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1. Introduction

The magneto-hydrodynamical (MHD) system models the behaviors of conducting fluids, such as plasmas, liquid metals,
salt water and electrolytes, under external electromagnetic field. It has wide applications in geophysics, astrophysics
and confinement for controlled thermonuclear fusion, see [1-3]. The fundamental concept behind the MHD system is
that magnetic fields can induce currents in a moving conductive fluid, which in turn polarizes the fluid and reciprocally
changes the magnetic field itself. Thus the governing equations that describe the MHD system are a nonlinear system
to couple the Navier-Stokes equations for hydrodynamics and Maxwell’s equations for electromagnetism. About the
extensive theoretical modeling/numerical analysis for the MHD system, we refer to [4-23] and the references therein.

To solve the MHD system numerically, the main challenging issue is to develop proper temporal discretizations for
those coupling terms, including (i) the coupling of the velocity and pressure in the fluid momentum equation, and (ii)
the nonlinear coupling between the magnetic field and the velocity field through convection and Lorentz forces. It is
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well-known that simple discretizations, like fully explicit or implicit type schemes, can lead to considerable instabilities
or suffer from costly time expense. Therefore, people are particularly interested in designing energy stable schemes, in
the sense that the discrete energy dissipation laws hold. Meanwhile, while keeping the energy stable feature, it is also
desirable to develop schemes that are easy-to-implement. Here the term “easy-to-implement" is referred to “linear" and
“decoupled” in comparison with its counter parts: “nonlinear" and “coupled"”.

It is remarkable that many attempts have been made in this direction recently. In [8], the authors developed two
implicit-explicit type methods where the first order method is shown to be unconditionally stable and the second order
method is shown to be conditionally stable. However, the model considered in [8] is the reduced version, namely, the
magnetic field is assumed to be a fixed function. In [24,25], the authors developed a decoupled type scheme for the full
MHD system, but it is conditionally energy stable with a time step constraint similar to [8]. In [9], the authors developed a
totally decoupled scheme where the computations of Navier-Stokes equations are based on the commutator of Laplacian
and Leray projection, and all nonlinear and coupling terms are treated explicitly. However, the scheme is still conditionally
stable. In [26], the authors had developed a “partially" decoupled scheme where the computations of magnetic field is
totally decoupled from the velocity field since all nonlinear terms are treated explicitly, but the velocity is coupled with
the pressure in the Navier-Stokes equations. Furthermore, a severe time step constraint (5t < h> where h is the grid size
of space), which can be very costly in large-scale computations, has to be used to ensure stability. In [27], the authors
developed some unconditionally energy stable schemes based on the projection type methods for the Navier-Stokes
equations. However, the velocity field and the magnetic field are still coupled together.

Therefore, the aim of this paper is to develop a time marching scheme that is not only easy-to-implement (linear and
decoupled), but also unconditionally energy stable. We achieve such a goal by combining several effective approaches,
including, (i) an auxiliary intermediate velocity variable to decouple the computation of the magnetic field from the
velocity; (ii) the projection method to decouple the pressure from the velocity; and (iii) some subtle implicit-explicit
treatments to discretize the nonlinear convection and Lorentz force terms. We adopt the first order backward Euler scheme
for time discretization, first order implicit-explicit treatments for nonlinear terms, and first order projection method for
fluid equations. Thus, our final scheme is a first order time marching scheme. We rigorously prove the energy stability and
derive the optimal error estimates for the developed scheme. Furthermore, we implement various numerical simulations,
including the convergence test, energy stability test and a physical benchmark problem, the Kelvin-Helmholtz shear
instability, to demonstrate the stability and accuracy of the scheme. Our decoupled idea is somewhat similar to the matrix
splitting algorithms in [16]. The key ingredients are to introduce a new auxiliary velocity to decouple the computations
of velocity and magnetic field. In [16], one also needs to solve an intermediate magnetic field b"*!, then update the
b1 through one step pseudo magnetic pressure correction. Furthermore, the error estimates and numerical studies of
unconditional stabilities are not presented in [16].

The rest of paper is organized as follows. In Section 2, we present the model and derive the associated energy
dissipation law. In Section 3, we develop the fully decoupled scheme and prove its associated energy stability. In Section 4,
we derive its optimal error estimates. In Section 5, various numerical experiments are presented to demonstrate the
stability and accuracy of the scheme. Finally, some concluding remarks are given in Section 6.

2. The MHD model and its energy law

Here and after, for two vector functions x,y, we denote the L? inner product as (x,y) = |, o X - ydx and L2 norm
Ix]|? = (%, x). We use H'(£2) and H?(£2) to denote the usual Sobolev spaces, and use | - ||; for the norm in H'(£2) and || - ||,
for the norm in H%(£2). We also define H)(2) = {¢ € H'(22) : ¢lso= 0}, L3(2) = {¢ € [A(2): [, ¢pdx =0} , H}(R2) =
{weH(2) :nx wle=0}and H = {u e [*(2),V-u=0,u-n|yo=0},d = 2, 3. The following Poincare inequalities
and embedding inequalities are well known [28,29]:

lull <cllVull, ueHy($2), (2.1)

lwly <clIV-wl+cIVxw| weHX2), (2.2)

lulp <cllull;, 2<p<6, ueH(2), (2.3)
1 1

lulls < cllull2lull? ueHY($2). (2.4)

Let X be a Banach space. The space [P(0, T; X), 1 < p < oo, is the space of classes of LP functions from (0, T) into X, which
is a Banach space with the norm

T 1/p
(/ IIu(t)Ilidt> if 1<p<oo, esssupeprlu(t)lx if p=oo.
0
For simplifying our notations, we write V x a x b to denote (V x a) x b.

We consider the following incompressible MHD equations:

u —vAu+(u-Vu+Vp+sBxV xB=0, (2.5)
B +1nV XV xB—V x(uxB)=0, (2.6)
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V-u=0, (2.7)
V-B=0, (2.8)
for (x,t) € £2 x [0, T) with 2 C RY, d = 2, 3, where u denotes the velocity field, p is the pressure, and B is the magnetic

field. For the physical parameters, v~! = R, (fluid Reynolds number), ! = R,; (magnetic Reynolds number), and s is the
coupling coefficient, which are given by

UL B?
Re=—, Ry=punolUL, s= o
Ms pumU
where U is the characteristic velocity, L is the characteristic length, uy is the kinematic viscosity, u, is the magnetic
permeability, o is the electric conductivity, B is the characteristic magnetic field, and p is the fluid density. The system
is equipped with the following boundary conditions

ujje=0, Bxmnlje=0, (2.9)
and initial conditions
uf(r—oy= Uo(X), Blr—0)= Bo(x), (2.10)

with V-ug = 0, V- By = 0, where n denotes the outward unit normal of 9£2. We also assume £2 is a bounded connected
regular domain such that the H? regularity of elliptic problems holds.

The model (2.5)-(2.8) follows the energy dissipation law. By taking the L? inner product of (2.5) with u, and of (2.6)
with sB, using (2.7)-(2.9) and integration by parts, we have

(e, u) + v Vu|* + s(B x V x B,u) =0,
s(B¢, B) + sn||V x B||> —s(u x B, V x B) = 0.

By taking the summation of the two equalities, we obtain

d
ZEw.B) = —v||Vu|® —sn|V x BJ?,

where
1 S
E(u, B) = — ||lul|> + = ||B|?
(u.B) = - ul’ + S |1B]
represents the total energy of the system (2.5)-(2.8).

