vertex that has the higher topo-
graphic height, while it is absent on the MM vertex. The spatial 
width of the resonance is ~2 nm.

Besides the in-gap states, weaker resonances are present in both 
soliton vertices starting at the band edges (better resolved in the 
conduction band than in the valence band). To show the nature of 
these band resonances, we performed an angular average of spectra 
around the XX site; the angular-averaged spectra are displayed as 
a function of distance from the XX site in Fig. 4d for a range of 
energies. The conduction band edge is indicated by the arrow on 
this image. Spatial profiles at energies of the first four resonances 
in the conduction band are also displayed in Supplementary Fig. 3. 
The resonances within the conduction band are equally spaced by 
~75 meV, and their spatial structure resembles the wavefunctions 
of a 2D harmonic oscillator, with alternating resonances display-
ing opposite parities. These features are also present in STS maps 
around MM crossings, but are much more attenuated in that case 
(Supplementary Fig. 4). Apart from the vertices, the soliton itself 
does not display strong spatially dependent features in the LDOS at 
the temperature of our measurement.

In TMDs, strain-induced pseudo-magnetic fields26,27 and 
potentials associated with corrugations28 can give rise to confined 
states. Spatially modulated interlayer couplings due to changes in 
the atomic registry also affect the position of the band edges. This 
effect, as well as the deformation potential29, contribute to create a 
smooth (on the scale of the microscopic lattice) confining potential 
within the solitons. Its microscopic origin is thus the same as the 
moiré superlattice potentially created by lattice mismatch in TMD 
heterobilayers, where the same kind of features in the LDOS30,31 
are observed. The two in-gap states, however, do not belong to this 
sequence of odd–even parity associated with the smooth confining 
potential. Instead, these electronic states are deeply confined within 
the bandgap, as shown above, pointing to a sharper perturbation on 
the atomic scale related to local registry.

Figure 4e presents a simple model for this scenario, in which these 
states originate from multiple scattering off a sharp stacking defect 
at XX soliton crossings. In TMD semiconductors, conduction and 
valence bands are dominated by orbitals localized on the metal sites 
(red, Fig. 4e). The effective hopping between these orbitals (rep-
resented by dashed green arrows) is assisted by Se orbitals (local-
ized on blue sites in Fig. 4e). At the XX soliton vertex, the strong 
coupling between Se atoms sitting on top of each other can lead 
to passivation of their orbitals, interrupting these virtual hopping 
processes and mimicking the effect of a Mo vacancy. This assump-
tion is supported by the density functional calculations presented 
in the Supplementary Information, which show a partial flattening 
of the Mo-dominated valence band in the XX stacking with respect 
to the preferred 2H configuration. Scattering off such a defect can 
transfer spectral weight from the electron–hole continuum to build 
resonances within the bandgap. To model this quantitatively, we 
used a simple tight-binding model with hopping parameters for 
monolayer MoSe2 (ref. 32; for details see Supplementary Section 7).  
Bonds around a single Mo atom are passivated by assuming an 
infinite energy on the central Mo site. Figure 4d shows the LDOS 
calculated at different distances from the stacking defect. Although 
the true experimental situation is undoubtedly more complex, this 
simple model reproduces the presence of two in-gap states that are 
localized well within the soliton vertex. The use of one or more such 
trapped electrons to realize optical and electrical based quantum 

manipulations is an exciting new alternative to traditional litho-
graphic and defect-based engineering of quantum states.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41567-020-0953-2.

Received: 25 October 2019; Accepted: 1 June 2020;  
Published: xx xx xxxx

References
	1.	 Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in 

moiré superlattices. Nature 497, 598–602 (2013).
	2.	 Li, G. et al. Observation of van Hove singularities in twisted graphene layers. 

Nat. Phys. 6, 109–113 (2009).
	3.	 Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. 

Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).
	4.	 Cao, Y. et al. Unconventional superconductivity in magic-angle graphene 

superlattices. Nature 556, 43–50 (2018).
	5.	 Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle 

graphene superlattices. Nature 556, 80–84 (2018).
	6.	 Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. 

Science 363, 1059–1064 (2019).
	7.	 Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in 

twisted bilayer graphene. Science 365, 605–608 (2019).
	8.	 Liu, X. et al. Spin-polarized correlated insulator and superconductor in 

twisted double bilayer graphene. Preprint at https://arxiv.org/pdf/1903. 
08130.pdf (2019).

	9.	 Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 
heterobilayers. Nature 567, 66–70 (2019).

	10.	Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. 
Nature 567, 71–75 (2019).

	11.	Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure 
superlattices. Nature 567, 76–80 (2019).

	12.	Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in 
van der Waals heterostructures. Nature 567, 81–86 (2019).

