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a b s t r a c t

In this paper, we consider numerical approximations for solving the magneto-hydro-
dynamic equations, which couples the Navier–Stokes equations and Maxwell equations
together. A challenging issue to solve this model numerically is the time discretization,
i.e., how to develop suitable temporal discretizations for the nonlinear terms in order
to preserve the energy stability at the discrete level. We solve this issue in this paper
by developing a linear, fully decoupled first order time marching scheme, by combining
the projection method for Navier–Stokes equations and some subtle implicit–explicit
treatments for nonlinear coupling terms. We further prove that the scheme is uncon-
ditional energy stable and derive the optimal error estimates of the semi-discretization
rigorously. Various numerical simulations are implemented to demonstrate the stability
and the accuracy.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The magneto-hydrodynamical (MHD) system models the behaviors of conducting fluids, such as plasmas, liquid metals,
salt water and electrolytes, under external electromagnetic field. It has wide applications in geophysics, astrophysics
and confinement for controlled thermonuclear fusion, see [1–3]. The fundamental concept behind the MHD system is
that magnetic fields can induce currents in a moving conductive fluid, which in turn polarizes the fluid and reciprocally
changes the magnetic field itself. Thus the governing equations that describe the MHD system are a nonlinear system
to couple the Navier–Stokes equations for hydrodynamics and Maxwell’s equations for electromagnetism. About the
extensive theoretical modeling/numerical analysis for the MHD system, we refer to [4–23] and the references therein.

To solve the MHD system numerically, the main challenging issue is to develop proper temporal discretizations for
those coupling terms, including (i) the coupling of the velocity and pressure in the fluid momentum equation, and (ii)
the nonlinear coupling between the magnetic field and the velocity field through convection and Lorentz forces. It is
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well-known that simple discretizations, like fully explicit or implicit type schemes, can lead to considerable instabilities
or suffer from costly time expense. Therefore, people are particularly interested in designing energy stable schemes, in
the sense that the discrete energy dissipation laws hold. Meanwhile, while keeping the energy stable feature, it is also
desirable to develop schemes that are easy-to-implement. Here the term ‘‘easy-to-implement" is referred to ‘‘linear" and
‘‘decoupled" in comparison with its counter parts: ‘‘nonlinear" and ‘‘coupled".

It is remarkable that many attempts have been made in this direction recently. In [8], the authors developed two
implicit–explicit type methods where the first order method is shown to be unconditionally stable and the second order
method is shown to be conditionally stable. However, the model considered in [8] is the reduced version, namely, the
magnetic field is assumed to be a fixed function. In [24,25], the authors developed a decoupled type scheme for the full
MHD system, but it is conditionally energy stable with a time step constraint similar to [8]. In [9], the authors developed a
totally decoupled scheme where the computations of Navier–Stokes equations are based on the commutator of Laplacian
and Leray projection, and all nonlinear and coupling terms are treated explicitly. However, the scheme is still conditionally
stable. In [26], the authors had developed a ‘‘partially" decoupled scheme where the computations of magnetic field is
totally decoupled from the velocity field since all nonlinear terms are treated explicitly, but the velocity is coupled with
the pressure in the Navier–Stokes equations. Furthermore, a severe time step constraint (δt ≲ h3 where h is the grid size
of space), which can be very costly in large-scale computations, has to be used to ensure stability. In [27], the authors
developed some unconditionally energy stable schemes based on the projection type methods for the Navier–Stokes
equations. However, the velocity field and the magnetic field are still coupled together.

Therefore, the aim of this paper is to develop a time marching scheme that is not only easy-to-implement (linear and
decoupled), but also unconditionally energy stable. We achieve such a goal by combining several effective approaches,
including, (i) an auxiliary intermediate velocity variable to decouple the computation of the magnetic field from the
velocity; (ii) the projection method to decouple the pressure from the velocity; and (iii) some subtle implicit–explicit
treatments to discretize the nonlinear convection and Lorentz force terms. We adopt the first order backward Euler scheme
for time discretization, first order implicit–explicit treatments for nonlinear terms, and first order projection method for
fluid equations. Thus, our final scheme is a first order time marching scheme. We rigorously prove the energy stability and
derive the optimal error estimates for the developed scheme. Furthermore, we implement various numerical simulations,
including the convergence test, energy stability test and a physical benchmark problem, the Kelvin–Helmholtz shear
instability, to demonstrate the stability and accuracy of the scheme. Our decoupled idea is somewhat similar to the matrix
splitting algorithms in [16]. The key ingredients are to introduce a new auxiliary velocity to decouple the computations
of velocity and magnetic field. In [16], one also needs to solve an intermediate magnetic field b̃n+1, then update the
bn+1 through one step pseudo magnetic pressure correction. Furthermore, the error estimates and numerical studies of
unconditional stabilities are not presented in [16].

The rest of paper is organized as follows. In Section 2, we present the model and derive the associated energy
dissipation law. In Section 3, we develop the fully decoupled scheme and prove its associated energy stability. In Section 4,
we derive its optimal error estimates. In Section 5, various numerical experiments are presented to demonstrate the
stability and accuracy of the scheme. Finally, some concluding remarks are given in Section 6.

2. The MHD model and its energy law

Here and after, for two vector functions x, y, we denote the L2 inner product as (x, y) =
∫

Ω
x · ydx and L2 norm

∥x∥2
= (x, x). We use H1(Ω) and H2(Ω) to denote the usual Sobolev spaces, and use ∥·∥1 for the norm in H1(Ω) and ∥·∥2

for the norm in H2(Ω). We also define H1
0 (Ω) =

{
φ ∈ H1(Ω) : φ|∂Ω= 0

}
, L20(Ω) =

{
φ ∈ L2(Ω) :

∫
Ω

φdx = 0
}
,H1

τ (Ω) =

{w ∈ H1(Ω)d : n × w|Ω= 0} and H = {u ∈ L2(Ω)d, ∇ · u = 0, u · n|∂Ω= 0}, d = 2, 3. The following Poincare inequalities
and embedding inequalities are well known [28,29]:

∥u∥ ≤ c∥∇u∥, u ∈ H1
0 (Ω), (2.1)

∥w∥1 ≤ c∥∇ · w∥ + c∥∇ × w∥ w ∈ H1
τ (Ω), (2.2)

∥u∥Lp ≤ c∥u∥1, 2 ≤ p ≤ 6, u ∈ H1(Ω), (2.3)

∥u∥L3 ≤ c∥u∥
1
2 ∥u∥

1
2
1 u ∈ H1(Ω). (2.4)

Let X be a Banach space. The space Lp(0, T ; X), 1 ≤ p ≤ ∞, is the space of classes of Lp functions from (0, T ) into X , which
is a Banach space with the norm(∫ T

0
∥u(t)∥p

Xdt
)1/p

if 1 ≤ p < ∞, ess supt∈[0,T ]∥u(t)∥X if p = ∞.

For simplifying our notations, we write ∇ × a × b to denote (∇ × a) × b.
We consider the following incompressible MHD equations:

ut − ν∆u + (u · ∇)u + ∇p + sB × ∇ × B = 0, (2.5)
Bt + η∇ × ∇ × B − ∇ × (u × B) = 0, (2.6)
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∇ · u = 0, (2.7)
∇ · B = 0, (2.8)

for (x, t) ∈ Ω × [0, T ) with Ω ⊂ Rd, d = 2, 3, where u denotes the velocity field, p is the pressure, and B is the magnetic
field. For the physical parameters, ν−1

= Re (fluid Reynolds number), η−1
= Rm (magnetic Reynolds number), and s is the

coupling coefficient, which are given by

Re =
UL
µf

, Rm = µmσUL, s =
B2

ρµmU2 ,

where U is the characteristic velocity, L is the characteristic length, µf is the kinematic viscosity, µm is the magnetic
permeability, σ is the electric conductivity, B is the characteristic magnetic field, and ρ is the fluid density. The system
is equipped with the following boundary conditions

u|∂Ω= 0, B × n|∂Ω= 0, (2.9)

and initial conditions

u|(t=0)= u0(x), B|(t=0)= B0(x), (2.10)

with ∇ ·u0 = 0, ∇ ·B0 = 0, where n denotes the outward unit normal of ∂Ω . We also assume Ω is a bounded connected
regular domain such that the H2 regularity of elliptic problems holds.

The model (2.5)–(2.8) follows the energy dissipation law. By taking the L2 inner product of (2.5) with u, and of (2.6)
with sB, using (2.7)–(2.9) and integration by parts, we have

(ut , u) + ν∥∇u∥
2
+ s(B × ∇ × B, u) = 0,

s(Bt ,B) + sη∥∇ × B∥
2
− s(u × B, ∇ × B) = 0.

By taking the summation of the two equalities, we obtain
d
dt

E(u,B) = −ν∥∇u∥
2
− sη∥∇ × B∥

2,

where

E(u,B) =
1
2
∥u∥

2
+

s
2
∥B∥

2

represents the total energy of the system (2.5)–(2.8).

3. Numerical scheme

We now construct a semi-discrete time marching numerical scheme for solving the model system (2.5)–(2.8) and prove
the corresponding energy stability. It will be clear that the energy stabilities of the semi-discrete schemes are also valid
in the fully discrete formulation, for instance by finite element or spectral spatial discretizations.

Let δt > 0 denote the time step size and set tn = nδt for 0 ≤ n ≤ [
T
δt ] with the final time T . Our numerical scheme

reads as follows.
Given the initial conditions (u0,B0, p0), where p0 = p(0) is obtained from u0,B0 and Eqs. (2.5), having computed

(un,Bn, pn) for n > 0, we compute (un+1, Bn+1, pn+1) by the following steps.
Step 1.

Bn+1
− Bn

δt
+ η∇ × ∇ × Bn+1

− ∇ × (un
⋆ × Bn) = 0, (3.1)

un
⋆ − un

δt
+ sBn

× ∇ × Bn+1
= 0, (3.2)

Bn+1
× n|∂Ω= 0. (3.3)

Step 2.

ũn+1
− un

⋆

δt
+ (un

· ∇)ũn+1
− ν∆ũn+1

+ ∇pn = 0, (3.4)

ũn+1
|∂Ω= 0. (3.5)

Step 3.

un+1
− ũn+1

δt
+ ∇(pn+1

− pn) = 0, (3.6)

∇ · un+1
= 0, (3.7)
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un+1
· n|∂Ω= 0. (3.8)

Several remarks are in order.

Remark 3.1. For the semi-discrete form, we notice the divergence free condition holds for un. In practice, un may not be
divergence free pointwise. For this case, a common practice is to define a skew-symmetric form

b(u, v, w) =
1
2
((u · ∇)v, w) −

1
2
((u · ∇)w, v) (3.9)

which was first introduced by Temam [30]. If the velocity u ∈ H , then b(u, u, v) = ((u · ∇)u, v) which is consistent with
original equation.