3. Numerical scheme

We now construct a semi-discrete time marching numerical scheme for solving the model system (2.5)-(2.8) and prove
the corresponding energy stability. It will be clear that the energy stabilities of the semi-discrete schemes are also valid
in the fully discrete formulation, for instance by finite element or spectral spatial discretizations.

Let 5t > 0 denote the time step size and set t, = nét for 0 < n < [%] with the final time T. Our numerical scheme
reads as follows.

Given the initial conditions (u°, B?, p°), where p°® = p(0) is obtained from ug, By and Egs. (2.5), having computed
(u", B, p") for n > 0, we compute ("1, B™!, p"*1) by the following steps.

Step 1.

Bn+1 _ Bn

T+nV><V><B"+1—V><(uZ><B“)=0, (3.1)

U =W BV x B =0, (32)

St

B! x njyo=0. (3.3)
Step 2.

ﬁn+1 _ un

T* + @ V)"t — A"t + vp' =0, (3.4)

" 0=0. (3.5)
Step 3.

ut — ﬁ"‘H

st + V(" —-p") =0, (3.6)

V.utl =0, (3.7)
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u™ . nyo=0. (3.8)

Several remarks are in order.

Remark 3.1. For the semi-discrete form, we notice the divergence free condition holds for u". In practice, u" may not be
divergence free pointwise. For this case, a common practice is to define a skew-symmetric form

b(u, v, w) = %((u -Vv, w) — %((u -Vw, v) (3.9)

which was first introduced by Temam [30]. If the velocity u € H, then b(u, u, v) = ((u - V)u, v) which is consistent with
original equation.

Remark 3.2. To decouple the computation of the pressure from that of the velocity, we use the first order pressure-
correction scheme [31-38]. To further decouple the computations of B from the velocity field u, inspired by [33,37,39-45],
we introduce a new, explicit, convective velocity u], that can be computed directly from (3.2), i.e.,

u" =u" +5tsV x B! x B". (3.10)
Indeed, if plugging (3.10) into (3.1), one obtains a linear equation for B"*! as
Bn+1
5 + 17V x V x B"'45tsV x (B" x (V x B x B")) = g", (3.11)
where g" = —V x (B" x u") + %B". Thus, in Step 1, we only need to solve the above fully decoupled, linear problem

(3.11) with the boundary condition (3.3).

Remark 3.3. For the pressure equation, indeed, by taking the divergence for (3.6), we get

_Aanrl — —%V . ﬁn+l _ Apn, (3]2)

associated with the Neumann boundary conditions d,(p™*! — p")|lse= 0. Once p"*! is obtained, we update u™*! from
uttl = ﬁ"+1 _ (Stv(anrl —p".

Proposition 1. The problem (3.11) with (3.3) of Step 1 is well-posedness.

Proof. The associated weak form of (3.11) can be written as: Find B € HQ(.Q) such that
a(B,C) = (g",C), VC e HY(R)

where
a(B, C) = %(B,C)—i—n(v x B,V x C)+8ts(B" x Vx B,B" x V x C).

It can be seen the bilinear form a(-, -) is symmetric, namely,
a(B, C) = a(C, B).

In addition, using (2.2) and V - B =0 (V - B" = 0 can be deduced by taking divergence of (3.11)) we have
a(B. B) = C(2, n)|IBIl{,

and
a(B, €) < C(3t, n, s, [|B"[[==)lIBIl1[IC]l1.

Thus, it is well-posedness using the Lax-Milgram Theorem. O

In the below, we prove the energy stability of the scheme (3.1)-(3.8) as follows.

Theorem 3.1. The scheme (3.1)-(3.8) is unconditionally energy stable in the sense that
SIB™ 12+ ™2 <+ 862 VP12 4 26¢ (snl[V x B + v Vi 2)
< sIB™? + Ilu"||* + 8¢* [ Vp"||*. (3.13)

Moreover, V-B*1 = ...=V.B®=0for T<n<N=[L]-1.
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Proof. By taking the L? inner product of (3.1) with sB*"" and of (3.2) with u”, we obtain

s
28t (IB™" — B"|> + B> — [[B"|*) + snllV x B™*'||*> +s(B" x u, V x B"*") =0, (3.14)
and
1
%8t (] — u"* + ul* — u"]?) — s(V x B™"" x B", u]) = 0. (3.15)
By taking the L2 inner product of (3.4) with #""" and using the well known property of
(u-Vo,v)=0,YueH,veHy(R2) (3.16)
thus we derive
1 - - - -
sz (1 =l 12 = ) v V™2 (9p", i) = 0. (3.17)
We rewrite (3.6) as
1 1.
gun+1 + Ver»l — Eun+1 + Vpn, (318)
and take the [? inner product of the above with itself on both sides, we obtain
1 1 St St
ot — gty —V”Hz——V"z:ﬁnH,V". 3.19
2(Stll ll 2(Stll l +2|| Pl 2|| pilIF=( p") (3.19)

Then, by taking the summations (3.14), (3.15), (3.17) and (3.19), we obtain

S
5B P — IBY + 1B™" — BY%) + 5|V x B2
1 1 .
s (I — )2+ ) — ")) + 2—5t||u”H —ul|? (3.20)
N St St
+ v vt 4 5||Vp”“||2 - 5||Vp"||2 =0.

After multiplying with 25t and dropping some positive terms, we obtain (3.13). Finally, by taking the divergence for (3.1),
wegetV-B""'=V.B"=...=V.B'=0. O

Remark 3.4. By Theorem 3.1, summing up the inequality (3.13) from n =0 to m (< [%] — 1), we get the stable bound

m
SIB™H 2 + w2 4 863 VP 4 256y (snlV x B + vl Vi)
n=0
< s[|IB°))> + [[u®)|* + 86> Vp° ||
4. Error analysis
In this section, we first prove the error estimates for velocity and magnetic field in Section 4.1. Then we improve the
convergence order for pressure in Section 4.2. We denote by C a generic constant that is independent of §t but possibly
depends on the data and the solution, and use f < g to say that there is a generic constant C such that f < Cg.
We shall use repeatedly the following discrete Gronwall inequality [46].

Lemma 4.1. Let gy, a,, by, ¢, and y, be a sequence of nonnegative numbers for integers n > 0 such that

n n n
an~|—8t2bj < StZyjaJ-—i-Sthj + 8.
j=0 j=0 j=0

Assume that y;8t < 1 for all j, and set o; = (1 — y;6t)~". Then, for alln > 0,

n n n
an+8thj§exp BtZojyj Sthj—i-go
j=0 j=0 j=0

The following lemma will be used in Lemma 4.4.

Lemma 4.2. Let ¢y, c3, c3 be nonnegative numbers, a, be a sequence of nonnegative numbers for n > 0 such that

(ny1 < €1 + C20ta, + 635t2aﬁ.
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If max{c,, \/c3}DSt < 1, then, forn >0

aTl f D$
where D = max{ag, ¢} + 2.

This lemma can be proved by the mathematical induction method. We skip it.

