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Abstract

In this paper, we propose a diffuse interface model and finite element approximation for two-phase magnetohydrodynamic
(MHD) flows with different viscosities and electric conductivities. An energy stable scheme, which is based on the finite
element method for the spatial discretization and first order semi-implicit scheme combined with convex splitting method for
the temporal discretization, is proposed to solve this new model. The numerical scheme is proved to be mass-conservative and
energy law preserving. By Leray—Schauder fixed point theorem, the existence of solutions to the numerical scheme is shown.
The uniqueness of the numerical solutions is obtained. Utilizing the stability of the numerical scheme and the compactness
method, the existence of the weak solutions to the two-phase MHD model is established as well. Furthermore, given more
regularity on the weak solution, the convergence of the numerical scheme is derived. Finally, numerical experiments are provided
to verify the theoretical results and validate the proposed model.
© 2019 Published by Elsevier B.V.
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1. Introduction

Magnetohydrodynamic (MHD) system describes the interaction of electromagnetic fields and electrically con-
ducting fluids. The model couples the Navier—Stokes equations of continuum fluid mechanics and the Maxwell
equations of electromagnetism via the Lorentz force and Ohm’s law. The flow of the conducting fluids in the
magnetic field generates electric current which changes the electromagnetic field; meanwhile, the electric current
running within the magnetic field induces the Lorentz force which influences the flow of fluids. For some
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comprehensive and detailed modeling description and mathematical theory, we refer to [1-13] and the references
therein.

Furthermore, the study on the interaction of electromagnetic fields with two incompressible, immiscible and
electrically conducting fluids is of great significance in the engineering, such as the Aluminum electrolysis cells,
metallurgical industry, pump accelerators, MHD generators and fusion reactors [14—17]. For example, in metallurgy
processes, bubbles are always injected into the molten metal for stirring and homogenizing the liquid metal and
the magnetic field is imposed to control the bubble motion in a contactless method. In MHD generators and pump
accelerators, some experimental and analytical studies on the flow of two immiscible fluids in a channel under
an external magnetic field are carried out [18-21]. One fundamental problem for two-phase MHD problem is the
interfacial dynamics between two different incompressible fluids.

In many situations, it may not be convenient or accurate for the classical sharp interface model to describe
the topological transitions of interfaces such as self-intersection, pinch-off, reconnection and splitting during the
evolution of interface [22-24]. In the last decades, the diffuse interface (phase field) method has been widely applied
to model and simulate the topological transitions of interfaces. This method assumes that the fluids are mixed and
store the mixing (elastic) energy within the thin layer of finite thickness, therefore the surface tension force on the
fluids is derived by using the variational approach, see [23,25-30]. It is shown that the sharp interface model can
be recovered in the limit as the interface thickness approaches zero [28,31]. About the extensive study on the phase
field approach, we refer to [32-53] and references therein.

In this paper, we propose a diffuse interface model to describe the flow of two incompressible, immiscible
and electrically conducting fluids with different viscosities and electric conductivities by combining the physics of
MHD fluids and the phase field approach. The model consists of Cahn—Hilliard equation (free interface), Navier—
Stokes equations (hydrodynamics) and Maxwell equations (magnetic field) which are nonlinearly coupled through
convection, stresses, and Lorentz forces. We propose a fully discrete energy stable finite element method with a
semi-implicit scheme in temporal discretization for the model which satisfies the mass conservation and discrete
energy law, prove the existence of solutions to the numerical method by Leray—Schauder fixed point theorem, and
show the uniqueness of the numerical solutions. Utilizing the stability of the proposed numerical method and the
compactness method, there exist subsequences of discrete solutions which converge to weak solution of the model
as the mesh size & and time-step 7 tend to zero. Therefore, the existence of weak solution follows. Furthermore,
we postulate more regularity on the weak solution, and thus obtain the convergence of the numerical scheme.

The paper is organized as follows. In Section 2, a diffuse interface model for two-phase MHD flows is proposed.
In Section 3, preliminary knowledge and the definition of weak solution are introduced. In Section 4, we present
an energy stable semi-implicit scheme with finite element discretization and show the existence and uniqueness of
solutions for the scheme. In Section 5, we prove the existence of the weak solution to the proposed model and the
convergence of the scheme. In Section 6, three numerical examples are provided to validate the numerical scheme
and the proposed model. In Section 7, a conclusion is drawn.

2. The model for two-phase MHD flows

In this paper, the vector-valued functions and vector-valued function spaces in R? (d = 2,3) are denoted in
boldface. Let {2 be a bounded and connected domain. Firstly, we introduce single-phase MHD flow and phase field
model. Then, we couple them together to propose a phase field model for two-phase incompressible MHD flows.

Single-phase MHD flow. The single-phase MHD model consists of a coupling between the Navier—Stokes
equations of continuum fluid mechanics and the Maxwell equations of electromagnetism through the Lorentz force
and Ohm’s law. The equations for single-phase MHD flow read (see [15])

1
,o(u, + (u - V)u) - 2diV(77D(u)) +Vp=—curlBx B+ f, (2.1a)
7
divu =0, (2.1b)
1 1
B, + — curl (— curl B) —curl(e x B) =0, (2.1¢)
n o

divB =0, 2.1d)



J. Yang, S. Mao, X. He et al. / Computer Methods in Applied Mechanics and Engineering 356 (2019) 435—464 437

where u, p, B denote the velocity field, the hydrodynamic pressure and the magnetic field, D(u) = V’”TV”T and f
is the external force, for example, the gravity force f = pg. The physical parameters p, n, u and o, respectively,
denote the density of the fluid, hydrodynamic viscosity, magnetic permeability and electric conductivity. The first
term on the right-hand side of (2.1a) is the Lorentz force. This term is obtained from Lorentz force j x B and
simplified Maxwell-Ampere equation j = %Lcurl B where the displacement current is neglected and j stands for
the electric current. Eq. (2.1¢) is complemented by coupling Maxwell-Faraday equation B;+curl E = 0, simplified
Maxwell-Ampere equation with Ohm’s law j = o (E + u x B), where E is the electric field. For more details of
the single-phase MHD model, see [8,14,15,54—64].

Phase field model. For the phase field ¢, the free energy of two-phase fluids is

I |
E(<p)=/ (EIWI +—2F(<p))dx,
0 &

where F(¢p) models the immiscibility of the fluid components and is usually taken to be a double-well polynomial of
Ginzburg-Landau type F(¢) = %((pz — 1)%. The two minima of F(g), i.e., ¢ = %1, correspond to two stable phases
of the fluids. The first term (i.e., the gradient energy) and second term (i.e., the bulk energy) of E(¢), respectively,
represent the hydrophilic and hydrophobic parts of the free energy. It is well known that Allen—-Cahn equation is the
L?-gradient flow of the free energy E(¢) and Cahn—Hilliard equation is the H~'-gradient flow of E(p) (see [65]).
To preserve the mass conservation, i.e., % f o 9(x, t)dx = 0, we consider the Cahn-Hilliard equation

oE
¢, = div ()/V—) =y Aw, (2.2a)
dg
oE 1
w="" = —Ag+ = (o), (2.2b)
I £

where w represents the chemical potential which is given by the variational derivative of the energy E with respect
to ¢, f(¢) = F'(p), and y, ¢ denote the elastic relaxation time and width of the interfacial layer, respectively.

A new Cahn-Hilliard-MHD model for two-phase MHD flows. Based on the single-phase MHD flow and
phase field model, we propose the following Cahn—Hilliard-MHD model for two-phase MHD flows:

@+ divipu) = y Aw, (2.3a)
1
—Ap + g_zf(‘/’) =w, (2.3b)
1
,o(u, + (u - V)u) — 2div(n(g0)D(u)) +Vp+ipVw=—curl B x B+ f, (2.3¢)
I
divu =0, (2.3d)
1
B, + —curl ( curl B) —curl(u x B) =0, (2.3e)
2 o(p)
divB = 0. (2.3f)

The identity div(eu) = (u-V)g follows from the incompressibility of fluids. The left-hand side of (2.3a) expresses
the transport property of phase field, i.e., material point does not change type at least in the limit case [23,28]. The
term ApVw in (2.3c) is the continuum surface tension force in the potential form [23,24]. This force originates
from the phase induced force in the stress form

. A A A
1 div(Ve ® Vo) = 2A¢Vg + ZV|Vgl* = 2¢Vw + V (8—2F<<p> — Jwg + 5|V¢|2) :

where Vo ® Vo is the induced elastic stress due to the mixing of the different phases [24,28]. The pressure in
(2.3¢) is given by p + 4 F(p) — Awg + 5|Ve|* (still denote by p for simplicity) [24].
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The model (2.32)—(2.3f) is complemented with the following initial and boundary conditions:

u=0, on df2 x [0, T],
B-n=0, nxculB=0, onafx][0,T]
0 0

9% _ 9% _y, on 992 x [0, T],
on on

o(x,0) =@y, u(x,0) =ugy, B(x,0) =By, Vxell

where divug =divBy =0, T € (0, 00) and n is the outward unit normal to the boundary a 2.

The system (2.3a)—(2.3f) models the interaction of electromagnetic fields and two incompressible, immiscible
fluids with different viscosities and electric conductivities. In this paper, we consider two-phase fluids with matching
density p. For brevity, p is taken to be 1. The variable density case will be studied in the future work. n(¢) and
o (¢), which depend on ¢, are hydrodynamic viscosity and electric conductivity satisfying

0 < n~ :=min{n, 72} < n(p) < max{n;, n} = n",
0 < 0~ = min{o}, 03} < 0(p) < max{o}, 0»} =07,

(2.4)

where 1; and o; (i = 1,2) are the viscosity and electric conductivity of the fluid i. Assume n(¢) and #«)) are

Lipschitz continuous functions with respect to ¢. The phase field ¢ is almost constants (£1) in bulk regions and
smoothly transitions between these values in an interfacial region of thickness ¢. In this paper, choose

n(@) =m + e —n)He(p), o(p) =01+ (02 — o) He(9), (2.5)
where H.(x) = " L is a regularized approximation of the Heaviside step function [46]. It can be shown that 1(¢)

and #{p) in (2.5) are Lipschitz continuous functions of ¢ and satisfy (2.4).