	13.	Woods, C. R. et al. Commensurate–incommensurate transition in graphene 
on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

	14.	Kumar, H., Dong, L. & Shenoy, V. B. Limits of coherency and strain transfer 
in flexible 2D van der Waals heterostructures: formation of strain solitons 
and interlayer debonding. Sci. Rep. 6, 21516 (2016).

	15.	Carr, S. et al. Relaxation and domain formation in incommensurate 
two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).

	16.	Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns 
of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 
266401 (2018).

	17.	Huang, S. et al. Topologically protected helical states in minimally twisted 
bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

	18.	Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals 
interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

	19.	Kerelsky, A. et al. Maximized electron interactions at the magic angle in 
twisted bilayer graphene. Nature 572, 95–100 (2019).

	20.	Ju, L. et al. Topological valley transport at bilayer graphene domain walls. 
Nature 520, 650–655 (2015).

	21.	Yankowitz, M. et al. Electric field control of soliton motion and stacking in 
trilayer graphene. Nat. Mater. 13, 786–789 (2014).

	22.	Jiang, L. et al. Manipulation of domain-wall solitons in bi- and trilayer 
graphene. Nat. Nanotechnol. 13, 204–208 (2018).

	23.	Edelberg, D. et al. Approaching the intrinsic limit in transition metal 
diselenides via point defect control. Nano Lett. 19, 4731–4739 (2019).

	24.	Cooper, R. C. et al. Nonlinear elastic behavior of two-dimensional 
molybdenum disulfide. Phys. Rev. B 87, 035423 (2013).

	25.	Pokrovsky, V. L. & Talapov, A. L. Ground state, spectrum and phase diagram 
of two-dimensional incommensurate crystals. Phys. Rev. Lett. 42, 65–67 (1979).

	26.	Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in 
graphene nanobubbles. Science 329, 544–547 (2010).

	27.	Cazalilla, M. A., Ochoa, H. & Guinea, F. Quantum spin Hall effect in 
two-dimensional crystals of transition-metal dichalcogenides. Phys. Rev. Lett. 
113, 077201 (2014).

	28.	Chirolli, L., Prada, E., Guinea, F., Roldán, R. & San-Jose, P. Strain-induced 
bound states in transition-metal dichalcogenide bubbles. 2D Mater. 6,  
025010 (2019).

Nature Physics | www.nature.com/naturephysics

https://doi.org/10.1038/s41567-020-0953-2
https://doi.org/10.1038/s41567-020-0953-2
https://arxiv.org/pdf/1903.08130.pdf
https://arxiv.org/pdf/1903.08130.pdf
http://www.nature.com/naturephysics


Letters Nature Physics

	29.	Shen, T., Penumatcha, A. V. & Appenzeller, J. Strain engineering for 
transition metal dichalcogenides based field effect transistors. ACS Nano 10, 
4712–4718 (2016).

	30.	Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D electronic 
superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 7, e1601459 (2017).

	31.	Pan, Y. et al. Quantum-confined electronic states arising from the moiré 
pattern of MoS2–WSe2 heterobilayers. Nano Lett. 18, 1849–1855 (2018).

	32.	Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding 
model for monolayers of group-VIB transition metal dichalcogenides.  
Phys. Rev. B 88, 085433 (2013).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


LettersNature Physics

Methods
To achieve high strains (above 1%) in situ while performing STM measurements, we 
constructed a novel piezoelectric device that is compatible with flag-type STM sample 
holders (Fig. 1b). This device is based on similar designs used recently for transport 
measurements under high uniaxial strain33. In brief, a sample was bridged between 
two stacks of piezoelectric actuators that formed the two ends of a movable bridge. By 
application of a voltage to the piezoelectric device, the two ends of the bridge could be 
moved further apart or closer together, creating uniaxial strain in the sample. Our  
experiments were carried out on bulk crystals of 2H-MoSe2, which were glued firmly 
onto ruby substrates to form the ends of the strain bridge, giving the structural rigidity  
necessary for STM measurements. The resting separation of the ends of the bridge was  
100 μm with a maximum variance of ±3 μm under the application of a voltage 
(maximum uniaxial strain of ±3%, beyond which sample damage occurred). 
Following the construction process, the sample was mechanically exfoliated in ultra- 
high vacuum (UHV) conditions, immediately before the experiment, to avoid expo
sure to ambient. The crystal was secured at its edges and at the bottom with epoxy, and 
the bulk crystal was strained uniformly by application of a voltage to the piezoelectric. 
The experiments were conducted in a homemade STM at a temperature of 77 K, 
which was sufficient to avoid carrier freeze-out in the semiconducting crystals.

Data availability
Source data are provided with this paper. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding author upon reasonable request.
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