4.1. Error estimates for velocity and magnetic field

We rewrite (2.5)-(2.6) as follows.
B(tn—H) - B(tn)

i + 7V X V X Btay1) = V x (u(ta) x B(tz)) = Ry*, (4.1)
w — VAUt 1) + (WU(t) - VUt 1) + V() (42)
+5B(ty) x V x Bty 1) = R},
w + V(Dltas1) — plty) = R, (4.3)
where
Ryt = PO B0 g )4 () Bl ) — ¥ x (ay) Bt
RIF = w — (1) + (U(Ey) — Ut )VW(Erp1) + VP(ta) — V(Ersr)

+s(B(tn) — B(tn1)) X V x B(tny1),
R;+] = Vp(tpy1) — Vp(tn)

are truncation errors. The existence and uniqueness of solution to the MHD system (2.5)-(2.8) have been studied in [4].
Here we make some regularity assumptions about the solution (u, B, p) of the system (2.5)-(2.8),

u, B € L®(0, T; H3(£2)), p € L®(0, T; H'(£2)),

u., B, € [°(0, T; H'(£2) N L°(2)), pr € L0, T; H'(£2)),

Uy, By € L1°(0, T; L*(2)) N L*(0, T; H'(2)), pr € L(0, T; H'(2)),
Uy, By € LZ(O» T, LZ(Q))~

(A): (4.4)

One can easily establish the following estimates for the truncation errors, provided that the exact solutions are sufficiently
smooth or satisfy the assumption (A).

Lemma 4.3. Under the Assumption (A), the truncation errors satisfy

n n n T
IR [l + IRy | + IRy |l < ¢, 0 = n < [=].

Proof. Since the proof is rather standard and similar to the proof in Lemma 4.5, due to the page limit, we leave it to the
interested readers. O

To derive the error estimates, we denote the error functions as
{ ep = B(t,) —B", & =u(t,)— 1",

u
ey = u(ty) —u", e; =p(t,) —p".
By subtracting (3.1) from (4.1), (3.4) from (4.2) and applying (3.2), and (3.6) from (4.3), we obtain the following error
equations,

n+1 _ ,n

e e

% +7V x V x el + V x (B(t,) x u(ty)) — V x (B* x u') = Ri*", (4.5)
é”‘H _ en _ .

W — VAT 4 (u(tn) - Vu(tnsr) — (" - V)™ + Vel (4.6)

+5B(ty) X V x B(ty11) — sB" x V x B"*!1 = RI+1,
en+1 _ "én+1
u u

5 + V(egt —ep) =Ry (4.7)
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We first show the L* stability of B", that plays a key role in the error estimates. Let

« = max ||B(t)[|~ + 1,
0<t<T
the preliminary result is given in the following lemma.

Lemma 4.4. Assuming that the solution to (2.5)-(2.8) satisfies Assumption (A), there exists a constant C such that if §t < C
the solution B" of scheme (3.1)-(3.8) satisfies
T

B"||ze0 < K, n=0,1,...,[§]. (4.8)

Proof. We use the mathematical induction method to prove this lemma.

When n = 0, we have ||B®||;~ < «.

Assuming that ||B"||~ < k isvalid forn =0, 1, ..., N, we will show || |lle < & is also valid through the following
three steps. In Step i, using the induction assumptions, we first give a convergence result. Then in Step ii, using the
convergence result obtained in Step i, we prove the H? stability for B¥*'. Finally, in Step iii, by the convergence result
and H? stability proved in Steps i and ii and Sobolev inequalities, we bound the L norm of BV*!,

(Step i). By taking the L? inner product of (4.5) with e"“ using integration by parts and the identity

BN+1

(a—b,2a) = |a]* — |b]* + |a — b[?,

we obtain
1
S—(lley™ —epll> + ey ™12 — llepi*) + nll vV x e; )12
26t (4.9)
+ (B(ty) x u(ty) — B" x u”, V x efT!) = (R, eft1).
By taking the [? inner product of (4.6) with &', we derive
1
+1 +1 +1 +1
o (e —elll* + 111 — lep ) + vIver 1> + (Vep, &)
+ () Vuttr) — (- V3", &) (4.10)
+ 5 (B(ty) x V x B(ty1) — B x V x B"™ &lt!) = (Ri*1 i)
We rewrite (4.7) to obtain
1 1.
SO Vet = St 4 Ve + Ry (4.11)
By taking the L? inner product of (4.11) with itself on both sides, we obtain
- 1 -
(@ vep) = (ley™ 17 — 12 1%) + (IIVE”“II — | Vel?)
(4.12)
sn+1 pn+l +1 +1)2
— (@R — 5t(Vel, R" )——nR;; 12,
We combine (4.9)-(4.12) to obtain
1 ot
28t(||€”+1 epll* + leg ™% — llepli®) + nllV x eg ™1 + E(IIWZH 1> = 11ves?)
1 -
+ ﬁ(lle"+1 enll> + lef 1> — llelll®) + vive1?
—(B(ty) x u(t,) — B" x u", V x e}t (: term A)
_ . n+1 n+1 .
() Vyuttas) - @ - Vi ) (: term B) 413)
— 5 (B(ty) X V x B(tys1) — B" x V x B"" &l*T) (: term C)
+ (&, R”“) + 8t(Vey, R;’“) (: term D)
+ (Rnﬂ n+l) + (RZ“, éz+l) (: term E)

St
+ S IR
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For n < N, for term A, using the definition of uf in (3.10), induction assumptions, assumption (A) and Young inequality
ab < ea® + Lb?, we derive

n
) x u(ty) —B" xu,V xep

(term A) “)‘

< |ete
‘ebxutn + B" x (u(t,) —ul), Vxe"“)‘

‘ el x u(ty), V x el*1) + (B x e, V x el*1) — s5t(B" x (V x B""! x B"), V x €1
< (llel I lultn)llee + B[l lle2]| + s8¢ [IB |2 IV x B ) |V x ep™|

S 2NV x e I+ lefI12+ el + 66|V x B

For term B, using (3.16), we derive

(term B)g)((u(tn).V) (tarr) — (- V)", 1)

= |l Vo), ) + (@ - VI E
= |l Vomttus), 7] = [((€] - VIt
S ||Ve"+1||||u<tn+1)||po < SIVEP + el

For term C, using &' = ej*! 4 8t(Vept! — Vel ) — StRy™!, Assumption (A) and (2.3), we derive

(term C) < s’(V x B(tys1) X B(ty) — V x B™! x B, 1)
_ s’(V % B(t;1) x €l 8141) 4 (V x 1 x B, “+1)’

< IV x B(tas )l llepll 185" Mla + IV x ™ || (1B o1y ]
N lleb Ve + 1V x ep* i Clleg™ Il + 8¢l Vey ™ — Vepll + StlIRy* 1)

SIVEI2+ 2NV x e I + I + )2 + 82 Vey ™! — Vep? + se? IRy

For term D and term E, we derive
(term D) < |(&]*", RA*1)| + 8t[(Ves, Ry™))
< ||~““ IIRET ) + el Vel || |R |

S SV IR + 52 VeI + IR,

~

and
(term E) 5 |(Rn+1 ﬂ+1)| + |(Rn+1 ~n+1)|
< IREFMI Nep Ml + IREFM) et
SR IV x eft! || + IR Vet
n -
sglv x ept1” + ||v e + IR + IIRET2,

By combining the above estimates with (4.13), we obtain
lep™ 1% — llepll® + 8tV x e ™M I> + Nl 1% — llef|I” + stv ]| vert||* + SEP([IVept > — [ Vep||*)
< Stllefll* + stllell|® + stllel |2 + 8t>|| Vert! — Vell|2 + 8¢%|| Vel |2
+ 87|V x BY? 4 5t3||R;+1 I” + 5f||RZH &
+ StIRYTP 4 SR + 867 R (4.14)
Summing up the above inequality from n = 0 to m(m < N) and using €] = e) = ep = 0, Vet — Vep|* <
||Veg“ 1>+ ||Ve2||2 and Lemma 4.3, we obtain

m
lle 117 +||ez1+1||2+8t2||Ve$+1||2+6rZ(n||vxe"“n +vlvertP?)
n=0 (4.15)