3. Preliminary knowledge and definition of weak solution

Consider a bounded domain 2 in RY (d = 2,3) is a convex polygon/polyhedron. According to Poincaré
inequality and Proposition 3.16 of [15], the norms of the spaces H(l)(.(?) = {v e H'(2):v |yo= 0} and H,L(Q) =
1
{C e H'(12);C - n sg= 0} are defined by [|v]] 1, = V0]l 2 and [|Cllyy ) = (|| curl CII2, + divC||2Lz)2,
respectively. The spaces H, V, W and their norms are denoted by
H={veL’();divv=0,v-n|yo=0}, lola = llvll2;
V={ve H'(2);dive=0,0[;0=10}, lolly = IVvll23
W={CeH'(2);divC=0,C nlyo=0}, [Clw=]curlCl..

Furthermore, for the function spaces L' (0, T'; X), 1 <r < oo, the norms are denoted as || - || Loo(x) 1= €SS SUpy<, <7 || -
] <t<

lx and || - llzrx) == (fOT I - ||§(dt>7 for 1 < r < oo, where X is a real Banach space with the norm || - ||x. The

symbol (-, -) denotes the L? inner product over {2 and (-, -) stands for the dual product between the space and its
dual space, for example (H'(£2)) and H'(2), (H}{(£2)) and H}(£2), (H\(£2)) and H}(£).
Under the assumptions on {2 stated above, there exists the orthogonal decomposition:

L*(2)=H & VH'(2)/R, (3.1)

and || Pyull g1 < collu| g1 holds for any u € H(l)((l), where Py is the Helmholtz projection from L?(£2) to H (see
Theorems 1.10 and 2.7 of [66]). According to [15,67-69], the following estimates hold:

collVull 2 = ID@)ll 2 < [Vull 2, Vu € Hy(12), (3.2)

lullr <collVul 2, Yu e H(l)(.Q), 2<p<6, (3.3)
6-d d

lulls < collull,s IVully,, Vu € Hy(12), (3.4)
4-d d

lulls < collull,s IVull,, Vu € Hy(1), (3.5)

IBllLr < coll Bl gy VB e H)(2),2<p <6, (3.6)
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—d

1Bl < coanTuBnHl(m VB < H\(2), 37)
1B+ < col B, 1BIG, . VB < H\(2), (3.8)
lellr < coll@llg Vo e H'(2),2 < p <6, (3.9)
lols < collol,5 1917, +coll 2. Vo € HI() (3.10)
ol < col AN T 1016 4 colgle, Vo € HAQ). (3.11)

In this paper, ¢y is a generic positive constant depending only on {2 and ¢ is a generic positive constant depending
on ({2,y,¢& A, n, u,0). cg and ¢ may be different at each occurrence.
The definition of a weak solution to the problem (2.3a)—(2.3f) is given as follows.

Definition 3.1. Let 99 € H'(2), ug, By € H and f e L*0, T; (H (2))). (p, w, u, p, B) is called a weak
solution of the problem (2.3a)—(2.3f) if (i) it satisfies

@ € L0, T; H'(12)), @ € L¥0, T; (H'(2))), (3.12)
w e L*0,T; H'(2)), (3.13)
uc L°°(0 T; L*(2)) N L0, T; H\(12)), u, € L5540, T; (H)(2))), (3.14)
pe L5 (0, T; L3(92)), (3.15)
B e L™, T; L*(2))NL*0, T; H\ (1)), B, € Li(0, T; (H (D)), (3.16)

where d = 2, 3; (ii) there hold
(@, ) — (pu, Vlﬂ) +y(Vw, Vy) =0, (3.17a)
Ve, Vx) t3 (f(w) x) =W, %), (3.17b)
(u,, v) +2(n(e)D@), D)) + (w - Vyu, v) + i(B x curl B, v) — (divv, p) + AM(eVw, v)

= (f, ), (3.17¢)
(divu,q) =0,  (3.17d)

u \o(p u \o(p)

for almost all + € (0, T) and any (¥, x,v,q,C) € H'(£2) x H'(£2) x H(l)(.Q) X L%(Q) X H,‘,(Q), and ¢(0) =
©o, u(0) = ug, B(0) = By; and (iii) the energy stability

1 1 1 1
(B;,C) + — <? curl B, curl C) + — < ( div B, div C) —(u x B, curl C) =0, (3.17e)

! 1 1
Teon (), B(t), p(0)) + /0 {Ayanuiz+2||\/n(<p>D<u>||iz+ﬁnﬁcmwuiz
1 t
3l FdeM } /0 (f. w)ds + T;.;. . (o, Bo, ¢o), (3.18)

is true for almost all 7 € [0, T1, where J; ;. . (u, B, ) = sllull}, + 5 1BI, + 51Voll;, + 5(F(9), D).

Remark 3.1. If B, € L*(0, T; (H,lq(ﬂ))/) and B € L*(0, T; H}i(Q)), we can prove the divergence-free constraint
on B from (3.17¢e). Consider the backward-in-time equation

b —i—#ﬂ(ﬁ—de in 2 x [0, T,
o(p)

0
% =0, on 9{2 x [0, T], (3.19)

¢ =0, in 2 x {T}.
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According to (2.4)—(2.5) and [66,70-72], there exists a solution ¢ to the problem (3.19) satisfying ¢ €
L*(0,T; H*(f2)) and ¢, € L*(0, T; L*({2)). Then, taking C = V¢ € L*0,T; H;(Q)) in (3.17e), integrating
with respect to ¢, and using div B(x, 0) = ¢(x, T) = 0 for all x € {2, we have

T 1 T
/ (divB, é + —Aqb) dr = / I div BJ|3,dz = 0.
0 no (@) 0

Remark 3.2. Forall u, v € V and B € W, we can obtain the following equalities
((u -Vu, v) = —((u - Vo, u),
(B x curl B, v) = ((B - V)v, B).
Therefore, based on (3.17c) and the estimates (3.2)—(3.9), we get
w, € Li(0, T: V).

The result will be used in Lemma 5.4.

Remark 3.3. Based on [73] and Chapter IIl of [74], we have u, B € C(0, T:L*(Q) ford = 2, u,B €
Cu(0,T; L*(2)) for d = 3 and ¢ € C(0, T; L*(f)) for d = 2,3. The space C, (0, T; L>(12)) consists of all
weakly continuous functions in L*(0), ie., if u(r) € C,(0, T; L*(2)), F(t) = (u(r), v) is a continuous function
for all v € L*(12).

4. Fully discrete energy stable finite element method

In this section, we propose a fully discrete finite element method, which is energy stable and semi-implicit, to
solve the Cahn-Hilliard-MHD model proposed above. Let 7;, be a shape-regular and quasi-uniform partition of (2
into triangles in two dimensions or tetrahedra in three dimensions with characteristic mesh size 4. Based on the
partition 7, we introduce the finite element spaces X, C H(l)(Q), M, C L%(Q), W, C H,I,(Q) for the discrete
velocity, pressure and magnetic field, and the finite element space Y, C H'(£2) for the discrete phase field ¢ and
chemical potential w. Assume X, M), and Y}, satisfy the following conditions.

Assumption (A). The finite element spaces (X, M) and (Y}, Y;,) satisfy the inf-sup conditions:

di ,
inf sup M > 130’ (41)
aneMi\0} y, ex 0y gnll 2 IVos |l 2
Vi, V
inf (V¥ Vxn) > B, (4.2)

xn €M yyevvio) 1l gl Xnllgr —

where Sy and B, are positive constants depending only on (2.

Remark 4.1. According to Chapter II of [66] and Chapter IV of [75], there are a variety of spaces (X, M)
satisfying Assumption (A) such as P;,-P; element, Mini-element (P,-P;) and Taylor—Hood element. The P,-P,
(r > 1) conforming finite element spaces (Y}, Y;,) are a family of stable mixed finite element spaces for biharmonic
problem, that is, these spaces satisfy the inf-sup condition (4.2) (see [76—79]). The finite space W, is taken to be
Wy ={Cy € C°(2) N H)(2); Cpy |k€ Pu(K),VK € Ty}, k = 1.