Remark 3.2. To decouple the computation of the pressure from that of the velocity, we use the first order pressure-
correction scheme [31–38]. To further decouple the computations of B from the velocity field u, inspired by [33,37,39–45],
we introduce a new, explicit, convective velocity un

⋆ , that can be computed directly from (3.2), i.e.,

un
⋆ = un

+ δts∇ × Bn+1
× Bn. (3.10)

Indeed, if plugging (3.10) into (3.1), one obtains a linear equation for Bn+1 as

Bn+1

δt
+ η∇ × ∇ × Bn+1

+δts∇ ×
(
Bn

× (∇ × Bn+1
× Bn)

)
= gn, (3.11)

where gn
= −∇ × (Bn

× un) +
1
δt B

n. Thus, in Step 1, we only need to solve the above fully decoupled, linear problem
(3.11) with the boundary condition (3.3).

Remark 3.3. For the pressure equation, indeed, by taking the divergence for (3.6), we get

−∆pn+1
= −

1
δt

∇ · ũn+1
− ∆pn, (3.12)

associated with the Neumann boundary conditions ∂n(pn+1
− pn)|∂Ω= 0. Once pn+1 is obtained, we update un+1 from

un+1
= ũn+1

− δt∇(pn+1
− pn).

Proposition 1. The problem (3.11) with (3.3) of Step 1 is well-posedness.

Proof. The associated weak form of (3.11) can be written as: Find B ∈ H1
τ (Ω) such that

a(B, C ) = (gn, C ), ∀C ∈ H1
τ (Ω)

where

a(B, C ) =
1
δt

(B, C ) + η(∇ × B, ∇ × C ) + δts(Bn
× ∇ × B,Bn

× ∇ × C ).

It can be seen the bilinear form a(·, ·) is symmetric, namely,

a(B, C ) = a(C ,B).

In addition, using (2.2) and ∇ · B = 0 (∇ · Bn
= 0 can be deduced by taking divergence of (3.11)) we have

a(B,B) ≥ C(Ω, η)∥B∥
2
1,

and

a(B, C ) ≤ C(δt, η, s, ∥Bn
∥L∞ )∥B∥1∥C∥1.

Thus, it is well-posedness using the Lax–Milgram Theorem. □

In the below, we prove the energy stability of the scheme (3.1)–(3.8) as follows.

Theorem 3.1. The scheme (3.1)–(3.8) is unconditionally energy stable in the sense that

s∥Bn+1
∥
2
+ ∥un+1

∥
2
+ δt2∥∇pn+1

∥
2
+ 2δt

(
sη∥∇ × Bn+1

∥
2
+ ν∥∇ũn+1

∥
2
)

≤ s∥Bn
∥
2
+ ∥un

∥
2
+ δt2∥∇pn∥2. (3.13)

Moreover, ∇ · Bn+1
= · · · = ∇ · B0

= 0 for 1 ≤ n ≤ N = [
T
δt ] − 1.
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Proof. By taking the L2 inner product of (3.1) with sBn+1 and of (3.2) with un
⋆ , we obtain

s
2δt

(
∥Bn+1

− Bn
∥
2
+ ∥Bn+1

∥
2
− ∥Bn

∥
2)

+ sη∥∇ × Bn+1
∥
2
+ s(Bn

× un
⋆, ∇ × Bn+1) = 0, (3.14)

and
1
2δt

(
∥un

⋆ − un
∥
2
+ ∥un

⋆∥
2
− ∥un

∥
2)

− s(∇ × Bn+1
× Bn, un

⋆) = 0. (3.15)

By taking the L2 inner product of (3.4) with ũn+1 and using the well known property of

(u · ∇v, v) = 0, ∀ u ∈ H, v ∈ H1
0 (Ω)2, (3.16)

thus we derive
1
2δt

(
∥ũn+1

− un
⋆∥

2
+ ∥ũn+1

∥
2
− ∥un

⋆∥
2
)

+ ν∥∇ũn+1
∥
2
+ (∇pn, ũn+1) = 0. (3.17)

We rewrite (3.6) as
1
δt

un+1
+ ∇pn+1

=
1
δt

ũn+1
+ ∇pn, (3.18)

and take the L2 inner product of the above with itself on both sides, we obtain
1
2δt

∥un+1
∥
2
−

1
2δt

∥ũn+1
∥
2
+

δt
2

∥∇pn+1
∥
2
−

δt
2

∥∇pn∥2
= (ũn+1

, ∇pn). (3.19)

Then, by taking the summations (3.14), (3.15), (3.17) and (3.19), we obtain
s

2δt
(∥Bn+1

∥
2
− ∥Bn

∥
2
+ ∥Bn+1

− Bn
∥
2) + sη∥∇ × Bn+1

∥
2

+
1
2δt

(
∥un+1

∥
2
− ∥un

∥
2
+ ∥un

⋆ − un
∥
2)

+
1
2δt

∥ũn+1
− un

⋆∥
2

+ ν∥∇ũn+1
∥
2
+

δt
2

∥∇pn+1
∥
2
−

δt
2

∥∇pn∥2
= 0.

(3.20)

After multiplying with 2δt and dropping some positive terms, we obtain (3.13). Finally, by taking the divergence for (3.1),
we get ∇ · Bn+1

= ∇ · Bn
= · · · = ∇ · B0

= 0. □

Remark 3.4. By Theorem 3.1, summing up the inequality (3.13) from n = 0 to m (≤ [
T
δt ] − 1), we get the stable bound

s∥Bm+1
∥
2
+ ∥um+1

∥
2
+ δt2∥∇pm+1

∥
2
+ 2δt

m∑
n=0

(
sη∥∇ × Bn+1

∥
2
+ ν∥∇ũn+1

∥
2
)

≤ s∥B0
∥
2
+ ∥u0

∥
2
+ δt2∥∇p0∥2.

4. Error analysis

In this section, we first prove the error estimates for velocity and magnetic field in Section 4.1. Then we improve the
convergence order for pressure in Section 4.2. We denote by C a generic constant that is independent of δt but possibly
depends on the data and the solution, and use f ≲ g to say that there is a generic constant C such that f ≤ Cg .

We shall use repeatedly the following discrete Gronwall inequality [46].

Lemma 4.1. Let g0, an, bn, cn and γn be a sequence of nonnegative numbers for integers n ≥ 0 such that

an + δt
n∑

j=0

bj ≤ δt
n∑

j=0

γjaj + δt
n∑

j=0

cj + g0.

Assume that γjδt ≤ 1 for all j, and set σj = (1 − γjδt)−1. Then, for all n ≥ 0,

an + δt
n∑

j=0

bj ≤ exp

⎛⎝δt
n∑

j=0

σjγj

⎞⎠⎛⎝δt
n∑

j=0

cj + g0

⎞⎠ .

The following lemma will be used in Lemma 4.4.

Lemma 4.2. Let c1, c2, c3 be nonnegative numbers, an be a sequence of nonnegative numbers for n ≥ 0 such that

an+1 ≤ c1 + c2δtan + c3δt2a2n.
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If max{c2,
√
c3}Dδt ≤ 1, then, for n ≥ 0

an ≤ D,

where D = max{a0, c1} + 2.

This lemma can be proved by the mathematical induction method. We skip it.

4.1. Error estimates for velocity and magnetic field

We rewrite (2.5)–(2.6) as follows.

B(tn+1) − B(tn)
δt

+ η∇ × ∇ × B(tn+1) − ∇ × (u(tn) × B(tn)) = Rn+1
b , (4.1)

u(tn+1) − u(tn)
δt

− ν∆u(tn+1) + (u(tn) · ∇)u(tn+1) + ∇p(tn) (4.2)

+sB(tn) × ∇ × B(tn+1) = Rn+1
u ,

u(tn+1) − u(tn+1)
δt

+ ∇(p(tn+1) − p(tn)) = Rn+1
p , (4.3)

where

Rn+1
b =

B(tn+1) − B(tn)
δt

− Bt (tn+1) + ∇ × (u(tn+1) × B(tn+1)) − ∇ × (u(tn) × B(tn)),

Rn+1
u =

u(tn+1) − u(tn)
δt

− ut (tn+1) + (u(tn) − u(tn+1))∇u(tn+1) + ∇p(tn) − ∇p(tn+1)

+ s(B(tn) − B(tn+1)) × ∇ × B(tn+1),
Rn+1
p = ∇p(tn+1) − ∇p(tn)

are truncation errors. The existence and uniqueness of solution to the MHD system (2.5)–(2.8) have been studied in [4].
Here we make some regularity assumptions about the solution (u,B, p) of the system (2.5)–(2.8),

(A) :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u,B ∈ L∞(0, T ;H2(Ω)), p ∈ L∞(0, T ;H1(Ω)),

ut ,Bt ∈ L∞(0, T ;H1(Ω) ∩ L∞(Ω)), pt ∈ L∞(0, T ;H1(Ω)),

utt ,Btt ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ;H1(Ω)), ptt ∈ L2(0, T ;H1(Ω)),

uttt ,Bttt ∈ L2(0, T ; L2(Ω)).

(4.4)

One can easily establish the following estimates for the truncation errors, provided that the exact solutions are sufficiently
smooth or satisfy the assumption (A).

Lemma 4.3. Under the Assumption (A), the truncation errors satisfy

∥Rn
u∥ + ∥Rn

b∥ + ∥Rn
p∥ ≲ δt, 0 ≤ n ≤ [

T
δt

].

Proof. Since the proof is rather standard and similar to the proof in Lemma 4.5, due to the page limit, we leave it to the
interested readers. □

To derive the error estimates, we denote the error functions as{
enb = B(tn) − Bn, ẽnu = u(tn) − ũn

,

enu = u(tn) − un, enp = p(tn) − pn.

By subtracting (3.1) from (4.1), (3.4) from (4.2) and applying (3.2), and (3.6) from (4.3), we obtain the following error
equations,

en+1
b − enb

δt
+ η∇ × ∇ × en+1

b + ∇ × (B(tn) × u(tn)) − ∇ × (Bn
× un

⋆) = Rn+1
b , (4.5)

ẽn+1
u − enu

δt
− ν∆ẽn+1

u + (u(tn) · ∇)u(tn+1) − (un
· ∇)ũn+1

+ ∇enp (4.6)

+sB(tn) × ∇ × B(tn+1) − sBn
× ∇ × Bn+1

= Rn+1
u ,

en+1
u − ẽn+1

u

δt
+ ∇(en+1

p − enp) = Rn+1
p . (4.7)
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We first show the L∞ stability of Bn, that plays a key role in the error estimates. Let

κ = max
0≤t≤T

∥B(t)∥L∞ + 1,

the preliminary result is given in the following lemma.