< St Ien+l|| 4 ”en+1”2 + 8t2||ven+l||2 + 81’2
u p
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Here we also use 863 Y 1 IV x B*"||? < 8t2 that is obtained from Remark 3.4. Therefore, applying the discrete Gronwall
inequality in Lemma 4.1 to (4.15), there exist positive constants Cy and C;, such that

m
leg 112 + 112 + 862 Ve 2 + 8t Y (nllV x ep T2 4 v VER|?) < Cit?, (4.16)
n=0

for 6t < Co and m < N.
(Step ii). For n < N, by taking the divergence for (3.6), we obtain
—StAQP" —p" H=-Vv-i".
From (4.16), we find
SEIp" —p" 2 S IV - = |V - &l < 8. (4.17)
Due to the identity V x V x w = —Aw + VV - w, Egs. (3.1) can be transformed as

—nAB"! =V x (u" x B") — u.
5t
By the H? regularity of the elliptic problem, there holds
n+1 B"
st
n+1 Bn

ot

1
IB™ 2 £

+ IV x (B" x uj)]|
(4.18)
<

~

+ [, VB"|| + |B"Vau,|| + [|B"V - u[],

where we use V - B" = 0 and the following identity
Vx(@axb)=b-Va—a-Vb+aV-b—-bV -a. (4.19)

For the first term on the right hand side of (4.18), from (4.16) and assumption (A), there exists a constant C, such that

_ez+1 + eg i B(tn41) — B(ts)

ot ot

Bn+1 _B
=

n+1 (4.20)

1
& — &

ot

B(tn+l) - B(tn)
&t

< G.

|

For other terms of (4.18) on the right hand side, by combining (3.2) and (3.6), we obtain
u' =u" —5tV(p" — p" 1)+ 8tsV x B! x B",
thus by (2.1), (2.3), (2.4), (4.17) and induction assumptions, we derive
[u}VB"|| < |@"VB"|| + 6t||V(p" — p" ")VB"|| + 5ts||(V x B x B")VB"||
< 1€} VB"|| + ||u(t,)VB"|| + 8t[|[V(p" — p"")VB"|| + 8ts[|(V x B""' x B")VB"|
<Nl VB I3 + [lu(ty)ll VB | + 8t[|V(p" — p" ll;s | VBl 3
+ 8t]|V x B" | 3[|B"|| o [ VB" || s

- 1 3 - 3 2
SIVEIVB 2 B3 + VB[l + 8tlp" — p" ' ll2[IVB"[| 2 1B"; (421)

1 1
+ 8LV x BT 2 B 1Bl
S IVBY + Ve I2 1B [l + 82 (1p" — p" ' [1511B"I2

1
+ G IB 2 + 861V x BB 13
1
S G+ GlIB" o + 8t1B"l> + 3¢ 1B"I3,

where we actually use ||[VB"|| and ||V x B™!|| are all bounded (this can be simply proved from ||VB"|| < IVepll +
IVB(t)ll < IV x ejll + IVB(t,)|| < C by using (2.2), (4.16) and assumption (A)), and use ||Ve)|| < §t2 that is obtained
from (4.16).



10 G.-D. Zhang, X. He and X. Yang / Journal of Computational and Applied Mathematics 369 (2020) 112636

Similarly, by (2.3), (2.4), (4.17) and induction assumptions, we derive

IB"Vu]|| < |B"Va"|| + 8t|B"VV(p" — p" )| + 5ts|B"V(V x B! x B")]|
< 1B oo [V || + 8¢ |[B" |1 [Ip" — p"l2
+ St(|IB" (|7 [1B"* " |2 + 1B" [l [ VB™[|131| VB" |5

(4.22)
- _ 1 1
SV +8tlp™ — p" o + St(IIB"[lo + VB2 B2 |BMl2)
1
< Ca+8t|B™ |y + EIIB"H ll2 + 8¢2|IB" |13,
where we use ||Vii"|| and ||[VB™!| are bounded by constants.
Likewise, for the last term in (4.18), we also have
[B"V - ul|| < |B"V -i"|| + 8t|[B"A(p" — p"~")|| + 8ts||B"V - (V x B™" x B")]|

(4.23)

1
< G5+ 8tIB™ |2 + EIIB"+1 ll2 + 8¢*[1B" 5.

By combining (4.18), (4.20), (4.21), (4.22) and (4.23), if §t < Eg, there exist three positive constants Cg, C; and Cg such
that forn < N

IB"ly < C + C78t||B"[|2 + Cg6t>||B" 3.

. , . 1
Therefore, by Lemma 4.2, if max{C;, /Cg}D'§t < 1, i.e., t < 7max{C7,\/a]D" we have
B, <D (D' = max({|Boll,. Cs} + 2). (4.24)

(Step iii). From (4.24) and the assumption (A), there exists a positive constant Cg such that
lley™* " ll2 < 1B¥*M1lz + I1B(ty+1)ll2 < Co.
Finally, from (4.16), we have
1B+ llioe < lley ™ llzoe + [1B(tn41)llzse
< Cuolle} ™ 13 1)1 F + Bt

3 1
< CioCy P8t 3 + |IB(tn41) 1o

1
Thus, if C{,C3C2 8t < 1,i.e., 8t < —'—, we have

4 ~3-2
C10C9 Cl

IBY Ml < 14 [IB(ty41)llie < «.

1 1 0

_
max{C7.4/Cs}D’ " 4 3.3
C10C9C1

Now, based on the above lemma, we can easily derive the following error estimate.

Then we obtain (4.8) by induction for ét < C, C = min CO,EO,

Theorem 4.1. Suppose the solution to (2.5)-(2.8) satisfies Assumption (A). Then, the scheme (3.1)—(3.8) is unconditionally
convergent and has the following error estimate: for 0 < m < [;Tt] -1,

m
leg 112 + 112 + 862 Ve 12 + 8t Y (nllV x ep T2 + v VEL ) < ot
n=0

Proof. Since ||B"|;~ < « is established for any 0 < n < [%], by following the proof of Step i of Lemma 4.4, we obtain
that (4.16) is valid for any 0 < m < [%] — 1 provided 4t < C.

On the other hand, if 6t > C, using Remark 3.4 and assumption (A), we deduce that there exists a constant Cy; such
that

m
ey 1% + lleg ™12 + 862 Ver |12 + 8t Y~ (nllV x egt |2 + v vErt|?)
n=0
Cn Ci1
f C11 = FCz S F(St)z 5 8t2
Therefore, the proof is finished by combining the two cases. O
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Remark 4.1. Once the bound ||B"||;~ < « and the error estimate in Theorem 4.1 are obtained, by following the Step ii
of the proof for Lemma 4.4, we can establish the H? stability of B", namely, there exists a constant &, such that
max [|B"[; <&.

0=n=[#]
Remark 4.2. Define Py as the L? orthogonal projector from L*(£2)¢ to H, i.e.,

(u—Pyu,v) =0, Yuel*R), veH.
By the H! stability of Py [47], and (2.1), we have

leylls = [IPueylli < lleyllh < [IVeglls (4.25)
which together with Theorem 4.1 imply

(%]

8ty el < ot (4.26)
n=0

4.2. Error estimate for pressure

Noting Theorem 4.1, the1 order of the pressure is not optimal, therefore we need to improve it by the following process.
We denote d,w" = % dew(ty) = % for any variable w, w(t). By applying d; to (4.5)-(4.7), we obtain
deeltl — dgen
St
—du"Vit" + Vd.ep + sB(ty) x V x diB(tni1) + sdiB(tn) x V x B(ty)

— VA + u(t,)Vdiu(ty,) + de(ty,)Vu(t,) — uVd ™! (4.27)

—sB" x V x d;B""! —sd,B" x V x B" = d,R'"",
d[EZ'H _ dtéﬁ+1
st
deef ™! — del
St
—V x (d;B" x u") — V x (B"" x d;u”) = d,R}*".