Remark 4.2. In this paper, we consider the domain is a convex polygon/polyhedron. The classical H'-conforming
finite elements can be used to approximate the magnetic field. For the general domain with re-entrant corners, the
magnetic field is in general not in H'(f2). Some numerical methods can be applied to approximate the singular
solution, such as Nédélec finite elements [80,81], weighted regularization technique [82,83] and stabilized finite
element formulation [84,85]. Based on these methods, the extensions to general domains with re-entrant corners
are possible for two-phase MHD flows, which will be studied in the future work. Furthermore, pre-conditioners can
be considered for handling the difficult cases with high condition numbers [86—89].
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4.1. Description of the scheme and its stability

For arbitrary but fixed T > 0 and positive integer N € N, we denote by 7 = % the time step and

n__ 1
divp = % For two-phase MHD model (2.3a)—(2.3f), the semi-implicit energy stable finite element scheme is
to find (¢}, w}, uj, p;, B}) € Y, x Y x X, x My, x W), such that

@}, yi) — (@) ult, V) + y(Vw), Vi) = 0, (4.3a)
1
Vou, V) + ;(fhn, xn) = (W, Xn)s (4.3b)

n n—1 n n—1 n 1 . n—1y,.n
(duly, vi) +2(n(e} ) D(uy), D(vy)) + ((u, ~V)uh,vh)+§((d1vuh Jujy, vp)

1 . _

—i—;(BZ’l x curl BY, vy,) — (p}}, divv,) + Mol 'Vwl, vy) = f"(vp), (4.3¢)
(divu?, gy) =0, (4.3d)

1 1 1 1 . .

aB;,C))+—|———curlB},curlC, | + — | ————div B}, divC,,
h n—1 h n—1 h
23 0(9% ) w 0(§0]1 )

— (uj, x BZ*I, curlC) =0, (4.3e)
@) = Owpo, u) = Poyug, BY) = R,By, (4.3f)

for any (Y, xn> Vi qn, Cn) € Yy X Yy X Xpp X My x Wy and f"(v,) = %f:”il(f, vy, )dt. Furthermore, if
f € CQO,T;(H{(D)), f"(vy) in (4.3c) can be taken by (f(t,), vy). r= (o) — go,’l'*l in (4.3b) is derived
from a convex splitting approximation to the non-convex function F(¢) (see [90-92]). Denote Q, as L>-orthogonal
projection operator from L?({2) into Y}, P, (R;) as L?-orthogonal projection operator from L>(£2) into X;, (W},),
and Py, as L2-orthogonal projection operator from L*({2) into V,, respectively. The space V), is denoted by
Vi = {u;, € Xy; (divuy, q,) =0, Vg, € Mh}. The projection operators Qy, P, and R, have H'-stability [93-95].
There also holds W '*-stability for these projection operators. In fact, W'*(£2) ¢ €°(2) with compact injection.
For any u € W1’4(Q), we have
| Prullyia < [1Phe — mpuellyra + llwnuelyoa
< ch™ (1 Pyu — ull o + llu — mpu] 1) + [l s
= cllullyra,
where 7, is the nodal interpolation operator from C°(f2) to X,. Assume that
im [lg) = gol ;1 = lim 1) — wol,2 = lim || B) — Boll,> = 0. (44)

Firstly, the fully discrete scheme (4.3a)—(4.3f) satisfies a discrete energy law.

Theorem 4.1. Suppose Assumption (A) is valid and let {(¢}, wy,, uy, pr, B})} (n = 1,..., N) be a solution of
the scheme (4.32)—(4.3f). Then for any 1 <m < N, there holds the following estimate

m
d AT

Teony, By, o)+t Z <?||Vd,<p;’l||iz + E”df(‘/’;:)z”iz)
n=1

- AT AT - .

+ Zl (2—82||¢;:d,¢;:||iz + 3l + S I + 5l B + AyHszniz)

! n 2 1 1
—lcurl B, + _2”—1
ole, ) M m

=7 @)+ Tes ). B g)). (4.5)

n=1

“ _ 1 .
+7 ) | 21y (e} ‘)D(uz>||iz+ﬁu div B}|I%,
n=1
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Proof. Taking ¥, = Atwyj, in (4.3a), x» = Atd;@} in (4.3b), v, = Tuj in (4.3¢), g4 = tpj in (4.3d) and Cj, = iBZ
in (4.3e), and applying the equalities

2a(a — b) = a* — b> + (a — b)?, (4.6)
@ —b)a—b) = j—l[(a2 - 1]+ }tw2 _ %cﬂ(a _bP+ %(a — by, @)
we have (4.5). 0O

Furthermore, the fully discrete scheme (4.3a)—(4.3f) satisfies the mass conservation and its solution has the
following estimates.

Theorem 4.2. Suppose that Assumption (A) is valid, f € L*©, T; (H (2))) and Te 5, (wo, Bo, ¢o) < 0o. Let
{(pr, wy, uy, pr, By)} (n = 1,..., N) be a solution of the scheme (4.32)—(4.3f). Then for any 1 < m < N, the
following estimates hold

f @y dx = / <p2dx, (mass conservation) 4.8)
2 2
max {nuhan — B2 + AV l2, + 2<F(<o;:>, 1)} <C, 4.9)
Z (nuwzniz + g 1B [ +Ay||sz||iz> <C, (4.10)
S n n—12 A n n—12
Z MV = Ve IT + el — ¢TI ) < € (4.11)
m - 1 .
Z(uuz—uz ‘||iz+;||Bz—Bh 1||iz) <c, (4.12)
" <C, 4.13
max_[lgjllan < (4.13)
- ny2 T
T il < C{ S +T+1). (4.14)
n=1
Z Idi @ 1131, < C, (4.15)
T Z (nd,uh Ilf,ji‘), IR + 1B Hl),) < C(T + 1), (4.16)

where C is a constant depending on ({2, ), y,n, U, o, ¢y, o, By, f).

Proof. Letting ¥, = 1 in (4.3a), we have (4.8). Based on (2.4) and (3.2), we get

1

Iy 2

er"(u)—Z/ fu,,dt<r22||Vuh||Lz(/ IIfIIfH(l)),dt)
Iy— h—1

< an*nD(uz)niz +c/ I Wy 4
n=1 0
Then, (4.9)—(4.12) follow from (4.5). There holds

1
(Flg}), 1) = (Z((w;',')z — D% 1) > g7, — 21421,

where |{2| stands for the area in two dimensions or volume in three dimensions of (2. Based on the above inequality
and (4.9), we have (4.13).
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Taking x, = twj, in (4.3b), we have
2 3
tllwy 7. = (Ve Vw;,)-l- (fh swy) < TVl Vw2 t3 (II(ﬂ Mz + el o)llw 2

< %nwhan + 5||V<oh||iz + 5||sz||Lz + 8—4<||¢h ||Lz + g liS,0)- 4.17)
Combining (4.9)—(4.10), (4.13) with (4.17), we obtain (4.14).
Setting v, € Qp ¥, for any ¥ € H'(£2) in (4.3a) and using the H' stability of L? projection Q,, we have
iy V) = iy, Q) = (@}, 'w},. VOuY) — v (Vwj, VOuY)
< gy sy lizs + v IVl 21V Quipll 2
< collgy N IVugll 2 + v IVWi DIV 2 (4.18)

From (4.10), (4.13) and the above inequality, we have (4.15).
Next, define the discrete inverse Stokes operator S; from (H(l,(.Q))’ to X, as follows: for all v € (H(')(Q))’ s
(Sp(v), rp) € X, x M, satisfies
(VSh(v), Vop) + (div vy, rp) = (v, vy), Yv, € Xy,
(div Sy, (v), gn) =0, Vg, € My,.
If u, € Vy, there exists a constant ¢ > 0 independent of & such that (see Lemma 4.12 of [96])
(un, vp)
oup Vol = < cllVSu(un)ll 2.
Hence, for u;, € V,,, there holds
(up, v) (wp, Ppo) VP2

lwpll g1y = sup ——— = sup <c|IVSp(up)lly2. (4.19)
Hop) vEHl(Q)\ ”Vv”L2 UEHI(.Q)\ ”Vth”L2 ”VIJHLZ

From (4.3d), we know d,uj € V. Using the definition of discrete inverse Stokes operator S, and setting
v, = Sp(diuy) in (4.3c), we have

IVSu(diupllz, = (duf, Sh(dzuh)) = —2(n(¢}~"D(}), D(Sy(du})))
—((uZi -Vuj, Sh(dtuZ)) ((dlvu )u Sh(d,uZ))
1
—;(BZ‘I x curl B}, Sy(du})) — A}~ 'V, Su(du})) + f"(Su(diu}))

6—d
c<||u 0,5 ||Vu;:—‘||62||Vu,,||Lz+||B" ‘lle 1B}~ ‘IIHI(Q)”B llHum) IV S (drui)ll 2

1

tn 2
I1£1Z,,de IV Su(diu)ll 2. (4.20)
(Hp)

n—1

n n—1 n -1
e [ IVuyliz + lle, g IVwyllp2 + 1772 (

Setting C;, = R;,C for any C € H!(£) in (4.3¢) and using the H' stability of L? projection Rj, we have

n—1

o (e,

1
(di B}, C) = (d; B}, Ry C) = ~ (

curl By, curl RhC)

1 1
- - div By, div R, C + (u} x B}, curl R,C)
ole, )

4—d
T 1 1
<c <||BZ||H31(Q) + lupll, 2 IIVuZII“zIIB” ”Lz B~ IIHl(Q)) 1€ a1 2)- 4.21)

The estimate (4.16) follows from (4.9)—(4.10), (4.13) and (4.19)—(4.21). O

Remark 4.3. Based on the stability results of [53,97,98], the discrete phase variable can be bounded in
L>(0, T; L*(£2)) norm and the discrete chemical potential can be bounded in L°°(0, T; L?({2)) norm for any
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time and space step sizes in two and three dimensions. This is an interesting and important future work for the
target model of this article.

4.2. Existence and uniqueness of solutions of the scheme

In this subsection, we prove the existence of solutions of the scheme (4.3a)—(4.3f) by Leray—Schauder fixed point
theorem and obtain the uniqueness of the numerical solutions.

Lemma 4.3 (/99]). Let G be a compact mapping of a Banach space B into itself, and suppose there exists a constant
M such that

lxllzg <M (4.22)
for all x € B and a € [0, 1] satisfying x = aGx. Then G has a fixed point.

Theorem 4.4. Suppose Assumption (A) is valid and initial data ug, By, @o satisfy Je »,.(wo, Bo, ¢o) < oo. For any
given T > 0 and h > 0, there exists a solution {(¢;, w;, u}, p;, Bi)} (n=1,..., N) to the scheme (4.32)—(4.3f).

