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Abstract
Vertically-stacked monolayers of graphene and other atomically-thin 2D
materials have attracted considerable research interest because of their
potential in fabricating materials with specifically-designed properties. Che-
mical vapor deposition has proved to be an efficient and scalable fabrication
method. However, a lack of mechanistic understanding has hampered efforts
to control the fabrication process beyond empirical trial-and-error approaches.
In this paper, we develop a general multiscale Burton—Cabrera—Frank type
model of the vertical growth of 2D materials to predict the necessary growth
conditions for vertical versus in-plane (monolayer) growth of arbitrarily-
shaped layers. This extends previous work where we developed such a model
assuming the layers were fully-faceted (Ye et al 2017 ACS Nano 11 12780-8).
To solve the model numerically, we reformulate the system using the phase-
field/diffuse domain method that enables the equations to be solved in a fixed
regular domain. We use a second-order accurate, adaptive finite-difference/
nonlinear multigrid algorithm to discretize and solve the discrete system. We
investigate the effect of parameters, including the van der Waals interaction
energies between the layers, the kinetic attachment rates, the edge-energies
and the deposition flux, on layer growth and morphologies. While the
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conditions that favor vertical growth generally follow an analytic thermo-
dynamic criterion we derived for circular layers, the layer boundaries may
develop significant curvature during growth, consistent with experimental
observations. Our approach provides a mechanistic framework for controlling
and optimizing the growth multilayered 2D materials.

Keywords: graphene, chemical vapor deposition, multiscale models, free-
boundary problems, diffuse interface methods

(Some figures may appear in colour only in the online journal)

1. Introduction

Two-dimensional (2D) materials including graphene and transition metal dichalcogenides
(TMDs) have garnered unprecedented interest in pursuit of unique electronic, optical,
mechanical, and thermal properties [1-5]. Compared to homogeneous monolayers, mul-
tilayered heterostructures contain many more degrees of freedom and thus can be ideal
platforms for electronic structure engineering of atomically thin 2D semiconducting
materials for novel applications. A key challenge in the realization of vertically integrated
2D layers is their synthesis [1, 6, 7]. Chemical vapor deposition (CVD) has proved to be an
efficient and scalable method to grow monolayer 2D materials on a variety of metal
substrates [8—11]. CVD, however, is a complex process that contains many parameters that
influence growth. For example, the growth temperature and the deposition flux have been
found to be critical parameters for switching from in-plane (monolayer) to vertically-
stacked multilayer growth. In WS,/MoS, heterostructures on SiO,/Si substrates, high
temperatures favor the growth of vertically-stacked multilayers while low temperatures
favor monolayer growth [8]. In graphene, a lower deposition flux (e.g. higher concentra-
tions of H, in the gas) also tends to favor multilayer growth [12, 13]. Determining proper
growth parameters is clearly a multivariable problem that until recently was tackled using
empirical trial-and-error approaches.

In recent work, we developed a multiscale model of the growth of vertically-stacked
2D materials on a substrate using CVD [14]. The model, which is of Burton—Cabrera—
Frank (BCF) type [15], accounts for attachment and diffusion of adatoms, van der Waals
(vdW) interactions between the layers and the substrate, and edge energies of the layers.
To simplify the system, the layers were assumed to be fully-faceted and so their shapes
were constrained to be equilateral polygons (e.g. triangles and hexagons). This work
predicted the thermodynamic requirements for growth of vertically-stacked faceted layers.
The vdW-BCF model predictions on monolayer versus multilayer morphologies were
validated by comparison with a variety of CVD-synthesized MX, (M = Mo, W; X = S,
Se, Te) single-species samples grown under conditions of varying temperature and pre-
cursor flux.

However, as seen in the experiments in [10, 14] and in other references, the layers need
not to be faceted and can develop significant, and even negative, curvatures. Because the layer
morphologies influence growth and the material properties, it is important to accurately
predict the layer shapes as well. In this paper, we extend the vdW-BCF model in [14] to
account for arbitrary layer shapes. The resulting system is a highly nonlinear free boundary
problem. We analyze the model and derive an analytic thermodynamic criterion for vertical
growth assuming the layers are circular. To simulate the model when the layer geometries are
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unconstrained, we develop a second-order accurate phase-field/diffusion-domain method
(DDM) that enables us to simulate the system by solving a reformulated system (vdW-BCF-
DDM equations) in a fixed regular domain.

The diffuse-domain, or smoothed boundary, method is an attractive approach for
solving partial differential equations in complex geometries because of its simplicity and
flexibility. In this method the complex geometry is embedded into a larger, regular domain.
The original PDE is reformulated using a smoothed characteristic function of the complex
domain and source terms are introduced to approximate the boundary conditions. An
advantage of this approach is that the reformulated equations can be solved by standard
numerical techniques without requiring body-fitted meshes, additional interfacial meshes
or special stencils and the same solver can be used for any geometry. The diffuse-domain
method (DDM) was introduced in [16] to solve diffusion equations with Neumann (no-
flux) boundary conditions, to PDEs with Robin and Dirichlet boundary conditions in [17]
and to cases in which bulk and surface equations are coupled [18]. Later, in [19] and [20]
alternate derivations of diffuse-domain methods for such problems were presented. In [21]
a matched asymptotic analysis for general DDMs with Neumann and Robin boundary
conditions showed that for certain choices of the source terms, the DDMs were second-
order accurate in € and in the grid size 4 in both the L? and the L® norms, taking € o h, see
the recent paper [22] for a rigorous proof.

In [23], a DDM was proposed to solve a BCF model of epitaxial growth of thin,
crystalline films that combined a DDM reformulation of the adatom diffusion equations
together with a Cahn-Hilliard-type equation to model the dynamics of the films. This
approach considered only isotropic edge energies and kinetic coefficients and did not consider
vdW interactions. Further, the DDM used in [23] did not use a second-order accurate for-
mulation and thus was only first order accurate in € (and & assuming € o< k).

Here, we combine and extend the approaches from [21, 23] to develop a second-order
accurate adaptive finite-difference /nonlinear multigrid method to discretize and solve the
vdW-BCF-DDM equations numerically. We investigate the effect of parameters, including
vdW interaction energies between the layers, kinetic attachment rates, edge-energies and
deposition flux, on layer growth and morphologies. While the conditions that favor vertical
growth generally follow the thermodynamic criterion we derived for circular layers, the layer
boundaries may develop significant curvature during growth, consistent with experimental
observations, that can also influence the growth kinetics.

The outline of the paper is as follows. In section 2, we present and analyze the vdW-BCF
model for arbitrary layer shapes. In section 3 we present the phase-field/DDM reformulation
of the vdW-BCF model and briefly describe the numerical methods used. In section 4, we
present numerical simulation studies and in section 5 we present conclusions and discuss
future work. Additional details are provided in the appendices.

2. The vdW-BCF model for the growth of vertically-stacked multilayers

Let €2 denote the substrate, {2; denote a layer of atomic height 1 and €2, be a layer of atomic
height 2 with boundaries I'y, I'; and I',, respectively. See the diagrams in figures E1 and E3
(left column). The system free energy is taken to be:
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Figure E1. (a) Schematic of epitaxial growth of 2D materials; (b) schematic of vdW
interactions between the layers and the substrate.
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where &; is the binding energy of layer i that accounts for in-plane bonding and any
corresponding vdW interactions. In addition, v; = 7,(6,) is the edge energy of layer i, 0; is the
normal angle of layer i (e.g. the angle between the normal vector nr,, which points into §2;_,
and the x-axis). The function p; is the adatom concentration on layer i and p..s = €1, is the
concentration of atomic sites (assumed to be the same on the layers). Further, kg is
Boltzmann’s constant, 7 is the temperature and the third term in equation (1) represents the
regular solution model free energy.

2.1. Model equations

By requiring mass to be conserved and that the free energy is non-increasing in time, we can
derive a thermodynamically-consistent BCF-like system of equations that govern the
dynamics of the adatom densities and the layer morphologies and sizes. Here, we only present
the nondimensional equations that include several simplifications. A detailed derivation of the
equations, a description and justification of the simplifications and the nondimensionalization
are given in appendix A.

The nondimensional adatom concentrations satisfy the diffusion equations

Op;=DiAp;+ F— Tgip, in Q, i=0,1,2, )

where D; > 0 is a dimensionless diffusion coefficient, F; is a dimensionless deposition flux
and 7';,2 a dimensionless desorption rate. These are all assumed to be constant. At the layer
boundaries I'; and I'; mass conservation is imposed, which yields the kinetic boundary
conditions:

g" = —D2Vp, - np, — pol, va = k3 (p, — pN(=Er + & + Ayk0), 3)

g, = D\Vp-np + pilp va = ky (p; — p*(=E2 + & + Hk2), 4)



Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

C]1Jr =—D\Vp -0y — ply vi = k1+(p1 — pA(=& + R, ®)
g4 =DoVpy - mr + polr; vi = ki (py — p(=&1 + Hk0)- ©)

s

Here, ql.i are the diffusion fluxes of adatoms to the layer boundaries, with the ‘+’ and ‘—
subscripts denoting limits from the ith and i — 1 layers, p* is a nondimensional measure of
the thermodynamic equilibrium density, % = ~(6;) + ~;”(6;), where the primes denote
derivatives with respect to 6, denotes the layer boundary (edge) stiffness, and x; is the
curvature of the edge I'; (i = 1, 2). The constants kijE are the dimensionless rates for
attachment of adatoms to the edges from the ith (k;") and i — 1 (k;”) layers, respectively. The
normal velocity of each layer boundary I'; is given by

=gt +q + 0%, )

where the dimensionless constant (3 is related to the mobility of an adatom along a curved
edge. At the boundary of the substrate, we assume there is no flux of adatoms: Vp,, - ny = 0.