+ V(die)™! — dieh) = dRy*, (4.28)

+7V x V x diept! + V x (deB(tn) X u(tn)) + V x (B(ta—1) x dru(ty)) (4.29)

The truncation terms d,R;;*", d:Ry*", deRI™! in (4.27)-(4.29) have the following property.

Lemma 4.5. Under the Assumption (A), the truncation errors satisfy
(&1
86 (IR + NdeRET I + 1 RE?) < 86
n=1

.. 1 Rn+1_Rn
Proof. By the definition of d.RI*' = ot we get

1
dtRZH = E(dtu(tnﬁ»l) — U(tng1) — dets(ty) + ue(£:)) — dett(tng 1) V(tngr) + deua(ty ) Vu(t,)
+ Vd;p(tn) — Vdip(tn1) — sdeB(tnr1) X V X B(tnt1) + sdiB(th) x V x B(ty).

We estimate above equation term by term as follows. By some basic calculations and (2.1), (2.3), Assumption (A),
we get

1
— ldeu(tns1) — (1) — deta(ty) + we(6)]12

8t?
tht1 th th+1
/ (t— tn)zut[tdt - / (t— fn—l)zumdf - 5t2/ Uy dt
th t, tn

n—1

2
1

= 454

1 5 tn 5
<5t / it P + 8¢ / e Pt
th th—1
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”dtu(tn+l)vu(tn+1) - dtu(tn)vu(tn)nz
= [I(dew(tny1) — dew(ta))Vaa(tns1) + deta(tn)V(U(tn11) — u(ta)) ||

< de(tnsr) — dea(e) 2 1 VarCtns 12 + [deta()l1Zoe [V ((Ers1) — 061

th1
/ Vu.dt
tl'l

tht1
IV ||*de + Sf/ IV |*dt,
th

S IV(deutarr) = deu(t)I + [V (@tar1) — )]

1 th+1 1 tn 2
g/‘ (trp1 — )V dt + 5/ (t — ty—1)Vugdt
th th—1

1 tn
< (St/ | Vu|*dt +8t/
th t

n—1

2

"

IVdep(ta) = Vdep(tas 1) =

1 /fn+1 1 tn
- (t 1— t)Vp tdt + — f (t —t _1)Vp dt
5t 0 n+ t 5t - n tt

n—

i1 tn
N 3ff IVpe |1*dt +5f/ IVpe|*dt,
tn t,

n—1
and

ld:B(ty41) X V X B(tyi1) — d¢B(t;) X V X B(tn)”2

2 2

~

1 thy1 1 th
E / (tn+1 —t)V x By dt + 5/ (t —t;_1)V x By dt
tn ¢

n—1
1 tn
< (St/ (| VB ||?dt +8t/
th t,

n—1

"

tht1
/ V x B.dt
th

thy1
||VBH||2dt+8t/ | VB, ||%dt.
th

Thus, we combine the above estimates, using assumption (A), to find
(%1 T
5t 1R < 8t / e |2 + | Vate | + 1|Vt + Vel + | VB |2 + [ VB | 2dt < 662,
n=1 0
Using the very similar procedures, we can also get
(%]

86 Y (IR + [1dRy %) < 86

n=1

Therefore, the proof is finished. O

To derive the optimal convergence order of pressure, we also need the following first step error bound.
Lemma 4.6. Under the assumption (A), there holds

ldee}1? + lidee) > + 362 Vdeel |* < ¢,

(4.30)
Proof. (i). By taking n = 0 in (4.5) and from e) = 0, we obtain
el
S—i—i—anVxe;—{—Vx(Boxuo)—Vx(Boxu2)=R;.
By taking the L? inner product of above equation with %e;, we have
102 4 19 el + (¥ x (Bo x to) — V x (B x ), % Rl (4.31)
= X X X -V x x ), = ,— ). .
st st b 07T 07 D st b 5t
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From (3.10), using Remark 4.1, we obtain
1
e
’(V x (By X Up) — V x (By x u?), 8—’3)‘

= §ts

1y
VX(BOX(BOXVXB)),g

l
= §ts <(Bo x V x BY)VBy —ByV(By x V x B') 4+ ByV - (By x V x B), M)‘
1 1 ]
< 8t1Bo |l [|Boll2[|B' |12 j’ + 8t||Bo |l | Boll2[IB" 2 Sfb + 8t[|Bo|| 1B 12 8*”
< 1|| I| + 5t
4
and
e 1 el |° 1 el |?
R}, —b<f—b +IRMZ < = || 2] + st2.
‘(ba>‘_llbll‘(s 5t IIbII~4 5t
Therefore, since eb =0, (4.31) implies
e
2= || +*IIV><€bII < 8.

(ii). By takmg n =0 in (4.6) and using e} = e) = 0, we obtain
51
é . .

—Lt’ — VABL + (up - V)El +sBy x V x e) =R].

By taking the L? inner product of the above equation with

2

131

37 We have
51
“u

! Vel +s(Bo x V x e} &, R! &
—y X X , == s .
St 0 b st st

By taking n = 0 in (4.7), it gives
el &l
—u +V 1 -u +R1

9]

St Y
By taking the L? inner products of the above equation with itself on both sides, we obtain
1 el |? é‘ 2 él 1
(|2 - fVe LRV) — RN =
(5 )+ 51V l? = (5 Ry ) = S IR

We combine (4.33) and (4.34) to obtain
1 1 2

1 1 1
- —v|VeI? + = Vel?
5 +8t IVe,ll” + || ol

€y

ot

1 51 51
= (2 R) + (R 2 ) + f||R|| —s(Byx Vxel, ).
st’ v st St

The terms on the right hand side of (4.35) can be estimated by

5t

8 e 4w & <1 &, IR + (R
st WSt St p vt
&l 1 é‘ 2
s|(ByxVxel, 4] <=2 vV xe|?.
<0 b (St) NS‘M =+ | bl

From e = ) = 0, thus (4.35) implies

<112
eu

1]el —e|?
ot

tol e

N

ot

2
1 vsl2 Vell,—Veg
Ve o [ T

+8tv” W7+ >

ot

RN

SR + IRYZ + 1V x e} |12 < 8t2,
in which we use (4.32) and Lemma 4.3.

Finally, we obtain (4.30) by combining (4.32) and (4.36) together. O

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

13
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Based on the above lemmas, we prove the following result which will lead to the optimal error order of pressure.