Proof. Firstly, we define amap G: ¥, x Y, x X, x M x W), = Y, x V), x X, x M, x W), by
G(gy. wy. uh, pr. BY) = @}, B} @y, B, By,

-~ o~ _=n .
where (@), w7, w}, pi. By) € Yy x Y x X, x M), x W), satisfies

a;: - (p;:—] n—1_n ~n _
E— Vn | — (@, uy, V) + y(Vwy, Vi) = 0, (4.23a)
—n d 1 n n—

@ xn) — (V@3 Vxn) — 8—2(<¢h)3 — o ) =0, (4.23b)
ﬁz B ”Z_l n—1 ~n n—1 n 1 : n—1y,,n
)+ 2(n(e D@3, Dwy)) + ()~ - Vyuy, vy) + 5((d1v uj " Huj, vy)

1
+;(BZ" x curl B}, v,) — (P}, divvy) + Mgy ' Vwl, v,) = f"(vy), (4.23¢c)
(diva!, g,) =0, (4.23d)
EZ - BZ_I 1 _~n 1 . =n .
— . C; |+ — curl B, curl Cy, | + — div B;, div C,
T o (o) no (g, )
—u} x B}, curl Cy) = 0, (4.23e)

for given (¢, wy, uy, p;, B)) € Y, x Yy x X;y x My x Wy, and any (Y, Xi, iy @ns Cn) € Y X Yy X Xjy X My, x W,
Next, we will prove the map G satisfies the conditions of Lemma 4.3 and then has a fixed point which is a solution
of the scheme (4.3a)—(4.31).

Given (pZ*I, ¢, €Yy, and uj, € X, the Cahn-Hilliard equation (4.23a)—(4.23b) can be viewed as the following

-_~n -

problem: find (wy, @) € Y, x Y}, satisfying

{a(ﬁﬁ,x;1)+b(xh,$ﬁ)= (fs xn)» 424)

b(wy, ) — (@), ¥in) = (g, ¥n),
for any (xn, ¥n) € Y, x Yj, where

1
a(ﬁz, Xh) = (sz Xh)» b(th 1//h) = —(VXh, th)’ C(@f» I/fh) = F(@f» I/fh),

_ 1 n\3 n—1 _ 1 n—1 1 vy
(f,Xh)—g—z((fﬂh) — o ), (g,llfh)——;(fﬂh d/fh)—;(fﬂhuw Yn).
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Denoting Yor = {xn € Yu: b(xn, Y1) = 0,V € Y, }, we deduce || Vy,ll,2 = O for any x; € Yo, and a(-, ) is
coercive on Yy, i.€.,

aGns ) = 1l = 1l

for any x; € Yo,. Moreover, one can easily show a(-, -) and b(-, -) are continuous, and c(-, -) is continuous, positive
semi-definite and symmetric. Under the inf-sup condition (4.2) and given (p,f_l, ¢, €Y, and uj, € X, the problem
(4.232)—(4.23b) is well-posed (see Section II.1.2 of [75]). Meanwhile, one can easily prove Stokes problem (4.23c)—
(4.23d) and Maxwell problem (4.23¢) are well-posed. Furthermore, since the spaces Y, x ¥, x X;, x M, x W), are
finite dimensional spaces, it follows that G is a compact map.

~n ~n

Next, we prove the boundedness of (goh, wy, Uy, ph, Bh) inY, xY, x X, x M, xWy,
@5 1 + MW 1| g1+ 12, 1| g Loyt 1502 + 1B, a2 =M, (4.25)
where M is a positive constant independent of « and (goh, 1’17;,', ﬁ;’l, D> BZ), if there holds
~ =~ 1 o~
G(g,, Wy, u},, Dy BZ) = ;(‘Ph, Wy, Wy, Py 32)7
that is

_ n—1
(wh :“ph Vi ) —algy '@y, V) + y (Vi Vi) =0, (4.26a)

~n o n—
@7, xn) — (V@ Vxn) — ;(@2)3 — @ xn) =0,  (4.26b)

' —au'"! B e .
(% vh> +2(n(ey D@}, D)) + o (@)™ - Vyay, vy) + ((dlvu Y, vy)
+%(BZ" x curl B}, vy) — (Br, divv) + Aa(@] "' V@), vy) = a f"(vs),  (4.26c)

(divay, gn) = 0, (4.26d)

/EZ—O(BZ_I 1 -~n 1 . =n .
—=— Cy |+ ﬁcurlBh,curlCh + ﬁdlvBh,dvah
T no (e, ™) no (e, )

—a(@] x B} ', curlC,) =0,  (4.26e)

for any (Y, Xn, Vs gns Cn) € Yy X Yy X Xjp X My X W R
Setting (Wi, Xn» Vs qn> Ci) = 20T, =A@ + arg) ', Ta}, Tp), 532) in (4.262)—(4.26e), taking sum of the
obtained equalities and using (3.2) and (4.6)—(4.7), we have

2y ATV} 172 + A (IV@; 1172 — 2 IVer 72 + IV@; — agi D)

ai (1 1 ne 1 o
+3 <—||(¢;1>2—1||12—5||<wh D=1 + 5 1@ — (g 1)%)

oA 12 ~ 2 = —1y2
—z(llwh(wh —ag, )Ile +19h — agy M 152) + @411, — o g~ 5, + 13, — auy™ "7,

B2 2 —1)2 B —1)2
+Hcgn T Vayli7, (||B,,||L2—a 1B, + 1B}, — B, ||L2)+M 1B 0
. 205(1—05)k e
= 2o f'@) + —— (¢, Loh —agi )
_ ak a2 20(1 — a)*A
= con TVl + 55 19% — agi” ||iz+ﬁ / ||f||§H6ydt+—|| 7. (4.27)
0 In—1

Then, according to (4.27) and « € [0, 1], we get

~ _ ai
2y AT VLI, + AIVELT . + AIV@) — ag) DI, + En@:f — 112,

ar (1 _ _ 1 _
+8—2{5||($;:)2—<awz D252 + 183@h — @@y Dl + 518 — ag; ‘||iz}
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@, 132 + cgn T IVERI . + ||BZ||22+M 1B 0
In 2
< %m—/, 11 Hl),dr+ lgn~ ||iz+x||wz“||iz+;(||<p,';‘1||i4+2||<o;;“||iz+|9|)
+llay 3 + IIB” N2y = My, (4.28)

where M is a positive constant independent of (@], W', @], p;. B},) and a.
Next, taking (Yy,, xn) = (2@'}1’, 2y1’EZt) in (4.26a)—(4.26b) and adding the obtained equalities, we have

19172 — Pl 132 + ||a;: — aso;:”n + 2yt whll3,
= ar(y) @), Vo) + LT (@ e wp). (4.29)
From Holder inequality, (3.3), (3.9) and the following equality
@ = (@7 = 1)’ + 2@ — agl ™'Y + 4@ — g Her T — 1+ 2021V,

we obtain
1 -1
2at(p, uy, Vop) < 2ty s lugll sV lL2,
2yat . 3 1 o~ 2yat 3 1 N
2 (@) —ep " wp) < 7 (II(?";,II*LA‘IIwZIIu + g2 w1l .2)

OV 3

<yl @yl + yellVE; 7, + (||(</>h)2 — 132 + 19 — agy~"1172)

coya’t
+0V

(1213 + ey~ 13 + I3 "1,
Combining (4.29) with the above inequalities, we get

2 ~n 2 1 -~

1G22 + vl 2: < gy~ 122 + 2c0t e~ i V&L 120 VG, 2
o2

Co)/

[SIY)

+yT|Vwpll;, + (@ = 1132 + 1@ — ey '113,)

+ 2 (1208 #1671 + 1 1) - (4.30)
Based on the inf-—sup condition (4. 1) and (4.26c), we have

(P}, div,)
BollPpll 2 < sup ———

€0 -1 + 1o 2
< — @yl + lug " ll2) + 0" IVl 2 4 col Vag Il
vex\o IVogllp2 T

1

— “n 1 fn n :
B o)+ Acollg] ‘||H1||th||Lz+c<; / I nf,,é(m,dr> : (431
1

n—

Combining (4.30)—(4.31) with (4.28), we deduce (4.25).
According to the above analysis and Lemma 4.3, we obtain G has a fixed point which is a solution to the scheme
(4.32)—(4.3f). O

Theorem 4.5.  Under the conditions of Theorem 4.4, there exists a unique solution {(¢},w;,uy, p;, B})}
(n=1,...,N) to the scheme (4.3a)—(4.3f).

Proof. Suppose that {(¢;,,, wy,, u},, phy, Bj)} and {(¢},, wy,, u},, ph,, Bj,)} are two solutions of the scheme
(4.3a2)—(4.3f). Denote

—n __ . n n —n __ _,.n n —n __ _.n n —n __ n n Dt _ n n
Op =P — Ppas Wy = Wy — Wy, Uy = Uy —Upy, Py = Py — P By = By — By,

From (4.3a)—(4.3f), we have

(%, Y ) (o~ '@y, V) + y(Vw,, Vi) =0, (4.32a)
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—n 1 n \2 n o_n n \2\—n —n
~Voy, V) + 8_2 ((((pm) + OO + (@)@ Xh) = (WY, Xn) (4.32b)

o :
(% vh> +2(n(¢} D@}, D)) + (@)™ - Vyu}, vy) + E((div up ), vy)

1 —n
+—(B}™! x curl B, v;) — (P}, divv,) + Mg} Vw}, v,) =0, (4.32¢)
"
(divig}, gi) =0, (4.32d)
B, 1 1 —n 1 | I
—,Cp |+ — —curl B, curlCp, | + — —-div B, divCy,
T 128 U(‘Ph ) w U(Qoh )
— @@} x B}, curlC) = 0. (4.32¢)

Taking (Y4, xn, u. qn, Br) = (Atw}, Ag;, Tuy,, Tpy, iE;) in (4.32a)—(4.32e), we get
— —n A n n on n —n —n 1 "
AyTIVwLI3 + AMIVELIL . + . ((@r)” + @0y + (@), @0)7) + g7, + 1B [

1 1
Voo™ Jo@i™

n— — T —n T . Sl
2t/ nef~HD@DI2, + ;n curl B, |17, + — | div B, )%, = 0. (4.33)

According to

n \2 n \2 n n \2
_ + + _
(@) + e i + @), @3)°) = <(“’“) P Un ) gaZ)Z) >0,
it follows from (4.33) that
IV 12, + 1@ 1% + @2, + I Bl = 0. (4.34)

Combining (4.34) with (4.32b), we have
Wl 1 = 0.

