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Abstract

In this paper, we propose a diffuse interface model and finite element approximation for two-phase magnetohydrodynamic
(MHD) flows with different viscosities and electric conductivities. An energy stable scheme, which is based on the finite
element method for the spatial discretization and first order semi-implicit scheme combined with convex splitting method for
the temporal discretization, is proposed to solve this new model. The numerical scheme is proved to be mass-conservative and
energy law preserving. By Leray–Schauder fixed point theorem, the existence of solutions to the numerical scheme is shown.
The uniqueness of the numerical solutions is obtained. Utilizing the stability of the numerical scheme and the compactness
method, the existence of the weak solutions to the two-phase MHD model is established as well. Furthermore, given more
regularity on the weak solution, the convergence of the numerical scheme is derived. Finally, numerical experiments are provided
to verify the theoretical results and validate the proposed model.
c⃝ 2019 Published by Elsevier B.V.
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1. Introduction

Magnetohydrodynamic (MHD) system describes the interaction of electromagnetic fields and electrically con-
ducting fluids. The model couples the Navier–Stokes equations of continuum fluid mechanics and the Maxwell
equations of electromagnetism via the Lorentz force and Ohm’s law. The flow of the conducting fluids in the
magnetic field generates electric current which changes the electromagnetic field; meanwhile, the electric current
running within the magnetic field induces the Lorentz force which influences the flow of fluids. For some
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comprehensive and detailed modeling description and mathematical theory, we refer to [1–13] and the references
therein.

Furthermore, the study on the interaction of electromagnetic fields with two incompressible, immiscible and
electrically conducting fluids is of great significance in the engineering, such as the Aluminum electrolysis cells,
metallurgical industry, pump accelerators, MHD generators and fusion reactors [14–17]. For example, in metallurgy
processes, bubbles are always injected into the molten metal for stirring and homogenizing the liquid metal and
the magnetic field is imposed to control the bubble motion in a contactless method. In MHD generators and pump
accelerators, some experimental and analytical studies on the flow of two immiscible fluids in a channel under
an external magnetic field are carried out [18–21]. One fundamental problem for two-phase MHD problem is the
interfacial dynamics between two different incompressible fluids.

In many situations, it may not be convenient or accurate for the classical sharp interface model to describe
the topological transitions of interfaces such as self-intersection, pinch-off, reconnection and splitting during the
evolution of interface [22–24]. In the last decades, the diffuse interface (phase field) method has been widely applied
to model and simulate the topological transitions of interfaces. This method assumes that the fluids are mixed and
store the mixing (elastic) energy within the thin layer of finite thickness, therefore the surface tension force on the
fluids is derived by using the variational approach, see [23,25–30]. It is shown that the sharp interface model can
be recovered in the limit as the interface thickness approaches zero [28,31]. About the extensive study on the phase
field approach, we refer to [32–53] and references therein.

In this paper, we propose a diffuse interface model to describe the flow of two incompressible, immiscible
and electrically conducting fluids with different viscosities and electric conductivities by combining the physics of
MHD fluids and the phase field approach. The model consists of Cahn–Hilliard equation (free interface), Navier–
Stokes equations (hydrodynamics) and Maxwell equations (magnetic field) which are nonlinearly coupled through
convection, stresses, and Lorentz forces. We propose a fully discrete energy stable finite element method with a
semi-implicit scheme in temporal discretization for the model which satisfies the mass conservation and discrete
energy law, prove the existence of solutions to the numerical method by Leray–Schauder fixed point theorem, and
show the uniqueness of the numerical solutions. Utilizing the stability of the proposed numerical method and the
compactness method, there exist subsequences of discrete solutions which converge to weak solution of the model
as the mesh size h and time-step τ tend to zero. Therefore, the existence of weak solution follows. Furthermore,
we postulate more regularity on the weak solution, and thus obtain the convergence of the numerical scheme.

The paper is organized as follows. In Section 2, a diffuse interface model for two-phase MHD flows is proposed.
In Section 3, preliminary knowledge and the definition of weak solution are introduced. In Section 4, we present
an energy stable semi-implicit scheme with finite element discretization and show the existence and uniqueness of
solutions for the scheme. In Section 5, we prove the existence of the weak solution to the proposed model and the
convergence of the scheme. In Section 6, three numerical examples are provided to validate the numerical scheme
and the proposed model. In Section 7, a conclusion is drawn.

2. The model for two-phase MHD flows

In this paper, the vector-valued functions and vector-valued function spaces in Rd (d = 2, 3) are denoted in
boldface. Let Ω be a bounded and connected domain. Firstly, we introduce single-phase MHD flow and phase field
model. Then, we couple them together to propose a phase field model for two-phase incompressible MHD flows.

Single-phase MHD flow. The single-phase MHD model consists of a coupling between the Navier–Stokes
equations of continuum fluid mechanics and the Maxwell equations of electromagnetism through the Lorentz force
and Ohm’s law. The equations for single-phase MHD flow read (see [15])

ρ
(
ut + (u · ∇)u

)
− 2 div

(
ηD(u)

)
+ ∇ p =

1
µ

curl B × B + f , (2.1a)

div u = 0, (2.1b)

Bt +
1
µ

curl
(

1
σ

curl B
)

− curl(u × B) = 0, (2.1c)

div B = 0, (2.1d)
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where u, p, B denote the velocity field, the hydrodynamic pressure and the magnetic field, D(u) =
∇u+∇uT

2 and f
is the external force, for example, the gravity force f = ρg. The physical parameters ρ, η, µ and σ , respectively,
denote the density of the fluid, hydrodynamic viscosity, magnetic permeability and electric conductivity. The first
term on the right-hand side of (2.1a) is the Lorentz force. This term is obtained from Lorentz force j × B and
simplified Maxwell–Ampère equation j =

1
µ

curl B where the displacement current is neglected and j stands for
the electric current. Eq. (2.1c) is complemented by coupling Maxwell–Faraday equation Bt +curl E = 0, simplified
Maxwell–Ampère equation with Ohm’s law j = σ (E + u × B), where E is the electric field. For more details of
the single-phase MHD model, see [8,14,15,54–64].

Phase field model. For the phase field ϕ, the free energy of two-phase fluids is

E(ϕ) =

∫
Ω

(
1
2
|∇ϕ|

2
+

1
ε2 F(ϕ)

)
dx,

where F(ϕ) models the immiscibility of the fluid components and is usually taken to be a double-well polynomial of
Ginzburg–Landau type F(ϕ) =

1
4 (ϕ2

−1)2. The two minima of F(ϕ), i.e., ϕ = ±1, correspond to two stable phases
of the fluids. The first term (i.e., the gradient energy) and second term (i.e., the bulk energy) of E(ϕ), respectively,
represent the hydrophilic and hydrophobic parts of the free energy. It is well known that Allen–Cahn equation is the
L2-gradient flow of the free energy E(ϕ) and Cahn–Hilliard equation is the H−1-gradient flow of E(ϕ) (see [65]).
To preserve the mass conservation, i.e., d

dt

∫
Ω ϕ(x, t)dx = 0, we consider the Cahn–Hilliard equation

ϕt = div
(
γ∇

∂E
∂ϕ

)
= γ∆w, (2.2a)

w =
∂E
∂ϕ

= −∆ϕ +
1
ε2 f (ϕ), (2.2b)

where w represents the chemical potential which is given by the variational derivative of the energy E with respect
to ϕ, f (ϕ) = F ′(ϕ), and γ, ε denote the elastic relaxation time and width of the interfacial layer, respectively.

A new Cahn–Hilliard–MHD model for two-phase MHD flows. Based on the single-phase MHD flow and
phase field model, we propose the following Cahn–Hilliard–MHD model for two-phase MHD flows:

ϕt + div(ϕu) = γ∆w, (2.3a)

−∆ϕ +
1
ε2 f (ϕ) = w, (2.3b)

ρ
(
ut + (u · ∇)u

)
− 2 div

(
η(ϕ)D(u)

)
+ ∇ p + λϕ∇w =

1
µ

curl B × B + f , (2.3c)

div u = 0, (2.3d)

Bt +
1
µ

curl
(

1
σ (ϕ)

curl B
)

− curl(u × B) = 0, (2.3e)

div B = 0. (2.3f)

The identity div(ϕu) = (u·∇)ϕ follows from the incompressibility of fluids. The left-hand side of (2.3a) expresses
the transport property of phase field, i.e., material point does not change type at least in the limit case [23,28]. The
term λϕ∇w in (2.3c) is the continuum surface tension force in the potential form [23,24]. This force originates
from the phase induced force in the stress form

λ div(∇ϕ ⊗ ∇ϕ) = λ∆ϕ∇ϕ +
λ

2
∇|∇ϕ|

2
= λϕ∇w + ∇

(
λ

ε2 F(ϕ) − λwϕ +
λ

2
|∇ϕ|

2
)
,

where ∇ϕ ⊗ ∇ϕ is the induced elastic stress due to the mixing of the different phases [24,28]. The pressure in
(2.3c) is given by p +

λ

ε2 F(ϕ) − λwϕ +
λ
2 |∇ϕ|

2 (still denote by p for simplicity) [24].
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The model (2.3a)–(2.3f) is complemented with the following initial and boundary conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = 0, on ∂Ω × [0, T ],
B · n = 0, n × curl B = 0, on ∂Ω × [0, T ],
∂ϕ

∂n
=
∂w

∂n
= 0, on ∂Ω × [0, T ],

ϕ(x, 0) = ϕ0, u(x, 0) = u0, B(x, 0) = B0, ∀ x ∈ Ω ,

where div u0 = div B0 = 0, T ∈ (0,∞) and n is the outward unit normal to the boundary ∂Ω .
The system (2.3a)–(2.3f) models the interaction of electromagnetic fields and two incompressible, immiscible

fluids with different viscosities and electric conductivities. In this paper, we consider two-phase fluids with matching
density ρ. For brevity, ρ is taken to be 1. The variable density case will be studied in the future work. η(ϕ) and
σ (ϕ), which depend on ϕ, are hydrodynamic viscosity and electric conductivity satisfying

0 < η−
:= min{η1, η2} ≤ η(ϕ) ≤ max{η1, η2} =: η+,

0 < σ−
:= min{σ1, σ2} ≤ σ (ϕ) ≤ max{σ1, σ2} =: σ+,

(2.4)

where ηi and σi (i = 1, 2) are the viscosity and electric conductivity of the fluid i . Assume η(ϕ) and 1
σ (ϕ) are

Lipschitz continuous functions with respect to ϕ. The phase field ϕ is almost constants (±1) in bulk regions and
smoothly transitions between these values in an interfacial region of thickness ε. In this paper, choose

η(ϕ) = η1 + (η2 − η1)Hε(ϕ), σ (ϕ) = σ1 + (σ2 − σ1)Hε(ϕ), (2.5)

where Hε(x) =
1

1+e−
x
ε

is a regularized approximation of the Heaviside step function [46]. It can be shown that η(ϕ)

and 1
σ (ϕ) in (2.5) are Lipschitz continuous functions of ϕ and satisfy (2.4).

3. Preliminary knowledge and definition of weak solution

Consider a bounded domain Ω in Rd (d = 2, 3) is a convex polygon/polyhedron. According to Poincaré
inequality and Proposition 3.16 of [15], the norms of the spaces H1

0(Ω ) =
{
v ∈ H1(Ω ); v |∂Ω= 0

}
and H1

n(Ω ) ={
C ∈ H1(Ω ); C · n |∂Ω= 0

}
are defined by ∥v∥H1

0(Ω) = ∥∇v∥L2 and ∥C∥H1
n (Ω) =

(
∥ curl C∥

2
L2 + ∥ div C∥

2
L2

) 1
2 ,

respectively. The spaces H, V ,W and their norms are denoted by

H =
{
v ∈ L2(Ω ); div v = 0, v · n |∂Ω= 0

}
, ∥v∥H = ∥v∥L2;

V =
{
v ∈ H1(Ω ); div v = 0, v |∂Ω= 0

}
, ∥v∥V = ∥∇v∥L2;

W =
{

C ∈ H1(Ω ); div C = 0,C · n |∂Ω= 0
}
, ∥C∥W = ∥ curl C∥L2 .

Furthermore, for the function spaces Lr (0, T ; X ), 1 ≤ r ≤ ∞, the norms are denoted as ∥·∥L∞(X ) := ess sup0≤t≤T ∥·

∥X and ∥ · ∥Lr (X ) :=

(∫ T
0 ∥ · ∥

r
X dt

) 1
r

for 1 ≤ r < ∞, where X is a real Banach space with the norm ∥ · ∥X . The
symbol (·, ·) denotes the L2 inner product over Ω and ⟨·, ·⟩ stands for the dual product between the space and its
dual space, for example (H 1(Ω ))′ and H 1(Ω ), (H1

0(Ω ))′ and H1
0(Ω ), (H1

n(Ω ))′ and H1
n(Ω ).