Lemma 4.4. Assuming that the solution to (2.5)–(2.8) satisfies Assumption (A), there exists a constant C such that if δt ≤ C
the solution Bn of scheme (3.1)–(3.8) satisfies

∥Bn
∥L∞ ≤ κ, n = 0, 1, . . . , [

T
δt

]. (4.8)

Proof. We use the mathematical induction method to prove this lemma.
When n = 0, we have ∥B0

∥L∞ ≤ κ .
Assuming that ∥Bn

∥L∞ ≤ κ is valid for n = 0, 1, . . . ,N , we will show ∥BN+1
∥L∞ ≤ κ is also valid through the following

three steps. In Step i, using the induction assumptions, we first give a convergence result. Then in Step ii, using the
convergence result obtained in Step i, we prove the H2 stability for BN+1. Finally, in Step iii, by the convergence result
and H2 stability proved in Steps i and ii and Sobolev inequalities, we bound the L∞ norm of BN+1.

(Step i). By taking the L2 inner product of (4.5) with en+1
b , using integration by parts and the identity

(a − b, 2a) = |a|2 − |b|2 + |a − b|2,

we obtain
1
2δt

(∥en+1
b − enb∥

2
+ ∥en+1

b ∥
2
− ∥enb∥

2) + η∥∇ × en+1
b ∥

2

+ (B(tn) × u(tn) − Bn
× un

⋆, ∇ × en+1
b ) = (Rn+1

b , en+1
b ).

(4.9)

By taking the L2 inner product of (4.6) with ẽn+1
u , we derive

1
2δt

(∥ẽn+1
u − enu∥

2
+ ∥ẽn+1

u ∥
2
− ∥enu∥

2) + ν∥∇ ẽn+1
u ∥

2
+ (∇enp, ẽ

n+1
u )

+

(
(u(tn) · ∇)u(tn+1) − (un

· ∇)ũn+1
, ẽn+1

u

)
+ s

(
B(tn) × ∇ × B(tn+1) − Bn

× ∇ × Bn+1, ẽn+1
u

)
= (Rn+1

u , ẽn+1
u ).

(4.10)

We rewrite (4.7) to obtain

1
δt

en+1
u + ∇en+1

p =
1
δt

ẽn+1
u + ∇enp + Rn+1

p . (4.11)

By taking the L2 inner product of (4.11) with itself on both sides, we obtain

(ẽn+1
u , ∇enp) =

1
2δt

(∥en+1
u ∥

2
− ∥ẽn+1

u ∥
2) +

δt
2
(∥∇en+1

p ∥
2
− ∥∇enp∥

2)

− (ẽn+1
u , Rn+1

p ) − δt(∇enp, R
n+1
p ) −

δt
2

∥Rn+1
p ∥

2.

(4.12)

We combine (4.9)–(4.12) to obtain

1
2δt

(∥en+1
b − enb∥

2
+ ∥en+1

b ∥
2
− ∥enb∥

2) + η∥∇ × en+1
b ∥

2
+

δt
2
(∥∇en+1

p ∥
2
− ∥∇enp∥

2)

+
1
2δt

(∥ẽn+1
u − enu∥

2
+ ∥en+1

u ∥
2
− ∥enu∥

2) + ν∥∇ ẽn+1
u ∥

2

= −(B(tn) × u(tn) − Bn
× un

⋆, ∇ × en+1
b ) (: term A)

−

(
(u(tn) · ∇)u(tn+1) − (un

· ∇)ũn+1
, ẽn+1

u

)
(: term B)

− s
(
B(tn) × ∇ × B(tn+1) − Bn

× ∇ × Bn+1, ẽn+1
u

)
(: term C)

+ (ẽn+1
u , Rn+1

p ) + δt(∇enp, R
n+1
p ) (: term D)

+ (Rn+1
b , en+1

b ) + (Rn+1
u , ẽn+1

u ) (: term E)

+
δt
2

∥Rn+1
p ∥

2.

(4.13)
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For n ≤ N , for term A, using the definition of un
⋆ in (3.10), induction assumptions, assumption (A) and Young inequality

ab ≤ ϵa2 +
1
4ϵ b

2, we derive

(term A) ≤

⏐⏐⏐(B(tn) × u(tn) − Bn
× un

⋆, ∇ × en+1
b )

⏐⏐⏐
=

⏐⏐⏐(enb × u(tn) + Bn
× (u(tn) − un

⋆), ∇ × en+1
b )

⏐⏐⏐
=

⏐⏐⏐(enb × u(tn), ∇ × en+1
b ) + (Bn

× enu, ∇ × en+1
b ) − sδt(Bn

× (∇ × Bn+1
× Bn), ∇ × en+1

b )
⏐⏐⏐

≤
(
∥enb∥∥u(tn)∥L∞ + ∥Bn

∥L∞∥enu∥ + sδt∥Bn
∥
2
L∞∥∇ × Bn+1

∥
)
∥∇ × en+1

b ∥

≲
η

6
∥∇ × en+1

b ∥
2
+ ∥enb∥

2
+ ∥enu∥

2
+ δt2∥∇ × Bn+1

∥
2.

For term B, using (3.16), we derive

(term B) ≤

⏐⏐⏐((u(tn) · ∇)u(tn+1) − (un
· ∇)ũn+1

, ẽn+1
u )

⏐⏐⏐
=

⏐⏐⏐((enu · ∇)u(tn+1), ẽn+1
u ) + ((un

· ∇)ẽn+1
u , ẽn+1

u )
⏐⏐⏐

=

⏐⏐⏐((enu · ∇)u(tn+1), ẽn+1
u )

⏐⏐⏐ =

⏐⏐⏐((enu · ∇)ẽn+1
u , u(tn+1))

⏐⏐⏐
≤ ∥enu∥ ∥∇ ẽn+1

u ∥∥u(tn+1)∥L∞ ≲
ν

8
∥∇ ẽn+1

u ∥
2
+ ∥enu∥

2.

For term C, using ẽn+1
u = en+1

u + δt(∇en+1
p − ∇enp) − δtRn+1

p , Assumption (A) and (2.3), we derive

(term C) ≤ s
⏐⏐⏐(∇ × B(tn+1) × B(tn) − ∇ × Bn+1

× Bn, ẽn+1
u )

⏐⏐⏐
= s

⏐⏐⏐(∇ × B(tn+1) × enb, ẽ
n+1
u ) + (∇ × en+1

b × Bn, ẽn+1
u )

⏐⏐⏐
≤ s∥∇ × B(tn+1)∥L4∥e

n
b∥ ∥ẽn+1

u ∥L4 + s∥∇ × en+1
b ∥ ∥Bn

∥L∞∥ẽn+1
u ∥

≲ ∥enb∥∥∇ ẽn+1
u ∥ + ∥∇ × en+1

b ∥(∥en+1
u ∥ + δt∥∇en+1

p − ∇enp∥ + δt∥Rn+1
p ∥)

≲
ν

8
∥∇ ẽn+1

u ∥
2
+

η

6
∥∇ × en+1

b ∥
2
+ ∥enb∥

2
+ ∥en+1

u ∥
2
+ δt2∥∇en+1

p − ∇enp∥
2
+ δt2∥Rn+1

p ∥
2.

For term D and term E, we derive

(term D) ≤ |(ẽn+1
u , Rn+1

p )| + δt|(∇enp, R
n+1
p )|

≤ ∥ẽn+1
u ∥∥Rn+1

p ∥ + δt∥∇enp∥∥R
n+1
p ∥

≲
ν

8
∥∇ ẽn+1

u ∥
2
+ ∥Rn+1

p ∥
2
+ δt2∥∇enp∥

2
+ ∥Rn+1

p ∥
2,

and

(term E) ≤ |(Rn+1
b , en+1

b )| + |(Rn+1
u , ẽn+1

u )|

≤ ∥Rn+1
b ∥ ∥en+1

b ∥ + ∥Rn+1
u ∥ ∥ẽn+1

u ∥

≲ ∥Rn+1
b ∥ ∥∇ × en+1

b ∥ + ∥Rn+1
u ∥ ∥∇ ẽn+1

u ∥

≲
η

6
∥∇ × en+1

b ∥
2
+

ν

8
∥∇ ẽn+1

u ∥
2
+ ∥Rn+1

b ∥
2
+ ∥Rn+1

u ∥
2.

By combining the above estimates with (4.13), we obtain

∥en+1
b ∥

2
− ∥enb∥

2
+ δtη∥∇ × en+1

b ∥
2
+ ∥en+1

u ∥
2
− ∥enu∥

2
+ δtν∥∇ ẽn+1

u ∥
2
+ δt2(∥∇en+1

p ∥
2
− ∥∇enp∥

2)

≲ δt∥enb∥
2
+ δt∥enu∥

2
+ δt∥en+1

u ∥
2
+ δt3∥∇en+1

p − ∇enp∥
2
+ δt3∥∇enp∥

2

+ δt3∥∇ × Bn+1
∥
2
+ δt3∥Rn+1

p ∥
2
+ δt∥Rn+1

p ∥
2

+ δt∥Rn+1
b ∥

2
+ δt∥Rn+1

u ∥
2
+ δt2∥Rn+1

p ∥
2. (4.14)

Summing up the above inequality from n = 0 to m(m ≤ N) and using e0u = e0b = e0p = 0, ∥∇en+1
p − ∇enp∥

2 ≲

∥∇en+1
p ∥

2
+ ∥∇enp∥

2 and Lemma 4.3, we obtain

∥em+1
b ∥

2
+ ∥em+1

u ∥
2
+ δt2∥∇em+1

p ∥
2
+ δt

m∑
n=0

(
η∥∇ × en+1

b ∥
2
+ ν∥∇ ẽn+1

u ∥
2)

≲ δt
m∑

n=0

(
∥en+1

b ∥
2
+ ∥en+1

u ∥
2
+ δt2∥∇en+1

p ∥
2)

+ δt2.

(4.15)



G.-D. Zhang, X. He and X. Yang / Journal of Computational and Applied Mathematics 369 (2020) 112636 9

Here we also use δt3
∑m

n=0 ∥∇ ×Bn+1
∥
2 ≲ δt2 that is obtained from Remark 3.4. Therefore, applying the discrete Gronwall

inequality in Lemma 4.1 to (4.15), there exist positive constants C0 and C1, such that

∥em+1
b ∥

2
+ ∥em+1

u ∥
2
+ δt2∥∇em+1

p ∥
2
+ δt

m∑
n=0

(
η∥∇ × en+1

b ∥
2
+ ν∥∇ ẽn+1

u ∥
2)

≤ C1δt2, (4.16)

for δt ≤ C0 and m ≤ N .
(Step ii). For n ≤ N , by taking the divergence for (3.6), we obtain

−δt∆(pn − pn−1) = −∇ · ũn
.