The uniqueness of pressure p; can be obtained from (4.1). Therefore, the theorem is proved. [J

5. Existence of weak solution and convergence of the numerical scheme

The purpose of this section is to prove the existence of weak solutions to the two-phase MHD problem
(2.32)—(2.3f) by a compactness argument and obtain the convergence of the numerical scheme (4.3a)—(4.3f).
Let {@n:(x, 1), up(x,1), By (x,1)} be the piecewise linear interpolation of the fully discrete finite element

solution {go,’f uy, BZ’} m=1,..., N, ie., for any t € [t,,—1, ;]
t—two1 tn =1 oy t—tuo1 tm —1 o4
One (-, 1) = o, () + o, (), Upe (-, 1) == wy' () + w, (),
t—tua1 Im — 1 1
Bj.(-,1) = Bh )+ . Bh ().

Let {@ye (. 1), Wie (X, 1), Wye(x, 1), Ppe (. 1), Bie(x, 1)) and {Eh,(x, 1), Tne (5, 1), Bpo(x, t)} be the piecewise con-

stant extensions of {¢)", w, u}, py*, By'} and {¢; ', uj~', By ~"}, m = 1,..., N, respectively. That is, for any
t € (tu—1, tm],
ahr('v t) = (p]l;n()s whf('? t) = w]T()? ﬁhf('? t) = p}n11()7

Wpe 1) =ul(),  Bie(o0) =Bl @pe, ) =90,
Wy, ) =u) '), Bu(-,1):= B ().
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Moreover, denote

tm
Fewr= g == [ (g,
Im—1
for any 1 € (t—1, tnm]-

It is well known that Hilbert spaces are reflexive Banach spaces, and if X is reflexive and 1 < p < oo, the space
L?(0, T; X) is reflexive and [L?(0, T; X)] = Lp/(O, T; X'), where p’ is the conjugate of p (see Propositions 3.55
and 3.59 of [100]). Therefore, according to Theorems 1.18 and 1.26 of [100], Corollary 4 of [73] and Theorem 4.2,
we have the following convergence. For the convenience, the convergent subsequences are denoted by the same
symbols.

Lemma 5.1 (Weak Convergence). For the sequences {5/”, Whe, E;,T}, {@”, Whe, Uhrs Phes Ehr} and {gpe, Wiy,
Upe, Phes B}, there exist convergent subsequences satisfying

P Phe> Pre — %9 in L0, T: H'(12)), (5.1)
@ne) = @ in L*0,T; (H'(1))), (5.2)

Whe = W in L*(0, T; H'(92)), (5.3)

Upe, Upe, Upy — *U in L=(0, T; L*(2)), (5.4)
U, Upe, Upy — U in L*(0, T; HY(1)), (5.5)
Wne) — u, in Lﬁ%(O, T; (H)())), (5.6)

Phe =D in L#%4(0, T5 L3(92)), 5.7)

B.. By, By, — *B in L, T; L*(Q)), (5.8)
By, Bue, By — B in L0, T; H.(12)), (5.9)
(Bj:): — B, in L0, T; (H\(2))), (5.10)

as h, T — 0. Here, — x means weak * convergence.

Proof. We only give the proof of (5.1). Based on the fact that {@,,}, {¢,,} and {¢;.} are bounded sequences in
L>®(0, T; H'(£2)), the sequences {¢;.}, {¢),} and {@,,} weakly * converge to ¢, ¢; and ¢, in L>(0, T; H'(12)),
respectively. Therefore, there holds

T T
lim /0 (Qne — @pe, W)dr =/0 (0 — @1, ¥)dt, Vi e LYO, T; (H'(2))). (5.11)

h,t—0

According to L>(£2) C (H'(£2))’ with continuous injection, L>(0, T; H'(£2)) C L'(0, T; (H'(£2))") and (4.11), we
have

T T
/ (Phe — Pprs 9 — @1)dt < / l@ne — Onellar(lle — @1l i)y dt
0 0

T
< c/ 1one — Prelliconllg — @1l 20t
0

N t
"oty —t .
scnw—solnpo@z)Z/ — N0 =l odt
n=1 -1

1

N 2
1 1 _ 0
<ct2T 2|l — @1llpoor2) <§ len — o 1||i,1(9)> 50. (5.12)
n=1

Taking ¥ = ¢ — ¢ in (5.11) and using (5.12), we get ¢ = ¢;. Similar to the above analysis, we also have
¢=¢. U
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Lemma 5.2 (Strong Convergence). For the sequences {5,,,, ﬁh,, Ehr], {Eht, Uj, E;n} and {@Qpr, Wpr, By}, there
exist convergent subsequences satisfying

One —> @ in C(0, T; L?(02)), (5.13)

P Phe = ¢ in L0, T; LP(2)), (5.14)

Upe, Upe, Upy — U in L*(0, T; LP(12)), (5.15)
By..B).. By, — B in L*(0, T; LP(02)), (5.16)

as h,© — 0, where p € [1, 2 = 2)

Proof. According to Sobolev embedding theorem, Corollary 4 of [73] and Theorem 4.2, we obtain {¢;.} strongly
converges to @ in C(0,T; LP(82)), and {uy.} and {B.} strongly converge to u and B in L0, T; LP(02)),
1 <p< T Next, we prove the convergence of {(ph,, Uy, Bhr} and {5,11,5;,“?1” . Since {¢p.} is relatively
compact in C(0, T'; L?({2)), {¢n.} is uniformly equicontinuous, i.e., for all € > 0, there is § > 0 such that for all
h,t >0, lon:(t]) — @nc ()Nl Lr < €, where t] and ¢] are in [0, T'] with |, — #{| < §. Therefore, for any € > 0, there
exists § > 0 such that

1@ne — @nellocwry = 1@ne — ne sy = esssup lof — @ i < e,
1<m=<N

for t < §. The estimate (5.14) holds.

For any p € (1, %), taking p; € (p, %) and using an interpolation inequality (see Theorem 2.11 of [67]),
Holder inequality, (4.10) and (4.12), we have

N e 2
t, —1t
— 2 § n 1 E
”uht — Upr ”LZ(LP) - / < ) d[”uh - uZ ”LI’ <ct |uh - uh ”uz - uh ”LPI)
n=1 th—1 T
N 6 N 1-6
—1)2 —12
C(E Tlluy, —uj, ||L1> (E Tllu, — uj, ||Lm>

n=1 n=1

0 N 1-6
n n— —0
(Z o, — ;™ Lz) (Zrnvwh —uj ‘>||iz> —0, (5.17)

IA

| /\

n=1

Pi—p
p(p1—1°

also obtain the convergence of [ﬁhf} . {B)-} and {?hr ] O

where 60 =

Consequently, {#)} strongly converges to u in L* (0, T; LP(12)), p € [1 2d Similarly, we

’d2

In addition, to prove the existence of weak solution, we give the following remark.

Remark 5.1. If u,v € L2(0 T; HO(Q)) and B,C e L*0,T; H .({2)), we can define the bounded linear
functionals f, , € L*0, T; (Hy(£2))) and f¢, € L*(0,T; (Hl(Q))) sat1sfy1ng

(f,w, u) = (n((p)D(u), D(v)), (fc,w B) = (a(l(p) curl B, curl C) + (a
based on the fact that

(1) D@). D)) < 0" [l g1 )10l g3 20
1 1 1
curl B, curl C —i—( divB,divC>§—|lB|I 1L ICll g1 o
<a<<p> ) o (p) R

Also, if u € LX(0, T; HY(2)), v € L&1(0, T; H{(2) and g € LA, T: LX), p € L54(0, T; LA(£2)), we can
define the bounded linear functionals f, € L6 d(O T; L*(2)) and fq€ L%, T; (H (£2))') satisfying
(fo, py=(divy, p), (f, u)=(divu,q),

based on (div v, p) < Vd[[v]l gy o)l Pl 2-

1
div B, div C> ,
®)
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Theorem 5.3. Suppose Assumption (A) and (4.4) are valid and the initial data ug, By, @o satisfy T, (o, Bo, ¢o)
< 00. There exists a subsequence of {(@nr, Whr, Upr, Ppes Bnr)} which has an accumulation point (¢, w, u, p, B).
And (¢, w, u, p, B) is a weak solution to the problem (2.3a)—(2.3f).

Proof. For any (¥, x,v,q,C) € C®(2) x C®(2) x CZ(N) x CX(2) N LA(2) x C®(2) N H.(2), where
C2°(£2) represents the space of real infinitely differentiable functions with compact support in (2, we can choose
ns Xns Vs qns Cr) = (QnW, Onx, Prv, Ing, RyC) € Yy, X Y¥) x Xy x My x W, such that

Y Sy i H(Q), S x i H'(1),

v 230 i HYD)., @3¢ inLi@), ¢, 22c inH\(Q),
where I, is the L? orthogonal projection operator from L2({2) to M,,.

Then, taking these test functions in (4.3a)—(4.3e), multiplying by &(¢) € C*°([0, T']), and integrating the obtained
equations with respect to ¢ from O to 7, we have

T
/ {(@ne)es W) — @peline, V) + ¥ (VWhe, V) JE@)dE = 0, (5.18a)
0
T 1 _ T
/ {(vmf, Vi + 5T xh)} £(1)dt = f (@i EDNL, (5.18b)
0 0
T _ _ ) B
/ { (@ne)is vi) + 2(0@4) D@ne), D)) + (@he - V)lpe, v4) + 5((diV Uy )y, V)
0
1 = — _ T__
+;(th x curl Bz, v4) — (Ppe, divvg) + M@pe VWi, V) } E(dr = / S ®E()de, (5.18¢)
0
T
/ (divuy,, gp)é()dt =0, (5.18d)
0
T
/ { ((B/”),, Ch) + ( 1: curl By, curl Ch) + ( 1: div B, div Ch>
0 Mo((phr) MG((phr)
—(@ipe X By, curl C)) } E(t)dt = 0, (5.18¢)

where ), = g?f” — @), Next, we pass to the limit term by term in (5.18a)—(5.18e) as h, T — 0. For time derivative
terms, it follows from (5.2), (5.6) and (5.10) that

h,7—0

T T
/O((whr)z,¢h)§(l)dl—>/(; (@, ¥)&()de,

T T T T
/O ((ene)e. va)E)dr 2728 /0 (1, D)), /0 ((Bio). Ca)E(dr 2228 /0 (B,. C)e(1)dr.