2.2. Analysis of vdW-BCF model: radial solutions and growth criteria

For simplicity, we consider a configuration in which the two layers and substrate are circular
and centered at the same point O. We assume that the edge energy and the kinetic coefficients
are isotropic. We solve the system (2)—(7) analytically to derive necessary and sufficient
conditions for the growth of layer 2. The layers {2; and {2, have radii R;(f) and R,(f). The
substrate has radius R.,, which is fixed. We assume that initially 0 < R,(0) < R(0) < Ry
and that the dynamics are dominated by diffusion so that the time derivative on the left hand
side of equation (2) is set to zero (quasi-steady case). We further assume the desorption of
adatoms is small and so we set T;}- = 0. The reduced system can be solved analytically. Here,
we present only the results, a complete derivation of the solutions is provided in appendix B.
The analytical solutions for the densities p; are:

F
py=——r>+ A0 + B, 0<r<R,
4D,

F
py=——r2+ AIn(r) + B, R, <r<R,
4D,

F
po=——Lr? 4 AgIn(r) + By, R < r< R, ®)
4D,

where A; and B; are given in appendix B. When the flux of adatoms is only non-zero on the
substrate (e.g. Fp > 0, F, = F; = 0), which reflects the catalytic decomposition of CH, vapor

on the substrate surface into mobile radicals (e.g. CH and C) that can attach to the graphene
layers [24], the normal velocities of the layer boundaries are given by

d F s 5 R,
vi=—Ri(t) = —(@R: — R°) — —,, 9
1 dr 1() 2R1( 00 1) Rl 2 ( )

Dip(~&2+ 26+ 22 - 7)

d
vy = —tRz(t) = (10)

where ~; and -y, are isotropic edge energies. The velocities for the more general case with F;
and F, not necessarily equal to zero can be found in appendix B. Define £, | = £, — & to be
the binding energy density between the two layers and & o = & to be the binding energy
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density between layer 1 and the substrate. The difference between these two energies

AE=E— o= & — 28, (11)
is the gain in energy by adding atoms to layer 2 instead of layer 1. An analysis of v, in
equation (10) reveals a sufficient condition for the growth of layer 2:

Ag> L2 (12)

R R

since the denominator in equation (10) is always non-positive. This is analogous to the
growth criterion derived in [14] for faceted layers. This condition states that the difference
between the binding energies, AE, must be large enough to overcome the energy penalty of
increasing the layer perimeter. It follows that if R, > R, := v, /A&, then layer 2 always
grows, regardless of the size of layer 1. This is analogous to a critical nucleation size. Further,
if R >R = NZ/R:—LM then layer 2 always shrinks. When R, is close to R, ., layer 2 may
grow due to kinetic effects. That is, R, may surpass R, . before R, surpasses R; .. Whether this
occurs depends on the values of the parameters. For example, slowing down the growth of the
first layer (e.g. by decreasing F) or increasing the rate of growth of the second layer (e.g. by
increasing Dy, k; or k;*) increases the region of kinetically-driven growth. We call R, the
kinetic critical radius—that is, if Ry . > R,(0) > Ry, then the second layer grows due to the
kinetics of the system.

By solving for the radii R, and R, numerically and varying the initial radii, we can estimate
R, ;, numerically and construct a phase diagram for the growth of the 2nd layer. As an example, we
fix the parameters AE = 0.05, Fy = 0.1, v, = 7, = 0.01, p*=05 D=1k = kﬁ =05
and R, = 3.8. We then vary the initial sizes of the layers R,(0) and R,(0), keeping R>(0) > R;(0).
The resulting phase diagram is shown in figure E2(a). Also observe that for R, in between R;_ . and
R ., the 2nd layer grows transiently before shrinking to zero size. Example trajectories of the layer
dynamics are shown in figure E2(b).

3. Reformulation of the vdW-BCF model of multilayer growth using the diffuse
domain method

To solve the vdW-BCF equations for unconstrained layer geometries, we reformulate the
system using the diffuse domain method (DDM). Here, we combine and extend the
approaches from [21, 23] to develop a fully-second order accurate DDM for the vdW-BCF
system. We embed the substrate and layer domains into a larger, rectangular domain 2 and
we introduce a diffuse domain function ¢ to mark the locations of the layers and substrate
(e.g. approximate atomic height). In particular, ¢ ~ 0 in the substrate (£2g), ¢ ~ 1 in layer 1
(©2)) and ¢ =~ 2 in layer 2 (£2,).

In order to facilitate comparisons with theory from the previous section, we assume that
the outer boundary of the substrate is circular and so we introduce another diffuse domain
function ¢ to identify the deposition domain 2 = Qy U Q) U s, where ¢ ~ 1, within the
larger domain €). See figure E3(a). The diffuse domain variables change rapidly but smoothly
across the boundaries (e.g. steps) as shown in figure E3(b). The width of these narrow
transition layers is ~z¢, a small parameter. The boundaries of the substrate and layers 1 and 2
correspond to ¢ = 0.5 and ¢ = 1.5, respectively. The kinetic boundary conditions are
incorporated via source terms and the dynamics of the layers are captured by evolving the
diffuse domain function ¢. In addition, we follow [23] and solve only two adatom diffusion
equations in the extended domain ). A brief description of the derivation and an asymptotic

6
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Figure E2. (a) Morphology diagram, assuming that the layers are circular, showing the
dependence of layer 2 growth on the size of layers 1 and 2. In particular, the sign of v,
is shown for different sizes of the layers (R;, R,). When R, > R, . layer 2 always
grows. When R, > R, . layer 2 always shrinks. When R . < R, < Ry layer 2 grows
transiently before shrinking. When R, > R, ; layer 2 grows because R, increases past
R> . sooner than R, crosses R; .. See text for details on R, ., R x and R, .. (b) Sample
trajectories of the layer radii R; and R, in time, starting from different initial radii. The
parameters are as in equation (42) except with £ = 1.05 so that AE = 0.05.

analysis of the vdW-BCF-DDM, which demonstrates that the vdW-BCF-DDM system
approximates the sharp interface vdW-BCF model to O(¢?), are given in appendix C. Here,
we present only the resulting equations:

(e Ho (@) pg)r =V - (0 Ho(9) Do () V py) + o Ho(0) Fo ()

— o Ho(0) 74" 05 — 0 Velko(@) (0 — p*(E(R) + e (@), (13)
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Figure E3. Schematic of the diffuse domain method. Top: the sharp (physical) interface
domain is embedded in a larger, square domain ) where a phase-field functions ¢ and
¢., approximate the height of the layers and the characteristic function of the deposition
domain, respectively. Bottom: a slice across the sharp interface domain and slices of
the phase-field functions ¢ and ¢, .

(e Hi(@)p)) =V - (0 Hi(p)D1V p)) + @ Hi(p)Fi
— o ()70 — o Velki() (0 — p*EQ) + e (o)), (14

where the kinetic boundary conditions (3)-(6) are modeled by the extra source terms
containing |V |, which approximates the surface delta function. Equation (13) models the
adatom diffusion equations on the substrate and layer 2, e.g. p{ approximates the adatom
concentration on both the substrate, where ¢ ~ 0, and layer 2, where ¢ ~ 2. Equation (14)
models adatom diffusion on layer 1 and p{ is the corresponding approximate adatom
concentration. For simplicity, we have assumed 7;; = 7;. The functions Hy, H, are extended
approximate characteristic functions of the layer domains and substrate. In particular, Hy is
the approximate characteristic function of the substrate and layer 2:

1 — ¢ fory e |0, 1],

p—1 forp e (1, 2], (15

Ho(p) = {
and H, is the approximate characteristic function of layer 1:

B © fOI' o) S [0’ 1]’
H(p) = {2 — ¢ for p e (1, 2]. (16)

Further, the flux Fy(¢) corresponds to the flux on the substrate
Fy for ¢ <€,
F = 17
0(®) {0 for ¢ € [e, 2], a7
and Dy(¢) corresponds to the adatom diffusion coefficients on the substrate and layer 2

Dy for ¢ € [0, 1],

D, for ¢ € (1, 2]. (18)

Dy(p) = {
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Analogously, the extended vdW energies and kinetic attachment rates are defined as

(& for ¢ € [0, 1],
Ep) = {_52 L& forpe 2, (19)

and
k; for ¢ € [0, 1],
ko(p) =9 ', (20)
k,” for ¢ € (1, 2],
kit for ¢ € [0, 1],
h(p) = 1< fore 0.1l @1
k, for p € (1, 2].

The evolution of the layers is implicitly captured by evolving ¢:

dp = IV lko()(py — pH*EP) + e (@) + k(@) (p] — p*(E(P) + e (PI )

+ €238V - (G(p) V),
(22)

p=—e*Ap + B'(p), (23)

where the right hand side of equation (22) models the normal velocity from equation (7). Note
that since the outer boundary of the substrate does not change we do not need to pose an
evolution equation for . In equations (22) and (23), G () = 2B(y) is an extended double
well potential:

2 _ 2
Bg) {18<p (-1 for ¢ € [0, 1],

24
18(¢ — 1)2(p — 2)% for ¢ € (1, 2]. 9

As shown in appendix C, and confirmed by our numerical results in the next section, the
vdW-BCF-DDM system is second order accurate with respect to the interface thickness e.
Moreover, our diffuse interface model can be extended to simulate the more nonlinear model
derived in appendix A and to simulate an arbitrary number of vertically-stacked layers (see
appendix A.5).

Finally, at the boundary of the larger domain 92, we take the conditions

Voo-m=Vp-n=Vp-n=Vu-n=0. (25)

The model is insensitive, however, to the choice of boundary conditions on 0.

4. Numerical results

To solve the vdW-BCF-DDM system (13)—(25) numerically, we develop a mass-con-
servative, semi-implicit, second-order accurate, adaptive finite-difference method using
Crank-Nicholson discretization in time and centered differences in space, by extending our
previous work, e.g. [25]. To solve the nonlinear discrete system at the implicit time level, we
use a full approximation storage (FAS) nonlinear multigrid method. Block-structured adap-
tive mesh refinement is utilized to efficiently discretize the system. The details of the method
are provided in appendix D.

We begin by considering the isotropic, quasi-steady case so we may compare our
numerical results to the analytical solutions presented in section 2.2 to validate the accuracy
of our approximations. We then consider time-dependent diffusion and anisotropic edge

9



Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

energies and kinetic coefficients. We perform parametric studies to determine the effect of
parameters on the growth and morphologies of the layers.