From (4.16), we find

δt∥pn − pn−1
∥2 ≲ ∥∇ · ũn

∥ = ∥∇ · ẽnu∥ ≲ δt
1
2 . (4.17)

Due to the identity ∇ × ∇ × w = −∆w + ∇∇ · w, Eqs. (3.1) can be transformed as

−η∆Bn+1
= ∇ × (un

⋆ × Bn) −
Bn+1

− Bn

δt
.

By the H2 regularity of the elliptic problem, there holds

∥Bn+1
∥2 ≲

Bn+1
− Bn

δt

+ ∥∇ × (Bn
× un

⋆)∥

≲

Bn+1
− Bn

δt

+ ∥un
⋆∇Bn

∥ + ∥Bn
∇un

⋆∥ + ∥Bn
∇ · un

⋆∥,

(4.18)

where we use ∇ · Bn
= 0 and the following identity

∇ × (a × b) = b · ∇a − a · ∇b + a∇ · b − b∇ · a. (4.19)

For the first term on the right hand side of (4.18), from (4.16) and assumption (A), there exists a constant C2 such thatBn+1
− Bn

δt

 =

−en+1
b + enb
δt

+
B(tn+1) − B(tn)

δt


≤

 en+1
b − enb

δt

+

B(tn+1) − B(tn)
δt

 ≤ C2.

(4.20)

For other terms of (4.18) on the right hand side, by combining (3.2) and (3.6), we obtain

un
⋆ = ũn

− δt∇(pn − pn−1) + δts∇ × Bn+1
× Bn,

thus by (2.1), (2.3), (2.4), (4.17) and induction assumptions, we derive

∥un
⋆∇Bn

∥ ≤ ∥ũn
∇Bn

∥ + δt∥∇(pn − pn−1)∇Bn
∥ + δts∥(∇ × Bn+1

× Bn)∇Bn
∥

≤ ∥ẽnu∇Bn
∥ + ∥u(tn)∇Bn

∥ + δt∥∇(pn − pn−1)∇Bn
∥ + δts∥(∇ × Bn+1

× Bn)∇Bn
∥

≲ ∥ẽnu∥L6∥∇Bn
∥L3 + ∥u(tn)∥L∞∥∇Bn

∥ + δt∥∇(pn − pn−1)∥L6∥∇Bn
∥L3

+ δt∥∇ × Bn+1
∥L3∥B

n
∥L∞∥∇Bn

∥L6

≲ ∥∇ ẽnu∥∥∇Bn
∥

1
2 ∥Bn

∥

1
2
2 + ∥∇Bn

∥ + δt∥pn − pn−1
∥2∥∇Bn

∥
1
2 ∥Bn

∥

1
2
2

+ δt∥∇ × Bn+1
∥

1
2 ∥Bn+1

∥

1
2
2 ∥Bn

∥2

≲ ∥∇Bn
∥ + ∥∇ ẽnu∥

2
∥Bn

∥2 + δt2∥pn − pn−1
∥
2
2∥B

n
∥2

+
1
6
∥Bn+1

∥2 + δt2∥∇ × Bn+1
∥∥Bn

∥
2
2

≲ C3 +
1
6
∥Bn+1

∥2 + δt∥Bn
∥2 + δt2∥Bn

∥
2
2,

(4.21)

where we actually use ∥∇Bn
∥ and ∥∇ × Bn+1

∥ are all bounded (this can be simply proved from ∥∇Bn
∥ ≤ ∥∇enb∥ +

∥∇B(tn)∥ ≲ ∥∇ × enb∥ + ∥∇B(tn)∥ ≤ C by using (2.2), (4.16) and assumption (A)), and use ∥∇ ẽnu∥ ≲ δt
1
2 that is obtained

from (4.16).
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Similarly, by (2.3), (2.4), (4.17) and induction assumptions, we derive

∥Bn
∇un

⋆∥ ≤ ∥Bn
∇ũn

∥ + δt∥Bn
∇∇(pn − pn−1)∥ + δts∥Bn

∇(∇ × Bn+1
× Bn)∥

≲ ∥Bn
∥L∞∥∇ũn

∥ + δt∥Bn
∥L∞∥pn − pn−1

∥2

+ δt(∥Bn
∥
2
L∞∥Bn+1

∥2 + ∥Bn
∥L∞∥∇Bn+1

∥L3∥∇Bn
∥L6 )

≲ ∥∇ũn
∥ + δt∥pn − pn−1

∥2 + δt(∥Bn+1
∥2 + ∥∇Bn+1

∥
1
2 ∥Bn+1

∥

1
2
2 ∥Bn

∥2)

≲ C4 + δt∥Bn+1
∥2 +

1
6
∥Bn+1

∥2 + δt2∥Bn
∥
2
2,

(4.22)

where we use ∥∇ũn
∥ and ∥∇Bn+1

∥ are bounded by constants.
Likewise, for the last term in (4.18), we also have

∥Bn
∇ · un

⋆∥ ≤ ∥Bn
∇ · ũn

∥ + δt∥Bn∆(pn − pn−1)∥ + δts∥Bn
∇ · (∇ × Bn+1

× Bn)∥

≲ C5 + δt∥Bn+1
∥2 +

1
6
∥Bn+1

∥2 + δt2∥Bn
∥
2
2.

(4.23)

By combining (4.18), (4.20), (4.21), (4.22) and (4.23), if δt ≤ Ĉ0, there exist three positive constants C6, C7 and C8 such
that for n ≤ N

∥Bn+1
∥2 ≤ C6 + C7δt∥Bn

∥2 + C8δt2∥Bn
∥
2
2.

Therefore, by Lemma 4.2, if max{C7,
√
C8}D′δt ≤ 1, i.e., δt ≤

1
max{C7,

√
C8}D′

, we have

∥BN+1
∥2 ≤ D′ (D′

= max{∥B0∥2, C6} + 2). (4.24)

(Step iii). From (4.24) and the assumption (A), there exists a positive constant C9 such that

∥eN+1
b ∥2 ≤ ∥BN+1

∥2 + ∥B(tN+1)∥2 ≤ C9.

Finally, from (4.16), we have

∥BN+1
∥L∞ ≤ ∥eN+1

b ∥L∞ + ∥B(tN+1)∥L∞

≤ C10∥eN+1
b ∥

3
4
2 ∥eN+1

b ∥
1
4 + ∥B(tN+1)∥L∞

≤ C10C
3
4
9 C

1
8
1 δt

1
4 + ∥B(tN+1)∥L∞ .

Thus, if C4
10C

3
9C

1
2
1 δt ≤ 1, i.e., δt ≤

1

C4
10C

3
9 C

1
2
1

, we have

∥BN+1
∥L∞ ≤ 1 + ∥B(tN+1)∥L∞ ≤ κ.

Then we obtain (4.8) by induction for δt ≤ C , C = min

{
C0, Ĉ0,

1
max{C7,

√
C8}D′

, 1

C4
10C

3
9 C

1
2
1

}
. □

Now, based on the above lemma, we can easily derive the following error estimate.

Theorem 4.1. Suppose the solution to (2.5)–(2.8) satisfies Assumption (A). Then, the scheme (3.1)–(3.8) is unconditionally
convergent and has the following error estimate: for 0 ≤ m ≤ [

T
δt ] − 1,

∥em+1
b ∥

2
+ ∥em+1

u ∥
2
+ δt2∥∇em+1

p ∥
2
+ δt

m∑
n=0

(
η∥∇ × en+1

b ∥
2
+ ν∥∇ ẽn+1

u ∥
2) ≲ δt2.

Proof. Since ∥Bn
∥L∞ ≤ κ is established for any 0 ≤ n ≤ [

T
δt ], by following the proof of Step i of Lemma 4.4, we obtain

that (4.16) is valid for any 0 ≤ m ≤ [
T
δt ] − 1 provided δt ≤ C .

On the other hand, if δt ≥ C , using Remark 3.4 and assumption (A), we deduce that there exists a constant C11 such
that

∥em+1
b ∥

2
+ ∥em+1

u ∥
2
+ δt2∥∇em+1

p ∥
2
+ δt

m∑
n=0

(
η∥∇ × en+1

b ∥
2
+ ν∥∇ ẽn+1

u ∥
2)

≤ C11 =
C11

C2 C2
≤

C11

C2 (δt)2 ≲ δt2.

Therefore, the proof is finished by combining the two cases. □
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Remark 4.1. Once the bound ∥Bn
∥L∞ ≤ κ and the error estimate in Theorem 4.1 are obtained, by following the Step ii

of the proof for Lemma 4.4, we can establish the H2 stability of Bn, namely, there exists a constant κ̂ , such that

max
0≤n≤[

T
δt ]

∥Bn
∥2 ≤ κ̂ .

Remark 4.2. Define PH as the L2 orthogonal projector from L2(Ω)d to H , i.e.,

(u − PHu, v) = 0, ∀u ∈ L2(Ω)d, v ∈ H.

By the H1 stability of PH [47], and (2.1), we have

∥enu∥1 = ∥PH ẽnu∥1 ≤ ∥ẽnu∥1 ≲ ∥∇ ẽnu∥, (4.25)

which together with Theorem 4.1 imply

δt
[
T
δt ]∑

n=0

∥enu∥
2
1 ≲ δt2. (4.26)

4.2. Error estimate for pressure

Noting Theorem 4.1, the order of the pressure is not optimal, therefore we need to improve it by the following process.
We denote dtwn

=
wn

−wn−1

δt , dtw(tn) =
w(tn)−w(tn−1)

δt for any variable w, w(t). By applying dt to (4.5)–(4.7), we obtain

dt ẽn+1
u − dtenu

δt
− ν∆dt ẽn+1

u + u(tn)∇dtu(tn+1) + dtu(tn)∇u(tn) − un
∇dt ũ

n+1 (4.27)

−dtun
∇ũn

+ ∇dtenp + sB(tn) × ∇ × dtB(tn+1) + sdtB(tn) × ∇ × B(tn)

−sBn
× ∇ × dtBn+1

− sdtBn
× ∇ × Bn

= dtRn+1
u ,

dten+1
u − dt ẽn+1

u

δt
+ ∇(dten+1

p − dtenp) = dtRn+1
p , (4.28)

dten+1
b − dtenb

δt
+ η∇ × ∇ × dten+1

b + ∇ × (dtB(tn) × u(tn)) + ∇ × (B(tn−1) × dtu(tn)) (4.29)

−∇ × (dtBn
× un

⋆) − ∇ × (Bn−1
× dtun

⋆) = dtRn+1
b .