For elliptic term, there holds
T

T
fo (0w Do), D(wp))E(N)dr — /0 (n(@) D). D@))E(0)dr

< n@1e) — 1@ L2y I D@R) 202 | DWRE D] 414,
A0 I D@ o)l 202l (D) — D@))ED 1212

T
+ ‘/0 (n(@)(D(@e) — D)), D(v))§(1)dr Laaay) (5.19)

In fact, because of H,(x) < ﬁ, we have

— = m2 —ml =
1n@ne) — 1@ = |n2 — mi| |[He@he) — Helo)| < %"phr — ¢l

Then (5.19) follows from (4.10), (5.5), (5.14), Remark 5.1 and the definition of weak convergence.
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Similarly, using (4.10), (5.9), (5.14), Remark 5.1 and the definition of weak convergence, we also obtain

r 1 — 1 _
/ {( — CUI‘IB;M,CU.I'IC;,) + (—: diVBhT,diVCh>}§(t)dl‘
0 wo (@p) o (@)

T
hﬁ.o,/ {( ! curlB,curlC>+< : divB,divC)}E(t)df-
o (\uo(e) no(e)

Next, we show the convergence of the trilinear terms. From (4.10), (5.9) and (5.16), we deduce

T

T = — 1
/ — (B x curl By, v,)E()dr — / —(B x curl B, v)&(t)dt
0o M 0o M

S ; ||E/“— — B ||L2(L4) ” CurlE/“— ||L2(L2) ||vh§(t)”Loo(L4)

1 —
+;”B”L2(L4)” curl Byell r2,2)[1(0n — 0)E@)] Loo(14)

h,t—0
—— 0.

T
+ / l(B x curl(Bj, — B), v)&(t)dt
0

7
By (4.10) and (5.14)—(5.15), there holds

T T
/ @oeline, VU EDL — / (o, VYE(r
0 0
= (||¢hr - <P||L°°(L4)||ﬁhr||L2(L4) + ||<P||L°°(L4)||ﬁhr - u||L2(L4))||V¢11§(f)||L2(L2)
h,t—0
Flloll oz el 2 1V — VIDEDI 22 —— 0.

Similar to the above analysis, we can get the convergence of other trilinear terms. Moreover, we have

T o T
/(f/mxh)é(t)dt—/ (f(p). x)&()dr
0 0

= | 1Bie = @l (1Pne2agsy + 190008, ) + 1Bhe = @ll2z | 10E Ol 20,
h,7—0
(101 e ey + 101202100 — EDN 228, =5 0.

Based on Remark 5.1 and the definition of weak convergence, there hold

T T T T
/ (diviy,, gnEdr 2225 / (divu, Q)E()dr, f (div vy, By )E(0)dr 28 / (div v, p)E(t)dr.
0 0 0 0

It is well known that C°(2) is dense in H!({2), C2°(£2) is dense in H(l)(.Q), cruHn L%(Q) is dense in L(z)(.Q) and
cx(nN H,IZ(Q) is dense in H;(Q) and C*([0, T']) is dense in L?([0, T]), 1 < p < oo. Consequently, letting A
and t converge to 0 in (5.182)—(5.18e), (3.17a)—(3.17¢) hold in the sense of distributions.

Next, we prove ¢(0) = ¢, u(0) = uy, B(0) = By. Based on the fact that C*°([0, T]) is dense in H'([0, T]), we
choose

.
§@) = s
0,

0<t<sy,
s<t<T,

in (5.18a), (5.18¢c) and (5.18e). Next, as h and t converge 0, we obtain
1 N N
—(¢o, ¥) + ;/0 (@(1), Yr)dr =./0 {(pu, Vi) — y(Vw, Vi) }e(0)dr, (5.202)
—(ug, v) + % / (u(t), v)dr = —/ {Z(n((p)D(u), D(v)) + ((w-Vu,v) + %((div uu, v)
0 0

+l(B x curl B, v) — (p, divv) + AM(eVwn, v) — (f, v) } E(t)dt, (5.20b)
u
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_(BO,C)+1/S(B(I),C)dt:—/s{( ! curlB,curlC)
s Jo o (\no(e)

+( ! div B,diVC) — (u x B,curlC)}E(t)dt. (5.20¢)
po (@)

Then, as s converges 0 in (5.20a)—(5.20c), we can get from Remark 3.3

(o, V) = (@(0), ¥), Yy eH (D),
(up, v) = (u(0),v),  Vove H)D),
(By, C) = (B(0),C), VY CeH\N.

Since H'({2) is dense in L2(£2), and H}(£2), H)(£2) are dense in L*({2), there hold ¢(0) = ¢p, u(0) = uo, B(0) =
By. From (4.5), we have

1 , 1 , A , A tm o,
E”uhr([m)”Lz + ﬂllBhr(tm)||L2 + EIIV%I(Im)IILz + S—Z(F(%r(tm)), 1)+ A Ay VW ||, de

tm — _ ) 1 1 _ ) 1
+ 2{ly/ 1@ ) D(@no)ll ;2 + ;II—Curl Bl + —
0

1
| —
Vo @) w Vo@io)

tm
=< f <f7 up.)de + t]s,}»,u(ugv Bg, (/71(1))
0

div By |7, ¢ dt

According to lower semi-continuity of norms and (4.4), an accumulation point (¢, w, #, p, B) satisfies the energy
inequality (3.18).

From the above analysis and Definition 3.1, an accumulation point (¢, w, u, p, B) is a weak solution to the
problem (2.3a)-(2.3f). O

Next, we give the following estimates of weak solution.

Lemma 5.4. Suppose that f € L*(0, T; (H(l)(Q))’) and Je 5., (o, Bo, po) < oo. Then, for almost all t € (0, T),
there hold

f o(x,)dx = / @o(x)dx, (mass conservation) 5.21)
Q Q
2 A 2 1 2
MVeOI3 2 + = (Fle@), 1) + lu@®)l;. + —I1B®Il;, < C, (5.22)
g2 m
! 1
/O <||Vw||iz +n | Val;, + WIIBH?,W)) ds < C, (5.23)
t
lell 1 + / lpel1Z1,ds < C. (5.24)
0
t ) T
f lwligds <C{ 5 +T+1), (5.25)
0 &
! 4 4 A2
/O <|qu||$/ + IIBzII("Hb/ +lpl> )ds <C(T+1), (5.26)
' ) 46—d) T
/ <|IA§0|IL2+II</JIILO§ )ds SC<8—2+T+1>. (5.27)
0

Proof. Taking ¥ = 1in (3.17a), we have (5.21). By Holder inequality, (2.4), (3.2) and (3.18), we have (5.22)—(5.23).
Based on (5.22)—(5.23) and the proof of Theorem 4.2, we can prove (5.24)—(5.25).

According to (3.1), there holds v = Pyv+ Vg for any v € H(])(_Q), where vg € H'(2)/R C L%(.Q). Then, from
(3.17d), we have u € V C H and

d
(us, v) = (us, Pgv) + (u;, Vo) = (u;, Pyv) + E("’ V) = (u;, Pyv), Vv e Hy(2).
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It follows from (3.17c) and the H'! stability of Py that

(. v) (. Pyv) [V Pyl
lerlagy = sup GG = IVPaoll2 Vol
veH ) (2)\{0) L2 yeH(Q\0) 7UIIL2 L2
6—d 6+d 6—d 6+d

6—d 6+d Co 6—d 64d
< con"[IVull,2 + collull 5 IVull,3 +;||B||L§ 1Bl ) ) + Aol Vw2 + 1L F -

HL(2)

Therefore, from the above inequality, (5.22)—(5.24), (3.17¢), (3.17e) and Remark 3.2, we obtain (5.26).
Letting x = —Ag in (3.17b) and using f'(¢) = 3¢> — 1> —1, (3.9) and (3.11), we have
1 1 1
1A¢l7. = (5 + 8—2)||Vgo||iz + 5 IVwl,,
4(6—d) 5 6(4—d) 4(6—d) 2 6(4—d) 4(6—d)
el < colldellalel, o +elell,  <colldelillel, " +colell,’

Hence, we get (5.27) from the above inequality and (5.22)—(5.24). O

To guarantee the uniqueness of weak solutions, more regularity on weak solutions is needed. Then the space S
is introduced as follows

S ={(¢,w,u, p, B): (p, w, u, p, B) satisfies (3.12)—(3.16) and Vu, VB € L0, T; L1(02))},

where ¢ = 3 for d = 3 and ¢ > 2 for d = 2. In fact, the weak solutions (¢, w, u, p, B) of the problem (2.3a)—
(2.3f) belong to the function space S, if weak solutions (¢, w, u, p, B) satisfy the additional regularity conditions
Vu € L*(0,T; L1(£2)), VB € L*(0, T; L1({2)), where ¢ = 3 for d = 3 and g > 2 for d = 2. From Remark 4.1
and [66], Y;, X, and W, are finite-dimensional subspaces of W!(2). Therefore, Y, x Y X X x My, x W, is a
subset of S.

Theorem 5.5. Suppose that f € L*(0, T; (H(l)(Q))/) and initial data wy, By, @y satisfy Je . .(Wo, Bo, ¢o) < co. If
the weak solutions of the problem (2.3a)—(2.3f) belong to the function space S, the weak solutions of the problem
(2.3a)—(2.31) in the function space S are unique for d =2, 3.