4.1. Quasi-stationary dynamics

We consider the same set up as in section 2.2. Initially, two layers are centered at the origin
with different radii R, and R, and the edge energy and kinetic coefficients are isotropic. The
two islands are bounded by a larger circular substrate with radius R,. The initial condition for
the diffuse domain variable is

v, 0) = %(1 — tanh (M)) + %(l — tanh (M)), (26)

€ €

such that ¢ = 1 approximates layer 1 and ¢ = 2 approximates layer 2. We take

o (x) = %(1 — tanh (M))’ 27)

€

which corresponds to the region containing the substrate and the two layers where deposition
and growth take place. The parameter ¢ is the thickness of the layer and substrate boundaries.
The initial radii of the layers are R;(0) = 1.2 and R,(0) = 0.6. The outer radius of the
substrate is R,, = 1.8. The physical parameters are taken to be

kit =kif=1, p*=001, vy=7=1, Dy=D =Dr,=1, Fpb=F=F =2,
T,'=0, B=0, §=-1, &=-2
(28)

The computations are carried out on a square domain [—2, 2] x [—2, 2]. A four-level
adaptive mesh is employed, which consists of a root level with mesh size /i, and three
refinement levels above it so that the finest mesh size h; = hy/8. In order to test the
convergence rate corresponding to different values of €, we refine the root level grid size A
and e together, and hence all the finer level grid sizes A, h, and h; are refined as well. In
particular, we set i3 = ;—4. The mesh is refined according to values of [V ¢| + |V | over the

entire domain (see appendix D). The time step is taken to be Az = -~ x 107 to ensure that
the time errors are small compared to spatial errors; the method is stable (and accurate) for
larger time steps.

Five different values of ¢ are used for the convergence test, namely, ¢ = 0.8,
e, =04, ¢3=10.2, ¢, = 0.1 and ¢5 = 0.05. The difference between the analytical solutions
and our numerical results are computed using the following metrics:

£ _ [l (ol = plle, d B — ooy — plle,
o lleodle, o llopille.,

where k = 0 denotes the substrate and k = 1, 2 denote the layers. The convergence rate is
obtained by ;,_; = In Ef(z,]k / Ef(f] p» Where ¢; and €;_ represent consecutive values of e. The
horizontal slices of the adatom concentrations pf for different € together with the analytical
solution are shown at time # = 0.1 in figure E4(a). We can observe that the numerical results
approach the analytical solution as e decreases. The corresponding errors and rates of
convergence are presented in table 1, which indicates that the numerical method converges to
the analytic solution with an overall second order convergence rate in both the ¢, and £,

norms, as predicted by the asymptotic analysis in appendix C.

(29)
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Figure E4. Comparisons between the numerical results and analytical solution at time
t = 0.1. In (a) the quasi-steady dynamics are shown from section 4.1. In (b) the fully-
time dependent dynamics are shown from section 4.2. The dashed and dotted lines
represent the horizontal slices of densities p,, p; and p, at different ¢, as labeled. In (a)
the black solid lines give the analytical solution. The radii of the layers are shown as a
function of time in (c) the adatom concentrations and gradients are larger in the quasi-
steady case, which give rise to faster dynamics in the quasi-steady case.
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Table 1. Convergence test for the adatom concentrations p,, p; and py under quasi-
steady dynamics from section 4.1.

t=0.10 A

€ E®) Rate E®) Rate E® Rate
5 ’ 2P0

0.8 5252 x 1002 — 5143 x 102 — 2095 x 10" —

04 1514 x 1072 1.80 2.020 x 1072 135 6.557 x 1072 1.66

0.2 3229 x 107* 223 3858 x 1072 240 1529 x 1072 2.10

0.1 8.198 x 107* 198 9945 x 107* 1.96 4.198 x 107> 1.87

0.05 1.801 x 107* 2.12 2411 x 107 204 1.001 x 1073 2.07

t=0.10 ls

€ E") Rate E©) Rate E©) Rate
€,0n .01 V]

0.8 6.132 x 1072 —  5812x102 — 3271 x10°" —

0.4 1914 x 1072 1.68 2360 x 1072 130 1214 x 107! 143

0.2 5058 x 107> 1.92 5429 x 107> 212 3368 x 1072 1.85

0.1 1453 x 107 1.80 1.496 x 107> 186 1.058 x 1072 1.67

0.05 3.946 x 107*  1.88 4.007 x 107* 1.90 2996 x 107> 1.82

4.2. Fully time-dependent case

Next, we include the time derivatives in the adatom diffusion equations. The physical
parameters, the computational domain and the numerical parameters are the same as in the
previous section. Since we do not have an analytic solution in this case, we compare the
results obtained using different e (and hence hg) with each other. The horizontal slices of the
adatom concentrations pj, pj and pj; are shown at time 7 = 0.1 in figure E4(b). Compared to
the quasi-steady case, the adatom concentrations in each layer are smaller and there is less
variation across the layers. Correspondingly, the layers do not move as rapidly in the time-
dependent case with the first layer growing more slowly than the second, compared to the
quasi-steady case (figure E4(c)). Figure E4(b) also shows that the results converge as € is
decreased. To estimate the accuracy and quantify the rate of convergence, we define the
consecutive errors as

2 . . . .
ER o, =005 = pDlle,  ESD, = llea(p5 ' = pD e,
2 . . .
ER o=l = plless EES = llei(o = ple.»
2 ; . )
E2 o =ocog = plless  ES) 0 = lloof = plle» (30)

where the ;, with j = 0, 1 and 2 are the approximate characteristic functions on the substrate,
layer 1 and layer 2 respectively. They are defined as
p—1 for p € (1, 2],
¥y =

1
0 for ¢ € [0, 1], (D

o= — Jg - D), (32)

0 for ¢ € (1, 2],
Yo =

o (1 — ) for ¢ € [0, 1], (33)



Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

Table 2. Convergence test for concentrations p,, p; and pp under the fully time-
dependent dynamics in section 4.2.

t=0.10 A

€ Ef@bfh . Rate Eff)h apl Rate E((IZ)]’ o Rate
0.4 3978 x 1077 —  8.066 x 10°° — 5648 x 10°° —
0.2 2315 x 107% 078 3.299 x 107> 129 2224 x107% 135
0.1 6977 x 107* 173 9287 x 107* 1.83 5779 x 107* 1.94
0.05 1781 x 107* 197 2258 x 107* 2,04 1239 x 107* 222
r=0.10 lo

€ E((fl)yﬁypz Rate Ee(icl),ﬁ_, P Rate E((”j) o Rate
04 4316 x 1077 — 4167 x10° — 3241 x10° —
0.2 2521 x 1073 078 2299 x 107> 0.86 1.816 x 1073 0.84
0.1 9.029 x 107* 148 8.187 x 107* 149 6.444 x 107* 1.49
0.05 2606 x 107*  1.80 2368 x 107* 1.80 1.892 x 107* 1.77

and these functions are evaluated at ¢ = ¢;.. The errors and rates of convergence, which are
calculated from the consecutive errors at time t = 0.1 in an analogous way as in the previous
section, are presented in table 2. As in the quasi-steady case, we observe that the results
converge with second order accuracy in both the £, and £, norms.

4.3. Anisotropic dynamics

We now consider the case in which the edge energies and kinetic coefficients are anisotropic:

k) €, (9) for o € (1, 2],
ko(p, 0) =4 > >F 4
ol» 6) {klgk(e) for ¢ € [0, 1], G
B ky &, (0) for ¢ € (1, 2],
ki 0 = {kﬁék@ for ¢ € [0, 1], 53
where
§(0) =1 — . qcos (n(0 — 6y)), (36)

is the kinetic coefficient anisotropy function, 0 is the normal angle (e.g. angle between the
normal vector and the x-axis), and 6y is a reference angle which is taken to be 8y = 7/n. The
edge energies are defined analogously:

Y(0) = 7(&0) + (0, (37)

§(@) =1 — ¢, cos (nd), (38)

where & is the edge energy anisotropy function. The coefficients ¢ , and ¢, measure the
anisotropy strengths. In this paper, we only consider three-fold (n = 3) and six-fold (n = 6)
anisotropies, which reflect the symmetries of MoS, and graphene multilayers, respectively.
The trigonometric functions are calculated using :

13
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2 2 ’ 2 2 ’
Jerte o Ve Ty +é

where we introduce a small parameter § = 107° to avoid singularities. Then, cos(30) and
cos(60) can be calculated using the trigonometric identites:

cos(f) = and sin(f) = (39)

cos(60) = 2cos?(30) — 1, cos(30) = cosf - (2cos(20) — 1), (40)
oL — o}

cos(20) = cos?f — sin’ ) = —————. 41)
oyt +o

We next consider the quasi-steady dynamics of two anisotropic layers. Initially, the
layers are taken to be circular with radii R;(0) = 1.0 and R»(0) = 0.2. The outer boundary of

the substrate is R, = 3.8. The physical parameters are taken to be:
kit =k; =05, pf=05 v=7%=001, Dy=D;=D,=1, F=0.1,
F=F=0, 7;'=0, B=111x107 & =05, &=14. (42)

Note that unlike the previous examples, the only non-zero flux is on the substrate F;, which
as discussed before reflects the assumption that the reactions to produce the attaching
species occur only on the substrate surface [24]. Note that AE = 0.4 and ~, /R, (0) —
% /Ri(0) = 0.04 so that growth would occur under isotropic, quasi-steady dynamics (recall
the growth condition in equation (12)). The parameters for the anisotropy are set as

n=6, €n=03, &,=00l,
n=3, €un=07 é&,=00L (43)

The morphologies of the growing layers are shown in figure E5(a). In both the six-fold and
three-fold anisotropic cases, layers 1 and 2 grow. In the six-fold case, the layers are nearly
faceted at early times while the corners are smoothed slightly from the surface diffusion. At
later times, both layers develop negative curvature. In the three-fold case, layer 1 evolves to a
convex triangular shape at early times while layer 2 develops negative curvature early on. At
later times, the corners of layer 1 somewhat elongate with their curvature being set by the
surface diffusion coefficient (see figure E9(c)). The corresponding adatom concentrations are
shown in figure E5S(b) where we see the adatoms diffusing toward both layers driving their
growth. In figure E5(c), the adaptive mesh is shown for the six-fold anisotropic case. Observe
that there is a fine mesh near the outer boundary of the substrate, which does not change.
The mesh near the boundaries of layers 1 and 2 is dynamically refined and and the mesh in
the bulk regions is coarsened. In the anisotropic case, we also observe second-order accurate
convergence in ¢, and /.., see appendix E.