The truncation terms dtRn+1
u , dtRn+1

p , dtRn+1
b in (4.27)–(4.29) have the following property.

Lemma 4.5. Under the Assumption (A), the truncation errors satisfy

δt
[
T
δt ]∑

n=1

(∥dtRn+1
u ∥

2
+ ∥dtRn+1

b ∥
2
+ ∥dtRn+1

p ∥
2) ≲ δt2.

Proof. By the definition of dtRn+1
u =

Rn+1
u −Rnu

δt , we get

dtRn+1
u =

1
δt

(dtu(tn+1) − ut (tn+1) − dtu(tn) + ut (tn)) − dtu(tn+1)∇u(tn+1) + dtu(tn)∇u(tn)

+ ∇dtp(tn) − ∇dtp(tn+1) − sdtB(tn+1) × ∇ × B(tn+1) + sdtB(tn) × ∇ × B(tn).

We estimate above equation term by term as follows. By some basic calculations and (2.1), (2.3), Assumption (A),
we get

1
δt2

∥dtu(tn+1) − ut (tn+1) − dtu(tn) + ut (tn)∥2

=
1

4δt4


∫ tn+1

tn
(t − tn)2utttdt −

∫ tn

tn−1

(t − tn−1)2utttdt − δt2
∫ tn+1

tn
utttdt


2

≲ δt
∫ tn+1

tn
∥uttt∥

2dt + δt
∫ tn

tn−1

∥uttt∥
2dt,
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∥dtu(tn+1)∇u(tn+1) − dtu(tn)∇u(tn)∥2

= ∥(dtu(tn+1) − dtu(tn))∇u(tn+1) + dtu(tn)∇(u(tn+1) − u(tn))∥2

≤ ∥dtu(tn+1) − dtu(tn)∥2
L4∥∇u(tn+1)∥2

L4 + ∥dtu(tn)∥2
L∞∥∇(u(tn+1) − u(tn))∥2

≲ ∥∇(dtu(tn+1) − dtu(tn))∥2
+ ∥∇(u(tn+1) − u(tn))∥2

=

 1
δt

∫ tn+1

tn
(tn+1 − t)∇uttdt +

1
δt

∫ tn

tn−1

(t − tn−1)∇uttdt


2

+

∫ tn+1

tn
∇utdt

2

≲ δt
∫ tn+1

tn
∥∇utt∥

2dt + δt
∫ tn

tn−1

∥∇utt∥
2dt + δt

∫ tn+1

tn
∥∇ut∥

2dt,

∥∇dtp(tn) − ∇dtp(tn+1)∥2
=

 1
δt

∫ tn+1

tn
(tn+1 − t)∇pttdt +

1
δt

∫ tn

tn−1

(t − tn−1)∇pttdt


2

≲ δt
∫ tn+1

tn
∥∇ptt∥2dt + δt

∫ tn

tn−1

∥∇ptt∥2dt,

and

∥dtB(tn+1) × ∇ × B(tn+1) − dtB(tn) × ∇ × B(tn)∥2

≲

 1
δt

∫ tn+1

tn
(tn+1 − t)∇ × Bttdt +

1
δt

∫ tn

tn−1

(t − tn−1)∇ × Bttdt


2

+

∫ tn+1

tn
∇ × Btdt

2
≲ δt

∫ tn+1

tn
∥∇Btt∥

2dt + δt
∫ tn

tn−1

∥∇Btt∥
2dt + δt

∫ tn+1

tn
∥∇Bt∥

2dt.

Thus, we combine the above estimates, using assumption (A), to find

δt
[
T
δt ]∑

n=1

∥dtRn+1
u ∥

2 ≲ δt2
∫ T

0
∥uttt∥

2
+ ∥∇utt∥

2
+ ∥∇ut∥

2
+ ∥∇ptt∥2

+ ∥∇Btt∥
2
+ ∥∇Bt∥

2dt ≲ δt2.

Using the very similar procedures, we can also get

δt
[
T
δt ]∑

n=1

(∥dtRn+1
p ∥

2
+ ∥dtRn+1

b ∥
2) ≲ δt2.

Therefore, the proof is finished. □

To derive the optimal convergence order of pressure, we also need the following first step error bound.

Lemma 4.6. Under the assumption (A), there holds

∥dte1u∥
2
+ ∥dte1b∥

2
+ δt2∥∇dte1p∥

2 ≲ δt2. (4.30)

Proof. (i). By taking n = 0 in (4.5) and from e0b = 0, we obtain

e1b
δt

+ η∇ × ∇ × e1b + ∇ × (B0 × u0) − ∇ × (B0 × u0
⋆) = R1

b.

By taking the L2 inner product of above equation with 1
δt e

1
b , we have

∥
e1b
δt

∥
2
+

η

δt
∥∇ × e1b∥

2
+

(
∇ × (B0 × u0) − ∇ × (B0 × u0

⋆),
e1b
δt

)
=

(
R1
b,

e1b
δt

)
. (4.31)
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From (3.10), using Remark 4.1, we obtain⏐⏐⏐(∇ × (B0 × u0) − ∇ × (B0 × u0
⋆),

e1b
δt

)⏐⏐⏐
= δts

⏐⏐⏐⏐(∇ × (B0 × (B0 × ∇ × B1)),
e1b
δt

)⏐⏐⏐⏐
= δts

⏐⏐⏐⏐((B0 × ∇ × B1)∇B0 − B0∇(B0 × ∇ × B1) + B0∇ · (B0 × ∇ × B1),
e1b
δt

)⏐⏐⏐⏐
≲ δt∥B0∥L∞∥B0∥2∥B1

∥2

 e1bδt
+ δt∥B0∥L∞∥B0∥2∥B1

∥2

 e1bδt
+ δt∥B0∥

2
L∞∥B1

∥2

 e1bδt


≲
1
4
∥
e1b
δt

∥
2
+ δt2,

and ⏐⏐⏐⏐(R1
b,

e1b
δt

)⏐⏐⏐⏐ ≤ ∥R1
b∥

 e1bδt
 ≲

1
4

 e1bδt
2 + ∥R1

b∥
2 ≲

1
4

 e1bδt
2 + δt2.

Therefore, since e0b = 0, (4.31) implies

∥
e1b − e0b

δt
∥
2
+

η

δt
∥∇ × e1b∥

2 ≲ δt2. (4.32)

(ii). By taking n = 0 in (4.6) and using e0u = e0p = 0, we obtain

ẽ1u
δt

− ν∆ẽ1u + (u0 · ∇)ẽ1u + sB0 × ∇ × e1b = R1
u.

By taking the L2 inner product of the above equation with 1
δt ẽ

1
u, we have ẽ1uδt

2 +
1
δt

ν∥∇ ẽ1u∥
2
+ s

(
B0 × ∇ × e1b,

ẽ1u
δt

)
=

(
R1
u,

ẽ1u
δt

)
. (4.33)

By taking n = 0 in (4.7), it gives

e1u
δt

+ ∇e1p =
ẽ1u
δt

+ R1
p.

By taking the L2 inner products of the above equation with itself on both sides, we obtain

1
2
(
 e1uδt

2 −

 ẽ1uδt
2) +

1
2
∥∇e1p∥

2
−

(
ẽ1u
δt

, R1
p

)
−

1
2
∥R1

p∥
2

= 0. (4.34)

We combine (4.33) and (4.34) to obtain

1
2

 ẽ1uδt
2 +

1
2

 e1uδt
2 +

1
δt

ν∥∇ ẽ1u∥
2
+

1
2
∥∇e1p∥

2

=

(
ẽ1u
δt

, R1
p

)
+

(
R1
u,

ẽ1u
δt

)
+

1
2
∥R1

p∥
2
− s

(
B0 × ∇ × e1b,

ẽ1u
δt

)
.

(4.35)

The terms on the right hand side of (4.35) can be estimated by⏐⏐⏐⏐( ẽ1u
δt

, R1
p

)⏐⏐⏐⏐+ ⏐⏐⏐⏐(R1
u,

ẽ1u
δt

)⏐⏐⏐⏐ ≲ 1
8

 ẽ1uδt
2 + ∥R1

p∥
2
+ ∥R1

u∥
2,

s
⏐⏐⏐⏐(B0 × ∇ × e1b,

ẽ1u
δt

)⏐⏐⏐⏐ ≲ 1
8

 ẽ1uδt
2 + ∥∇ × e1b∥

2.

From e0u = e0p = 0, thus (4.35) implies

1
4

 ẽ1uδt
2 +

1
2

 e1u − e0u
δt

2 +
1
δt

ν∥∇ ẽ1u∥
2
+

δt2

2

∇e1p − ∇e0p
δt


2

≲ ∥R1
p∥

2
+ ∥R1

u∥
2
+ ∥∇ × e1b∥

2 ≲ δt2,

(4.36)

in which we use (4.32) and Lemma 4.3.
Finally, we obtain (4.30) by combining (4.32) and (4.36) together. □



14 G.-D. Zhang, X. He and X. Yang / Journal of Computational and Applied Mathematics 369 (2020) 112636

Based on the above lemmas, we prove the following result which will lead to the optimal error order of pressure.

Lemma 4.7. Under assumption (A), there exists a constant Ĉ such that, when δt ≤ Ĉ , the following estimate holds for
1 ≤ m ≤ [

T
δt ] − 1,

∥dtem+1
u ∥

2
+ ∥dtem+1

b ∥
2
+ δt2∥∇dtem+1

p ∥
2
+ δt

m∑
n=1

(ν∥∇dt ẽn+1
u ∥

2
+ η∥∇ × dten+1

b ∥
2) ≲ δt2.

Proof. By taking the L2 inner product of (4.27) with dt ẽn+1
u , we have

1
2δt

(∥dt ẽn+1
u − dtenu∥

2
+ ∥dt ẽn+1

u ∥
2
− ∥dtenu∥

2) + ν∥∇dt ẽn+1
u ∥

2

+ (u(tn)∇dtu(tn+1), dt ẽn+1
u ) − (un

∇dt ũ
n+1

, dt ẽn+1
u )

+ (dtu(tn)∇u(tn), dt ẽn+1
u ) − (dtun

∇ũn
, dt ẽn+1

u )

+ s(B(tn) × ∇ × dtB(tn+1), dt ẽn+1
u ) − s(Bn

× ∇ × dtBn+1, dt ẽn+1
u )

+ s(dtB(tn) × ∇ × B(tn), dt ẽn+1
u ) − s(dtBn

× ∇ × Bn, dt ẽn+1
u )

= (dtRn+1
u , dt ẽn+1

u ) − (∇dtenp, dt ẽ
n+1
u ).