Proof. Assume (¢;, w;, u;, p;, B;), i = 1, 2, are two weak solutions to the problem (2.3a)—(2.3f) which belong to
the function space S. Denote ¢ = ¢; — ¢, w := w| — wy, u := u| — uy, B := B; — B;. Then, there hold

(0, V) — (o1, V) — (puz, Vi) + y(Vw, V) =0, (5.28a)
Vo, Vi) + Siz(g(gol, ), x) = w, x),  (5.28b)
(s, v) +2(n(@1) D), D)) +2((n(¢1) — n(92))D(u2), D)) + (1 - Viu, v)
+((u -Vu,, v) + &(Bl x curl B, v) + %(B x curl By, v) + A(@; Vw, v) + A(pVw,, v) =0, (5.28¢c)

(B,,C)+<< ! - ! )curle,curlC)+(< ! — ! )diVBz,divC>
uo(pr)  po(g2) puo(er)  po(e)

curl B, curl C> + ( div B, div C>

1
+
<W(<p1) wno (¢1)
—(u x By,curlC) — (u, x B,curlC) =0,  (5.28d)

for any (¢, x,v,C) € H'(2) x H'(2) x V x H},(Q), where g(¢1, ¢2) == <p12 + o192 +¢§ — 1.
Setting (Y, x, v, C) = (\w, Ag;, u, ﬁB) in (5.28a2)—(5.28d) and adding the resulted equalities, we have

d /A 1 1
— <§||wniz + Enuniz + ﬂuBuiz) + yAlIVwl?, + 21N D@,

dt

+ ! I ! curl B||?, + — | ! div B|?
—||—/——=cu — || ——=d1v

w? o (er) L2002 Jolen L2

s
= = 5(01, 8(p1, 92)9) + Mouz, V) = Mo Vs, u) - (- Vyuy, u)



454 J. Yang, S. Mao, X. He et al. / Computer Methods in Applied Mechanics and Engineering 356 (2019) 435—464
1 1
—;(B x curl By, u) + ;(llz x B, curl B) — 2((n(¢1) — n(¢2))D(u2), D(w))

1 1 1 1 | 1
- 1By, curl B ) — — - — divB,,divB | . 5.29
W ((G(‘/’l) a(¢2)>cur 2 ) u? ((U((ﬂl) U((pz)) Rt ) (5-29)

To estimate the first term on the right-hand side of (5.29), we test Y = gizg(gol, )¢ € L*0, T; H'(2)) in (5.282)
and have

s A A Ay
— (o801, 929 = —8—2(<p1u, V(g(e1. wz)w)) - —(<puz, V(g(e1, 92)9)) + E—Z(Vw, V(g(@1, 92)0))

2 2
2, 4+ el Va2 Dol

+c (||<p1||§,1 1) (||g(g01, o)1 + Ve, )173) lll,1 (5.30)

where g(@1, ¢2) € L*(0, T; L®(2)) and Vg(p1, ¢2) € L*0, T; L3(2)) can be obtained from (5.24) and (5.27).
From (3.3) and (3.9), we get

Mpuz, Vw) — MpVws, u) < A||¢||Lz||uz||Ls||Vw||Lz + Aol 31 Vw2l 2l o
<—||v wl}s + L IVul} +c (IVaals + Vsl ol (5.31)

Using the fact that n(¢) and Tw) are Llpschltz-contmuous functions of ¢, we have

1 1
In(e1) — n(@) e + l—— -~ T%)IIUJ <cller — @2ller < cllelly,
where p € [1,6] if d =3 and p € [1, +0o0) if d = 2. So, by Holder inequality, there hold
czn’
2((n(@1) — n(@2))D(uz), D(w)) < 0TIIVMII + ¢l Vusliz, IlthIHh (5.32)
1 1 1 1 1 1 . .

— _— = curl B, curl B | + — div B,, div B
iz G(cpl) o(92) 12 \\o(e)  olg)

< ppEp— IIBIIHl(Q) + CIIVlequllthIHl, (5.33)

in which ¢ =3 if d =3 and g > 2 if d = 2. Based on (3.3), (3.5)—(3.6), (3.8) and Remark 3.2, we obtain

1 1
—((u -Vu,, u) — —(B xcurl B>, u) + —(u> x B, curl B)
2 2

1 1
llaell 2 [ Vua |l 2 lull 24 + ;||B||L4” curl By |2 |lufl 4 + ;”Vu2||L2||B||L4”B”L4’ d=2,

IA

1 Co
llall 2| Va3 llall s + _||B||L6|I curl By || 5 llull2 + ;IIVuzlllelBIILZIIBIILs, d=3,

2
< 0

| Va 117 s +||B||,,1(m+c<||Vuz||§d+||curle||§d>(||u||iz+||B||iz). (5.34)

Combining (5.30)—(3.2) and (5.34) with (5.29), we have

ull?, + =——IIBIP

21 25+ HL(2)

d 2 YA
= —||V¢||L2+ a2, + ManLz + Zvel},

< c(IVwall, + llg(@r, @)l 7 + V801, @)1135) el
+c (IVu2llze + IVB2lize) (lullzs + 1B, + lel?,) . (5.35)

where g =3 ifd=3and g >2ifd =2.
Next, we estimate —||<,0||22 and ||A(,0||22 Setting ¥ = ¢ in (5.28a) and x = —y A¢ in (5.28b), and adding the
obtained equalities, we have

1d
__||(P||L2 +vldel;, = z(g(wl, P29, Ap) + (p1u, Vo) + (pua, Vo)
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A

14
< 8—2||g(§01, e)lleelieli 2l Agll 2 + el luli 2 1IVell s + el 2wzl Vel s

A

14
= 714015 +c(llg(er, @i + IVl ) IelZ2 + llgn iz Il (5.36)
Taking sum of (5.35)—(5.36), we get

d 2 2 2 1 2
I el 2 + Vel + llull;. + —IIBIILz

AV IV ! B|? Aopl?
+yAIVwl?, + g Va2, u20+ 1By o)+ v 1 A0l
< c(IVwall?2 + lgler, )1~ + 1IV8(01, 02)135) (lell72 + AlIVel?,)
1
+c (IVuallzy + 1VB2lie + leil3) (nuniz + ;aniz + llel?> +A||V¢||iz> : (5.37)
Then, making use of Gronwall lemma, ¢(0) = 0, u(0) = B(0) = 0 and Vu, VB € L*(0, T; L({2)) where ¢ = 3
in case of d = 3 and g > 2 for d = 2, we deduce

lll3, + llull3> + 1B]I;, = 0. (5.38)

Moreover, the uniqueness of pressure p follows from the inf-sup condition (see Corollary 2.4 and Lemma 4.1
of [66]). Hence, the theorem is proved. [

Remark 5.2. Based on the assumption Vu, VB € L%, T; L3(Q)) for d = 3 and Remark 3.2, we can show u; €
L*0,T; V') and B, € L*0,T; (H'Y) for d = 2, 3. Therefore, under the assumption Vu, VB € L*(0, T; L*({2))
for d = 3, the problem (2.3a)—(2.3f) satisfies the energy law for almost all # € [0, T']

t
1
Teon((t), B(1), (1)) + fo {Aynwniz +2||\/7)(§0)D(u)||iz+ﬁ|| curl B||,

1
Vo(p)
1 t
+— d1VB|| } ds = / (f, v)ds + Teo. (o, Bo, ¢o).
w? «/_ 0 o
Theorem 5.6. Under the conditions of Theorem 5.5, the whole sequence {((ph,, Whes Uhts Phs Bhr)} converges to
the unique weak solution.

Proof. Based on Theorems 5.3 and 5.5, each convergent subsequence of {((phf,whf, Upr, Phes Bh,)} has the
same limit (¢, w, u, p, B) which is the weak solution to the problem (2.3a)—(2.3f). Therefore, the whole sequence
{(@ne, Wie, unz, Pher Bio)} converges to (¢, w,u, p, B). [

6. Numerical examples

In this section, we provide three numerical experiments to validate the proposed numerical scheme and
Cahn-Hilliard—-MHD model. For spatial discretization, the finite element space

Yy = {vn € CO(2); ¥nlx € PA(K),¥K € Ty},

is chosen to approximate ¢ and w, and the finite element spaces
Xy = {vn € C°D) N Hy(2); vylx € Po(K), VK € Ty},
M, = {gn € COU) N L{(2); qulk € Pi(K), VK € Tu},
W, ={C, e C°D)N H,(2); Chlk € P2(K), VK € Ty}

are used to approximate u, p and B, respectively.
6.1. Energy dissipation and mass conservation

In this test, the initial profile of the phase ¢ is taken as

p _tanh<|x+y—1|+|x—y|—0.4)
0 NeP .
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(a) The energy J: x,u(uy, B}, ¢}) (b) The total mass [, ¢} dx

Fig. 1. The energy dissipation and mass conservation.

The zero level set of ¢q is the square |[x +y — 1| + |[x — y| = 0.4 located in the middle of the domain 2 =
(0, 1)x(0, 1) (see Fig. 2a). We take both the initial conditions and boundary conditions for the velocity and magnetic
field to be zero. The source term f is taken to be zero and homogeneous Neumann boundary conditions are imposed
for ¢ and w. Based on Remark 5.2, the energy of two-phase MHD system without source terms and the exchange
of external energy is dissipative. Setting the parameters ¢ = 0.01, A = 0.001,y = 0.001,7 = u = o0 = 1 and
h = 1/64,t = 0.001 and using the scheme (4.3a)—(4.3f), the energy J;, .(u}, B}, ¢;) and the mass f(z @ dx
are calculated. Fig. la shows that the energy J; . .(u}, B}, ¢;) decays with time. During the evolution, the mass
/ o ¥, dx remains constant (see Fig. 1b). Considering zero initial data and homogeneous boundary conditions for
velocity and magnetic field, the isolated square relaxes to a circular shape under the effect of surface tension and
the isotropy of the mobility (see Fig. 2).