Under the assumptions on Ω stated above, there exists the orthogonal decomposition:

L2(Ω ) = H ⊕ ∇ H 1(Ω )/R, (3.1)

and ∥PH u∥H1 ≤ c0∥u∥H1 holds for any u ∈ H1
0(Ω ), where PH is the Helmholtz projection from L2(Ω ) to H (see

Theorems 1.10 and 2.7 of [66]). According to [15,67–69], the following estimates hold:

c0∥∇u∥L2 ≤ ∥D(u)∥L2 ≤ ∥∇u∥L2 , ∀u ∈ H1
0(Ω ), (3.2)

∥u∥L p ≤ c0∥∇u∥L2 , ∀u ∈ H1
0(Ω ), 2 ≤ p ≤ 6, (3.3)

∥u∥L3 ≤ c0∥u∥

6−d
6

L2 ∥∇u∥

d
6
L2 , ∀u ∈ H1

0(Ω ), (3.4)

∥u∥L4 ≤ c0∥u∥

4−d
4

L2 ∥∇u∥

d
4
L2 , ∀u ∈ H1

0(Ω ), (3.5)

∥B∥L p ≤ c0∥B∥H1
n (Ω), ∀B ∈ H1

n(Ω ), 2 ≤ p ≤ 6, (3.6)
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∥B∥L3 ≤ c0∥B∥

6−d
6

L2 ∥B∥

d
6
H1

n (Ω)
, ∀B ∈ H1

n(Ω ), (3.7)

∥B∥L4 ≤ c0∥B∥

4−d
4

L2 ∥B∥

d
4
H1

n (Ω)
, ∀B ∈ H1

n(Ω ), (3.8)

∥ϕ∥L p ≤ c0∥ϕ∥H1 , ∀ϕ ∈ H 1(Ω ), 2 ≤ p ≤ 6, (3.9)

∥ϕ∥L3 ≤ c0∥ϕ∥

6−d
6

L2 ∥∇ϕ∥

d
6
L2 + c0∥ϕ∥L2 , ∀ϕ ∈ H 1(Ω ), (3.10)

∥ϕ∥L∞ ≤ c0∥∆ϕ∥

d
2(6−d)
L2 ∥ϕ∥

3(4−d)
2(6−d)
L6 + c0∥ϕ∥L6 , ∀ϕ ∈ H 2(Ω ). (3.11)

In this paper, c0 is a generic positive constant depending only on Ω and c is a generic positive constant depending
on (Ω , γ, ε, λ, η, µ, σ ). c0 and c may be different at each occurrence.

The definition of a weak solution to the problem (2.3a)–(2.3f) is given as follows.

Definition 3.1. Let ϕ0 ∈ H 1(Ω ), u0, B0 ∈ H and f ∈ L2(0, T ; (H1
0(Ω ))′). (ϕ,w, u, p, B) is called a weak

solution of the problem (2.3a)–(2.3f) if (i) it satisfies

ϕ ∈ L∞(0, T ; H 1(Ω )), ϕt ∈ L2(0, T ; (H 1(Ω ))′), (3.12)

w ∈ L2(0, T ; H 1(Ω )), (3.13)

u ∈ L∞(0, T ; L2(Ω )) ∩ L2(0, T ; H1
0(Ω )), ut ∈ L

12
6+d (0, T ; (H1

0(Ω ))′), (3.14)

p ∈ L
12

6+d (0, T ; L2
0(Ω )), (3.15)

B ∈ L∞(0, T ; L2(Ω )) ∩ L2(0, T ; H1
n(Ω )), Bt ∈ L

4
d (0, T ; (H1

n(Ω ))′), (3.16)

where d = 2, 3; (ii) there hold

⟨ϕt , ψ⟩ − (ϕu,∇ψ) + γ (∇w,∇ψ) = 0, (3.17a)

(∇ϕ,∇χ ) +
1
ε2

(
f (ϕ), χ

)
= (w,χ), (3.17b)

⟨ut , v⟩ + 2
(
η(ϕ)D(u), D(v)

)
+
(
(u · ∇)u, v

)
+

1
µ

(B × curl B, v) − (div v, p) + λ(ϕ∇w, v)

= ⟨ f , v⟩, (3.17c)

(div u, q) = 0, (3.17d)

⟨Bt ,C⟩ +
1
µ

(
1

σ (ϕ)
curl B, curl C

)
+

1
µ

(
1

σ (ϕ)
div B, div C

)
− (u × B, curl C) = 0, (3.17e)

for almost all t ∈ (0, T ) and any (ψ, χ, v, q,C) ∈ H 1(Ω ) × H 1(Ω ) × H1
0(Ω ) × L2

0(Ω ) × H1
n(Ω ), and ϕ(0) =

ϕ0, u(0) = u0, B(0) = B0; and (iii) the energy stability

Jε,λ,µ
(
u(t), B(t), ϕ(t)

)
+

∫ t

0

{
λγ ∥∇w∥

2
L2 + 2∥

√
η(ϕ)D(u)∥2

L2 +
1
µ2 ∥

1
√
σ (ϕ)

curl B∥
2
L2

+
1
µ2 ∥

1
√
σ (ϕ)

div B∥
2
L2

}
ds ≤

∫ t

0
⟨ f , u⟩ds + Jε,λ,µ(u0, B0, ϕ0), (3.18)

is true for almost all t ∈ [0, T ], where Jε,λ,µ(u, B, ϕ) :=
1
2∥u∥

2
L2 +

1
2µ∥B∥

2
L2 +

λ
2 ∥∇ϕ∥

2
L2 +

λ

ε2 (F(ϕ), 1).

Remark 3.1. If Bt ∈ L2(0, T ; (H1
n(Ω ))′) and B ∈ L2(0, T ; H1

n(Ω )), we can prove the divergence-free constraint
on B from (3.17e). Consider the backward-in-time equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φt +
1

µσ (ϕ)
∆φ = div B, in Ω × [0, T ],

∂φ

∂n
= 0, on ∂Ω × [0, T ],

φ = 0, in Ω × {T }.

(3.19)
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According to (2.4)–(2.5) and [66,70–72], there exists a solution φ to the problem (3.19) satisfying φ ∈

L2(0, T ; H 2(Ω )) and φt ∈ L2(0, T ; L2(Ω )). Then, taking C = ∇φ ∈ L2(0, T ; H1
n(Ω )) in (3.17e), integrating

with respect to t , and using div B(x, 0) = φ(x, T ) = 0 for all x ∈ Ω , we have∫ T

0

(
div B, φt +

1
µσ (ϕ)

∆φ

)
dt =

∫ T

0
∥ div B∥

2
L2dt = 0.

Remark 3.2. For all u, v ∈ V and B ∈ W , we can obtain the following equalities(
(u · ∇)u, v

)
= −

(
(u · ∇)v, u

)
,

(B × curl B, v) =
(
(B · ∇)v, B

)
.

Therefore, based on (3.17c) and the estimates (3.2)–(3.9), we get

ut ∈ L
4
d (0, T ; V ′).

The result will be used in Lemma 5.4.

Remark 3.3. Based on [73] and Chapter III of [74], we have u, B ∈ C(0, T ;L2(Ω )) for d = 2, u, B ∈

Cw(0, T ; L2(Ω )) for d = 3 and ϕ ∈ C(0, T ; L2(Ω )) for d = 2, 3. The space Cw(0, T ; L2(Ω )) consists of all
weakly continuous functions in L2(Ω ), i.e., if u(t) ∈ Cw(0, T ; L2(Ω )), F(t) = (u(t), v) is a continuous function
for all v ∈ L2(Ω ).

4. Fully discrete energy stable finite element method

In this section, we propose a fully discrete finite element method, which is energy stable and semi-implicit, to
solve the Cahn–Hilliard–MHD model proposed above. Let Th be a shape-regular and quasi-uniform partition of Ω
into triangles in two dimensions or tetrahedra in three dimensions with characteristic mesh size h. Based on the
partition Th , we introduce the finite element spaces Xh ⊂ H1

0(Ω ), Mh ⊂ L2
0(Ω ), W h ⊂ H1

n(Ω ) for the discrete
velocity, pressure and magnetic field, and the finite element space Yh ⊂ H 1(Ω ) for the discrete phase field ϕ and
chemical potential w. Assume Xh,Mh and Yh satisfy the following conditions.

Assumption (A). The finite element spaces (Xh,Mh) and (Yh, Yh) satisfy the inf–sup conditions:

inf
qh∈Mh\{0}

sup
vh∈Xh\{0}

(div vh, qh)
∥qh∥L2∥∇vh∥L2

≥ β0, (4.1)

inf
χh∈Yh\{0}

sup
ψh∈Yh\{0}

(∇ψh,∇χh)
∥ψh∥H1∥χh∥H1

≥ β1, (4.2)

where β0 and β1 are positive constants depending only on Ω .

Remark 4.1. According to Chapter II of [66] and Chapter IV of [75], there are a variety of spaces (Xh,Mh)
satisfying Assumption (A) such as P2-P0 element, Mini-element (P1b-P1) and Taylor–Hood element. The Pr -Pr

(r ≥ 1) conforming finite element spaces (Yh, Yh) are a family of stable mixed finite element spaces for biharmonic
problem, that is, these spaces satisfy the inf–sup condition (4.2) (see [76–79]). The finite space W h is taken to be
W h = {Ch ∈ C0(Ω ) ∩ H1

n(Ω ); Ch |K ∈ Pk(K ),∀K ∈ Th}, k ≥ 1.

Remark 4.2. In this paper, we consider the domain is a convex polygon/polyhedron. The classical H 1-conforming
finite elements can be used to approximate the magnetic field. For the general domain with re-entrant corners, the
magnetic field is in general not in H1(Ω ). Some numerical methods can be applied to approximate the singular
solution, such as Nédélec finite elements [80,81], weighted regularization technique [82,83] and stabilized finite
element formulation [84,85]. Based on these methods, the extensions to general domains with re-entrant corners
are possible for two-phase MHD flows, which will be studied in the future work. Furthermore, pre-conditioners can
be considered for handling the difficult cases with high condition numbers [86–89].
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4.1. Description of the scheme and its stability

For arbitrary but fixed T > 0 and positive integer N ∈ N, we denote by τ =
T
N the time step and

dtv
n
h =

vn
h −vn−1

h
τ

. For two-phase MHD model (2.3a)–(2.3f), the semi-implicit energy stable finite element scheme is
to find (ϕn

h , w
n
h , un

h, pn
h , Bn

h) ∈ Yh × Yh × Xh × Mh × W h such that

(dtϕ
n
h , ψh) − (ϕn−1

h un
h,∇ψh) + γ (∇wn

h ,∇ψh) = 0, (4.3a)

(∇ϕn
h ,∇χh) +

1
ε2 ( f n

h , χh) = (wn
h , χh), (4.3b)

(dt un
h, vh) + 2

(
η(ϕn−1

h )D(un
h), D(vh)

)
+
(
(un−1

h · ∇)un
h, vh

)
+

1
2

(
(div un−1

h )un
h, vh

)
+

1
µ

(Bn−1
h × curl Bn

h, vh) − (pn
h , div vh) + λ(ϕn−1

h ∇wn
h , vh) = f n(vh), (4.3c)

(div un
h, qh) = 0, (4.3d)

(dt Bn
h,Ch) +

1
µ

(
1

σ (ϕn−1
h )

curl Bn
h, curl Ch

)
+

1
µ

(
1

σ (ϕn−1
h )

div Bn
h, div Ch

)
− (un

h × Bn−1
h , curl Ch) = 0, (4.3e)

ϕ0
h = Qhϕ0, u0

h = P0h u0, B0
h = Rh B0, (4.3f)

for any (ψh, χh, vh, qh,Ch) ∈ Yh × Yh × Xh × Mh × W h and f n(vh) =
1
τ

∫ tn
tn−1

⟨ f , vh⟩dt . Furthermore, if
f ∈ C(0, T ; (H1

0(Ω ))′), f n(vh) in (4.3c) can be taken by ⟨ f (tn), vh⟩. f n
h := (ϕn

h )3
− ϕn−1

h in (4.3b) is derived
from a convex splitting approximation to the non-convex function F(ϕ) (see [90–92]). Denote Qh as L2-orthogonal
projection operator from L2(Ω ) into Yh , Ph (Rh) as L2-orthogonal projection operator from L2(Ω ) into Xh (W h),
and P0h as L2-orthogonal projection operator from L2(Ω ) into V h , respectively. The space V h is denoted by
V h =

{
uh ∈ Xh; (div uh, qh) = 0,∀qh ∈ Mh

}
. The projection operators Qh , Ph and Rh have H 1-stability [93–95].

There also holds W 1,4-stability for these projection operators. In fact, W 1,4(Ω ) ⊂ C0(Ω ) with compact injection.
For any u ∈ W 1,4(Ω ), we have

∥Ph u∥W1,4 ≤ ∥Ph u − πh u∥W1,4 + ∥πh u∥W1,4

≤ ch−1(∥Ph u − u∥L4 + ∥u − πh u∥L4 ) + ∥πh u∥W1,4

≤ c∥u∥W1,4 ,

where πh is the nodal interpolation operator from C0(Ω ) to Xh . Assume that

lim
h→0

∥ϕ0
h − ϕ0∥H1 = lim

h→0
∥u0

h − u0∥L2 = lim
h→0

∥B0
h − B0∥L2 = 0. (4.4)

Firstly, the fully discrete scheme (4.3a)–(4.3f) satisfies a discrete energy law.