(4.37)

From (4.28), we derive

dten+1
u

δt
+ ∇dten+1

p =
dt ẽn+1

u

δt
+ ∇dtenp + dtRn+1

p . (4.38)

By taking the L2 inner product of (4.38) with itself on both sides, we obtain

1
2δt

(∥dten+1
u ∥

2
− ∥dt ẽn+1

u ∥
2) +

δt
2
(∥∇dten+1

p ∥
2
− ∥∇dtenp∥

2)

= (dt ẽn+1
u , dtRn+1

p ) + δt(∇dtenp, dtR
n+1
p ) +

δt
2

∥dtRn+1
p ∥

2
+ (dt ẽn+1

u , ∇dtenp).
(4.39)

By taking the L2 inner product of (4.29) with dten+1
b , we have

1
2δt

(∥dten+1
b − dtenb∥

2
+ ∥dten+1

b ∥
2
− ∥dtenb∥

2) + η∥∇ × dten+1
b ∥

2

+ (dtB(tn) × u(tn), ∇ × dten+1
b ) − (dtBn

× un
⋆, ∇ × dten+1

b )

+ (B(tn−1) × dtu(tn), ∇ × dten+1
b ) − (Bn−1

× dtun
⋆, ∇ × dten+1

b )

=(dtRn+1
b , dten+1

b ).

(4.40)

Combining (4.37), (4.39) and (4.40) together, we obtain

1
2δt

(∥dt ẽn+1
u − dtenu∥

2
+ ∥dten+1

u ∥
2
− ∥dtenu∥

2) + ν∥∇dt ẽn+1
u ∥

2

+
δt
2
(∥∇dten+1

p ∥
2
− ∥∇dtenp∥

2) + η∥∇ × dten+1
b ∥

2

+
1
2δt

(∥dten+1
b − dtenb∥

2
+ ∥dten+1

b ∥
2
− ∥dtenb∥

2)

+ (u(tn)∇dtu(tn+1), dt ẽn+1
u ) − (un

∇dt ũ
n+1

, dt ẽn+1
u ) (: term I)

+ (dtu(tn)∇u(tn), dt ẽn+1
u ) − (dtun

∇ũn
, dt ẽn+1

u ) (: term II)

+ s(B(tn) × ∇ × dtB(tn+1), dt ẽn+1
u ) − s(Bn

× ∇ × dtBn+1, dt ẽn+1
u ) (: term III)

+ s(dtB(tn) × ∇ × B(tn), dt ẽn+1
u ) − s(dtBn

× ∇ × Bn, dt ẽn+1
u ) (: term IV)

+ (dtB(tn) × u(tn), ∇ × dten+1
b ) − (dtBn

× un
⋆, ∇ × dten+1

b ) (: term V)

+ (B(tn−1) × dtu(tn), ∇ × dten+1
b ) − (Bn−1

× dtun
⋆, ∇ × dten+1

b ) (: term VI)

= (dtRn+1
u , dt ẽn+1

u ) + (dtRn+1
b , dten+1

b ) (: term VII)

+ (dt ẽn+1
u , dtRn+1

p ) + δt(∇dtenp, dtR
n+1
p ) (: term VIII)

+
δt
2

∥dtRn+1
p ∥

2.

(4.41)
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For term I, we estimate as

(term I) ≤ |(u(tn)∇dtu(tn+1), dt ẽn+1
u ) − (un

∇dt ũ
n+1

, dt ẽn+1
u )|

= |(enu∇dtu(tn+1), dt ẽn+1
u ) + (un

∇dt ẽn+1
u , dt ẽn+1

u )|

= |(enu∇dt ẽn+1
u , dtu(tn+1))|

≲ ∥∇enu∥∥dtu(tn+1)∥L4∥∇dt ẽn+1
u ∥ ≲

ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥∇enu∥

2.

(4.42)

where we use ut ∈ L∞(0, T ; L4) and (3.16).
For term II, using (2.1), (2.3) and (2.4), we estimate as

(term II) ≤ |(dtu(tn)∇u(tn), dt ẽn+1
u ) − (dtun

∇ũn
, dt ẽn+1

u )|

= |(dtenu∇u(tn), dt ẽn+1
u ) + (dtun

∇ ẽnu, dt ẽ
n+1
u )|

= |(dtenu∇u(tn), dt ẽn+1
u ) − (dtenu∇ ẽnu, dt ẽ

n+1
u ) + (dtu(tn)∇ ẽnu, dt ẽ

n+1
u )|

≲ ∥dtenu∥∥∇u(tn)∥L4∥∇dt ẽn+1
u ∥ + (∥dtenu∥L3 + ∥dtu(tn)∥L4 )∥∇ ẽnu∥∥∇dt ẽn+1

u ∥

≲
ν

24
∥∇dt ẽn+1

u ∥
2
+ ∥dtenu∥

2
+ ∥dtenu∥

1
2 ∥dtenu∥

1
2
1 ∥∇ ẽnu∥∥∇dt ẽn+1

u ∥ + ∥dtu(tn)∥2
L4∥∇ ẽnu∥

2

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtenu∥

2
+ ∥dtenu∥∥dte

n
u∥1∥∇ ẽnu∥∥∇ ẽnu∥ + ∥∇ ẽnu∥

2

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtenu∥

2
+ ∥dtenu∥∥∇ ẽnu∥ + ∥∇ ẽnu∥

2

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtenu∥

2
+ ∥∇ ẽnu∥

2,

(4.43)

where we actually use the fact that ut ∈ L∞(0, T ; L4), and ∥dtenu∥1∥∇ ẽnu∥ is bounded since, from (4.25) and Theorem 4.1,
we have

∥dtenu∥1∥∇ ẽnu∥ ≤
1
δt

(∥enu∥1 + ∥en−1
u ∥1)∥∇ ẽnu∥ ≲

1
δt

(∥∇ ẽnu∥
2
+ ∥∇ ẽn−1

u ∥
2) ≤ C .

For term III, using (2.1), (2.2), (2.3), Remark 4.1, we estimate as

(term III) ≤ |(B(tn) × ∇ × dtB(tn+1), dt ẽn+1
u ) − (Bn

× ∇ × dtBn+1, dt ẽn+1
u )|

= |(enb × ∇ × dtB(tn+1), dt ẽn+1
u ) + (Bn

× ∇ × dten+1
b , dt ẽn+1

u )|

= |(∇ × (dt ẽn+1
u × enb), dtB(tn+1)) − (∇ × (Bn

× dt ẽn+1
u ), dten+1

b )|

= |(enb∇dt ẽn+1
u − dt ẽn+1

u ∇enb − enb∇ · dt ẽn+1
u , dtB(tn+1))

− (dt ẽn+1
u ∇Bn

− Bn
∇dt ẽn+1

u + Bn
∇ · dt ẽn+1

u , dten+1
b )|

≲ ∥∇enb∥∥∇dt ẽn+1
u ∥∥dtB(tn+1)∥L4 + (∥∇Bn

∥L4 + ∥Bn
∥L∞ )∥∇dt ẽn+1

u ∥∥dten+1
b ∥

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥∇enb∥

2
+ ∥∇Bn

∥
2
L4∥dte

n+1
b ∥

2
+ ∥Bn

∥
2
L∞∥dten+1

b ∥
2

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥∇ × enb∥

2
+ ∥dten+1

b ∥
2,

(4.44)

where we use Bt ∈ L∞(0, T ; L4) and ∥∇enb∥
2 ≲ ∥∇ · enb∥

2
+ ∥∇ × enb∥

2 and ∇ · enb = 0.
For term IV, using (2.1)–(2.4), we estimate as

(term IV) ≤ |(dtB(tn) × ∇ × B(tn), dt ẽn+1
u ) − (dtBn

× ∇ × Bn, dt ẽn+1
u )|

= |(dtenb × ∇ × B(tn), dt ẽn+1
u ) + (dtBn

× ∇ × enb, dt ẽ
n+1
u )|

≲ ∥dtenb∥∥B(tn)∥2∥∇dt ẽn+1
u ∥ + ∥dtBn

∥L3∥∇ × enb∥∥dt ẽ
n+1
u ∥L6

≲ ∥dtenb∥∥∇dt ẽn+1
u ∥ + (∥dtenb∥L3 + ∥dtB(tn)∥L3 )∥∇ × enb∥∥∇dt ẽn+1

u ∥

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtenb∥

2
+ ∥dtenb∥

2
L3∥∇ × enb∥

2
+ ∥dtB(tn)∥2

L3∥∇ × enb∥
2

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtenb∥

2
+ ∥dtenb∥∥∇ × dtenb∥∥∇ × enb∥

2
+ ∥∇ × enb∥

2

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtenb∥

2
+ ∥dtenb∥∥∇ × enb∥ + ∥∇ × enb∥

2

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtenb∥

2
+ ∥∇ × enb∥

2,

(4.45)
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where we use Bt ∈ L∞(0, T ; L3),B ∈ L∞(0, T ;H2) and a fact that ∥∇ × dtenb∥∥∇ × enb∥ is bounded since

∥∇ × dtenb∥∥∇ × enb∥ ≤
1
δt

(∥∇ × enb∥ + ∥∇ × en−1
b ∥)∥∇ × enb∥ ≲

1
δt

(∥∇ × enb∥
2
+ ∥∇ × en−1

b ∥
2),

that is bounded from Theorem 4.1.
For term V, using (2.2)–(2.4), we estimate as

(term V) ≤ |(dtB(tn) × u(tn), ∇ × dten+1
b ) − (dtBn

× un
⋆, ∇ × dten+1

b )|

= |(dtenb × u(tn), ∇ × dten+1
b ) + (dtBn

× (u(tn) − un
⋆), ∇ × dten+1

b )|

= |(dtenb × u(tn), ∇ × dten+1
b ) + ((dtB(tn) − dtenb) × (u(tn) − un

⋆), ∇ × dten+1
b )|

≲ ∥dtenb∥∥u(tn)∥L∞∥∇ × dten+1
b ∥ + ∥dtenb∥L3∥u(tn) − un

⋆∥L6∥∇ × dten+1
b ∥

+ ∥dtB(tn)∥L3∥u(tn) − un
⋆∥L6∥∇ × dten+1

b ∥

≲ ∥dtenb∥∥∇ × dten+1
b ∥ + ∥dtenb∥

1
2 ∥∇ × dtenb∥

1
2 ∥u(tn) − un

⋆∥1∥∇ × dten+1
b ∥

+ ∥u(tn) − un
⋆∥1∥∇ × dten+1

b ∥

≤
η

6
∥∇ × dten+1

b ∥
2
+ ∥dtenb∥

2
+ ∥dtenb∥∥∇ × dtenb∥∥u(tn) − un

⋆∥
2
1 + ∥u(tn) − un

⋆∥
2
1

≤
η

6
∥∇ × dten+1

b ∥
2
+ ∥dtenb∥

2
+ ∥dtenb∥

2
∥∇ × dtenb∥

2
∥u(tn) − un

⋆∥
2
1 + ∥u(tn) − un

⋆∥
2
1,

where we use u ∈ L∞(0, T ;H2),Bt ∈ L∞(0, T ,H1). In fact, by using (3.10), Remark 4.1 and (4.26), we get