6.2. Convergence of the scheme

In the domain 2 = (0, 1) x (0, 1) and time interval (0, 1), consider the model with the following analytical
solution

@ = 256x%(x — 1)*y*(y — 1)*cos(t), w = 256x2(x — 1)*y*(y — 1)*cos(1),
u = (x*(x — D’y(y — D@2y — Deos(t), —y*(y — D*x(x — D(2x — Dcos(t)),
p = (2x —1)(2y — D)cos(?),

B = (sin(rrx)cos(ny)cos(t), —sin(yry)cos(rrx)cos(t)).

The initial conditions, boundary conditions and source terms are determined by the analytical solution. Set the
physical parameters y = A = ¢ =1 = o = u = 1. Since the first order Euler semi-implicit treatment in time and
the finite elements (P, — P, — P, — Py — P») for (¢, w, u, p, B) in space are applied to solve the model, the L?
errors of (¢, w, u, B) are expected to be O(h?) + O(t), and the H' errors of (¢, w, u, B) and the L? errors of p
are expected to be O(h?) + O(r). We test the convergence of the proposed scheme with T = 843 and T = 442,
respectively. The corresponding convergent results are displayed in Tables 1-2, which show the optimal convergence
of the proposed numerical scheme.
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Fig. 2. Phase field ¢ at different time ¢.
Table 1
The convergent results for two-phase MHD model at t, =1, 7 = 8h3.
h lo — gyl lw — w2 lu —ujll2 IB — Bjl2
1/4 1.50457e—002 1.88881e—002 9.4626e—005 3.82049e—003
1/8 1.95976e—003 2.30104e—003 1.05811e—005 4.38114e—004

1/16 2.48352e—004
1/32 3.12249e—-005
1/48 9.26867e—006

2.83989e—004 1.2817e—006 5.22506e—005
3.52665e—005 1.58824e—007 6.37922e—006
1.04260e—005 4.69746e—008 1.87560e—006

Order 2.9767 3.0182 3.0561 3.0640

Table 2

The convergent results for two-phase MHD model at 1, = 1, T = 412
h lo — @3l llw — will llu — ujll o 1B — Bl Ip— pill2
1/4 1.61589e—001  1.62720e—001  3.03279e—003  9.85952e—002  2.03051e—002
1/8 4.51858e—002  4.53299e—002  7.01334e—004  2.55171e—002  5.69076e—003
1/16 1.16641e—002  1.16925e—002  1.76829e—004  6.45235e—003  1.45523e—003
1/32 2.94311e—003  2.94975e—003  4.44182e—005 1.61944e—003  3.65721e—004
1/48 1.31072e—003  1.31363e—003  1.97608e—005  7.20491e—004  1.62698e—004
Order  1.9431 1.9448 2.0188 1.9811 1.9491

6.3. Two-phase hartmann flows

08

06

457

Hartmann flows are the MHD version of the classical Poiseuille flows [15]. In this subsection, we consider
two-phase Hartmann flows which describe the internal flow of two immiscible, incompressible and electrically
conducting fluids between the parallel insulated and steady plates in the presence of a transverse magnetic field
B¢ = (0, B). The initial phase field is given in Fig. 3a. The red part of the figure stands for one fluid with the
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Fig. 3. Phase field ¢ at different time t for « = 0.05.

viscosity n; and electric conductivity oy; the blue part represents another fluid with the viscosity 7, and electric
conductivity o,. By introducing a characteristic velocity U, a characteristic magnetic field B, a characteristic length

: p . - U o~ ~ _ p n _ B pd _ B _ pUL _
L,zand non-dimensional Varlables~x =nt="T0=¢p=mB=%5B =75 R, =555 =
#,Rmi = LUupo;, y = #,k = pU)\TLZ,E = %ﬁ) = L%w, two-phase MHD model (2.3a)—(2.3f) and the

numerical scheme (4.3a)—(4.3f) can be nondimensionalized correspondingly. The boundary conditions are

u=20, ony==l,

D) -n— pn=—pyn, onx =0, Ly, (6.1)

€i

Bxn=Bxn, on 442,

where R,, and R,,, are the fluid Reynolds numbers and magnetic Reynolds numbers of the fluid i (i =1, 2), and
a{?2 is the boundary of 2 = (0, Ly) x (—1, 1).

In the numerical test, we apply the nondimensional form of the scheme (4.3a)-(4.3f) with the boundary
conditions (6.1) to simulate two-phase Hartmann flows by taking the width ¢ of interface, mesh size 4 and time-step
T are small enough. Choose ¢ = 0.01,h = 0.01,7 =0.01 and A =0.01,y = 100,s =1, T = 20, Ly = 2. Taking
R., =20 and R,, = R,,;, = R,y, = 1, the evolutions of the phase field are displayed in Fig. 3. From the figure, we
observe that the zero level set of the phase field changes from the initial curve interface to a straight line interface
and reaches steady state finally. The phenomenon can be explained by the fact that two-phase Hartmann flows are
laminar.

In the following, we compare the numerical solutions with the analytical ones for the velocity and magnetic field
of two-phase Hartmann flows. The domain of two-phase Hartmann flows in the steady state is illustrated in Fig. 4.
The flow of the fluids is driven by the gradient of a pressure p; and is laminar. The velocity, magnetic field and
shear stress are continuous across the interface y = 0, that is,

d 1d

U = Uy, —U| = ——1uy, ony=0,
1 2 dyl adyz y

(6.2)
d d
by = b, @bl = ﬂ@bzy ony =0,
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Fig. 4. The region of two-phase Hartmann flows.

Rey

R . . .
where o = Z—; = x>, B = % = %. Based on the above information, the exact solution to two-phase Hartmann
61 m

flows has the following form: u = (124,~(y), 0), B = (b;(y), 1) in region i, denoted by (2, (see [101])

2
: s(bi(y)
ui(y) = Dijcosh(Hy, y) + Dy;sinh(Hy, y) + Fi, pilx,y)=—Gx — % + po = pa.
Rmi .
bi(y) = — 7 [ Dy;sinh(H,, y) + Daicosh(H,, y)] + Q1iy + Qai,
where Hartmann numbers are denoted by H,, = R Ry;s (i = 1,2). Therefore, plugging the above identities

into the nondimensional form of (2.1a)—(2.1c) and the boundary and interface conditions (6.1)—(6.2), undetermined
coefficients can be obtained

G
On=0p=——,
s
. aHal . le
ajp = sinh(H,,) + sinh(H,, ), ayp = cosh(H, ) —1— (cosh(Haz) — 1),
Ha2 IBRmz
1 On O .
ki = ——— cosh(H,,) — 1), ky = — — . sinh(H,,),
1 Ron < 5 + Q12 ) (cosh(H,,) — 1) 2 On—0n+ H, 5 + Q12 | sinh(H,,)
ay = ——Lsinh(H,, ) — Ron, sinh(H,,,) ay = — Ron, (cosh(H,,) — 1) + M(cosh(H )—1)
ap ] ﬁHaz : Hal I (Haz)z :
k —k k —k
Dy = 1an — kaap ’ Dy = 1a21 — kaayy ’
ajlan — azap andn — axpdy
D ! (1(R Di— 01+ 0 ) Dy = ey
2=——\ZRnDn—0n 12 0 = 21,
RWIZ ﬂ : Haz
Fi = —Dycosh(H,,) — Dyisinh(H,,), Fy, =Dy — D+ Fy,
— _le ma . le . _
02 = Dy + Dy + Oy, 0r = (Dyisinh(H,,) + Dajcosh(H,,)) — Q11
H,, H,, H,,

The effect of the ratio of viscosity @ of fluids on the velocity and magnetic field is explored. Taking ¢ =
1,0.5,0.1,0.05 and fixing 8 = 1, R,, = R, = 1, the numerical solutions at #, = 20 are in accordance with the
exact solutions which are shown in Fig. 5. As the ratio of viscosity decreases, the velocity in region 1 changes

greatly.
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Fig. 5. Horizontal component of velocity and magnetic field along x = 1 for different ratios of viscosity, computed (points) and theoretical
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Fig. 6. Horizontal component of velocity and magnetic field along x = 1 for different ratios of electric conductivity, computed (points) and
theoretical (lines).

Next, we study the effect of the ratio of electric conductivity 8 of fluids on the velocity and magnetic field.
Fixing « = 1 and R,, = R,, = 1, Fig. 6 shows the numerical solutions at #, = 20 coincide with the analytical
ones for B =1,0.5, 0.1, 0.05. With the decrease of the ratio of electric conductivity, the induced magnetic field in
region 2 becomes greater.
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Fig. 7. Horizontal component of velocity and magnetic field along x = 1 for different Hartmann numbers, computed (points) and theoretical
(lines).

Finally, we study the effect of Hartmann numbers on the velocity and magnetic field. Fixing o« = 5, 8 = 0.2,
we take the following Hartmann numbers in regions 1 and 2

Hal = 1 (Rel = 17 le = 1)7 Haz = 5 (Rez = 5’ Rmz = 5)’
H,, =2 (R, =2,R,, =2),H;, =10 (R, = 10, R, = 10);
H, =4 (R, =4, Ry, =4), Hyy =20 (R,, = 20, Ry, = 20).

With the increase of the Hartmann number, the velocity profile becomes flatter and velocity gradient near the plates
becomes steeper, as shown in Fig. 7.

7. Conclusion

In this paper, we proposed a diffuse-interface Cahn—Hilliard-MHD model to govern the two-phase MHD flows.
The model is based on incompressible MHD equations and Cahn—Hilliard phase field model. A semi-implicit energy
stable finite element method is proposed for solving this new model. The existence of weak solutions for this new
model and the convergence of the numerical scheme are rigorously analyzed. Numerical examples are provided to
validate the proposed model, numerical method, and theory.
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