4.4. Parameter studies

We next investigate the effects of the physical parameters on the growth of the layers. In
particular, we consider the binding energy differences AE, the edge energy -y and the surface
diffusion f3, flux F, and the kinetic attachment rates k, and k;". We fix all the other para-
meters as in equation (42) and describe only those parameters that are changed.

4.4.1. Binding energy differences. We first investigate the effects of AE on the growth rate
of layer 2. The morphologies and adatom concentrations for six-fold anisotropic layers
obtained from the quasi-steady dynamics are shown in figures E6(a) and (b), respectively.

14
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Figure E5. The quasi-steady dynamics of layers 1 and 2 using six-fold and three-fold
symmetric anisotropic edge energies and kinetic coefficients under conditions for
which both layers should grow. See text for parameters. (a) Time evolution of the layer
morphologies; (b) time evolution of the adatom concentrations on the layers. (c) The
dynamic adaptive mesh for six-fold anisotropic layers. As both layers grow, driven by
fluxes of the adatoms, negative curvatures develop in both layers in the six-fold case
and in layer 2 in the three-fold case. The corners of the layers are more affected by
surface diffusion in the three-fold case compared to the six-fold case.
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Figure E6. The effects of binding energy differences AE for the quasi-steady dynamics
of layers 1 and 2 using six-fold symmetric anisotropic edge energies and kinetic
coefficients. See text for other parameters. (a) Time evolution of the layer
morphologies; (b) Time evolution of the adatom concentrations on the layers. The
growth conditions for six-fold anisotropic layers follow the thermodynamic criterion in
equation (12), derived in the isotropic, quasi-steady case (circular layers), that relates
AE and the sizes of the layers. Further, when layer 2 grows, it does so at the expense of
layer 1.

Consistent with theory (section 2.2), the vertical growth of layer 2 is only preferable when
AE > 0.04, based on equations (12) and (42), and that growth rate increases with AE.
Further, the growth of layer 2 occurs at the expense of that of layer 1; the size of layer 1 is a
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Figure E7. The effects of binding energy differences AE for the time-dependent
dynamics of layers 1 and 2 using six-fold symmetric anisotropic edge energies and
kinetic coefficients. (a) Time evolution of the layer morphologies; (b) time evolution of
the adatom concentrations on the layers. Compared to the quasi-steady case shown in
figure E6, layer 1 grows more slowly but layer 2 grows more rapidly. In fact, layer 2
grows even when AE = 0, in contrast to the quasi-steady case where layer 2 shrinks
when A€ = 0.

decreasing function of AE. In all the cases, layer 1 is nearly faceted at early times, and
develops negative curvatures at late times as layer 1 increases in size. Similar morphologies
are observed for layer 2 with negative curvatures occurring when layer 2 is large enough
(e.g. AE = 0.8).

For comparison, the morphologies for six-fold anisotropy obtained from the fully time-
dependent dynamics are shown in E7. Compared to the quasi-steady case, we observe that the
growth of layer 1 is significantly slower but that layer 2 actually grows more rapidly. Further,
layer 2 grows even when AE = 0. This reflects the fact that vertical growth is more favorable
when the growth rate of layer 1 is decreased, which is suggested by the theory in section 2.2.

In figures E8(a) and (b), the morphologies and adatom concentrations are shown,
respectively, for three-fold anisotropic layers using the fully time-dependent dynamics.
Qualitatively, the results are similar to the six-fold case in figure E7 although we observe that
negative curvature occurs first in layer 2 before being manifest in layer 1.

4.4.2. Edge energy, surface diffusion and flux. In figure E9(a), we show the effects of edge
energy < on the growth of the layers in the fully time-dependent case. In both six-fold and
three-fold anisotropies, we see that the growth rate of layer 2 decreases as we increase -y, and
the layer 2 even shrinks when -y is large enough (v = 0.16 or larger). The size of layer 1 is
also decreased and the layer morphologies are smoother and the negative curvature on the
layers disappears as + is increased.

As seen in figure E9(b), surface diffusion also decreases the sizes of layer 2 and
smoothens the layer corners although the negative curvature of the layers remains. In the six-
fold anisotropic case, layer 1 is also decreased in size as [3 increases while in the three-fold
anisotropic case, layer 1 is actually a little larger due to the decreased curvature at the vertices.

Next, we examine the effects of the adatom flux F, on the layer dynamics. As shown in
figure E9(c), decreasing the supply of adatoms on the substrate (F,) benefits the growth of
second layer, which agrees with reported experimental observations for vertical growth of 2D
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Figure E8. The effects of binding energy differences AE for the time-dependent
dynamics of layers 1 and 2 using three-fold symmetric anisotropic edge energies and
kinetic coefficients. (a) Time evolution of the layer morphologies; (b) time evolution of
the adatom concentrations on the layers. Qualitatively the growth criterion for layer 2
growth is similar to that for the six-fold, fully time-dependent case shown in figure E7.
Quantitatively, the layers grow more rapidly in the three-fold case. Further, the
negative curvature of the sides is more pronounced on layer 2.

materials (e.g. [14]). Moreover, in the case of six-fold anisotropy, we see that both layers
develop negative curvatures at small F,, but as Fj is increased the shapes become more
facetted. Similar features are observed in the three-fold anisotropic case, except when
Fy = 100, where kinks with negative curvature develop at the boundary of layer 1. This
feature persists under mesh refinement and seems to be associated with deposition only
occurring on the substrate. If adatoms are deposited on all the layers, then layer 1 is convex at
an equivalent size.

4.4.3. Kinetic coefficients. In figure E10(a), the kinetic parameter k, is varied from 0.5 to 4.0
for layers with six-fold anisotropies. As predicted by the theory in section 2.2, increasing k5
favors the growth of layer 2 at the expense of layer 1. Both layers acquire negative curvature
as they grow. In figure E10(b), we take k" = k; and vary this value from 0.5 to 4.0. In this
case, the growth of layer 2 is insensitive to these changes, which is surprising because theory
suggests that increasing k;" increases layer 2 growth (equation (10)). The reason for the
discrepancy is that a morphological instability occurs on layer 1 that accelerates its growth
relative to that of layer 2. Because layer 1 grows faster, this reduces the number of adatoms
available for layer 2 growth.

The growth of three-fold anisotropic layers subject to the same changes in the kinetic
parameters shows somewhat different results. As seen in figures E11(a) and (b), increasing k,
and k;" both favor the growth of layer 2. Further, when k5 is increased, only layer 2 acquires
negative curvature while layer 1 remains convex, in contrast to the results found for six-fold
anisotropy. In addition, when ;" is increased, the morphological instability of layer 1 found
in the six-fold case is not present in the three-fold case. Because of this layer 1 in the three-
fold case does not grow as rapidly, relative to that of layer 2, which enables more adatoms to
be available to drive the growth of layer 2.
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Figure E9. The morphologies of the six-fold and three-fold anisotropic layers at
approximately the same sizes for different choices of edge energy strengths v in (a),
surface diffusion coefficients 8 in (b) and deposition fluxes Fy in (c) All these
parameters inhibit layer 2 growth. In (a) and (b), the six-fold and three-fold shapes are
shown at times ¢ = 9.6 and ¢ = 8.4, respectively. In (c), the times shown for the six-
fold case are (Fp=0.01: t =60, Fp =0.1: t =9.6, Fy = 1.0: r =2.8, Fy = 10.0:
t = 0.8, Fp = 10.0: t = 0.18) and for the three-fold case: (Fy=0.01: t = 56, F, = 0.1:
t =84, Fp=1.0: t = 2.25, Fy = 10.0: r = 0.65, Fy = 10.0: r = 0.15). See text for
all the parameters.

5. Conclusions

Epitaxial growth of 2D materials is a complex process, influenced by thermodynamic, kinetic
and growth parameters, often leading to diverse and complex growth morphologies deter-
mined both by atomic-scale phenomena and by the elastic interactions of surface features and
defects and transport of diffusing molecules over length scales of hundreds of nanometers. No
single model can describe all the processes involved. In this paper, we derived a general
continuum vdW-BCF model to describe the growth of vertically-stacked, arbitrarily-shaped
multilayered 2D materials. The model accounted for (i) energy changes upon incorporation of
adatoms into the growing 2D layers, (ii) kinetic barriers to attachment, (iii) distinct vdW
interactions between the 2D layers and the substrate, (iv) energy penalties associated with the
layer edges, and (v) the entropy of the adatoms. This is an extension of our previous work
where we developed and analyzed an analogous model for faceted layers where the layer
dynamics was much simpler [14]. The vdW-BCF system presented here represents a highly
nonlinear free boundary problem.

We analyzed a nondimensional version of the vdW-BCF model and derived an analytic
thermodynamic criterion for vertical growth of stacked 2D materials assuming the layers are
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Figure E10. The effects of kinetic attachment coefficients on the dynamics of six-fold
anisotropic layers 1 and 2. See text for parameters. In (a), only k5 is varied. In (b)
ki™ = ki are varied together. The kinetic parameter k; promotes layer 2 growth, as
predicted by theory. The growth of layer 2 is insensitive to simultaneous changes in k"
and k; although layer 1, however, is significantly affected and undergoes a
morphological instability.
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Figure E11. The effects of kinetic attachment coefficients on the dynamics of three-fold
anisotropic layers 1 and 2. See text for parameters. In (a), only k5 is varied. In (b),
ki" = ki are varied together. In contrast to the six-fold case shown in figure E10, both
kinetic parameters k; and k" = k; promote the growth of layer 2 in the three-fold
case. Further, the morphological instability observed in the six-fold case is not present
in the three-fold case.

circular. To solve the system numerically, we used a second-order accurate phase-field/DDM
that enabled us to solve the dynamic equations in a fixed regular domain. To discretize
and solve the vdW-BCF-DDM reformulated system, we developed a second-order accurate
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Figure E12. Experiments show a wide variety of bilayer morphologies of 2D materials,
including layers with negative curvature, which our mathematical model is capable of
reproducing. (a) Left: SEM image of bilayer graphene adapted from [10], with
permission. Right: numerical simulation. (b) Left: SEM image of bilayer graphene with
a twisted layer 2 adapted from [10], with permission. Right: numerical simulation with
twist angle 6 = 10° (see text). (c), (d) Left: optical images of TMD samples showing
vertically-stacked bilayers of MoS, adapted from [14], with permission. Right:
numerical simulations. See text for model parameters.

finite-difference /nonlinear multigrid method using adaptive, block-structured Cartesian mesh
refinement. We demonstrated convergence of the numerical methods and investigated the
effect of parameters on the layer growth and morphological evolution. While the conditions
that favor vertical growth generally follow the thermodynamic criterion we derived for cir-
cular layers, the layer boundaries may develop significant curvature during growth and even
morphological instabilities. These deviations from faceted shapes can alter the growth
dynamics of the layers and can hinder or enhance vertical growth.