∥u(tn) − un
⋆∥ ≤ ∥enu∥ + sδt∥Bn

× ∇ × Bn+1
∥

≲ ∥enu∥ + δt∥Bn
∥L∞∥∇ × Bn+1

∥ ≲ δt,

∥∇(u(tn) − un
⋆)∥ ≤ ∥∇enu∥ + sδt∥∇(Bn

× ∇ × Bn+1)∥

≲ ∥∇enu∥ + δt(∥Bn
∥2∥Bn+1

∥2 + ∥Bn
∥L∞∥Bn+1

∥2)
≲ ∥∇enu∥ + δt,

which also imply

δt
N∑

n=1

∥u(tn) − un
⋆∥

2
1 ≲ δt2. (4.46)

Therefore, from (4.46) and Theorem 4.1, we easily know that ∥∇×dtenb∥∥u(tn)−un
⋆∥1 ≲ 1

δt (∥∇×enb∥+∥∇×en−1
b ∥)∥u(tn)−

un
⋆∥1 is bounded by a constant, thus term V can be further estimated as

(term V) ≲
η

6
∥∇ × dten+1

b ∥
2
+ ∥dtenb∥

2
+ ∥u(tn) − un

⋆∥
2
1. (4.47)

For term VI, we estimate as

(term VI) ≤ |(B(tn−1) × dtu(tn), ∇ × dten+1
b ) − (Bn−1

× dtun
⋆, ∇ × dten+1

b )|

= |(en−1
b × dtu(tn), ∇ × dten+1

b ) + (Bn−1
× dt (u(tn) − un

⋆), ∇ × dten+1
b )|

= |(en−1
b × dtu(tn), ∇ × dten+1

b ) +
(
Bn−1

× dt (enu + sδtBn
× ∇ × Bn+1), ∇ × dten+1

b

)
|

≲ ∥∇ × en−1
b ∥∥dtu(tn)∥L4∥∇ × dten+1

b ∥ + ∥Bn−1
∥L∞∥dtenu∥∥∇ × dten+1

b ∥

+ δt|(Bn−1
× dt (Bn

× ∇ × Bn+1), ∇ × dten+1
b )|

≲ ∥∇ × en−1
b ∥∥∇ × dten+1

b ∥ + ∥dtenu∥∥∇ × dten+1
b ∥

+ δt|(Bn−1
× dt (Bn

× ∇ × Bn+1), ∇ × dten+1
b )|

≲
η

12
∥∇ × dten+1

b ∥
2
+ ∥∇ × en−1

b ∥
2
+ ∥dtenu∥

2
+ δt|(Bn−1

× dt (Bn
× ∇ × Bn+1), ∇ × dten+1

b )|,

(4.48)

where we use ut ∈ L∞(0, T ;H1(Ω)). The last term on the right hand side of (4.48) can be estimated as

δt|(Bn−1
× dt (Bn

× ∇ × Bn+1), ∇ × dten+1
b )|

≲ ∥Bn−1
∥L∞∥Bn

× ∇ × Bn+1
− Bn−1

× ∇ × Bn
∥∥∇ × dten+1

b ∥

≲ ∥Bn
× ∇ × (Bn+1

− Bn) + (Bn
− Bn−1) × ∇ × Bn

∥∥∇ × dten+1
b ∥

≲
(
∥Bn

× ∇ × (Bn+1
− Bn)∥ + ∥(Bn

− Bn−1) × ∇ × Bn
∥
)
∥∇ × dten+1

b ∥

≲ ∥Bn
× ∇ × (enb − en+1

b + B(tn+1) − B(tn))∥∥∇ × dten+1
b ∥

+ ∥(en−1
b − enb + B(tn) − B(tn−1)) × ∇ × Bn

∥∥∇ × dten+1
b ∥
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≲
(
∥∇ × (enb − en+1

b )∥ + ∥∇ × (B(tn+1) − B(tn))∥
)
∥∇ × dten+1

b ∥

+
(
∥en−1

b − enb∥L4 + ∥B(tn) − B(tn−1)∥1
)
∥Bn

∥2∥∇ × dten+1
b ∥

≲
η

12
∥∇ × dten+1

b ∥
2
+ ∥∇ × (enb − en+1

b )∥2
+ ∥B(tn+1) − B(tn)∥2

1

+ ∥∇ × (en−1
b − enb)∥

2
+ ∥B(tn) − B(tn−1)∥2

1,

where we use (2.2), (2.3), Remark 4.1 and Lemma 4.4. Therefore, for term VI, we obtain

(term VI) ≲
η

6
∥∇ × dten+1

b ∥
2
+ ∥∇ × en−1

b ∥
2
+ ∥dtenu∥

2
+ ∥∇ × (enb − en+1

b )∥2

+ ∥∇ × (en−1
b − enb)∥

2
+ ∥B(tn+1) − B(tn)∥2

1 + ∥B(tn) − B(tn−1)∥2
1.

(4.49)

For term VII, using (2.1)–(2.3), we have

(term VII) ≤ |(dtRn+1
u , dt ẽn+1

u ) + (dtRn+1
b , dten+1

b )|

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+

η

6
∥∇ × dten+1

b ∥
2
+ ∥dtRn+1

u ∥
2
+ ∥dtRn+1

b ∥
2.

(4.50)

For term VIII, we have

(term VIII) ≤ |(dt ẽn+1
u , dtRn+1

p ) − δt(∇dtenp, dtR
n+1
p )|

≲
ν

12
∥∇dt ẽn+1

u ∥
2
+ ∥dtRn+1

p ∥
2
+ δt2∥∇dtenp∥

2.
(4.51)

By combining (4.41), (4.42), (4.43), (4.44), (4.45), (4.47), (4.49), (4.50) and (4.51), we have

∥dten+1
u ∥

2
− ∥dtenu∥

2
+ δtν∥∇dt ẽn+1

u ∥
2
+ δt2(∥∇dten+1

p ∥
2
− ∥∇dtenp∥

2)

+ ∥dten+1
b ∥

2
− ∥dtenb∥

2
+ δtη∥∇ × dten+1

b ∥
2

≲ δt(∥∇enu∥
2
+ ∥∇ ẽnu∥

2
+ ∥∇ × enb∥

2
+ ∥∇ × en−1

b ∥
2
+ ∥∇ × en+1

b ∥
2)

+ δt(∥dtenu∥
2
+ ∥dtenb∥

2
+ ∥dten+1

b ∥
2
+ δt2∥∇dtenp∥

2)

+ δt(∥dtRn+1
p ∥

2
+ ∥dtRn+1

u ∥
2
+ ∥dtRn+1

b ∥
2)

+ δt
(
∥B(tn+1) − B(tn)∥2

1 + ∥B(tn) − B(tn−1)∥2
1

)
+ δt∥u(tn) − un

⋆∥
2
1.

(4.52)

By taking the summation of (4.52) from n = 1 to m, using Theorem 4.1, Lemma 4.5, Lemma 4.6, (4.26), (4.46) and the
assumption (A) we obtain

∥dtem+1
u ∥

2
+ ∥dtem+1

b ∥
2
+ δt2∥∇dtem+1

p ∥
2
+ δt

m∑
n=1

(ν∥∇dt ẽn+1
u ∥

2
+ η∥∇ × dten+1

b ∥
2)

≲ ∥dte1u∥
2
+ ∥dte1b∥

2
+ δt2∥∇dte1p∥

2
+ δt

m∑
n=1

(∥dtenu∥
2
+ ∥dtenb∥

2
+ ∥dten+1

b ∥
2
+ δt2∥∇dtenp∥

2)

+ δt
m∑

n=1

(∥dtRn+1
p ∥

2
+ ∥dtRn+1

u ∥
2
+ ∥dtRn+1

b ∥
2) + δt2

≲ δt
m∑

n=1

(∥dtenu∥
2
+ ∥dtenb∥

2
+ ∥dten+1

b ∥
2
+ δt2∥∇dtenp∥

2) + δt2.

From the Gronwall’s inequality in Lemma 4.1, there exists a constant Ĉ , such that

∥dtem+1
u ∥

2
+ ∥dtem+1

b ∥
2
+ δt2∥∇dtem+1

p ∥
2
+ δt

m∑
n=1

(ν∥∇dt ẽn+1
u ∥

2
+ η∥∇ × dten+1

b ∥
2) ≲ δt2,

holds for δt ≤ Ĉ and 1 ≤ m ≤ [
T
δt ] − 1, that concludes this lemma. □

Now, we can prove the optimal error estimate for pressure. Meantime, the H1 error estimates for velocity and magnetic
field are also obtained.

Theorem 4.2. Under the assumptions of Lemma 4.7, we have

∥∇enu∥ + ∥∇ ẽnu∥ + ∥∇ × enb∥ + ∥enp∥ ≲ δt, 1 ≤ n ≤ [
T
δt

]. (4.53)
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Proof. By taking the summation of (4.6) and (4.7), we obtain the error equations

en+1
u − enu

δt
− ν∆ẽn+1

u + (u(tn) · ∇)u(tn+1) − (un
· ∇)ũn+1

+ ∇en+1
p

+ sB(tn) × ∇ × B(tn+1) − sBn
× ∇ × Bn+1

= Rn+1
u + Rn+1

p .

(4.54)

By taking the L2 inner product of (4.54) with any test function v (∈ H1
0 (Ω)d), from assumption (A), we obtain

(en+1
p , ∇ · v) =

(
en+1
u − enu

δt
, v

)
+ ν(∇ ẽn+1

u , ∇v) +
(
(enu · ∇)u(tn+1) + (un

· ∇)ẽn+1
u , v

)
+ s

(
enb × ∇ × B(tn+1) + Bn

× ∇ × en+1
b , v

)
− (Rn+1

u + Rn+1
p , v)

≲ ∥dten+1
u ∥∥∇v∥ + ∥∇ ẽn+1

u ∥∥∇v∥ + ∥enu∥∥∇v∥ + ∥∇ ẽn+1
u ∥∥∇v∥

+ ∥enb∥∥∇v∥ + ∥∇ × en+1
b ∥∥∇v∥ + ∥Rn+1

u ∥∥∇v∥ + ∥Rn+1
p ∥∥∇v∥.