Theorem 4.1. Suppose Assumption (A) is valid and let {(ϕn
h , w

n
h , un

h, pn
h , Bn

h)} (n = 1, . . . , N ) be a solution of
the scheme (4.3a)–(4.3f). Then for any 1 ≤ m ≤ N, there holds the following estimate

Jε,λ,µ(um
h , Bm

h , ϕ
m
h ) + τ

m∑
n=1

(
λτ

2
∥∇dtϕ

n
h ∥

2
L2 +

λτ

4ε2 ∥dt (ϕn
h )2

∥
2
L2

)

+τ

m∑
n=1

(
λτ

2ε2 ∥ϕn
h dtϕ

n
h ∥

2
L2 +

λτ

2ε2 ∥dtϕ
n
h ∥

2
L2 +

τ

2
∥dt un

h∥
2
L2 +

τ

2µ
∥dt Bn

h∥
2
L2 + λγ ∥∇wn

h∥
2
L2

)

+τ

m∑
n=1

⎛⎝2∥

√
η(ϕn−1

h )D(un
h)∥2

L2 +
1
µ2 ∥

1√
σ (ϕn−1

h )
curl Bn

h∥
2
L2 +

1
µ2 ∥

1√
σ (ϕn−1

h )
div Bn

h∥
2
L2

⎞⎠
= τ

m∑
n=1

f n(un
h) + Jε,λ,µ(u0

h, B0
h, ϕ

0
h). (4.5)
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Proof. Taking ψh = λτwn
h in (4.3a), χh = λτdtϕ

n
h in (4.3b), vh = τun

h in (4.3c), qh = τpn
h in (4.3d) and Ch =

τ
µ

Bn
h

in (4.3e), and applying the equalities

2a(a − b) = a2
− b2

+ (a − b)2, (4.6)

(a3
− b)(a − b) =

1
4

[
(a2

− 1)2
− (b2

− 1)2]
+

1
4

(a2
− b2)2

+
1
2

a2(a − b)2
+

1
2

(a − b)2, (4.7)

we have (4.5). □

Furthermore, the fully discrete scheme (4.3a)–(4.3f) satisfies the mass conservation and its solution has the
following estimates.

Theorem 4.2. Suppose that Assumption (A) is valid, f ∈ L2(0, T ; (H1
0(Ω ))′) and Jε,λ,µ(u0, B0, ϕ0) < ∞. Let

{(ϕn
h , w

n
h , un

h, pn
h , Bn

h)} (n = 1, . . . , N ) be a solution of the scheme (4.3a)–(4.3f). Then for any 1 ≤ m ≤ N, the
following estimates hold∫

Ω

ϕm
h dx =

∫
Ω

ϕ0
hdx, (mass conservation) (4.8)

max
1≤n≤N

{
∥un

h∥
2
L2 +

1
µ

∥Bn
h∥

2
L2 + λ∥∇ϕn

h ∥
2
L2 +

λ

ε2 (F(ϕn
h ), 1)

}
≤ C, (4.9)

τ

m∑
n=1

(
η−

∥∇un
h∥

2
L2 +

1
µ2σ+

∥Bn
h∥

2
H1

n (Ω) + λγ ∥∇wn
h∥

2
L2

)
≤ C, (4.10)

m∑
n=1

(
λ∥∇ϕn

h − ∇ϕn−1
h ∥

2
L2 +

λ

ε2 ∥ϕn
h − ϕn−1

h ∥
2
L2

)
≤ C, (4.11)

m∑
n=1

(
∥un

h − un−1
h ∥

2
L2 +

1
µ

∥Bn
h − Bn−1

h ∥
2
L2

)
≤ C, (4.12)

max
1≤n≤N

∥ϕn
h ∥H1 ≤ C, (4.13)

τ

m∑
n=1

∥wn
h∥

2
H1 ≤ C

(
T
ε4 + T + 1

)
, (4.14)

τ

m∑
n=1

∥dtϕ
n
h ∥

2
(H1)′ ≤ C, (4.15)

τ

m∑
n=1

(
∥dt un

h∥
12

6+d

(H1
0)′

+ ∥pn
h∥

12
6+d
L2 + ∥dt Bn

h∥
4
d
(H1

n )′

)
≤ C(T + 1), (4.16)

where C is a constant depending on (Ω , λ, γ, η, µ, σ, ϕ0, u0, B0, f ).

Proof. Letting ψh = 1 in (4.3a), we have (4.8). Based on (2.4) and (3.2), we get

τ

m∑
n=1

f n(un
h) =

m∑
n=1

∫ tn

tn−1

⟨ f , un
h⟩dt ≤ τ

1
2

m∑
n=1

∥∇un
h∥L2

(∫ tn

tn−1

∥ f ∥
2
(H1

0)′
dt

) 1
2

≤ τ

m∑
n=1

η−
∥D(un

h)∥2
L2 + c

∫ tm

0
∥ f ∥

2
(H1

0)′
dt.

Then, (4.9)–(4.12) follow from (4.5). There holds(
F(ϕn

h ), 1
)

=
(1

4
((ϕn

h )2
− 1)2, 1

)
≥ ∥ϕn

h ∥
2
L2 − 2|Ω |,

where |Ω | stands for the area in two dimensions or volume in three dimensions of Ω . Based on the above inequality
and (4.9), we have (4.13).
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Taking χh = τwn
h in (4.3b), we have

τ∥wn
h∥

2
L2 = τ (∇ϕn

h ,∇w
n
h ) +

τ

ε2 ( f n
h , w

n
h ) ≤ τ∥∇ϕn

h ∥L2∥∇w
n
h∥L2 +

τ

ε2 (∥ϕn−1
h ∥L2 + ∥ϕn

h ∥
3
L6 )∥wn

h∥L2

≤
τ

2
∥wn

h∥
2
L2 +

τ

2
∥∇ϕn

h ∥
2
L2 +

τ

2
∥∇wn

h∥
2
L2 +

cτ
ε4 (∥ϕn−1

h ∥
2
L2 + ∥ϕn

h ∥
6
H1 ). (4.17)

Combining (4.9)–(4.10), (4.13) with (4.17), we obtain (4.14).
Setting ψh ∈ Qhψ , for any ψ ∈ H 1(Ω ) in (4.3a) and using the H 1 stability of L2 projection Qh , we have

(dtϕ
n
h , ψ) = (dtϕ

n
h , Qhψ) = (ϕn−1

h un
h,∇Qhψ) − γ (∇wn

h ,∇Qhψ)
≤ (∥ϕn−1

h ∥L3∥un
h∥L6 + γ ∥∇wn

h∥L2 )∥∇Qhψ∥L2

≤ c0(∥ϕn−1
h ∥H1∥∇un

h∥L2 + γ ∥∇wn
h∥L2 )∥∇ψ∥L2 . (4.18)

From (4.10), (4.13) and the above inequality, we have (4.15).
Next, define the discrete inverse Stokes operator Sh from (H1

0(Ω ))′ to Xh as follows: for all v ∈ (H1
0(Ω ))′,

(Sh(v), rh) ∈ Xh × Mh satisfies

(∇Sh(v),∇vh) + (div vh, rh) = ⟨v, vh⟩, ∀vh ∈ Xh,

(div Sh(v), qh) = 0, ∀qh ∈ Mh .

If uh ∈ V h , there exists a constant c > 0 independent of h such that (see Lemma 4.12 of [96])

sup
vh∈Xh\{0}

⟨uh, vh⟩

∥∇vh∥L2
≤ c∥∇Sh(uh)∥L2 .

Hence, for uh ∈ V h , there holds

∥uh∥(H1
0)′ = sup

v∈H1
0(Ω)\{0}

⟨uh, v⟩

∥∇v∥L2
= sup

v∈H1
0(Ω)\{0}

⟨uh, Phv⟩

∥∇ Phv∥L2
·
∥∇ Phv∥L2

∥∇v∥L2
≤ c∥∇Sh(uh)∥L2 . (4.19)

From (4.3d), we know dt un
h ∈ V h . Using the definition of discrete inverse Stokes operator Sh and setting

vh = Sh(dt un
h) in (4.3c), we have

∥∇Sh(dt un
h)∥2

L2 =
(
dt un

h, Sh(dt un
h)
)

= −2
(
η(ϕn−1

h )D(un
h), D(Sh(dt un

h))
)

−
(
(un−1

h · ∇)un
h, Sh(dt un

h)
)
−

1
2

(
(div un−1

h )un
h, Sh(dt un

h)
)

−
1
µ

(
Bn−1

h × curl Bn
h, Sh(dt un

h)
)
− λ

(
ϕn−1

h ∇wn
h , Sh(dt un

h)
)
+ f n(Sh(dt un

h))

≤ c
(

∥un−1
h ∥

6−d
6

L2 ∥∇un−1
h ∥

d
6
L2∥∇un

h∥L2 + ∥Bn−1
h ∥

6−d
6

L2 ∥Bn−1
h ∥

d
6
H1

n (Ω)
∥Bn

h∥H1
n (Ω)

)
∥∇Sh(dt un

h)∥L2

+c

⎛⎝∥∇un
h∥L2 + ∥ϕn−1

h ∥H1∥∇w
n
h∥L2 + τ−

1
2

(∫ tn

tn−1

∥ f ∥
2
(H1

0)′
dt

) 1
2
⎞⎠ ∥∇Sh(dt un

h)∥L2 . (4.20)

Setting Ch = Rh C for any C ∈ H 1
n (Ω ) in (4.3e) and using the H 1 stability of L2 projection Rh , we have

(dt Bn
h,C) = (dt Bn

h, Rh C) = −
1
µ

(
1

σ (ϕn−1
h )

curl Bn
h, curl Rh C

)

−
1
µ

(
1

σ (ϕn−1
h )

div Bn
h, div Rh C

)
+ (un

h × Bn−1
h , curl Rh C)

≤ c
(

∥Bn
h∥H1

n (Ω) + ∥un
h∥

4−d
4

L2 ∥∇un
h∥

d
4
L2∥Bn−1

h ∥

4−d
4

L2 ∥Bn−1
h ∥

d
4
H1

n (Ω)

)
∥C∥H1

n (Ω). (4.21)

The estimate (4.16) follows from (4.9)–(4.10), (4.13) and (4.19)–(4.21). □

Remark 4.3. Based on the stability results of [53,97,98], the discrete phase variable can be bounded in
L∞(0, T ; L∞(Ω )) norm and the discrete chemical potential can be bounded in L∞(0, T ; L2(Ω )) norm for any
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time and space step sizes in two and three dimensions. This is an interesting and important future work for the
target model of this article.

4.2. Existence and uniqueness of solutions of the scheme

In this subsection, we prove the existence of solutions of the scheme (4.3a)–(4.3f) by Leray–Schauder fixed point
theorem and obtain the uniqueness of the numerical solutions.

Lemma 4.3 ([99]). Let G be a compact mapping of a Banach space B into itself, and suppose there exists a constant
M such that

∥x∥B < M (4.22)

for all x ∈ B and α ∈ [0, 1] satisfying x = αGx. Then G has a fixed point.

Theorem 4.4. Suppose Assumption (A) is valid and initial data u0, B0, ϕ0 satisfy Jε,λ,µ(u0, B0, ϕ0) < ∞. For any
given τ > 0 and h > 0, there exists a solution {(ϕn

h , w
n
h , un

h, pn
h , Bn

h)} (n = 1, . . . , N ) to the scheme (4.3a)–(4.3f).

Proof. Firstly, we define a map G: Yh × Yh × Xh × Mh × W h → Yh × Yh × Xh × Mh × W h by

G(ϕn
h , w

n
h , un

h, pn
h , Bn

h) = (ϕ̂n
h , ŵ

n
h , ûn

h, p̂n
h , B̂n

h),

where (ϕ̂n
h , ŵ

n
h , ûn

h, p̂n
h , B̂n

h) ∈ Yh × Yh × Xh × Mh × W h satisfies(
ϕ̂n

h − ϕn−1
h

τ
, ψh

)
− (ϕn−1

h un
h,∇ψh) + γ (∇ŵn

h ,∇ψh) = 0, (4.23a)

(ŵn
h , χh) − (∇ϕ̂n

h ,∇χh) −
1
ε2

(
(ϕn

h )3
− ϕn−1

h , χh
)

= 0, (4.23b)(
ûn

h − un−1
h

τ
, vh

)
+ 2

(
η(ϕn−1

h )D(̂un
h), D(vh)

)
+
(
(un−1

h · ∇)un
h, vh

)
+

1
2

(
(div un−1

h )un
h, vh

)
+

1
µ

(Bn−1
h × curl Bn

h, vh) − ( p̂n
h , div vh) + λ(ϕn−1

h ∇wn
h , vh) = f n(vh), (4.23c)

(div ûn
h, qh) = 0, (4.23d)(

B̂n
h − Bn−1

h

τ
,Ch

)
+

(
1

µσ (ϕn−1
h )

curl B̂n
h, curl Ch

)
+

(
1

µσ (ϕn−1
h )

div B̂n
h, div Ch

)
−(un

h × Bn−1
h , curl Ch) = 0, (4.23e)

for given (ϕn
h , w

n
h , un

h, pn
h , Bn

h) ∈ Yh ×Yh × Xh × Mh × W h and any (ψh, χh, vh, qh,Ch) ∈ Yh ×Yh × Xh × Mh × W h .
Next, we will prove the map G satisfies the conditions of Lemma 4.3 and then has a fixed point which is a solution
of the scheme (4.3a)–(4.3f).