Experiments show a wide variety of layer morphologies, including layers with negative
curvature, which our model is capable of reproducing. A small sample of experimental layer
morphologies are shown in figure E12 together with our numerical simulations. Figure E12(a)
shows a SEM image of bilayer graphene from [10] (left) that exhibits a star-shaped layer 1
and a nearly circular layer 2. The image on the right in figure E12(a) is a numerical simulation
at time tr = 4 with the parameters from equation (42) except that kK, = 10, Fy = 1 and
&, = 1.0. Figure E12(b) shows a SEM image of bilayer graphene with a twisted layer 2 from
[10] (left). This experiment was motivated by the observation that electronic structure of
bilayer graphene can be altered by changing the relative twist angle, yielding a new class of
low-dimensional carbon systems. To simulate twisted bilayer graphene, we modify the
reference angle 6 of the kinetic coefficient £(6) in equation (36). In particular, we set

2w A
+ = x 0 for p € (1, 2],
360 ¥ (44)
for ¢ € [0, 1],

0y =

N ER-NE

where 6 denotes the twist angle of layer 2. Here, we take # = 10° and all the other parameters
are as in equation (42). The numerical result at time # = 8 is shown in the right figure of
figure E12(b). Consistent with the experiment, layer 1 develops a hexagon shape with slight
negative curvature while the twisted 2nd layer is nearly faceted. Figure E12(c) shows an
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optical image of a vertically-stacked bilayer of MoS, from [14] (left) where layer 1 has a
triangular shape with negatively curved sides and contains two smaller layer 2 triangles that are
nearly faceted. The image on the right shows our numerical approximation at time t = 3.84,
which uses the parameters in equation (42) except with k= = 3.0, k; = 6.0, Y =" = 0.02,
and & = 1.0. Finally, in figure E12(d), an optical image of a vertically-stacked bilayer of MoS,
from [14](left) is shown where layer 2 nearly overlaps with layer 1 and both have shapes that are
almost faceted. The figure on the right shows our numerical approximation at time t = 2.8,
which uses the parameters in equation (42) except with ~, = v, = 0.04, F; = 0.012,
and & = 5.0.

Although we performed our study using a range of nondimensional parameters, atomistic
and mesoscale models can be used to provide specific material parameters. For example, DFT
simulations can provide estimates for vdW interaction energies as well as edge energies and
kinetic barriers for attachment [12, 26, 14]. Incorporating such parameter estimates will be
explored in future work.

Further, in this paper we have focused on single material homostructures due to perfect
lattice matching and hence there are no interior strains. In the TMD family, one can go further
and consider MoX, /WX, heterostructures (M = Mo, W; X = S, Se, Te) without introducing
lattice mismatch. However, taking full advantage of the device properties accessible through
marriage of disparate 2D materials requires understanding the role of strain in the competition
between vertical and in-plane lateral growth. We expect that strain-driven defect formation
and stacking-site symmetry breaking will significantly modify the potential energy surface,
affecting the thermodynamics of monolayer versus multilayer morphologies and the kinetics
of adatom attachment. Such effects will also be considered in future work.
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Appendix A. Details of the derivation of the vdW-BCF model of vertically-
stacked multilayer growth

A.1. Mass conservation

We define the total mass to be:

2
M:Zf PidA+f Qs,ldA+f Q2 dA, (A.1)
i—0 V< YU 1973

where (); are the concentrations of atomic sites in the layers (i = 1, 2). Then, mass
conservation requires

_ ( f f o, ) (A2)

i=0

where F; is the deposition flux on layer i and 7-;} are desorption rates. Combining these two
equations and using the Reynolds transport theorem gives:
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dM

2
- = X . -V; dA . Qg dA . Qv dA, A3
g‘lﬂ‘h Op; + V- (pv)dA + V- (Q1v) ‘];22 V- (§2v2) (A.3)

dr QU

where v; are the velocities of the adatoms on the layers and substrate. For simplicity, we
assume that €);; = (). We also assume that the boundary of the substrate I’y does not move.
Therefore, combining equations (A.2) and (A.3) and using the divergence theorem we obtain

2 2
0= [ wt =y + WA+ Y [ @~ E+rile)da (A
i=1°h i=0 <t

where v; = v - np; is the normal velocity of layer i, and p;’ = plt, p; = p;_ily are the
boundary conditions for the densities at the ith layer from the step up and down respectively.
Next, assuming that

Opy=-V - -Ji+F— Tdi%’Pr (A.5)

then the last term in equation (A.4) can be written as

2 2
o, — F — 775p) = — V- JidA
> I @, i) =% I v
—— [ uf —anas - [ o - s, (A6)
12y 0

where J (for i = 1, 2) denote the fluxes at the ith layer from a step up and down,
respectively, with

J g =J5, Ji-ng =J7, (A7)

Ji-np=J,, Jo-np =J, (A.8)

and we have assumed that there is no flux at the substrate boundary: Jy - ngr;, = Jy = 0.
Further, the boundary conditions for equation (A.5) on I'; are taken to be

g =J" - pv, (A9)

g =—Ji +pv (A.10)

1

Substituting (A.6) and (A.9), (A.10), into (A.4), we obtain

2
> f Wi — (g + ¢,))dS = 0. (A.11)

i=1""

In order to satisfy mass conservation, we then have

1 _
n= @t g - 0T, (A.12)

1 _
V2 = ﬁ(qz+ + q2 - 85‘72), (A13)

where 0, denotes the arclength derivative and J; represents surface fluxes (e.g. arising from
the diffusion of adatoms along the layer edges). To obtain constitutive laws for the fluxes
g;» Ji and J;, we require that the system dissipates the free energy when the deposition flux
F; = 0 and desorption coefficient 7} = 0.
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A.2. Free energy dissipation

Taking the time derivative of the free energy E from equation (1) and using the Reynolds
transport theorem, we obtain

dE & -
E_Z:l(‘/;iv-(ﬁm)dAJrL%wmdS)

2
o 0
+kgT Oip;| In— — ln(l - ) dA
i=0 ‘,/g;‘. [ Pref Pref

2
+kBTprefo v Vi(&lnﬁ + (1 — i)ln(l — p—)] dA, (A.14)
i=0 Q Pret  Pref Pret Pref

where 4. = v,(0) + ’y;’(ﬁ) and the primes denote derivatives with respect to 6, the normal
angle (e.g. angle that the normal vector makes with the x-axis). Defining the free energy
density f and the chemical potential y to be

£(p) = kgT| LnL 4 (1 = L]ln(l - L) : (A.15)
P ref P ref P ref P ref
wio) = L = o7 - 1n[1 - L) (A.16)
8p Pref Pref

and applying the divergence theorem, we obtain

dE 2
I fr (=& + & + Fk2)dS + j; vi(=& + HK0)dS + Zj; w;0rp; dA
2 i i—0 Y

2 . -
+3 fr vi(f (65) — f(p7)ds,

(A.17)
where 11, = (1(p;). Next, using equation (A.5) in equation (A.17) we obtain
dE - _
<= fr va(—E + E1+ Gk + F (D) — f(py) dS
+ [ nE A+ £0D — £ dS
b
2
_ V- I (F — 1571
x }%( fQ 1V - JidA +fQi 1(F Td,lpl)dA). (A.18)

Integrating by parts and using the divergence theorem, we obtain
dE . _ I
= ) e St Sk D) S o) — (35— i1 dS

[ vE A £ D) = o) — U = D) S
N

2
S (i = Taip)dA | A19
+§)(ﬁ2iJl Vi +fslz,»u’(’ TLi0) ) (A19)
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where we have defined M?E = u(pf). See the previous subsection for the definitions of p?ﬁ and
J,-i. Using equations (A.9), (A.10), (A.12) and (A.13) in equation (A.19) we obtain:

dE . }
5 =) B =) a4y (0 — ) + Ty dS
2

+ fr q (7 — 1) + a7 (€ — ) + FidpyC ds
1

- 1
+ %(j; Ji -V, dA + j;z,- i (F — T;,l-pl.)dA), (A.20)

where we have integrated by parts on the edges I'; and I'; and defined

1 _
p5< = &+ &+ R+ L) = Li(p), (A21)
1 _
pC = o CE T A+ Ly (o) = L), (A.22)
where
o*
L)) =f (0 = piig = kBTpmfln[l - ] (A.23)
ref

Hence, to have energy dissipation (in the absence of flux and desorption), we may take the
constitutive relations for the fluxes:

Ji=-DiVy, (A.24)
Jo = —B20,p5°, (A.25)
i = —B19,p"C, (A.26)

where the (; are related to the mobility of an edge atom along a curved step, and the (linear)
kinetic boundary conditions:

4 = k3 (uy — p5°). (A.27)
a4 = kit (1" = ), (A28)
where k= are kinetic attachment coefficients.