Lemma 4.7. Under assumption (A), there exists a constant C such that, when 8t < C, the following estimate holds for

T<m=<[f]-1

Idee 1% + [ideey 1 4 867 Veep |2 +arZ IV I + 0V x deep ™ 17) < 8%,

n=1

Proof. By taking the L? inner product of (4.27) with d,é"*!, we have

TM(IId:E”“ —deeyl? + ldeey 1 — lldeey|?) + v Vet

+ (W(t)Vdeu(tyr), deet™) — @'Vda"™", gl
+ (deus(ty)Vu(ty), deeit) — (de" V", deel )
+ S(B(tn) X V x diB(tyy1), dielt!) — s(B" x V x d,B""!, d.&")
+ s(d;B(ty) x V x B(ty), dept") — s(d;B" x V x B", d,elt")
— (drRZH d en+1) (theg7 dtéTL])-

From (4.28), we derive

d[ezﬂ de et
+ Vde't! = u
8t P

+ Vdiep + diRy*.
By taking the L? inner product of (4.38) with itself on both sides, we obtain
1 n+1 Sn+1 at n+12 n 2
28t(”d el = lldeel %) + E(IIdeep I = IVdeey )
- St -
= (d:ej*!, diRyT) + 8t(Vdeep, dRITY) + > IdeRyH* + (di8)t, Vdie).

n+1

By taking the L? inner product of (4.29) with deey™", we have

Z—M(Hdte"“” dcey I+ ||dte"+l|| - IIdteZII J+nlV x dren+1||

+ (deB(ty) x u(ty), V x deef ™) — (dB" x u?, V x deej™)
+ (B(ty—1) x deu(ty), V x deef ™) — (B"' x deut!', V x deeft)
(dthl+l dteI’H—])

Combining (4.37), (4.39) and (4.40) together, we obtain

1 ~
Sop e = deel> + el ™17 = def12) + v V)P

ot
+ —(nwte”“nz — Vel l?) + nllV x deef ™)

+ 2(St(lldte”“ — deej||* + lldeep ' |1* — lldeep 1)
+ (u(tn)Vdit(tnsr). de8y™) — (Vd "™ ) (: term )
+ (deu(ty)Vu(ty), dee™) — (dau"va", det ) (: term 11)
+ s(B(ty) X V x d;B(ty.1), dielt!) — s(B" x V x d,B""', d;el*!) (: term III)
+ s(d¢B(ty) x V x B(ty), d;e""!) — s(d;B" x V x B", d,e""") (: term IV)
+ (deB(ty) x u(ty), V x dref ™) — (d;B" x u", V x deef™") (: term V)
+ (B(ta—1) x dets(ty), V x deef ™) — (B! x deut!', V x deef ™) (: term VI)
(deRITY, de@lth) + (deRYT, deef ™) (: term VII)
+ (de&j™", dRYY) + 8t(Vd,el, dRY) (: term VIII)

ot
+ EHdtRZMHZ-

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)



G.-D. Zhang, X. He and X. Yang / Journal of Computational and Applied Mathematics 369 (2020) 112636 15

For term I, we estimate as

(term 1) < |(u(ty)Vdeu(ty 1), de™1) — (W'Vd ™", di@tt |
= |(eMVdeu(tnsr), dB1T) + (W"Vd ! et

~ 442
— (eLVAE", deu(tnn) (442)
< IVepllldeu(ta )l a1 Vde | < *IIVdre”“ I + Ve .
where we use u, € L*°(0, T; L*) and (3.16).
For term II, using (2.1), (2.3) and (2.4), we estimate as
(term II) < |(deu(t,)Vu(ty), de™™) — (du" V", deelth)
= |(dreg Vu(ty), dtéZH) (du"Vel, dtezﬂﬂ
= |(d;e"Vu(t,), d ") — (dielVer, diel ) + (deu(ty)VEr, deelt )|
< el Vu(t)lla | V&)™ || + (lldeef [l + ||dtu(tn)||L4)||V alivdet|
s *IIVd % + el 1? + el 2 [1deel I|12 IVE Ve, ™ || + lldu(tn) 7 [ Vey ] (4.43)
S *IIVd[E”“ I + Ideef I + lldeeg | | deef 11 I VE I VER | + 1 Vey]|®
h *IIVdf"HII + lldce}|I* + lldeel I Veyll + I Vey ]
s *IIVdre"H I + lldee}II* + 1IVE; 1>,

where we actually use the fact that u, € L>°(0, T; [*), and lld:elll1]IVer]l is bounded since, from (4.25) and Theorem 4.1,
we have

- 1 _ - 1 -
deeyll Vel < g(lleﬂlh + ey IDIVED < g(IIV 1>+ 1ve')1%) < C.

For term III, using (2.1), (2.2), (2.3), Remark 4.1, we estimate as

(term 1II) < [(B(ty) X V x diB(tyy1), d;&""1) — (B" x V x d,B""', d, &™)
= |(e} x V x d;B(tny1), de&) + (B" x V x deef ™!, diel )
= |(V x (d&]™" x e}), dB(tn1)) — (V x (B" x di&j*"), diept)|
= |(e}vdelt! — de" Vel —elV - de", dB(tyi1))
— (d;&}"'VB" — B"Vd,el" + B"V - d. &l deepth))| (4.44)

< IVeplvd ert! ||||dtB(tn+1)||L4 + (VB[4 + [IB" [l Vel ||| deep
s—n%*"“n + IVep 1> + VB |7 I deel > + [1B™ | ldeey 12
sﬁnwte{:“n + IV x eflI> + lideey ™12,

where we use B; € L°(0,T; L*) and || Ve}|? < [V - e} I> + IV x e}||* and V - e}l = 0.
For term IV, using (2.1)-(2.4), we estimate as
(term IV) < |(d;B(t,) x V x B(ty), de"!) — (d;B" x V x B", d;&"™)|
= |(dee} x V x B(ty), dielt!) + (d:B" x V x e, de)]|
< ldeeg IB(E) 211V | + 1B (|3 11V x eplll|dee} [l
deepllIIVdeey ™ || + (lideeblls + l1deB(t) )V x epll|Vdeyt!|

A

2/\

*IIVde"HII + ldeep1I® + lldeeh 1551V x e lI? + lldeB(ta)I25 1V x ep (4.45)

2/\

*IIVdF”+1 I* + lideep|I” + lideeb |1V x deepll |V x epl|* + 11V x ep|?

A

*IIVdf'1+1 17+ lideepll* + lideep IV x epll + 1V x e >

A

E||théz+1”2 + lideehll* + IV x ebll?,
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where we use B; € [*°(0, T; L?), B € [*°(0, T; H?) and a fact that ||V x dtegll |V x ell|l is bounded since

IV x deepll|V x epll < —(IIV x eIl + IV x ef NIV x epll < (IIV x epll> + IV x ej~'[1%),
that is bounded from Theorem 4.1.
For term V, using (2.2)-(2.4), we estimate as
(term V) < |(d¢B(ty) x u(ty), V x deeft') — (d;B" x u?, V x dee} ™)
= |(dee} x u(ty), V x deef ™) + (deB" x (u(ty) — ul'), V x deepth))|
= |(diej x u(ty), V x drej™") + ((diB(ty) — dee}) x (u(ty) — u}), V x diept")|
< Ndeef I u(ta)ll |V x deef || + lldeefll s llu(tn) — wllls |V x deel ™|
+ 1IdeB(tn) I3 |u(tn) — ul s |V x deep ™|
Ideeg 11V x deel™ || + [1dcep 1211V x deelll? fu(t,) — ulll4 ]IV x deep ™|
+ [lu(ty) — w1V x deef*|

A

n
= lIVx deep "I + lldeeplI® + lldeeh |11V x deeplll|ants) — w117 + llu(t,) — u}l3

n
= IV x deep 1P + lideepI1® + lldeeh 121V x deep |1 [lu(tn) — w17 + llut,) — w3,

where we use u € L*°(0, T; H?), B; € L°(0, T, H"). In fact, by using (3.10), Remark 4.1 and (4.26), we get
lu(ty) — || < |le}]| + s5t[|B" x V x B"™'||
< el + 8Bl ||V x B™| < o,
IV(u(ty) — ul)|| < [ Velll + s8t|[V(B" x V x B
S IVegll + St(IB1211B" 2 + 1Bl [|B™*"12)
S Vel + ¢,

which also imply

5f2 llu(t,) — u™||? < 5t2.