Given ϕn−1
h , ϕn

h ∈ Yh and un
h ∈ Xh , the Cahn–Hilliard equation (4.23a)–(4.23b) can be viewed as the following

problem: find (ŵn
h , ϕ̂

n
h ) ∈ Yh × Yh satisfying{

a(ŵn
h , χh) + b(χh, ϕ̂

n
h ) = ⟨ f, χh⟩,

b(ŵn
h , ψh) − c(ϕ̂n

h , ψh) = ⟨g, ψh⟩,
(4.24)

for any (χh, ψh) ∈ Yh × Yh , where

a(ŵn
h , χh) = (ŵn

h , χh), b(χh, ψh) = −(∇χh,∇ψh), c(ϕ̂n
h , ψh) =

1
γ τ

(ϕ̂n
h , ψh),

⟨ f, χh⟩ =
1
ε2

(
(ϕn

h )3
− ϕn−1

h , χh
)
, ⟨g, ψh⟩ = −

1
γ τ

(ϕn−1
h , ψh) −

1
γ

(ϕn
h un

h,∇ψh).
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Denoting Y0h =
{
χh ∈ Yh; b(χh, ψh) = 0,∀ψh ∈ Yh

}
, we deduce ∥∇χh∥L2 = 0 for any χh ∈ Y0h and a(·, ·) is

coercive on Y0h , i.e.,

a(χh, χh) = ∥χh∥
2
L2 = ∥χh∥

2
H1 ,

for any χh ∈ Y0h . Moreover, one can easily show a(·, ·) and b(·, ·) are continuous, and c(·, ·) is continuous, positive
semi-definite and symmetric. Under the inf–sup condition (4.2) and given ϕn−1

h , ϕn
h ∈ Yh and un

h ∈ Xh , the problem
(4.23a)–(4.23b) is well-posed (see Section II.1.2 of [75]). Meanwhile, one can easily prove Stokes problem (4.23c)–
(4.23d) and Maxwell problem (4.23e) are well-posed. Furthermore, since the spaces Yh × Yh × Xh × Mh × W h are
finite dimensional spaces, it follows that G is a compact map.

Next, we prove the boundedness of (ϕ̂n
h , ŵ

n
h , ûn

h, p̂n
h , B̂n

h) in Yh × Yh × Xh × Mh × W h ,

∥ϕ̂n
h ∥H1 + ∥ŵn

h∥H1 + ∥ûn
h∥H1

0(Ω) + ∥ p̂n
h∥L2 + ∥B̂n

h∥H1
n (Ω) ≤ M, (4.25)

where M is a positive constant independent of α and (ϕ̂n
h , ŵ

n
h , ûn

h, p̂n
h , B̂n

h), if there holds

G(ϕ̂n
h , ŵ

n
h , ûn

h, p̂n
h , B̂n

h) =
1
α

(ϕ̂n
h , ŵ

n
h , ûn

h, p̂n
h , B̂n

h),

that is (
ϕ̂n

h − αϕn−1
h

τ
, ψh

)
− α(ϕn−1

h ûn
h,∇ψh) + γ (∇ŵn

h ,∇ψh) = 0, (4.26a)

(ŵn
h , χh) − (∇ϕ̂n

h ,∇χh) −
α

ε2

(
(ϕ̂n

h )3
− ϕn−1

h , χh
)

= 0, (4.26b)(
ûn

h − αun−1
h

τ
, vh

)
+ 2

(
η(ϕn−1

h )D(̂un
h), D(vh)

)
+ α

(
(un−1

h · ∇ )̂un
h, vh

)
+
α

2

(
(div un−1

h )̂un
h, vh

)
+
α

µ
(Bn−1

h × curl B̂n
h, vh) − ( p̂n

h , div vh) + λα(ϕn−1
h ∇ŵn

h , vh) = α f n(vh), (4.26c)

(div ûn
h, qh) = 0, (4.26d)(

B̂n
h − αBn−1

h

τ
,Ch

)
+

(
1

µσ (ϕn−1
h )

curl B̂n
h, curl Ch

)
+

(
1

µσ (ϕn−1
h )

div B̂n
h, div Ch

)
−α(̂un

h × Bn−1
h , curl Ch) = 0, (4.26e)

for any (ψh, χh, vh, qh,Ch) ∈ Yh × Yh × Xh × Mh × W h .
Setting (ψh, χh, vh, qh,Ch) = 2(λτŵn

h ,−λϕ̂
n
h + αλϕn−1

h , τ ûn
h, τ p̂n

h ,
τ
µ

B̂n
h) in (4.26a)–(4.26e), taking sum of the

obtained equalities and using (3.2) and (4.6)–(4.7), we have

2γ λτ∥∇ŵn
h∥

2
L2 + λ

(
∥∇ϕ̂n

h ∥
2
L2 − α2

∥∇ϕn−1
h ∥

2
L2 + ∥∇(ϕ̂n

h − αϕn−1
h )∥2

L2

)
+
αλ

ε2

(
1
2
∥(ϕ̂n

h )2
− 1∥

2
L2 −

1
2
∥(αϕn−1

h )2
− 1∥

2
L2 +

1
2
∥(ϕ̂n

h )2
− (αϕn−1

h )2
∥

2
L2

)
+
αλ

ε2

(
∥ϕ̂n

h (ϕ̂n
h − αϕn−1

h )∥2
L2 + ∥ϕ̂n

h − αϕn−1
h ∥

2
L2

)
+ ∥ûn

h∥
2
L2 − α2

∥un−1
h ∥

2
L2 + ∥ûn

h − αun−1
h ∥

2
L2

+4c2
0η

−τ∥∇ ûn
h∥

2
L2 +

1
µ

(
∥B̂n

h∥
2
L2 − α2

∥Bn−1
h ∥

2
L2 + ∥B̂n

h − αBn−1
h ∥

2
L2

)
+

2τ
µ2σ+

∥B̂n
h∥

2
H1

n (Ω)

≤ 2τα f n (̂un
h) +

2α(1 − α)λ
ε2 (ϕn−1

h , ϕ̂n
h − αϕn−1

h )

≤ c2
0η

−τ∥∇ ûn
h∥

2
L2 +

αλ

2ε2 ∥ϕ̂n
h − αϕn−1

h ∥
2
L2 +

α2

c2
0η

−

∫ tn

tn−1

∥ f ∥
2
(H1

0)′
dt +

2α(1 − α)2λ

ε2 ∥ϕn−1
h ∥

2
L2 . (4.27)

Then, according to (4.27) and α ∈ [0, 1], we get

2γ λτ∥∇ŵn
h∥

2
L2 + λ∥∇ϕ̂n

h ∥
2
L2 + λ∥∇(ϕ̂n

h − αϕn−1
h )∥2

L2 +
αλ

2ε2 ∥(ϕ̂n
h )2

− 1∥
2
L2

+
αλ

ε2

{
1
2
∥(ϕ̂n

h )2
− (αϕn−1

h )2
∥

2
L2 + ∥ϕ̂n

h (ϕ̂n
h − αϕn−1

h )∥2
L2 +

1
2
∥ϕ̂n

h − αϕn−1
h ∥

2
L2

}
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+∥ûn
h∥

2
L2 + c2

0η
−τ∥∇ ûn

h∥
2
L2 +

1
µ

∥B̂n
h∥

2
L2 +

τ

µ2σ+
∥B̂n

h∥
2
H1

n (Ω)

≤
1

c2
0η

−

∫ tn

tn−1

∥ f ∥
2
(H1

0)′
dt +

2λ2

ε2 ∥ϕn−1
h ∥

2
L2 + λ∥∇ϕn−1

h ∥
2
L2 +

λ

ε2

(
∥ϕn−1

h ∥
4
L4 + 2∥ϕn−1

h ∥
2
L2 + |Ω |

)
+∥un−1

h ∥
2
L2 +

1
µ

∥Bn−1
h ∥

2
L2 =: M1, (4.28)

where M1 is a positive constant independent of (ϕ̂n
h , ŵ

n
h , ûn

h, p̂n
h , B̂n

h) and α.
Next, taking (ψh, χh) = (2ϕ̂n

hτ, 2γ ŵn
hτ ) in (4.26a)–(4.26b) and adding the obtained equalities, we have

∥ϕ̂n
h ∥

2
L2 − α2

∥ϕn−1
h ∥

2
L2 + ∥ϕ̂n

h − αϕn−1
h ∥

2
L2 + 2γ τ∥ŵn

h∥
2
L2

= 2ατ (ϕn−1
h ûn

h,∇ϕ̂
n
h ) +

2γατ
ε2

(
(ϕ̂n

h )3
− ϕn−1

h , ŵn
h

)
. (4.29)

From Hölder inequality, (3.3), (3.9) and the following equality

(ϕ̂n
h )4

=
(
(ϕ̂n

h )2
− 1

)2
+ 2(ϕ̂n

h − αϕn−1
h )2

+ 4α(ϕ̂n
h − αϕn−1

h )ϕn−1
h − 1 + 2α2(ϕn−1

h )2,

we obtain

2ατ (ϕn−1
h ûn

h,∇ϕ̂
n
h ) ≤ 2ατ∥ϕn−1

h ∥L3∥ûn
h∥L6∥∇ϕ̂

n
h ∥L2 ,

2γατ
ε2

(
(ϕ̂n

h )3
− ϕn−1

h , ŵn
h

)
≤

2γατ
ε2

(
∥ϕ̂n

h ∥
3
L4∥ŵ

n
h∥L4 + ∥ϕn−1

h ∥L2∥ŵ
n
h∥L2

)
≤ γ τ∥ŵn

h∥
2
L2 + γ τ∥∇ŵn

h∥
2
L2 +

c0γα
2τ

ε4

(
∥(ϕ̂n

h )2
− 1∥

2
L2 + ∥ϕ̂n

h − αϕn−1
h ∥

2
L2

) 3
2

+
c0γα

2τ

ε4

(
|Ω |

3
2 + α3

∥ϕn−1
h ∥

3
L2 + ∥ϕn−1

h ∥
2
L2

)
.

Combining (4.29) with the above inequalities, we get

∥ϕ̂n
h ∥

2
L2 + γ τ∥ŵn

h∥
2
L2 ≤ ∥ϕn−1

h ∥
2
L2 + 2c0τ∥ϕ

n−1
h ∥H1∥∇ ûn

h∥L2∥∇ϕ̂
n
h ∥L2

+γ τ∥∇ŵn
h∥

2
L2 +

c0γα
2τ

ε4

(
∥(ϕ̂n

h )2
− 1∥

2
L2 + ∥ϕ̂n

h − αϕn−1
h ∥

2
L2

) 3
2

+
c0γ τ

ε4

(
|Ω |

3
2 + ∥ϕn−1

h ∥
3
L2 + ∥ϕn−1

h ∥
2
L2

)
. (4.30)

Based on the inf–sup condition (4.1) and (4.26c), we have

β0∥ p̂n
h∥L2 ≤ sup

vh∈Xh\{0}

( p̂n
h , div vh)

∥∇vh∥L2
≤

c0

τ
(∥ûn

h∥L2 + ∥un−1
h ∥L2 ) + η+

∥∇ ûn
h∥L2 + c0∥∇ ûn

h∥
2
L2

+
c0

µ
∥B̂n

h∥
2
H1

n (Ω) + λc0∥ϕ
n−1
h ∥H1∥∇ŵ

n
h∥L2 + c

(
1
τ

∫ tn

tn−1

∥ f n
∥

2
(H1

0(Ω))′
dt

) 1
2

. (4.31)

Combining (4.30)–(4.31) with (4.28), we deduce (4.25).
According to the above analysis and Lemma 4.3, we obtain G has a fixed point which is a solution to the scheme

(4.3a)–(4.3f). □

Theorem 4.5. Under the conditions of Theorem 4.4, there exists a unique solution {(ϕn
h , w

n
h , un

h, pn
h , Bn

h)}
(n = 1, . . . , N ) to the scheme (4.3a)–(4.3f).

Proof. Suppose that {(ϕn
h1, w

n
h1, un

h1, pn
h1, Bn

h1)} and {(ϕn
h2, w

n
h2, un

h2, pn
h2, Bn

h2)} are two solutions of the scheme
(4.3a)–(4.3f). Denote

ϕn
h = ϕn

h1 − ϕn
h2, wn

h = wn
h1 − wn

h2, un
h = un

h1 − un
h2, pn

h = pn
h1 − pn

h2, Bn
h = Bn

h1 − Bn
h2.

From (4.3a)–(4.3f), we have (
ϕn

h

τ
, ψh

)
− (ϕn−1

h un
h,∇ψh) + γ (∇wn

h,∇ψh) = 0, (4.32a)
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(∇ϕn
h,∇χh) +

1
ε2

(
((ϕn

h1)2
+ ϕn

h1ϕ
n
h2 + (ϕn

h2)2)ϕn
h, χh

)
= (wn

h, χh), (4.32b)(
un

h

τ
, vh

)
+ 2

(
η(ϕn−1

h )D(un
h), D(vh)

)
+
(
(un−1

h · ∇)un
h, vh

)
+

1
2

(
(div un−1

h )un
h, vh

)
+

1
µ

(Bn−1
h × curl Bn

h, vh) − (pn
h, div vh) + λ(ϕn−1

h ∇wn
h, vh) = 0, (4.32c)

(div un
h, qh) = 0, (4.32d)(

Bn
h

τ
,Ch

)
+

1
µ

(
1

σ (ϕn−1
h )

curl Bn
h, curl Ch

)
+

1
µ

(
1

σ (ϕn−1
h )

div Bn
h, div Ch

)
− (un

h × Bn−1
h , curl Ch) = 0. (4.32e)

Taking (ψh, χh, vh, qh, Bh) = (λτwn
h, λϕ

n
h, τun

h, τ pn
h,

τ
µ

Bn
h) in (4.32a)–(4.32e), we get

λγ τ∥∇wn
h∥

2
L2 + λ∥∇ϕn

h∥
2
L2 +

λ

ε2

(
(ϕn

h1)2
+ ϕn

h1ϕ
n
h2 + (ϕn

h2)2, (ϕn
h)2)

+ ∥un
h∥

2
L2 +

1
µ

∥Bn
h∥

2
L2

+2τ∥
√
η(ϕn−1

h )D(un
h)∥2

L2 +
τ

µ2 ∥
1√

σ (ϕn−1
h )

curl Bn
h∥

2
L2 +

τ

µ2 ∥
1√

σ (ϕn−1
h )

div Bn
h∥

2
L2 = 0. (4.33)

According to(
(ϕn

h1)2
+ ϕn

h1ϕ
n
h2 + (ϕn

h2)2, (ϕn
h)2)

=

(
(ϕn

h1)2
+ (ϕn

h2)2

2
+

(ϕn
h1 + ϕn

h2)2

2
, (ϕn

h)2
)

≥ 0,

it follows from (4.33) that

∥∇wn
h∥

2
L2 + ∥ϕn

h∥
2
H1 + ∥un

h∥
2
L2 + ∥Bn

h∥
2
L2 = 0. (4.34)

Combining (4.34) with (4.32b), we have

∥wn
h∥H1 = 0.