A.3. Model simplification

Since p;r ~ p; and p;r — p; < ), we can neglect the terms &(Lf(pi*) — Ls(p;) in p?c.
Therefore p?c are approximated by
1

O (=& + & + ko), (A.29)

BC _
Py =

1
pC = o (& + T (A.30)
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Further, ,ul.i can be approximated as

jy = kBT[lni - ln[l - p—]] ~ 4kBT(i - l). (A31)
pref pref pref 2

We further neglect the effects of anisotropy in the surface fluxes (e.g. we assume that the edge
energy anisotropy is small 5,(0) ~ 7)), although we keep the effects of anisotropy in the
kinetic coefficients and in p?c. Surface diffusion anisotropy will be considered in future work.
It follows that the diffusional and surface fluxes can be approximated by

Ji = —EiVPi, J = —Bias/ii, (A.32)
where D; = 4D"2k 5T and B = % the velocities can be approximated as
ref a
1 _ ~
Vi = E(CI{F =+ ql + ﬂlass”il)’ (A33)
vy = 5(612 + ¢, + B20ska), (A.34)

and the kinetic boundary conditions can be approximated as

~ 1 - -

g = kz*(p; G wz)), (A.35)
s
( - —( 52 + 51 + ’}/2/{2)) (A.36)
=k (p - —( &+ w)) (A.37)
(/Jl - —( &+ ’h/ﬂ)) (A.38)
where k 4kpk”T, Q, = Q“sk”T, and &= & — %Q? Finally, equation (A.5) can be
approximated bwa ”

op; = DiNp, + F — 7,1 (A.39)

A.4. Nondimensionalization

Let ps = €, £ be the characteristic size of layer 1 and take the time scale to be
T = [£2Q,/(4DkgT), where D is a characteristic diffusion constant. Define the nondimen-
sional density p| = p;/€}; and the nondimensional flux F/ = 7F /€, where the nondimen-

sional desorption coefficient is 7/ ; = Td,,-/T . Then, the nondimensional adatom density
equation (A.39) becomes:

dup = D/ Al + F — ()70, (A.40)

where DI/ = D;/D is the nondimensional diffusion coefficient. The kinetic boundary
conditions become
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@ =k — p(—E5 + & + Kb, (A41)
0~ = —ky (p| = pH(—E) + E + A kD), (A42)
4" = kT — P&+ A KD, (A.43)
6]1/7 = _klli(Pi) - P&+ 71/'%1)' (A44)

where

Lo . Ly & 1
1+ ref + == + ref % /! ~/ ~
q =——=q", ki =ki———, p*= , Ei=E&/E— —, 7 =F/(ED),
! 4DkBT ! ' 12 D 4kBT ! l/ Zp* ,Yl /( )

(A.45)

and & is a characteristic value of the binding energies. Finally, the nondimensional velocities
are:

v =g+ q/" + B0y, (A.46)
vi=gq, " + g + B0uskh, (A.47)
ﬁi;!i

where 3 = DT e nondimensional edge diffusion coefficients. Dropping the primes, this

is the system given in section 2.1.

A.5. The vdW-BCF model equations for an arbitrary number of vertically-stacked layers

One can extend the vdW-BCF model derived in the previous sections to describe the
dynamics of an arbitrary number of layers. The resulting (nondimensional) system is

op;=DiAp,+F—715'p, inQ, i=0,1,.n, (A.48)

where n is the number of layers. The boundary conditions at the boundary of the first layer
with the substrate, I'|, are given as

q1+ = _Dlvp] . l'l[‘l — pllﬂ = k1+(p1 — p*(_gl + 7] K;l)7 (A49)

g, = DoVpy - g + polr, = ki (py — p (=& + 751, (A.50)
and for all the layer boundaries (e.g. steps) I'; (for i = 2, ..., n) are:

g = —D;Vp;-ny, — ply, = k' (o, — p*(—=E& + Ei—1 + %k, (A51)
g =D;i 1Vp,_-np+p =k (p_; — P (=& + Eim1 + k), (A.52)

where v; denotes the step stiffness and k; is the curvature of the ith step I';, fori = 1, 2...n.
The normal velocity of each step I'; is given by

vi=q" +q + Bk (A.53)

Appendix B. Details of the derivation of radial solutions to the vdW-BCF model

We now derive the analytic solutions p;(r, f) in the quasi-steady state limit. That is, we drop
the time derivatives in the adatom diffusion equations. We first rewrite equation (2) as
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oo = B (B.1)
-

where we have also neglected desorption and taken TJV} = (. Integrating twice we obtain:

p = —%rz +A/In(r) + B, for i=0,1,2, (B.2)

L

where A; and B; are unknown constants.
For r < Ry(f), the solution in equation (B.2) satisfies the following boundary conditions:

p, is continuous, atr = 0, (B.3)

—D,0,p, = k;[pz — p*(—gz + & + %)], atr = R,. (B.4)
2

We then obtain

_ BR; | BR

A, =0, B
: T 4D, 2%k

+ p*(—é‘z + &+ ﬁ) (B.5)
R,

For R, < r < Ry, the solution in equation (B.2) satisfies

D0,p, = k2_|:pl - p*(—82 + &+ %)], atr = Ry, (B.6)
2
~D10,p, = k| p) — P*(—gl + %)], atr = Ry. (B.7)
| 1
At r = R,, we obtain
FR} D/( FR, A
Bj=-"2 — AR + -2 + —1) + p*(—52 + &+ ﬁ) (B.8)
D] k2 2D] R2 Rz
At r = R;, we obtain
FR} D/ FR A
B]: ll—AllnR]——i—L—f——l +p* —gl—i-l, (B9)
4D1 kl 2D1 R1 Rl
such that
F 2 2 * % R FiR, * N
D RE_R — D)y _4oh Ly — e
Al _ 4D]( 2 1) + 14 ( 82 + gl + Rz) 2%, 2ky P ( gl + R]). (BlO)

For R < r < R, the solution in equation (B.2) satisfies

Doarpo = kl(p() - p*(_gl + %))9 atr = Rl9 (Bll)
1
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0rpy =0, atr=R.. (B.12)
At r = R;, we obtain
FoR?
—°1+A01nR1+B0—D—E—M+@:p* A | (B.13)
4D0 kl 2D0 Rl Rl
At r = R, we obtain
Fo 2
Ay = —Rj. B.14
0= op R (B.14)
such that
RR?  RR; R RR; N
By = — InR — — + —— + p*[ =&+ — | (B.15)
4Dy 2Dy 2k, 2ky Ry R
Summarizing, we obtain the analytic solution
Py = _ B + Ay In(r) + B, x < Ry,
4D,
__h
py=———r"+ A In(r) + B, R, < x <R,
4D,
F
po=———r>+ Agln(r) + By, R < x, (B.16)
4D
where
Ay =0,
BR; | BR %
By=——=+ ——=+p*|-&E+ &+ =
2Tup, gy LT R
3! 2 p2 s _ %) _ BR _ RR o« _ 2|
4 47)](R2 R+ p ( 52+£1+R2) % oo, P ( &+ R)
1 - 9
R D, D,
(% =% - %)
FR} D[ RR | A N
B = —AInR — —|—+ =+ p-&+—|
“ap, T U, TR TR
Ag= fo G
2Dy
RR?  FR§ RR | FR;
BozL_ 07%0 R—O—J—F%—i-p*—&—i-l.
The corresponding velocities of the layer boundaries are
R, (F, — F DA
vy = ~(D20,p, — Diup)lr, — 2D Diy, (B.17)
2 R,
Ri(FF — K DyAy — DA
v = —(D1,py — Dodypp)lop, = D= F0) | Doflo = Didi = g 1
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Appendix C. The diffuse domain method: details and asymptotic analysis

For simplicity, consider the problem with a single layer:
Oip; = DiAp, + F, — 7 'p,, in Q(0), (C.1)

where i = 0, 1 denote the substrate and layer, respectively. The kinetic boundary conditions
are:

q," = =D\Vp - m — pvi = ki (p, — p*(=& + F,K)), (C2)

‘11_ = DOVPO ‘N + pyvy = kl_(po - p*(_gl + 1K) (C.3)
with the normal velocity of I';(f) = 9€,(f) given by

vi=gq" +q + BOk. (C.4)

In the above, k is the curvature of I';.
Next, following [21, 17], we can reformulate equations (C.1)—(C.3) as

Oepy) =V - (D1pVp)) + o(F — 77'0)) — k' IVel(p] — &), (C.5)

A(ppy) = V - (Do Vpp) + ¢“(Fo — 77'0)) — ki IVel(py — 8),  (C.6)

g =p* =&+ e, (C.7)
where ¢ = (X, f) is a phase-field function that approximates the characteristic function of
N(@), ¢ = 1 — ¢ approximates the characteristic function of the substrate )y, and

i = B'(p) — €2A¢ is the chemical potential where B(p) = 18¢?(1 — )? is a double well
free energy. Equations (C.5) and (C.6) are solved in a large rectangular domain Q that
contains {2, and 2,. For simplicity, we do not include ¢ to specify that the deposition
domain on the substrate is a circle and we assume that the kinetic parameters and edge
energies are isotropic. The evolution of the layer is captured by the Cahn—Hilliard-like model:

Bip = IVl (o — &) + ki (o, — 2)) + :%v (G, (C8)
1= B'(p) — *Agp, (C.9)
B(p) = 180%*(1 — ¢)? (C.10)
G () = 2B(p). (C.11)

Below, we demonstrate using the method of matched asymptotic expansions that the
DDM (C.5)—(C.11) yields a second-order accurate approximation of the sharp interface
system (C.1)-(C.4). The analysis can easily be extended to the more complete model pre-
sented in the main text in section 3 where two layers are considered and the substrate
geometry is circular (implemented via ¢, ).