Therefore, from (4.46) and Theorem 4.1, we easily know that ||V xd.ep || [|u(t,)—u}[l1 < %( IV xepll+]IVxe,~

u}||; is bounded by a constant, thus term V can be further estimated as
(term V) S *IIV x drep P + [ldrep ) + [lu(ty) — ul]l3.

For term VI, we estimate as
(term VI) < |(B(ty—1) x deu(ty), V x deef ™) — (B™' x deul', V x deejth))|
|(eg U deu(ty), V x deef ™) + (B"' x di(u(t,) — ul), V x deef ™)
= |(e) " x deu(ty), V x deej ™) + (B"! x di(e} + s8tB" x V x B"1), V x deejt!) |
SV x ey deu(ta)l 4 IIV x deef ™|+ 1B* i< | deef [V x deep ™|
+ 8t|/(B"" x di(B" x V x B"™™), V x def ™)
IV x ey~ IV x deey ™|l + [l deef [V x deef ™|
+ 8t|(B™" x di(B" x V x B™), V x deejth)|

< —||v x deef T2 + |V x el |7 + Ildeel 1?4 8tI(B"! x di(B" x V x B"™), V x dief )],

A

where we use u; € L*°(0, T; H'(£2)). The last term on the right hand side of (4.48) can be estimated as
St|(B™" x di(B" x V x B"1), V x deejth))|
SIB i< |[B" x V x B! — B! x V x BY[||V x dej |
S|Bx V x (B —B")+ (B" =B ") x V x B"[[|V x dee} ™|
< (IB* x V x (B"™" — B")|| + [|(B" —B""") x V x B"|) |V x dcej ™|
S IB* x V x (€ — ey + B(ta1) — BtV x diej™|
+ li(e) ™" — €} + B(tn) — B(ta—1)) x V x B[[||V x dee} ™|

(4.46)

D) —

(4.47)

(4.48)
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N

(IV x (ey — ey ™) + IV x (B(tas1) — Bta))) IV x drey ™|
+ (llep™" — eplla + IB(ta) — Blta—1)ll1) IBI21IV x deef*"||
*IIV x deep™ 1> 4+ 1V x (e — ey ™II* + [1B(tas1) — B(ta)l3

Z/\

+ 1V x (e —ep)I* + [IB(ta) — B(ta—1)II3,
where we use (2.2), (2.3), Remark 4.1 and Lemma 4.4. Therefore, for term VI, we obtain
(term VI) < fnv x dfe““ 12+ 1V x ey M2+ lideel > + IV x (e —eg™)I1?
+ ||V X ( b - eg)llz + ||B(tn+1) - B(tn)”] + ”B(tn) - B(tnf1)||1~
For term VII, using (2.1)-(2.3), we have
(term VII) < |(d.RI!, demt) + (dtR”“ deep ™)
S *IIVdf”+1 1>+ < IIV x deey ™12+ [IdeRETP + (1 deRETH.

(4.49)

(4.50)

For term VIII, we have
(term VIII) < |(di&}™", d;Ry*") — 8¢(Vd,e), dRy™))|

5 (4.51)
< S IVAET I + 4Ry + 862 Vdee) .

By combining (4.41), (4.42), (4.43), (4.44), (4.45), (4.47), (4.49), (4.50) and (4.51), we have
deey ™ 11> — lldceg 1> + Stvl|Vde; ™ ||* 4 st*(| Vet [|* — || Vd:ep||?)

+ Ildcey ™ 1> — [ldce}|I* + 8tnl|V x deep ™2
SSt(IVell* + Ve > + IV x eg > + IV x e 1P + [V x ef %)
+ 8t(lldeelll* + lideep ) + lldeey ™ 1> + 82| Vd,ep])?) (4.52)
+ St(IdeRYI* 4 [1deRy 1 + lldRE %)
+ 8t (IB(tny1) — Bta)II3 + [1B(tn) — B(tn—1)I7)
+ Stflu(t,) — u”|2.

By taking the summation of (4.52) from n = 1 to m, using Theorem 4.1, Lemma 4.5, Lemma 4.6, (4.26), (4.46) and the
assumption (A) we obtain

m
Ideel 1% + lideey 1 + 862 Ve |2 + 56 Y (v VA2 + 0|V x deep %)

n=1

< ldeel I + [1deef 12 + 8¢ Ve |2 +8tZ Ideell> + deef|? + lldee* |12 + 8¢ Vel )

n=1

m
+ 86 (IR I + IR + 1Ry %) + 8¢

n=1

<6tZ Idie} 1> + lidee|> + lldee ™ |1> + 86| Vdrel %) + 6¢°.

n=1

From the Gronwall’s inequality in Lemma 4.1, there exists a constant C, such that

m
el V2 + f1deef 2 + 862 Vel 2 + 5t Y (vl Veei | + |V x deef %) < 8t2,

n=1
holds for §t < Cand 1 <m< [ -1 — 1, that concludes this lemma. O

Now, we can prove the optimal error estimate for pressure. Meantime, the H! error estimates for velocity and magnetic
field are also obtained.

Theorem 4.2. Under the assumptions of Lemma 4.7, we have

~ T
IVell + IVeyll + IV x eyl + lleyll < 8t, 1 <n < [5 ) (453)
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Proof. By taking the summation of (4.6) and (4.7), we obtain the error equations

en-H __pn B 1
W — AT + (u(ty) - Vu(tyr) — @' - Va4 velt! (4.54)
+ 5B(ty) X V X B(tyy1) — sB" x V x B! = R*T 4 R
By taking the L? inner product of (4.54) with any test function v (e H(}(Q)d), from assumption (A), we obtain
en+] —en
(. V-v) = <% v) +u(Vertt, Vo) + (€] - VIu(tayr) + (" - V)ET, v)
+5 (e} x V x Btpe1) +B" x V x ejt! v) — (RiT + R, )
< lideef T IVl 4+ Ve IVl + eIl Vol + Ve[| Vol
+ llep 1 Voll + 1V x e Vol + IRy Vol + IRy 1 Voll.
Using the inf-sup condition, there exists a positive constant 8 such that
(V-w,q)
Blall = sup ———m=, Vg € Ly(R2),
weH&(Q)d ” w”
we obtain
BlEr | < lideel M|+ [V + [l + llefll + IV x et | -+ IR + R (455)
S8 IVET IV x eg I, '
where we also use Lemma 4.7, Theorem 4.1 and Lemma 4.3.
From Lemma 4.7 and Holder’s inequality, for 1 <m < [%] — 1, we have
m m
Ivertii—veyl = > _(Iver i — 1vep < Y Iver! — vey|
n=1 n=1
N (4.56)
m ~ ~ 2 m
vertl — yen 1 1 T 1
< | st? — 1%)2 < (863)2(—)2 < 8t
_< > T )(Z)N( )2(5)7 5
n=1 n=1
Thus, from (4.36), we obtain
- - T
IVEI S 8t +1VE ] £ 86,0 <m <[] - 1. (457)
In addition, due to (4.25), we also have
Vel < lleg iy < Ivepl < st (4.58)
Similarly, we can also deduce
IV x et < st. (4.59)

Finally, from (4.55), (4.57), (4.58), (4.59), we conclude (4.53). O

Remark 4.3. In this work we have proved the optimal error estimates in Theorem 4.1 and Theorem 4.2 for the time-
marching scheme (3.1)-(3.8). The error estimates for the fully discrete scheme is much more complicated, we omit the
details here due to the page limits. About the convergence estimates for the fully discrete schemes in the context of finite
element method/or spectral method related to the Navier-Stokes equations, we refer to [48-61].