The uniqueness of pressure pn
h can be obtained from (4.1). Therefore, the theorem is proved. □

5. Existence of weak solution and convergence of the numerical scheme

The purpose of this section is to prove the existence of weak solutions to the two-phase MHD problem
(2.3a)–(2.3f) by a compactness argument and obtain the convergence of the numerical scheme (4.3a)–(4.3f).

Let {ϕhτ (x, t), uhτ (x, t), Bhτ (x, t)} be the piecewise linear interpolation of the fully discrete finite element
solution

{
ϕm

h , um
h , Bm

h

}
, m = 1, . . . , N , i.e., for any t ∈ [tm−1, tm]

ϕhτ (·, t) :=
t − tm−1

τ
ϕm

h (·) +
tm − t
τ

ϕm−1
h (·), uhτ (·, t) :=

t − tm−1

τ
um

h (·) +
tm − t
τ

um−1
h (·),

Bhτ (·, t) :=
t − tm−1

τ
Bm

h (·) +
tm − t
τ

Bm−1
h (·).

Let
{
ϕhτ (x, t), whτ (x, t), uhτ (x, t), phτ (x, t), Bhτ (x, t)

}
and

{
ϕhτ (x, t), uhτ (x, t), Bhτ (x, t)

}
be the piecewise con-

stant extensions of
{
ϕm

h , w
m
h , um

h , pm
h , Bm

h

}
and

{
ϕm−1

h , um−1
h , Bm−1

h

}
, m = 1, . . . , N , respectively. That is, for any

t ∈ (tm−1, tm],

ϕhτ (·, t) := ϕm
h (·), whτ (·, t) := wm

h (·), phτ (·, t) := pm
h (·),

uhτ (·, t) := um
h (·), Bhτ (·, t) := Bm

h (·), ϕhτ (·, t) := ϕm−1
h (·),

uhτ (·, t) := um−1
h (·), Bhτ (·, t) := Bm−1

h (·).
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Moreover, denote

f τ (t) := f m(vh) =
1
τ

∫ tm

tm−1

⟨ f (t), vh⟩dt,

for any t ∈ (tm−1, tm].
It is well known that Hilbert spaces are reflexive Banach spaces, and if X is reflexive and 1 < p < ∞, the space

L p(0, T ; X ) is reflexive and [L p(0, T ; X )]′ = L p′

(0, T ; X ′), where p′ is the conjugate of p (see Propositions 3.55
and 3.59 of [100]). Therefore, according to Theorems 1.18 and 1.26 of [100], Corollary 4 of [73] and Theorem 4.2,
we have the following convergence. For the convenience, the convergent subsequences are denoted by the same
symbols.

Lemma 5.1 (Weak Convergence). For the sequences
{
ϕhτ , uhτ , Bhτ

}
,
{
ϕhτ , whτ , uhτ , phτ , Bhτ

}
and {ϕhτ , whτ ,

uhτ , phτ , Bhτ }, there exist convergent subsequences satisfying

ϕhτ , ϕhτ , ϕhτ ⇀ ∗ϕ in L∞(0, T ; H 1(Ω )), (5.1)

(ϕhτ )t ⇀ ϕt in L2(0, T ; (H 1(Ω ))′), (5.2)

whτ ⇀ w in L2(0, T ; H 1(Ω )), (5.3)

uhτ , uhτ , uhτ ⇀ ∗u in L∞(0, T ; L2(Ω )), (5.4)

uhτ , uhτ , uhτ ⇀ u in L2(0, T ; H1
0(Ω )), (5.5)

(uhτ )t ⇀ ut in L
12

6+d (0, T ; (H1
0(Ω ))′), (5.6)

phτ ⇀ p in L
12

6+d (0, T ; L2
0(Ω )), (5.7)

Bhτ , Bhτ , Bhτ ⇀ ∗B in L∞(0, T ; L2(Ω )), (5.8)

Bhτ , Bhτ , Bhτ ⇀ B in L2(0, T ; H1
n(Ω )), (5.9)

(Bhτ )t ⇀ Bt in L
4
d (0, T ; (H1

n(Ω ))′), (5.10)

as h, τ → 0. Here, ⇀ ∗ means weak ∗ convergence.

Proof. We only give the proof of (5.1). Based on the fact that {ϕhτ }, {ϕhτ } and {ϕhτ } are bounded sequences in
L∞(0, T ; H 1(Ω )), the sequences {ϕhτ }, {ϕhτ } and {ϕhτ } weakly ∗ converge to ϕ, ϕ1 and ϕ2 in L∞(0, T ; H 1(Ω )),
respectively. Therefore, there holds

lim
h,τ→0

∫ T

0
⟨ϕhτ − ϕhτ , ψ⟩dt =

∫ T

0
⟨ϕ − ϕ1, ψ⟩dt, ∀ψ ∈ L1(0, T ; (H 1(Ω ))′). (5.11)

According to L2(Ω ) ⊂ (H 1(Ω ))′ with continuous injection, L∞(0, T ; H 1(Ω )) ⊂ L1(0, T ; (H 1(Ω ))′) and (4.11), we
have ∫ T

0
⟨ϕhτ − ϕhτ , ϕ − ϕ1⟩dt ≤

∫ T

0
∥ϕhτ − ϕhτ∥H1(Ω)∥ϕ − ϕ1∥(H1(Ω))′dt

≤ c
∫ T

0
∥ϕhτ − ϕhτ∥H1(Ω)∥ϕ − ϕ1∥L2dt

≤ c∥ϕ − ϕ1∥L∞(L2)

N∑
n=1

∫ tn

tn−1

tn − t
τ

∥ϕn
h − ϕn−1

h ∥H1(Ω)dt

≤ cτ
1
2 T

1
2 ∥ϕ − ϕ1∥L∞(L2)

(
N∑

n=1

∥ϕn
h − ϕn−1

h ∥
2
H1(Ω)

) 1
2
τ→0
−−→ 0. (5.12)

Taking ψ = ϕ − ϕ1 in (5.11) and using (5.12), we get ϕ = ϕ1. Similar to the above analysis, we also have
ϕ = ϕ2. □



J. Yang, S. Mao, X. He et al. / Computer Methods in Applied Mechanics and Engineering 356 (2019) 435–464 449

Lemma 5.2 (Strong Convergence). For the sequences
{
ϕhτ , uhτ , Bhτ

}
,
{
ϕhτ , uhτ , Bhτ

}
and {ϕhτ , uhτ , Bhτ }, there

exist convergent subsequences satisfying

ϕhτ → ϕ in C(0, T ; L p(Ω )), (5.13)
ϕhτ , ϕhτ → ϕ in L∞(0, T ; L p(Ω )), (5.14)

uhτ , uhτ , uhτ → u in L2(0, T ; L p(Ω )), (5.15)

Bhτ , Bhτ , Bhτ → B in L2(0, T ; L p(Ω )), (5.16)

as h, τ → 0, where p ∈ [1, 2d
d−2 ).

Proof. According to Sobolev embedding theorem, Corollary 4 of [73] and Theorem 4.2, we obtain {ϕhτ } strongly
converges to ϕ in C(0, T ; L p(Ω )), and {uhτ } and {Bhτ } strongly converge to u and B in L2(0, T ; L p(Ω )),
1 ≤ p < 2d

d−2 . Next, we prove the convergence of
{
ϕhτ , uhτ , Bhτ

}
and

{
ϕhτ , uhτ , Bhτ

}
. Since {ϕhτ } is relatively

compact in C(0, T ; L p(Ω )), {ϕhτ } is uniformly equicontinuous, i.e., for all ϵ > 0, there is δ > 0 such that for all
h, τ > 0, ∥ϕhτ (t ′

1) −ϕhτ (t ′

2)∥L p ≤ ϵ, where t ′

1 and t ′

2 are in [0, T ] with |t ′

2 − t ′

1| ≤ δ. Therefore, for any ϵ > 0, there
exists δ > 0 such that

∥ϕhτ − ϕhτ∥L∞(L p) = ∥ϕhτ − ϕhτ∥L∞(L p) = ess sup
1≤m≤N

∥ϕm
h − ϕm−1

h ∥L p ≤ ϵ,

for τ ≤ δ. The estimate (5.14) holds.
For any p ∈ (1, 2d

d−2 ), taking p1 ∈ (p, 2d
d−2 ) and using an interpolation inequality (see Theorem 2.11 of [67]),

Hölder inequality, (4.10) and (4.12), we have

∥uhτ − uhτ∥
2
L2(L p) =

N∑
n=1

∫ tn

tn−1

(
tn − t
τ

)2

dt∥un
h − un−1

h ∥
2
L p ≤ cτ

N∑
n=1

(
∥un

h − un−1
h ∥

θ

L1∥un
h − un−1

h ∥
1−θ

L p1

)2

≤ c

(
N∑

n=1

τ∥un
h − un−1

h ∥
2
L1

)θ ( N∑
n=1

τ∥un
h − un−1

h ∥
2
L p1

)1−θ

≤ cτ θ
(

N∑
n=1

∥un
h − un−1

h ∥
2
L2

)θ ( N∑
n=1

τ∥∇(un
h − un−1

h )∥2
L2

)1−θ

τ→0
−−→ 0, (5.17)

where θ =
p1−p

p(p1−1) . Consequently, {uhτ } strongly converges to u in L2 (0, T ; L p(Ω )), p ∈ [1, 2d
d−2 ). Similarly, we

also obtain the convergence of
{

uhτ

}
,
{

Bhτ
}

and
{

Bhτ

}
. □

In addition, to prove the existence of weak solution, we give the following remark.

Remark 5.1. If u, v ∈ L2(0, T ; H1
0(Ω )) and B,C ∈ L2(0, T ; H1

n(Ω )), we can define the bounded linear
functionals f v,ϕ ∈ L2(0, T ; (H1

0(Ω ))′) and f C,ϕ ∈ L2(0, T ; (H1
n(Ω ))′) satisfying

⟨ f v,ϕ, u⟩ =
(
η(ϕ)D(u), D(v)

)
, ⟨ f C,ϕ, B⟩ =

(
1

σ (ϕ)
curl B, curl C

)
+

(
1

σ (ϕ)
div B, div C

)
,

based on the fact that(
η(ϕ)D(u), D(v)

)
≤ η+

∥u∥H1
0(Ω)∥v∥H1

0(Ω),(
1

σ (ϕ)
curl B, curl C

)
+

(
1

σ (ϕ)
div B, div C

)
≤

1
σ−

∥B∥H1
n (Ω)∥C∥H1

n (Ω).

Also, if u ∈ L2(0, T ; H1
0(Ω )), v ∈ L

12
6−d (0, T ; H1

0(Ω )) and q ∈ L2(0, T ; L2(Ω )), p ∈ L
12

6+d (0, T ; L2(Ω )), we can
define the bounded linear functionals f v ∈ L

12
6−d (0, T ; L2(Ω )) and f q ∈ L2(0, T ; (H1

0(Ω ))′) satisfying

⟨ f v, p⟩ = (div v, p), ⟨ f q , u⟩ = (div u, q),

based on (div v, p) ≤
√

d∥v∥H1
0(Ω)∥p∥L2 .
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Theorem 5.3. Suppose Assumption (A) and (4.4) are valid and the initial data u0, B0, ϕ0 satisfy Jε,λ,µ(u0, B0, ϕ0)
< ∞. There exists a subsequence of {(ϕhτ , whτ , uhτ , phτ , Bhτ )} which has an accumulation point (ϕ,w, u, p, B).
And (ϕ,w, u, p, B) is a weak solution to the problem (2.3a)–(2.3f).