C.1. Matched asymptotic expansions

Away from the layer 1 boundary I';(f), we assume that all variables are smooth and have
regular expansions in ¢, e.g.

o5 =p” + eplV + 2P + ., (C.12)
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while away from I'y, ¢ = 1 inside ; and ¢ = 0 outside {2, to all orders. Accordingly, we
see that pgo) satisfies equation (C.1), while the first order perturbations satisfy:

8,p§l) = DiApgl) — T_lpgl) in ;). (C.13)
To provide the boundary conditions for the diffusion equations, we need to analyze the
behavior of the system near I';. To argue that p{ is a second order approximation to the sharp
interface solution p;, we need to demonstrate that pgl) = 0.
Near I';, we introduce a stretched, local coordinate system:
x(s, 1; €) = X(s, t) + ezn(s, t) (C.14)

where X(s, ) is a parameterization of I';(¢), s is arclength, n(x, f) is the normal vector that
points out of Q, z = r(x, 1) /¢ is a stretched normal coordinate and r(x, f) is the signed
distance from x to I';(#). In the local coordinate system, derivatives become:

v-lno+s—1 o, (C.15)
€ 1+ ezr
A= Laﬂ + l il az + ! 8?( ! ac), (C.16)
€2 el + ezr 1+ ez 1+ ezk
Vf
0, = ——0, + 0y, (C.17)
€

where the time derivative on the left-hand side of equation (C.17) is the full time derivative
and the time derivative on the right hand side is the time partial derivative in the inner
variables, and v/ is the effective diffuse interface normal velocity of I';. Note that
n = —Vg/|Ve|. We assume that near I'|(¢), the inner variables can be expressed as

P (z, s, 1) = p (X(s, 1) + ezn(s, 1), 1). (C.18)

We assume that in the inner expansion, all variables have a regular expansion in the stretched
coordinates, e.g.

pas)=p"G s )+ pP s )+ P s, D+ (C19)

To match the inner and outer expansions, we assume that there is a region of overlap where
both expansions are valid and must match. In particular, if we evaluate the outer solution in
the inner variables, this must match the limits of the inner solutions away from the interface.
That is

pi X + ezn, 1) ~ P (z, 5, 1), (C.20)

as 7 — Foo and € — 0 with ez — 0F. Using the inner and outer expansions and equating the
powers of ¢, we obtain

P0G, s, 1) ~ p0Gs. ), (€21

PV, s, 1) ~ pP(s, 1) + zn - Vs, 1), (C.22)

2
ﬁl@(z, s, 1) ~ pl@(s, t)+ zn - fo,l)(s, t + %n . VVpEO)(s, t) - n,

: (C.23)
where pgk)(s, 1) = pl(,k)(X(s, ), 1).

30



Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

Next, transforming the equations, plugging in the inner expansions and equating powers
of € we derive equations governing the inner solutions. At leading order O(¢ 2), we obtain

8. 0:p ) = 0, (C.24)

0.1 — ¢M9.p") =0 (C.25)
From these equations (and the matching conditions), we conclude that
0.0 = 9:py” = 0, (C.26)

so that ﬁéo) and ﬁl(o) are constant in z across the inner layer. At the next order O(e ') we
obtain:

0P OP") = Di0.PO0:p") + k() — )0, (C27)

=201 = $O)p") = Dod(1 = ") + ky (0 — )20, (C.28)

Integrating these equations from —o0 to 00 in z, using that vl(o) is independent of
z, PO(+00) = 0 and P (+00) = 1, we obtain

D10:p("(=00) + vVp” = =" (" — &0, (C.29)

—Do:pM (—00) = v{Vps = —k{(pg” — &0, (C.30)
where we have additionally used equation (C.26) and assumed that 9,8’ = 0, a fact that will

be justified later. From the matching conditions equations (C.21) and (C.22), we obtain

~Din - V¥ — v pl? = k" (" — g, (C31)

Don - VpE)O) + VI(O)IOE)O) — k]O(pE)O) _ g(O)), (C.32)

where, as stated earlier, pEO) are the limiting values of the leading order outer solution on €2;
and we have defined g = ¢©. Now, using that g© = p*(—& — 4, k), another fact we will
demonstrate later, then we recover the kinetic boundary conditions equations (C.2) and (C.3).
This implies that pgo) satisfies the sharp interface diffusion equations and kinetic boundary
conditions, e.g. equations (C.1)—(C.3).

To justify the assumptions for §© and to determine the normal velocity vl(o), we need to
analyze the Cahn-Hilliard-like system (C.8) and (C.9). Before doing this, however, we
proceed to the next order in the inner expansion for the adatom diffusion equations in order to
determine the boundary conditions for equation (C.13) for the outer solution at the next order,
p\V. At O(1), and after manipulation, we obtain

—0.0{" 0P + vOPOp(") + 0 0p(”)
= D1(0:(¢00.p?) + kPP 0p" + ¢O0p(®)
+ k(" — 81)0.0© + OF, (C.33)
and
-0,V (1 = @)p{? + v (1 = ¢ + (1 = @)p{%)
= Do(0((1 = §MApP) + k(1 — 6™ + (1 — ) 9pi?)
+ k(g = 8.0 + (1 = )R, (C.34)
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where we have used

A((—vOp® — D19 p " — kT (P — g9 ) =0, (C.35)

B(—vOps” — Dod-ps" — ki (pg” — 0N — ¢)) = 0, (C.36)

which follow from equations (C.27) and (C.28) and using the matching conditions. Next, we
observe that on I';:

~Dm - VVp? - n = Di(Ap? — kn - V¥ — 04p”) (C.37)

= tP(O) F; — Di(kn - V,ogo) + 8ssp,('0)), (C.38)

where we have used that pl@) satisfies equation (C.1). Using this in the matching conditions
(C.21)—(C.23), we obtain:

—Din - VD — kD — v D Dy p® — kD — v Op®
+ (k" +v©@)zn - Vp(o) + 200" — K — Dy(kmn - V¥ + 95,p")). (C.39)
This motivates us to rewrite equation (C.33) as
—0D1300p@ + vV POpO 1 OGO Dy L 5605 0)
— 0.k 0PV — 2@ (3, — F + (k" — D1x)d.p" — D10p”))
= D (kp© 0., 5D 4 @(0)53“5(0)) + k*(ﬁ“) — 819,60 4 pOF,
— Ok *so“”p“’ — 200 @p” = R+ (k' = Dig)d.pV — Didp(™).  (CA0)

where we have used that 9,p*) = 9,5 — v©0,p("). Next, after a series of calculations, we
rewrite equation (C.40) as

_8z(DlSAD(0)6zﬁ1(2) =+ vl(l)@(O)/')](O) + V(O)@(O)ﬁ(l) + k+<f0(°)i)(l)

— 200" = R+ (" = Dimd:p(” — D10sp™)
= —k'g0H.pO
+ 20,09 0,p” — R + (k" — D1r)0.p" — D10,;p?) (C.41)

where we have also assumed that 0,0 = 0, which will be shown later. Integrating
equation (C.41) in z from —00 to +o0o, using the matching conditions and that 9,p" is
independent of z from equations (C.27) and (C.29), we obtain

—DyVp" - m — vOpD =y O gt (ph — D), (C.42)
An analogous argument can be performed to show that
DoV - m + vOp) = —p® p0 p f (o) — gD, (C.43)

Assuming that v() = 0 and gV = 0, facts that we will prove later, we can then conclude that
p(l” = pg) = 0 since these are the unique solutions of equations (C.13) and (C.42), (C.43).

Next, we analyze the Cahn—Hilliard-like system equation (C.8)-(C.11). At the outer
scale, equations (C.8), (C.9) yield 0 = O to all orders in € because ¢ = 0 or 1 to all orders.
The profiles of ¢ across I'y and the normal velocity are solely determined from inner

expansions. At leading order in the inner scale O(e %), we obtain

9(G (@M p) = 0, (C.44)
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2O = B/(¢O) — 5,00, (C.45)

From the matching conditions, we conclude that

a0 =0, (C.406)

®©® = 1,/2(1 — tanh3z). (C.47)
Observe that 3,0 = 0 as assumed earlier. At the next order 0(673 ), we obtain

(G (@M a.aM) = 0, (C.48)

[ = B0y e — 0, oV — Kaz@(O)_ (C.49)

From the matching conditions, we conclude that 9,4V = 0 so that A = M, 1).
Multiplying equation (C.49) by »© and integrating from —o0 to +oc in z, we obtain

A (s, 1) = K(s, 1), (C.50)

PW(s, z, 1) = %(1 — sech?3z), (C.51)
where we have used that f_ t:o (0.0©)? dz = 1. At the next order, O(e~2), we obtain

2.(G(p™d.p@) = 0, (C.52)
Ia(Z) — B”(gb(o))cfo(z) + %B”/(@(O))(@(I))z _ azz@(Z) _ "faz@(l) + Zlizacho(o). (C.53)

From the matching conditions, we also conclude that 9.4® = 0 and @ = p®(s, 1).
Multiplying equation (C.53) by 9,3 and integrating from —00 to 400 in z, we obtain

+oo
a0 = [ B@0)pa.e0 (C.54)
—00
where we have integrated by parts and used that
+00
0= f 0.9 9,¢\" dz, (C.55)
+00
0= f 2(0,pV)? dz, (C.56)
+o0
0= f B"(@?) = 0:0@)0.0© dz. (C.57)

Next, from equations (C.49) and (C.50) observe that

B" (@ pMo,ph) = %@(3&(”)2 + k0,900, 0O + k0, P (C.58)
Combining equations (C.54) and (C.58), we conclude that

0@, ) =0 (C.59)

since fjozo 9, dz = 0.