Using the inf–sup condition, there exists a positive constant β such that

β∥q∥ ≤ sup
w∈H1

0 (Ω)d

(∇ · w, q)
∥∇w∥

, ∀q ∈ L20(Ω),

we obtain

β∥en+1
p ∥ ≲ ∥dten+1

u ∥ + ∥∇ ẽn+1
u ∥ + ∥enu∥ + ∥enb∥ + ∥∇ × en+1

b ∥ + ∥Rn+1
u ∥ + ∥Rn+1

p ∥

≲ δt + ∥∇ ẽn+1
u ∥ + ∥∇ × en+1

b ∥,
(4.55)

where we also use Lemma 4.7, Theorem 4.1 and Lemma 4.3.
From Lemma 4.7 and Hölder’s inequality, for 1 ≤ m ≤ [

T
δt ] − 1, we have

∥∇ ẽm+1
u ∥ − ∥∇ ẽ1u∥ =

m∑
n=1

(∥∇ ẽn+1
u ∥ − ∥∇ ẽnu∥) ≤

m∑
n=1

∥∇ ẽn+1
u − ∇ ẽnu∥

≤

(
δt2

m∑
n=1

∇ ẽn+1
u − ∇ ẽnu

δt

2
) 1

2

(
m∑

n=1

12)
1
2 ≲ (δt3)

1
2 (

T
δt

)
1
2 ≲ δt.

(4.56)

Thus, from (4.36), we obtain

∥∇ ẽm+1
u ∥ ≲ δt + ∥∇ ẽ1u∥ ≲ δt, 0 ≤ m ≤ [

T
δt

] − 1. (4.57)

In addition, due to (4.25), we also have

∥∇em+1
u ∥ ≤ ∥em+1

u ∥1 ≲ ∥∇ ẽm+1
u ∥ ≲ δt. (4.58)

Similarly, we can also deduce

∥∇ × em+1
b ∥ ≲ δt. (4.59)

Finally, from (4.55), (4.57), (4.58), (4.59), we conclude (4.53). □

Remark 4.3. In this work we have proved the optimal error estimates in Theorem 4.1 and Theorem 4.2 for the time-
marching scheme (3.1)–(3.8). The error estimates for the fully discrete scheme is much more complicated, we omit the
details here due to the page limits. About the convergence estimates for the fully discrete schemes in the context of finite
element method/or spectral method related to the Navier–Stokes equations, we refer to [48–61].

5. Numerical examples

We now implement some numerical experiments to validate the stability and accuracy of the scheme. We use the inf–
sup stable P2/P1 element [62] for the velocity and pressure, and linear element for the magnetic field. The fully discrete
finite element scheme reads as

Step 1. Find Bn+1
h ∈ Ch ⊂ H1

τ (Ω) such that for all Ch ∈ Ch(
Bn+1
h − Bn

h

δt
, Ch

)
+ η(∇ × Bn+1

h , ∇ × Ch) + η(∇ · Bn+1
h , ∇ · Ch) + (Bn

h × un
h, ∇ × Ch)

+ δts(Bn
h × ∇ × Bn+1

h ,Bn
h × ∇ × Ch) = 0.
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Table 1
The numerical errors and convergence order for ∥eu∥L2 , ∥eu∥H1 , ∥ep∥L2 , ∥eb∥L2 , ∥eb∥H1 at t = 1 that are computed using various temporal resolutions
with the exact solutions of (5.1). The physical parameters are ν = η = s = 1.
δt ∥eu∥L2 Order ∥eu∥H1 Order ∥ep∥L2 Order ∥eb∥L2 Order ∥eb∥H1 Order

1/8 2.44e−4 – 2.94e−3 – 1.34e−2 – 2.49e−3 – 1.20e−2 –
1/16 1.07e−4 1.18 1.15e−3 1.34 6.65e−3 1.01 1.30e−3 0.94 6.25e−3 0.94
1/32 4.57e−5 1.23 3.76e−4 1.62 3.01e−3 1.14 6.59e−4 0.97 3.18e−3 0.98
1/64 2.25e−5 1.02 1.74e−4 1.10 1.44e−3 1.05 3.32e−4 0.99 1.60e−3 0.99
1/128 1.13e−5 1.00 8.67e−5 1.00 7.12e−4 1.01 1.66e−4 1.00 8.02e−4 1.00
1/256 5.63e−6 1.00 4.33e−5 1.00 3.54e−4 1.00 8.35e−5 1.00 4.02e−4 1.00

Step 2. Find ũn+1
h ∈ Vh ⊂ H1

0 (Ω)d such that for all vh ∈ Vh(
ũn+1
h − un

h

δt
, vh

)
+ ν(∇ũn+1

h , ∇vh) + b(un
h, ũ

n+1
h , vh) − (pnh, ∇ · vh) + s(Bn

h × ∇ × Bn+1
h , vh) = 0.

Step 3. Find pn+1
h ∈ Mh ⊂ L20(Ω) from

(∇pn+1
h , ∇qh) = −

1
δt

(∇ · ũn+1
h , qh) + (∇pnh, ∇qh) qh ∈ Mh.

Step 4. Update un+1
h from

un+1
h = ũn+1

h − δt∇pn+1
h + δt∇pnh.

Similar to Theorem 3.1, we can prove the fully discrete scheme is also unconditionally energy stable in the sense that

s∥Bn+1
h ∥

2
+ ∥un+1

h ∥
2
+ δt2∥∇pn+1

h ∥
2
+ 2δt(sη∥∇ × Bn+1

h ∥
2
+ sη∥∇ · Bn+1

h ∥
2
+ ν∥∇ũn+1

h ∥
2)

≤s∥Bn
h∥

2
+ ∥un

h∥
2
+ δt2∥∇pnh∥

2.

5.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the proposed scheme. The computational
domain is Ω = [0, 1] × [0, 1]. We assume the following functions⎧⎨⎩

u = (ye−t , x cos(t)),
p = 0,
B = (y cos(t), xe−t )

(5.1)

to be the exact solution, and impose some suitable force fields such that the given solution can satisfy the system. For
simplicity, the physical parameters are set as ν = η = s = 1. Note that the exact solution are linear functions in space.
The approximate errors mainly come from the time discretization. We fix space mesh size h =

1
8 and refine the time step

size δt to test the convergence orders about the time discretization. In Table 1, we list the numerical errors between the
numerical solution and the exact solution at T = 1 with different time step sizes. We observe the first order accuracy
asymptotically for ∥eu∥L2 , ∥eu∥H1 , ∥ep∥L2 , ∥eb∥L2 and ∥eb∥H1 , as predicted theoretically.

5.2. Stability test

We show the evolution of the total free energy in this example. We set the computed domain to be Ω = [0, 1]2, and
the initial conditions for u, p,B are⎧⎪⎨⎪⎩

u0
= (x2(x − 1)2y(y − 1)(2y − 1), −y2(y − 1)2x(x − 1)(2x − 1)),

p0 = 0,

B0
= (sin(πx) cos(πy), −sin(πy) cos(πx)).

(5.2)

We test the energy stability over matching time of the proposed scheme under variant physical parameters of Re = Rm =

10 and 50. The coupling parameter is fixed as s = 1, and mesh size is h = 1/64. In Fig. 1, we present the time evolution
of the total free energy for four different time steps of k = 0.05, 0.01, 0.001, 0.0001 until T = 5. We observe that all
four energy curves show decays monotonically for all time step sizes, which numerically confirms that our algorithm is
unconditionally energy stable.
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Fig. 1. Time evolution of the free energy functional till T = 5 for four different time steps and two sets of order parameters (a) Re = Rm = 10
and (b) Re = Rm = 50. The energy curves show the decays for all time steps δt = 0.05, 0.01, 0.001, 0.0001, which confirms that our algorithm is
unconditionally stable.

5.3. Hydromagnetic Kelvin–Helmholtz instability

The Kelvin–Helmholtz (K–H) instability in sheared flow configurations is an efficient mechanism to initiate mixing
of fluids, transport of momentum and energy, and the development of turbulence. Such a problem is of interest in
investigating a variety of space, astrophysical, and geophysical situations involving sheared plasma flows. Configurations
where it is relevant include the interface between the solar wind and the magnetosphere, coronal streamers moving
through the solar wind, etc. Since most astrophysical environments are electrically conducting and relevant fluids are
likely to be magnetized, it is thus of prime importance to understand the role of magnetic fields in the K-H instability.
About the theoretical and numerical study of Hydromagnetic K-H instability, we refer to [2,15,63–67] and the references
therein.

We revisit the occurring of the K–H instability in a single shear flow configuration that is embedded in a uniform
flow-aligned magnetic field. The simulation is performed in the computed domain of [0, 2] × [0, 1]. The initial velocity
field is u0 = (1.5, 0) in the top half domain, and u0 = (−1.5, 0) in the bottom half domain. The sheared initial magnetic
field is B0 = (tanh(y/ϵ), 0) where ϵ = 0.07957747154595 (cf. [64]). The velocity u, magnetic field B and pressure p are
periodic boundary conditions on left and right boundaries. On the top and bottom boundary, the second component v
of the velocity field u = (u, v) is imposed. The boundary conditions for B are B × n = B0 × n for the top boundary and
−B0 × n for the bottom. The order parameters are Re = Rm = 1000, s = 0.2. We use the time step δt = 0.01 and grid
size h =

1
40 .

In Fig. 2, we show snapshots of the magnitude of B1 that is the first component of B = (B1,B2) together with the
velocity field u at t = 0.2, 1, 2.5, 3, 3.2, 3.5. When time evolves, we can observe the vortexes start to form around t = 1.
After t = 2.5, the profiles of vortexes and the magnetic field show the typical structure of K-H instability, and soon it
deforms and rotates along with the flow. The obtained numerical results coincide well with the numerical/experimental
results discussed in [63,65–71], qualitatively.

6. Concluding remarks

In this paper, we develop an efficient numerical scheme for solving the MHD system. The scheme is (a) fully decoupled,
(b) unconditionally energy stable, (c) linear and easy-to-implement. Moreover, we theoretically establish the unconditional
energy stability and provide rigorous error estimates for the scheme. A series of numerical simulations, including the
convergence test, energy stability test and a physical benchmark problem, are presented to validate the stability and
accuracy of the scheme.
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Fig. 2. The dynamical behaviors of the magnetic field together with the velocity field that shows the hydromagnetic K-H instability. Snapshots of
the numerical approximation are taken at t = 0.2, 1, 2.5, 3, 3.2, 3.5.
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