Proof. For any (ψ, χ, v, q,C) ∈ C∞(Ω ) × C∞(Ω ) × C∞

c (Ω ) × C∞
c (Ω ) ∩ L2

0(Ω ) × C∞(Ω ) ∩ H1
n(Ω ), where

C∞

c (Ω ) represents the space of real infinitely differentiable functions with compact support in Ω , we can choose
(ψh, χh, vh, qh,Ch) = (Qhψ, Qhχ, Phv, Ihq, Rh C) ∈ Yh × Yh × Xh × Mh × W h such that

ψh
h→0
−−→ ψ in H 1(Ω ), χh

h→0
−−→ χ in H 1(Ω ),

vh
h→0
−−→ v in H1

0(Ω ), qh
h→0
−−→ q in L2(Ω ), Ch

h→0
−−→ C in H1

n(Ω ),

where Ih is the L2 orthogonal projection operator from L2(Ω ) to Mh .
Then, taking these test functions in (4.3a)–(4.3e), multiplying by ξ (t) ∈ C∞([0, T ]), and integrating the obtained

equations with respect to t from 0 to T , we have∫ T

0

{(
(ϕhτ )t , ψh

)
− (ϕhτuhτ ,∇ψh) + γ (∇whτ ,∇ψh)

}
ξ (t)dt = 0, (5.18a)∫ T

0

{
(∇ϕhτ ,∇χh) +

1
ε2 ( f hτ , χh)

}
ξ (t)dt =

∫ T

0
(whτ , χh)ξ (t)dt, (5.18b)∫ T

0

{ (
(uhτ )t , vh

)
+ 2

(
η(ϕhτ )D(uhτ ), D(vh)

)
+
(
(uhτ · ∇)uhτ , vh

)
+

1
2

(
(div uhτ )uhτ , vh

)
+

1
µ

(Bhτ × curl Bhτ , vh) − (phτ , div vh) + λ(ϕhτ∇whτ , vh)
}
ξ (t)dt =

∫ T

0
f τ (t)ξ (t)dt, (5.18c)∫ T

0
(div uhτ , qh)ξ (t)dt = 0, (5.18d)∫ T

0

{ (
(Bhτ )t ,Ch

)
+

(
1

µσ (ϕhτ )
curl Bhτ , curl Ch

)
+

(
1

µσ (ϕhτ )
div Bhτ , div Ch

)
−(uhτ × Bhτ , curl Ch)

}
ξ (t)dt = 0, (5.18e)

where f hτ := ϕ3
hτ −ϕhτ . Next, we pass to the limit term by term in (5.18a)–(5.18e) as h, τ → 0. For time derivative

terms, it follows from (5.2), (5.6) and (5.10) that∫ T

0

(
(ϕhτ )t , ψh

)
ξ (t)dt

h,τ→0
−−−→

∫ T

0
⟨ϕt , ψ⟩ξ (t)dt,∫ T

0

(
(uhτ )t , vh

)
ξ (t)dt

h,τ→0
−−−→

∫ T

0
⟨ut , v⟩ξ (t)dt,

∫ T

0

(
(Bhτ )t ,Ch

)
ξ (t)dt

h,τ→0
−−−→

∫ T

0
⟨Bt ,C⟩ξ (t)dt.

For elliptic term, there holds∫ T

0

(
η(ϕhτ )D(uhτ ), D(vh)

)
ξ (t)dt −

∫ T

0

(
η(ϕ)D(u), D(v)

)
ξ (t)dt

≤ ∥η(ϕhτ ) − η(ϕ)∥L4(L4)∥D(uhτ )∥L2(L2)∥D(vh)ξ (t)∥L4(L4)

+η+
∥D(uhτ )∥L2(L2)∥

(
D(vh) − D(v)

)
ξ (t)∥L2(L2)

+

⏐⏐⏐⏐∫ T

0

(
η(ϕ)(D(uhτ ) − D(u)), D(v)

)
ξ (t)dt

⏐⏐⏐⏐ h,τ→0
−−−→ 0. (5.19)

In fact, because of H′
ε(x) ≤

1
4ε , we have

|η(ϕhτ ) − η(ϕ)| = |η2 − η1|
⏐⏐Hε(ϕhτ ) − Hε(ϕ)

⏐⏐ ≤
|η2 − η1|

4ε
|ϕhτ − ϕ|.

Then (5.19) follows from (4.10), (5.5), (5.14), Remark 5.1 and the definition of weak convergence.
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Similarly, using (4.10), (5.9), (5.14), Remark 5.1 and the definition of weak convergence, we also obtain∫ T

0

{(
1

µσ (ϕhτ )
curl Bhτ , curl Ch

)
+

(
1

µσ (ϕhτ )
div Bhτ , div Ch

)}
ξ (t)dt

h,τ→0
−−−→

∫ T

0

{(
1

µσ (ϕ)
curl B, curl C

)
+

(
1

µσ (ϕ)
div B, div C

)}
ξ (t)dt.

Next, we show the convergence of the trilinear terms. From (4.10), (5.9) and (5.16), we deduce∫ T

0

1
µ

(Bhτ × curl Bhτ , vh)ξ (t)dt −

∫ T

0

1
µ

(B × curl B, v)ξ (t)dt

≤
1
µ

∥Bhτ − B∥L2(L4)∥ curl Bhτ∥L2(L2)∥vhξ (t)∥L∞(L4)

+
1
µ

∥B∥L2(L4)∥ curl Bhτ∥L2(L2)∥(vh − v)ξ (t)∥L∞(L4)

+

⏐⏐⏐⏐∫ T

0

1
µ

(
B × curl(Bhτ − B), v

)
ξ (t)dt

⏐⏐⏐⏐ h,τ→0
−−−→ 0.

By (4.10) and (5.14)–(5.15), there holds∫ T

0
(ϕhτuhτ ,∇ψh)ξ (t)dt −

∫ T

0
(ϕu,∇ψ)ξ (t)dt

≤
(
∥ϕhτ − ϕ∥L∞(L4)∥uhτ∥L2(L4) + ∥ϕ∥L∞(L4)∥uhτ − u∥L2(L4)

)
∥∇ψhξ (t)∥L2(L2)

+∥ϕ∥L∞(L4)∥u∥L2(L4)∥(∇ψh − ∇ψ)ξ (t)∥L2(L2)
h,τ→0
−−−→ 0.

Similar to the above analysis, we can get the convergence of other trilinear terms. Moreover, we have∫ T

0

(
f hτ , χh

)
ξ (t)dt −

∫ T

0

(
f (ϕ), χ

)
ξ (t)dt

≤ c
{
∥ϕhτ − ϕ∥L∞(L4)

(
∥ϕhτ∥

2
L4(L4) + ∥ϕ∥

2
L4(L4)

)
+ ∥ϕhτ − ϕ∥L2(L2)

}
∥χhξ (t)∥L2(L4)

+c(∥ϕ∥
3
L∞(L4) + ∥ϕ∥L2(L2))∥(χh − χ )ξ (t)∥L2(L4)

h,τ→0
−−−→ 0.

Based on Remark 5.1 and the definition of weak convergence, there hold∫ T

0
(div uhτ , qh)ξ (t)dt

h,τ→0
−−−→

∫ T

0
(div u, q)ξ (t)dt,

∫ T

0
(div vh, phτ )ξ (t)dt

h,τ→0
−−−→

∫ T

0
(div v, p)ξ (t)dt.

It is well known that C∞(Ω ) is dense in H 1(Ω ), C∞

c (Ω ) is dense in H1
0(Ω ), C∞

c (Ω ) ∩ L2
0(Ω ) is dense in L2

0(Ω ) and
C∞(Ω ) ∩ H1

n(Ω ) is dense in H1
n(Ω ) and C∞([0, T ]) is dense in L p([0, T ]), 1 ≤ p < ∞. Consequently, letting h

and τ converge to 0 in (5.18a)–(5.18e), (3.17a)–(3.17e) hold in the sense of distributions.
Next, we prove ϕ(0) = ϕ0, u(0) = u0, B(0) = B0. Based on the fact that C∞([0, T ]) is dense in H 1([0, T ]), we

choose

ξ (t) =

⎧⎨⎩ 1 −
t
s
, 0 ≤ t ≤ s,

0, s < t ≤ T,

in (5.18a), (5.18c) and (5.18e). Next, as h and τ converge 0, we obtain

−(ϕ0, ψ) +
1
s

∫ s

0
(ϕ(t), ψ)dt =

∫ s

0

{
(ϕu,∇ψ) − γ (∇w,∇ψ)

}
ξ (t)dt, (5.20a)

−(u0, v) +
1
s

∫ s

0
(u(t), v)dt = −

∫ s

0

{
2
(
η(ϕ)D(u), D(v)

)
+ ((u · ∇)u, v)+

1
2

(
(div u)u, v

)
+

1
µ

(B × curl B, v) − (p, div v) + λ(ϕ∇wn, v) − ⟨ f , v⟩
}
ξ (t)dt, (5.20b)
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−(B0,C) +
1
s

∫ s

0
(B(t),C)dt = −

∫ s

0

{(
1

µσ (ϕ)
curl B, curl C

)
+

(
1

µσ (ϕ)
div B, div C

)
− (u × B, curl C)

}
ξ (t)dt. (5.20c)

Then, as s converges 0 in (5.20a)–(5.20c), we can get from Remark 3.3

(ϕ0, ψ) = (ϕ(0), ψ), ∀ ψ ∈ H 1(Ω ),

(u0, v) = (u(0), v), ∀ v ∈ H1
0(Ω ),

(B0,C) = (B(0),C), ∀ C ∈ H1
n(Ω ).

Since H 1(Ω ) is dense in L2(Ω ), and H1
0(Ω ), H1

n(Ω ) are dense in L2(Ω ), there hold ϕ(0) = ϕ0, u(0) = u0, B(0) =

B0. From (4.5), we have

1
2
∥uhτ (tm)∥2

L2 +
1

2µ
∥Bhτ (tm)∥2

L2 +
λ

2
∥∇ϕhτ (tm)∥2

L2 +
λ

ε2

(
F(ϕhτ (tm)), 1

)
+

∫ tm

0
λγ ∥∇whτ∥

2
L2dt

+

∫ tm

0

⎧⎨⎩2∥

√
η(ϕhτ )D(uhτ )∥2

L2 +
1
µ2 ∥

1√
σ (ϕhτ )

curl Bhτ∥
2
L2 +

1
µ2 ∥

1√
σ (ϕhτ )

div Bhτ∥
2
L2

⎫⎬⎭ dt

≤

∫ tm

0
⟨ f , uhτ ⟩dt + Jε,λ,µ(u0

h, B0
h, ϕ

0
h).

According to lower semi-continuity of norms and (4.4), an accumulation point (ϕ,w, u, p, B) satisfies the energy
inequality (3.18).

From the above analysis and Definition 3.1, an accumulation point (ϕ,w, u, p, B) is a weak solution to the
problem (2.3a)–(2.3f). □

Next, we give the following estimates of weak solution.

Lemma 5.4. Suppose that f ∈ L2(0, T ; (H1
0(Ω ))′) and Jε,λ,µ(u0, B0, ϕ0) < ∞. Then, for almost all t ∈ (0, T ),

there hold∫
Ω

ϕ(x, t)dx =

∫
Ω

ϕ0(x)dx, (mass conservation) (5.21)

λ∥∇ϕ(t)∥2
L2 +

λ

ε2

(
F(ϕ(t)), 1

)
+ ∥u(t)∥2

L2 +
1
µ

∥B(t)∥2
L2 ≤ C, (5.22)∫ t

0

(
∥∇w∥

2
L2 + η−

∥∇u∥
2
L2 +

1
µ2σ+

∥B∥
2
H1

n (Ω)

)
ds ≤ C, (5.23)

∥ϕ(t)∥H1 +

∫ t

0
∥ϕt∥

2
(H1)′ds ≤ C, (5.24)∫ t

0
∥w∥

2
H1ds ≤ C

(
T
ε4 + T + 1

)
, (5.25)∫ t

0

(
∥ut∥

4
d
V ′ + ∥Bt∥

4
d
(H1

n )′
+ ∥p∥

12
6+d
L2

)
ds ≤ C(T + 1), (5.26)∫ t

0

(
∥∆ϕ∥

2
L2 + ∥ϕ∥

4(6−d)
d

L∞

)
ds ≤ C

(
T
ε2 + T + 1

)
. (5.27)

Proof. Taking ψ = 1 in (3.17a), we have (5.21). By Hölder inequality, (2.4), (3.2) and (3.18), we have (5.22)–(5.23).
Based on (5.22)–(5.23) and the proof of Theorem 4.2, we can prove (5.24)–(5.25).

According to (3.1), there holds v = PHv+∇v0 for any v ∈ H1
0(Ω ), where v0 ∈ H 1(Ω )/R ⊂ L2

0(Ω ). Then, from
(3.17d), we have u ∈ V ⊂ H and

⟨ut , v⟩ = ⟨ut , PHv⟩ + ⟨ut ,∇v0⟩ = ⟨ut , PHv⟩ +
d
dt

(u,∇v0) = ⟨ut , PHv⟩, ∀v ∈ H1
0(Ω ).
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It follows from (3.17c) and the H 1 stability of PH that

∥ut∥(H1
0)′ = sup

v∈H1
0(Ω)\{0}

⟨ut , v⟩

∥∇v∥L2
= sup

v∈H1
0(Ω)\{0}

⟨ut , PHv⟩

∥∇ PHv∥L2
·
∥∇ PHv∥L2

∥∇v∥L2

≤ c0η
+
∥∇u∥L2 + c0∥u∥

6−d
6

L2 ∥∇u∥

6+d
6

L2 +
c0

µ
∥B∥

6−d
6

L2 ∥B∥

6+d
6

H1
n (Ω)

+ λc0∥ϕ∥H1∥∇w∥L2 + ∥ f ∥(H1
0)′ .

Therefore, from the above inequality, (5.22)–(5.24), (3.17c), (3.17e) and Remark 3.2, we obtain (5.26).
Letting χ = −∆ϕ in (3.17b) and using f ′(ϕ) = 3ϕ2

− 1 ≥ −1, (3.9) and (3.11), we have

∥∆ϕ∥
2
L2 ≤ (

1
2

+
1
ε2 )∥∇ϕ∥

2
L2 +

1
2
∥∇w∥

2
L2 ,

∥ϕ∥

4(6−d)
d

L∞ ≤ c0∥∆ϕ∥
2
L2∥ϕ∥

6(4−d)
d

L6 + c0∥ϕ∥

4(6−d)
d

L6 ≤ c0∥∆ϕ∥
2
L2∥ϕ∥

6(4−d)
d

H1 + c0∥ϕ∥

4(6−d)
d

H1 .