5. Numerical examples
We now implement some numerical experiments to validate the stability and accuracy of the scheme. We use the inf-
sup stable P2/P1 element [62] for the velocity and pressure, and linear element for the magnetic field. The fully discrete

finite element scheme reads as
Step 1. Find B} € C, C H($2) such that for all Cy € Gy

B}TH_BZ n-+1 n-+1 l n
T,Ch +n(VxB ™, VxCy)+n(V-B ", V- -Cp)+ (B, xuy, V xCy)

+ 8ts(B} x V x Bj*!, B} x V x Cy) = 0.
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Table 1
The numerical errors and convergence order for |ley |2, [leylly1. llepll;2, llepll2. lleplly1 at £ = 1 that are computed using various temporal resolutions
with the exact solutions of (5.1). The physical parameters are v=n=s=1.

8t lleyll2 Order [lew Iy Order llepll2 Order llepl2 Order [lep |l Order
1/8 2.44e—4 - 2.94e—3 - 1.34e—2 - 2.49e—3 - 1.20e—2 -
1/16 1.07e—4 1.18 1.15e-3 1.34 6.65e—3 1.01 1.30e—3 0.94 6.25e—3 0.94
1/32 457e—5 1.23 3.76e—4 1.62 3.01e-3 1.14 6.59e—4 0.97 3.18e—3 0.98
1/64 2.25e—5 1.02 1.74e—4 1.10 1.44e—3 1.05 3.32e—4 0.99 1.60e—3 0.99
1/128 1.13e—5 1.00 8.67e—5 1.00 7.12e—4 1.01 1.66e—4 1.00 8.02e—4 1.00
1/256 5.63e—6 1.00 4.33e—5 1.00 3.54e—4 1.00 8.35e—5 1.00 4.02e—4 1.00

Step 2. Find @I} € Vi, € H}(£2)? such that for all vy € Vj

ﬁn+1 u
(’1&" + (Vi Vo) + b(up, @iy o) — (Ph, V- vn) + S(BR x V x By ) = 0.

Step 3. Find pj'*! € My C [2(£2) from

1
(Vppt', van) = —5(V i, qn) + (VDY Van) qn € My

Step 4. Update u}*" from
wltt =@t — stvpitt 4 sevp).
Similar to Theorem 3.1, we can prove the fully discrete scheme is also unconditionally energy stable in the sense that

SUBETH I + Nup 12 + 8e2 | VP2 + 28t(snllV x BiT 12 + syl V - B2+ vl Vit %)
<s|IBII> + [[uf 1> + 8¢*(|Vp|I°.

5.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the proposed scheme. The computational
domain is £2 = [0, 1] x [0, 1]. We assume the following functions

u = (ye ", xcos(t)),
p=0, (5.1)
B = (ycos(t), xe™")

to be the exact solution, and impose some suitable force fields such that the given solution can satisfy the system. For
simplicity, the physical parameters are set as v = n = s = 1. Note that the exact solution are linear functions in space.
The approximate errors mainly come from the time discretization. We fix space mesh size h = % and refine the time step
size 8t to test the convergence orders about the time discretization. In Table 1, we list the numerical errors between the
numerical solution and the exact solution at T = 1 with different time step sizes. We observe the first order accuracy
asymptotically for |le,|l;2, lleully1, llepll;2, llesll;2 and |leyll1, as predicted theoretically.

5.2. Stability test

We show the evolution of the total free energy in this example. We set the computed domain to be £ = [0, 1], and
the initial conditions for u, p, B are

u’ = (C(x = 1%y — D2y — 1), =y — 1°x(x = 1)(2x = 1)),
p() = 0, (52)
B° = (sin(7rx) cos(mry), —sin(wy)cos(x)).

We test the energy stability over matching time of the proposed scheme under variant physical parameters of R, = R;; =
10 and 50. The coupling parameter is fixed as s = 1, and mesh size is h = 1/64. In Fig. 1, we present the time evolution
of the total free energy for four different time steps of k = 0.05,0.01, 0.001, 0.0001 until T = 5. We observe that all
four energy curves show decays monotonically for all time step sizes, which numerically confirms that our algorithm is
unconditionally energy stable.
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(a) Re = Rm = 10. (b) Re = Rm = 50.

Fig. 1. Time evolution of the free energy functional till T = 5 for four different time steps and two sets of order parameters (a) R, = R, = 10
and (b) R, = R; = 50. The energy curves show the decays for all time steps §t = 0.05,0.01,0.001, 0.0001, which confirms that our algorithm is
unconditionally stable.

5.3. Hydromagnetic Kelvin-Helmholtz instability

The Kelvin-Helmholtz (K-H) instability in sheared flow configurations is an efficient mechanism to initiate mixing
of fluids, transport of momentum and energy, and the development of turbulence. Such a problem is of interest in
investigating a variety of space, astrophysical, and geophysical situations involving sheared plasma flows. Configurations
where it is relevant include the interface between the solar wind and the magnetosphere, coronal streamers moving
through the solar wind, etc. Since most astrophysical environments are electrically conducting and relevant fluids are
likely to be magnetized, it is thus of prime importance to understand the role of magnetic fields in the K-H instability.
About the theoretical and numerical study of Hydromagnetic K-H instability, we refer to [2,15,63-67] and the references
therein.

We revisit the occurring of the K-H instability in a single shear flow configuration that is embedded in a uniform
flow-aligned magnetic field. The simulation is performed in the computed domain of [0, 2] x [0, 1]. The initial velocity
field is uy = (1.5, 0) in the top half domain, and uy = (—1.5, 0) in the bottom half domain. The sheared initial magnetic
field is By = (tanh(y/e), 0) where ¢ = 0.07957747154595 (cf. [64]). The velocity u, magnetic field B and pressure p are
periodic boundary conditions on left and right boundaries. On the top and bottom boundary, the second component v
of the velocity field u = (u, v) is imposed. The boundary conditions for B are B x n = By x n for the top boundary and
—By xn f10r the bottom. The order parameters are R, = R, = 1000, s = 0.2. We use the time step 6t = 0.01 and grid
size h = .

In Fig.4%, we show snapshots of the magnitude of B; that is the first component of B = (B;, B,) together with the
velocity field w at t = 0.2, 1, 2.5, 3, 3.2, 3.5. When time evolves, we can observe the vortexes start to form around t = 1.
After t = 2.5, the profiles of vortexes and the magnetic field show the typical structure of K-H instability, and soon it
deforms and rotates along with the flow. The obtained numerical results coincide well with the numerical/experimental
results discussed in [63,65-71], qualitatively.

6. Concluding remarks

In this paper, we develop an efficient numerical scheme for solving the MHD system. The scheme is (a) fully decoupled,
(b) unconditionally energy stable, (c) linear and easy-to-implement. Moreover, we theoretically establish the unconditional
energy stability and provide rigorous error estimates for the scheme. A series of numerical simulations, including the
convergence test, energy stability test and a physical benchmark problem, are presented to validate the stability and
accuracy of the scheme.
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(a) t =0.2. (b) t=1.

() t=3.

(e) t =3.2. ' (f) t _35.

Fig. 2. The dynamical behaviors of the magnetic field together with the velocity field that shows the hydromagnetic K-H instability. Snapshots of
the numerical approximation are taken at t = 0.2, 1, 2.5, 3, 3.2, 3.5.
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