Hence, we get (5.27) from the above inequality and (5.22)–(5.24). □

To guarantee the uniqueness of weak solutions, more regularity on weak solutions is needed. Then the space S
is introduced as follows

S = {(ϕ,w, u, p, B) : (ϕ,w, u, p, B) satisfies (3.12)–(3.16) and ∇u,∇ B ∈ L2(0, T ; Lq (Ω ))},

where q = 3 for d = 3 and q > 2 for d = 2. In fact, the weak solutions (ϕ,w, u, p, B) of the problem (2.3a)–
(2.3f) belong to the function space S, if weak solutions (ϕ,w, u, p, B) satisfy the additional regularity conditions
∇u ∈ L2(0, T ; Lq (Ω )), ∇ B ∈ L2(0, T ; Lq (Ω )), where q = 3 for d = 3 and q > 2 for d = 2. From Remark 4.1
and [66], Yh , Xh and W h are finite-dimensional subspaces of W 1,∞(Ω ). Therefore, Yh × Yh × Xh × Mh × W h is a
subset of S.

Theorem 5.5. Suppose that f ∈ L2(0, T ; (H1
0(Ω ))′) and initial data u0, B0, ϕ0 satisfy Jε,λ,µ(u0, B0, ϕ0) < ∞. If

the weak solutions of the problem (2.3a)–(2.3f) belong to the function space S, the weak solutions of the problem
(2.3a)–(2.3f) in the function space S are unique for d = 2, 3.

Proof. Assume (ϕi , wi , ui , pi , Bi ), i = 1, 2, are two weak solutions to the problem (2.3a)–(2.3f) which belong to
the function space S . Denote ϕ := ϕ1 − ϕ2, w := w1 − w2, u := u1 − u2, B := B1 − B2. Then, there hold

⟨ϕt , ψ⟩ − (ϕ1u,∇ψ) − (ϕu2,∇ψ) + γ (∇w,∇ψ) = 0, (5.28a)

(∇ϕ,∇χ ) +
1
ε2

(
g(ϕ1, ϕ2)ϕ, χ

)
= (w,χ), (5.28b)

⟨ut , v⟩ + 2
(
η(ϕ1)D(u), D(v)

)
+ 2

(
(η(ϕ1) − η(ϕ2))D(u2), D(v)

)
+
(
(u1 · ∇)u, v

)
+
(
(u · ∇)u2, v

)
+

1
µ

(B1 × curl B, v) +
1
µ

(B × curl B2, v) + λ(ϕ1∇w, v) + λ(ϕ∇w2, v) = 0, (5.28c)

⟨Bt ,C⟩ +

((
1

µσ (ϕ1)
−

1
µσ (ϕ2)

)
curl B2, curl C

)
+

((
1

µσ (ϕ1)
−

1
µσ (ϕ2)

)
div B2, div C

)
+

(
1

µσ (ϕ1)
curl B, curl C

)
+

(
1

µσ (ϕ1)
div B, div C

)
− (u × B1, curl C) − (u2 × B, curl C) = 0, (5.28d)

for any (ψ, χ, v,C) ∈ H 1(Ω ) × H 1(Ω ) × V × H1
n(Ω ), where g(ϕ1, ϕ2) := ϕ2

1 + ϕ1ϕ2 + ϕ2
2 − 1.

Setting (ψ, χ, v,C) = (λw, λϕt , u, 1
µ

B) in (5.28a)–(5.28d) and adding the resulted equalities, we have

d
dt

(
λ

2
∥∇ϕ∥

2
L2 +

1
2
∥u∥

2
L2 +

1
2µ

∥B∥
2
L2

)
+ γ λ∥∇w∥

2
L2 + 2∥

√
η(ϕ1)D(u)∥2

L2

+
1
µ2 ∥

1
√
σ (ϕ1)

curl B∥
2
L2 +

1
µ2 ∥

1
√
σ (ϕ1)

div B∥
2
L2

= −
λ

ε2 ⟨ϕt , g(ϕ1, ϕ2)ϕ⟩ + λ(ϕu2,∇w) − λ(ϕ∇w2, u) −
(
(u · ∇)u2, u

)
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−
1
µ

(B × curl B2, u) +
1
µ

(u2 × B, curl B) − 2
(
(η(ϕ1) − η(ϕ2))D(u2), D(u)

)
−

1
µ2

((
1

σ (ϕ1)
−

1
σ (ϕ2)

)
curl B2, curl B

)
−

1
µ2

((
1

σ (ϕ1)
−

1
σ (ϕ2)

)
div B2, div B

)
. (5.29)

To estimate the first term on the right-hand side of (5.29), we test ψ =
λ

ε2 g(ϕ1, ϕ2)ϕ ∈ L2(0, T ; H 1(Ω )) in (5.28a)
and have

−
λ

ε2 ⟨ϕt , g(ϕ1, ϕ2)ϕ⟩ = −
λ

ε2

(
ϕ1u,∇(g(ϕ1, ϕ2)ϕ)

)
−
λ

ε2

(
ϕu2,∇(g(ϕ1, ϕ2)ϕ)

)
+
λγ

ε2

(
∇w,∇(g(ϕ1, ϕ2)ϕ)

)
≤

c2
0η

−

8
∥∇u∥

2
L2 +

γ λ

4
∥∇w∥

2
L2 + c∥∇u2∥

2
L2∥ϕ∥

2
H1

+c
(
∥ϕ1∥

2
H1 + 1

) (
∥g(ϕ1, ϕ2)∥2

L∞ + ∥∇g(ϕ1, ϕ2)∥2
L3

)
∥ϕ∥

2
H1 , (5.30)

where g(ϕ1, ϕ2) ∈ L2(0, T ; L∞(Ω )) and ∇g(ϕ1, ϕ2) ∈ L2(0, T ; L3(Ω )) can be obtained from (5.24) and (5.27).
From (3.3) and (3.9), we get

λ(ϕu2,∇w) − λ(ϕ∇w2, u) ≤ λ∥ϕ∥L3∥u2∥L6∥∇w∥L2 + λ∥ϕ∥L3∥∇w2∥L2∥u∥L6

≤
γ λ

4
∥∇w∥

2
L2 +

c2
0η

−

8
∥∇u∥

2
L2 + c

(
∥∇u2∥

2
L2 + ∥∇w2∥

2
L2

)
∥ϕ∥

2
H1 . (5.31)

Using the fact that η(ϕ) and 1
σ (ϕ) are Lipschitz-continuous functions of ϕ, we have

∥η(ϕ1) − η(ϕ2)∥L p + ∥
1

σ (ϕ1)
−

1
σ (ϕ2)

∥L p ≤ c∥ϕ1 − ϕ2∥L p ≤ c∥ϕ∥H1 ,

where p ∈ [1, 6] if d = 3 and p ∈ [1,+∞) if d = 2. So, by Hölder inequality, there hold

2
(
(η(ϕ1) − η(ϕ2))D(u2), D(u)

)
≤

c2
0η

−

8
∥∇u∥

2
L2 + c∥∇u2∥

2
Lq ∥ϕ∥

2
H1 , (5.32)

1
µ2

((
1

σ (ϕ1)
−

1
σ (ϕ2)

)
curl B2, curl B

)
+

1
µ2

((
1

σ (ϕ1)
−

1
σ (ϕ2)

)
div B2, div B

)
≤

1
4µ2σ+

∥B∥
2
H1

n (Ω) + c∥∇ B2∥
2
Lq ∥ϕ∥

2
H1 , (5.33)

in which q = 3 if d = 3 and q > 2 if d = 2. Based on (3.3), (3.5)–(3.6), (3.8) and Remark 3.2, we obtain

−
(
(u · ∇)u2, u

)
−

1
µ

(B × curl B2, u) +
1
µ

(u2 × B, curl B)

≤

⎧⎪⎪⎨⎪⎪⎩
∥u∥L4∥∇u2∥L2∥u∥L4 +

1
µ

∥B∥L4∥ curl B2∥L2∥u∥L4 +
1
µ

∥∇u2∥L2∥B∥L4∥B∥L4 , d = 2,

∥u∥L2∥∇u2∥L3∥u∥L6 +
1
µ

∥B∥L6∥ curl B2∥L3∥u∥L2 +
c0

µ
∥∇u2∥L3∥B∥L2∥B∥L6 , d = 3,

≤
c2

0η
−

8
∥∇u∥

2
L2 +

1
4µ2σ+

∥B∥
2
H1

n (Ω) + c(∥∇u2∥
2
Ld + ∥ curl B2∥

2
Ld )(∥u∥

2
L2 + ∥B∥

2
L2 ). (5.34)

Combining (5.30)–(3.2) and (5.34) with (5.29), we have

d
dt

(
λ

2
∥∇ϕ∥

2
L2 +

1
2
∥u∥

2
L2 +

1
2µ

∥B∥
2
L2

)
+
γ λ

2
∥∇w∥

2
L2 +

c2
0η

−

2
∥∇u∥

2
L2 +

1
2µ2σ+

∥B∥
2
H1

n (Ω)

≤ c
(
∥∇w2∥

2
L2 + ∥g(ϕ1, ϕ2)∥2

L∞ + ∥∇g(ϕ1, ϕ2)∥2
L3

)
∥ϕ∥

2
H1

+c
(
∥∇u2∥

2
Lq + ∥∇ B2∥

2
Lq
) (

∥u∥
2
L2 + ∥B∥

2
L2 + ∥ϕ∥

2
H1

)
, (5.35)

where q = 3 if d = 3 and q > 2 if d = 2.
Next, we estimate d

dt ∥ϕ∥
2
L2 and ∥∆ϕ∥

2
L2 . Setting ψ = ϕ in (5.28a) and χ = −γ∆ϕ in (5.28b), and adding the

obtained equalities, we have
1
2

d
dt

∥ϕ∥
2
L2 + γ ∥∆ϕ∥

2
L2 =

γ

ε2

(
g(ϕ1, ϕ2)ϕ,∆ϕ

)
+ (ϕ1u,∇ϕ) + (ϕu2,∇ϕ)
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≤
γ

ε2 ∥g(ϕ1, ϕ2)∥L∞∥ϕ∥L2∥∆ϕ∥L2 + ∥ϕ1∥L3∥u∥L2∥∇ϕ∥L6 + ∥ϕ∥L2∥u2∥L3∥∇ϕ∥L6

≤
γ

4
∥∆ϕ∥

2
L2 + c

(
∥g(ϕ1, ϕ2)∥2

L∞ + ∥∇u2∥
2
L2

)
∥ϕ∥

2
L2 + c∥ϕ1∥

2
H1∥u∥

2
L2 . (5.36)

Taking sum of (5.35)–(5.36), we get
d
dt

(
∥ϕ∥

2
L2 + λ∥∇ϕ∥

2
L2 + ∥u∥

2
L2 +

1
µ

∥B∥
2
L2

)
+γ λ∥∇w∥

2
L2 + c2

0η
−
∥∇u∥

2
L2 +

1
µ2σ+

∥B∥
2
H1

n (Ω) + γ ∥∆ϕ∥
2
L2

≤ c
(
∥∇w2∥

2
L2 + ∥g(ϕ1, ϕ2)∥2

L∞ + ∥∇g(ϕ1, ϕ2)∥2
L3

) (
∥ϕ∥

2
L2 + λ∥∇ϕ∥

2
L2

)
+c

(
∥∇u2∥

2
Lq + ∥∇ B2∥

2
Lq + ∥ϕ1∥

2
H1

) (
∥u∥

2
L2 +

1
µ

∥B∥
2
L2 + ∥ϕ∥

2
L2 + λ∥∇ϕ∥

2
L2

)
. (5.37)

Then, making use of Gronwall lemma, ϕ(0) = 0, u(0) = B(0) = 0 and ∇u,∇ B ∈ L2(0, T ; Lq (Ω )) where q = 3
in case of d = 3 and q > 2 for d = 2, we deduce

∥ϕ∥
2
H1 + ∥u∥

2
L2 + ∥B∥

2
L2 = 0. (5.38)

Moreover, the uniqueness of pressure p follows from the inf–sup condition (see Corollary 2.4 and Lemma 4.1
of [66]). Hence, the theorem is proved. □

Remark 5.2. Based on the assumption ∇u,∇ B ∈ L2(0, T ; L3(Ω )) for d = 3 and Remark 3.2, we can show ut ∈

L2(0, T ; V ′) and Bt ∈ L2(0, T ; (H1
n)′) for d = 2, 3. Therefore, under the assumption ∇u,∇ B ∈ L2(0, T ; L3(Ω ))

for d = 3, the problem (2.3a)–(2.3f) satisfies the energy law for almost all t ∈ [0, T ]

Jε,λ,µ(u(t), B(t), ϕ(t)) +

∫ t

0

{
λγ ∥∇w∥

2
L2 + 2∥

√
η(ϕ)D(u)∥2

L2 +
1
µ2 ∥

1
√
σ (ϕ)

curl B∥
2
L2

+
1
µ2 ∥

1
√
σ (ϕ)

div B∥
2
L2

}
ds =

∫ t

0
( f , v)ds + Jε,λ,µ(u0, B0, ϕ0).

Theorem 5.6. Under the conditions of Theorem 5.5, the whole sequence
{
(ϕhτ , whτ , uhτ , phτ , Bhτ )

}
converges to

the unique weak solution.

Proof. Based on Theorems 5.3 and 5.5, each convergent subsequence of
{
(ϕhτ , whτ , uhτ , phτ , Bhτ )

}
has the

same limit (ϕ,w, u, p, B) which is the weak solution to the problem (2.3a)–(2.3f). Therefore, the whole sequence{
(ϕhτ , whτ , uhτ , phτ , Bhτ )

}
converges to (ϕ,w, u, p, B). □

6. Numerical examples

In this section, we provide three numerical experiments to validate the proposed numerical scheme and
Cahn–Hilliard–MHD model. For spatial discretization, the finite element space

Yh =
{
ψh ∈ C0(Ω ); ψh |K ∈ P2(K ),∀K ∈ Th

}
,

is chosen to approximate ϕ and w, and the finite element spaces

Xh =
{
vh ∈ C0(Ω ) ∩ H1

0(Ω ); vh |K ∈ P2(K ),∀K ∈ Th
}
,

Mh =
{
qh ∈ C0(Ω ) ∩ L2

0(Ω ); qh |K ∈ P1(K ),∀K ∈ Th
}
,

W h =
{

Ch ∈ C0(Ω ) ∩ H1
n(Ω ); Ch |K ∈ P2(K ),∀K ∈ Th

}
are used to approximate u, p and B, respectively.

6.1. Energy dissipation and mass conservation

In this test, the initial profile of the phase ϕ is taken as

ϕ0 = tanh
(

|x + y − 1| + |x − y| − 0.4
√

2ε

)
.
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Fig. 1. The energy dissipation and mass conservation.

The zero level set of ϕ0 is the square |x + y − 1| + |x − y| = 0.4 located in the middle of the domain Ω =

(0, 1)×(0, 1) (see Fig. 2a). We take both the initial conditions and boundary conditions for the velocity and magnetic
field to be zero. The source term f is taken to be zero and homogeneous Neumann boundary conditions are imposed
for ϕ and w. Based on Remark 5.2, the energy of two-phase MHD system without source terms and the exchange
of external energy is dissipative. Setting the parameters ε = 0.01, λ = 0.001, γ = 0.001, η = µ = σ = 1 and
h = 1/64, τ = 0.001 and using the scheme (4.3a)–(4.3f), the energy Jε,λ,µ(un

h, Bn
h, ϕ

n
h ) and the mass

∫
Ω ϕ

n
h dx

are calculated. Fig. 1a shows that the energy Jε,λ,µ(un
h, Bn

h, ϕ
n
h ) decays with time. During the evolution, the mass∫

Ω ϕ
n
h dx remains constant (see Fig. 1b). Considering zero initial data and homogeneous boundary conditions for

velocity and magnetic field, the isolated square relaxes to a circular shape under the effect of surface tension and
the isotropy of the mobility (see Fig. 2).

6.2. Convergence of the scheme

In the domain Ω = (0, 1) × (0, 1) and time interval (0, 1), consider the model with the following analytical
solution

ϕ = 256x2(x − 1)2 y2(y − 1)2cos(t), w = 256x2(x − 1)2 y2(y − 1)2cos(t),

u =
(
x2(x − 1)2 y(y − 1)(2y − 1)cos(t), −y2(y − 1)2x(x − 1)(2x − 1)cos(t)

)
,

p = (2x − 1)(2y − 1)cos(t),

B =
(
sin(πx)cos(πy)cos(t), −sin(πy)cos(πx)cos(t)

)
.

The initial conditions, boundary conditions and source terms are determined by the analytical solution. Set the
physical parameters γ = λ = ε = η = σ = µ = 1. Since the first order Euler semi-implicit treatment in time and
the finite elements (P2 − P2 − P2 − P1 − P2) for (ϕ,w, u, p, B) in space are applied to solve the model, the L2

errors of (ϕ,w, u, B) are expected to be O(h3) + O(τ ), and the H 1 errors of (ϕ,w, u, B) and the L2 errors of p
are expected to be O(h2) + O(τ ). We test the convergence of the proposed scheme with τ = 8h3 and τ = 4h2,
respectively. The corresponding convergent results are displayed in Tables 1–2, which show the optimal convergence
of the proposed numerical scheme.
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Fig. 2. Phase field ϕ at different time t .

Table 1
The convergent results for two-phase MHD model at tn = 1, τ = 8h3.

h ∥ϕ − ϕn
h ∥L2 ∥w − wn

h∥L2 ∥u − un
h∥L2 ∥B − Bn

h∥L2

1/4 1.50457e−002 1.88881e−002 9.4626e−005 3.82049e−003
1/8 1.95976e−003 2.30104e−003 1.05811e−005 4.38114e−004
1/16 2.48352e−004 2.83989e−004 1.2817e−006 5.22506e−005
1/32 3.12249e−005 3.52665e−005 1.58824e−007 6.37922e−006
1/48 9.26867e−006 1.04260e−005 4.69746e−008 1.87560e−006

Order 2.9767 3.0182 3.0561 3.0640

Table 2
The convergent results for two-phase MHD model at tn = 1, τ = 4h2.

h ∥ϕ − ϕn
h ∥H1 ∥w − wn

h∥H1 ∥u − un
h∥H1 ∥B − Bn

h∥H1 ∥p − pn
h∥L2

1/4 1.61589e−001 1.62720e−001 3.03279e−003 9.85952e−002 2.03051e−002
1/8 4.51858e−002 4.53299e−002 7.01334e−004 2.55171e−002 5.69076e−003
1/16 1.16641e−002 1.16925e−002 1.76829e−004 6.45235e−003 1.45523e−003
1/32 2.94311e−003 2.94975e−003 4.44182e−005 1.61944e−003 3.65721e−004
1/48 1.31072e−003 1.31363e−003 1.97608e−005 7.20491e−004 1.62698e−004

Order 1.9431 1.9448 2.0188 1.9811 1.9491

6.3. Two-phase hartmann flows

Hartmann flows are the MHD version of the classical Poiseuille flows [15]. In this subsection, we consider
two-phase Hartmann flows which describe the internal flow of two immiscible, incompressible and electrically
conducting fluids between the parallel insulated and steady plates in the presence of a transverse magnetic field
Bd

= (0, B). The initial phase field is given in Fig. 3a. The red part of the figure stands for one fluid with the
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Fig. 3. Phase field ϕ at different time t for α = 0.05.

viscosity η1 and electric conductivity σ1; the blue part represents another fluid with the viscosity η2 and electric
conductivity σ2. By introducing a characteristic velocity U , a characteristic magnetic field B, a characteristic length
L , and non-dimensional variables x̃ =

x
L , t̃ =

tU
L , ũ =

u
U , p̃ =

p
ρU2 , B̃ =

B
B , B̃

d
=

Bd

B , Rei =
ρU L
ηi
, s =

B2

µρU2 , Rmi = LUµσi , γ̃ =
γ

U L3 , λ̃ =
λ

ρU2 L2 , ε̃ =
ε
L , w̃ = L2w, two-phase MHD model (2.3a)–(2.3f) and the

numerical scheme (4.3a)–(4.3f) can be nondimensionalized correspondingly. The boundary conditions are⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = 0, on y = ±1,

2
Rei

D(u) · n − pn = −pd n, on x = 0, L0,

B × n = Bd
× n, on ∂Ω ,

(6.1)

where Rei and Rmi are the fluid Reynolds numbers and magnetic Reynolds numbers of the fluid i (i = 1, 2), and
∂Ω is the boundary of Ω = (0, L0) × (−1, 1).

In the numerical test, we apply the nondimensional form of the scheme (4.3a)–(4.3f) with the boundary
conditions (6.1) to simulate two-phase Hartmann flows by taking the width ε of interface, mesh size h and time-step
τ are small enough. Choose ε = 0.01, h = 0.01, τ = 0.01 and λ = 0.01, γ = 100, s = 1, T = 20, L0 = 2. Taking
Re1 = 20 and Re2 = Rm1 = Rm2 = 1, the evolutions of the phase field are displayed in Fig. 3. From the figure, we
observe that the zero level set of the phase field changes from the initial curve interface to a straight line interface
and reaches steady state finally. The phenomenon can be explained by the fact that two-phase Hartmann flows are
laminar.

In the following, we compare the numerical solutions with the analytical ones for the velocity and magnetic field
of two-phase Hartmann flows. The domain of two-phase Hartmann flows in the steady state is illustrated in Fig. 4.
The flow of the fluids is driven by the gradient of a pressure pd and is laminar. The velocity, magnetic field and
shear stress are continuous across the interface y = 0, that is,⎧⎪⎪⎨⎪⎪⎩

u1 = u2,
d

dy
u1 =

1
α

d
dy

u2, on y = 0,

b1 = b2,
d

dy
b1 = β

d
dy

b2, on y = 0,
(6.2)
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Fig. 4. The region of two-phase Hartmann flows.

where α =
η1
η2

=
Re2
Re1
, β =

σ1
σ2

=
Rm1
Rm2

. Based on the above information, the exact solution to two-phase Hartmann
flows has the following form: u = (ui (y), 0), B = (bi (y), 1) in region i , denoted by Ωi , (see [101])

ui (y) = D1i cosh(Hai y) + D2i sinh(Hai y) + Fi , pi (x, y) = −Gx −
s
(
bi (y)

)2

2
+ p0 = pd ,

bi (y) = −
Rmi

Hai

[
D1i sinh(Hai y) + D2i cosh(Hai y)

]
+ Q1i y + Q2i ,

where Hartmann numbers are denoted by Hai := Rei Rmi s (i = 1, 2). Therefore, plugging the above identities
into the nondimensional form of (2.1a)–(2.1c) and the boundary and interface conditions (6.1)–(6.2), undetermined
coefficients can be obtained

Q11 = Q12 = −
G
s
,

a12 = sinh(Ha1 ) +
αHa1

Ha2

sinh(Ha2 ), a11 = cosh(Ha1 ) − 1 −
Rm1

βRm2

(
cosh(Ha2 ) − 1

)
,

k1 =
1

Rm2

(
−

Q11

β
+ Q12

)(
cosh(Ha2 ) − 1

)
, k2 = −Q11 − Q12 +

1
Ha2

(
−

Q11

β
+ Q12

)
sinh(Ha2 ),

a21 = −
Rm1

Ha1

sinh(Ha1 ) −
Rm1

βHa2

sinh(Ha2 ), a22 = −
Rm1

Ha1

(
cosh(Ha1 ) − 1

)
+
αRm2 Ha1

(Ha2 )2

(
cosh(Ha2 ) − 1

)
,

D11 =
k1a22 − k2a12

a11a22 − a21a12
, D21 =

k1a21 − k2a11

a12a21 − a22a11
,

D12 =
1

Rm2

(
1
β

(Rm1 D11 − Q11) + Q12

)
, D22 =

αHa1

Ha2

D21,

F1 = −D11cosh(Ha1 ) − D21sinh(Ha1 ), F2 = D11 − D12 + F1,

Q22 = −
Rm1

Ha1

D21 +
Rm2

Ha2

D22 + Q21, Q21 =
Rm1

Ha1

(
D11sinh(Ha1 ) + D21cosh(Ha1 )

)
− Q11.

The effect of the ratio of viscosity α of fluids on the velocity and magnetic field is explored. Taking α =

1, 0.5, 0.1, 0.05 and fixing β = 1, Re2 = Rm2 = 1, the numerical solutions at tn = 20 are in accordance with the
exact solutions which are shown in Fig. 5. As the ratio of viscosity decreases, the velocity in region 1 changes
greatly.
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Fig. 5. Horizontal component of velocity and magnetic field along x = 1 for different ratios of viscosity, computed (points) and theoretical
(lines).

Fig. 6. Horizontal component of velocity and magnetic field along x = 1 for different ratios of electric conductivity, computed (points) and
theoretical (lines).

Next, we study the effect of the ratio of electric conductivity β of fluids on the velocity and magnetic field.
Fixing α = 1 and Re1 = Rm1 = 1, Fig. 6 shows the numerical solutions at tn = 20 coincide with the analytical
ones for β = 1, 0.5, 0.1, 0.05. With the decrease of the ratio of electric conductivity, the induced magnetic field in
region 2 becomes greater.
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Fig. 7. Horizontal component of velocity and magnetic field along x = 1 for different Hartmann numbers, computed (points) and theoretical
(lines).

Finally, we study the effect of Hartmann numbers on the velocity and magnetic field. Fixing α = 5, β = 0.2,
we take the following Hartmann numbers in regions 1 and 2

Ha1 = 1 (Re1 = 1, Rm1 = 1), Ha2 = 5 (Re2 = 5, Rm2 = 5);

Ha1 = 2 (Re1 = 2, Rm1 = 2), Ha2 = 10 (Re2 = 10, Rm2 = 10);

Ha1 = 4 (Re1 = 4, Rm1 = 4), Ha2 = 20 (Re2 = 20, Rm2 = 20).

With the increase of the Hartmann number, the velocity profile becomes flatter and velocity gradient near the plates
becomes steeper, as shown in Fig. 7.

7. Conclusion

In this paper, we proposed a diffuse-interface Cahn–Hilliard–MHD model to govern the two-phase MHD flows.
The model is based on incompressible MHD equations and Cahn–Hilliard phase field model. A semi-implicit energy
stable finite element method is proposed for solving this new model. The existence of weak solutions for this new
model and the convergence of the numerical scheme are rigorously analyzed. Numerical examples are provided to
validate the proposed model, numerical method, and theory.
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