33



Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

At the next order O(¢ '), we obtain

00,00 = OGP0 + HG (@)D D
— 0.00 (k" (p” = 8O + ki (¥ — 8. (C.60)

Integrating equation (C.60) from —o0© to 400 in z, we obtain
v = Bowk + k' (0 = &) + k(o = &9, (C.61)

where we have used that 4V = k from equation (C.50). Next, from equations (C.7) and
(C.50) we obtain

8O = p*(—E€ + Hr). (C.62)

Using these in equation (C.61), we obtain
W = B0k + k(P = pH(=€ + 1) + k() — pF(=E + 7)), (C.63)

which recovers the sharp interface velocity in equation (C.4). Thus, at leading order we
recover the original sharp interface system. Finally, we move to the next order O(1). Here, we
obtain

P00 — v08.60 = BO(G (M) DY) + BO.(G' ()P O D)
+ BEG (D). 4P + BI(G(PO) pM o D)
— B2G (@) (0D + 30,10 )
— 00 Ukt PV — 8D + k(" — 8M))

— 0.0 (k" (90 = 89 + k(" — 8. (C.64)
Integrating equation (C.64) in z from —o0 to 400, we obtain
T s D _ A _ p—p (D ERPIPN G NPNE
—Ji 0.0 " — ki p D — k7 pM) dz = Bﬁﬁ G ()04 dz, (C.65)
where we have used that G(0) = G(1) = G/(0) = G/(1) = 0 and
¢ = p*5, @ = 0 (C.66)
+00
0= f 8.0W dz, (C.67)
— 00

+o00 +00
0= [ c@Meva= [ G@®aeD d,

— 00

400
0= f GO dz. (C.68)
—00
To make further progress, we observe that
G(PO) = O.M(p©), where (C.69)
M@©) = 2(0) — 3(p0)2 (C.70)
Using these in equation (C.60), together with the matching conditions, we obtain:
BG @04 = BM (@) + ) k. (C.7D)
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A direct calculation shows that
+00
f M(GO) + pO) dz = 0. (C.72)
Combining this with equation (C.65) we obtain
Hoe 1 1 1
0= f 0.0 (" — kp ™ — k7 pM) dz (C.73)
—00
Next, from equations (C.35) and (C.36), and the matching conditions, we have

PO = 0650 = 200+ kG0~ 80, (€74

p” = PP 1) — aw”m+kﬂ%mf§%> (C.75)
0

Using equations (C.74) and (C.75) in equation (C.73), we conclude that
v =k pMV s, 1) + k) (s, 1), (C.76)
Finally, using equation (C.76) in equations (C.42) and (C.43), we obtain

—DiVpm = vOpD = koD (1 + o) + ki ol (C.77)

Dovpg) .n + V(O)pg) — kfpg)(l —_ p(OO)) k+p(1) (). (C.78)

We can therefore conclude that pgl) = pg) = 0, since these are the unique solutions of

equations (C.13) and (C.77), (C.78), and that vl(l) = (. Thus, in the region where the outer
expansion is valid, we have shown

p; = p + O(ed), (C.79)
Py = py + O, (C.80)
v = v + 0(e?), (C.81)

which demonstrates that the DDM (C.5)—(C.9) provides a 2nd order accurate approximation
in € to the sharp interface model.

Appendix D. Details of the numerical method and implementation

D.1. Numerical method

We use the Crank-Nicolson scheme to discretize the fully time-dependent system
equations (13)—(25) in time on larger square domain 2. In particular, we let ¢ > 0 denote the
time step, and assume that p, o}, p; and " are the solutions at time ¢ = ndt. We then find the

solutions at time = (n + 1)ét: p ™", pi™!, pi*! and p**! by solving
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e Ho(@" Nt — o Ho(e™pp 1
: 5 0 = SV (0o Ho (0" YDy (" YV pith

+ @ Ho(@" Y Fo("t ) — o Ho(p" N7y pi ™!
— @ Vel k(" H[ph T = pH(EWP™Y + eIy (" Hph])

1 — n
+ SV - (acHo (Do) V) + e Ho(¢") (") = o Hole" 74" pf

— @ Vol"ko(©)[py — pH(EWP™ + ey (@D unl}, (D.1)

e H (" Yl — o Hi(o™) p!

ot
+ @ Hi(@""YF — o Hi (" Y1 pl ! = o [Vl (" H o) !
— pMEWPTY + eIy (" Thur ]
1 n — n
+ SV (2 @DV ) + @ Hi(eF e H ey p!

— @ Vol (e — p*(EWP™ + ey uMl}, (D.2)

1
=5V (o Hi(" ™D Vo™

<P”+1 — " L n+1 +1 —1 n
TZE{G BV - (B(e"TH V't 4+ €718V - (B(p")V )}

+ %{|V<P|”+l[ko(50"+l)(P8H — pRE@"Y + e Iy (et
+ k(@ = pREW@Y + eIy (et h]}
UV TRl (0 — FHEWY + (1)
+ k(" (P — pM(EWP") + ey (M1}, (D.3)
= — 2Apntl 4 Gl (Y, (D.4)
with the following boundary conditions
Vo n=vptl.n=ve"tl.n=vVutl.n=0 on Q. (D.5)

Moreover, we add a small positive parameter 6 = 107> to the functions Hy, H; and B(() in all
second-order differential operators in (D.1)—(D.4) as a regularization.

D.2. Implementation

Standard, cell-centered central-difference finite difference methods are used, together with a block-
structured adaptive mesh, to discretize the equations in space. The nonlinear equations at the
implicit time level are solved using an efficient nonlinear FAS multigrid solver. See [25] for details.
Here, we use a four-level block-structured adaptive mesh, which consists of one root level (grid
size hg) and three refinement levels (grid size A;) with refinement ratio of 2. For each adaptive mesh
level, we refine the grid cell (i, j) wherever h,'|V<pi’j| > gq,,- Here, we set g, = 0.01.

Appendix E. Convergence of anisotropic layer dynamics

Here we present the convergence analysis using the fully time-dependent dynamics. The results for
quasi-steady dynamics are similar (not shown). Using the parameters in section 4.3, we analyze the
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Table E1. Convergence test for adatom concentrations p,, p; and p,y using six-fold

symmetric anisotropic edge energies and kinetic coefficients in section 4.3.

t=0.1 fz
€ EE(,%)I.Q, P Rate Ef}mh o Rate E((iz)m’ 2 Rate
04 1.172 x 1073 — 1.642 x 1073 — 1.007 x 1073 —
0.2 1.143 x 1073 0.04 1454 x 1073 0.18 1.065 x 1073 —0.08
0.1 6.485 x 107* 0.82 8.359 x 107 0.80 7.196 x 1074 0.57
0.05 1.942 x 1074 1.74 2.631 x 1074 1.67 2.734 x 1074 1.40
0.025 5.304 x 1073 1.87 6.413 x 1075 2.04 7.654 x 107> 1.84
t=0.1 loo
€ Ef(:(iol), €is P2 Rate F(z:iol), €i,P1 Rate f(icl), €isPo Rate
0.4 2.255 x 1073 — 3.240 x 1073 — 4.006 x 1073 —
0.2 3.491 x 1073 —0.63 4574 x 1073 —0.50 5.693 x 1073 —0.50
0.1 2.345 x 1073 0.57 3.233 x 1073 0.50 4758 x 1073 0.26
0.05 7.939 x 1074 1.56 1413 x 1073 1.19 1.848 x 1073 1.36
0.025 1.823 x 1073 2.12 4094 x 1074 1.79 5.537 x 1074 1.74
Table E2. Convergence test for adatom concentrations p,, p; and p, using three-fold
symmetric anisotropic edge energies and kinetic coefficients in section 4.3.
t= 01 (2
€ ED 1 e pa Rate Eé%)l,ff,pl Rate Ef(iz—)lff»/)o Rate
0.4 1.584 x 103 — 2.700 x 1073 — 1.872 x 1073 —
0.2 1.752 x 1073 —0.15 2253 x 1073 0.26 1.685 x 1073 0.15
0.1 1.016 x 1073 0.79 1.031 x 1073 1.13 7.835 x 1074 1.10
0.05 3.223 x 107* 1.66 2789 x 1074 1.89 1.872 x 1074 2.07
0.025 8.852 x 107° 1.86 7.001 x 1073 1.99 4502 x 1073 2.06
t=0.1 lo
€ F(Z) . Rate F(ffl) - Rate f(ffl) o Rate
0.4 7.321 x 1073 — 5.747 x 1073 — 4228 x 1073 —
0.2 1.001 x 1072 —0.45 6.091 x 1073 —0.08 4982 x 1073 —0.24
0.1 5.620 x 1073 0.83 4.623 x 1073 0.40 2.686 x 1073 0.89
0.05 1.934 x 1073 1.54 1.940 x 1073 1.25 7.734 x 1074 1.80
0.025 5.500 x 10~* 1.82 5.590 x 1074 1.80 1.931 x 1074 2.00

convergence of our schemes at time ¢ = 0.1. The consecutive errors (e.g. equation (30)) and
convergence rates for the adatom concentrations are given in tables E1 and E2 for six-fold and
three-fold symmetric anisotropic edge energies and kinetic coefficients, respectively. The results

suggest the scheme is second-order convergent in both the ¢, and ¢, norms.

ORCID iDs

Zhenlin Guo © https://orcid.org/0000-0003-3219-6418

37


https://orcid.org/0000-0003-3219-6418
https://orcid.org/0000-0003-3219-6418
https://orcid.org/0000-0003-3219-6418

Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

References

(1]

(2]
(3]
(4]
[5]
(6]

(7]
(8]
(91
(10]

[11]

[12]
[13]

[14]

[15]
[16]
[17]

(18]

[19]

[20]
[21]
[22]
[23]

[24]

Choi J H, Cui P, Chen W, Cho J H and Zhang Z Y 2017 Atomistic mechanisms of van der waals
epitaxy and property optimization of layered materials Wiley Interdiscip. Rev.-Comput. Mol.
Sci. 7 1300

Duong D L, Yun S J and Lee Y H 2017 van der waals layered materials: opportunities and
challenges ACS Nano 11 11803-30

Gobbi M, Orgiu E and Samori P 2018 When 2d materials meet molecules: opportunities and
challenges of hybrod organic/inorganic van der waals heterostructures Adv. Mater. 30 1706103

Hong H, Liu C, Cao T, Jun C H, Wang S X, Wang F and Liu K H 2017 Interfacial engineering of
van der waals coupled 2d layered materials Adv. Mater. Interfaces 4 1601054

Shi Z, Wang X, Sun Y H, Li Y W and Zhang L J 2018 Interlayer coupling in two-dimensional
semiconductor materials Semicond. Sci. Technol. 33 093001

Frisenda R, Navarro-Moratalla E, Gant P, De Lara D P, Jarillo-Herrero P, Gorbachev R V and
Castellanos-Gomez A 2018 Recent progress in the assembly of nanodevices and van der waals
heterostructures by deterministic placement of 2d materials Chem. Soc. Rev. 47 53—68

Solis-Fernandez P, Bissett M and Ago H 2017 Synthesis, structure and applications of graphene-
based 2d heterostructures Chem. Soc. Rev. 46 4572-613

Gong Y G er al 2014 Vertical and in-plane heterostructures from WS,/MOS, monolayers Nat.
Mater. 13 1135-42

Gong Y J et al 2015 Two-step growth of two-dimensional WSe,/MOSe, heterostructures Nano
Lett. 15 613541

Lu C-C, Lin Y-C, Yeh C-H, Suenaga K and Chiu P-W 2013 Twisting bilayer graphene
superlattices ACS Nano 7 2587-94

Xia M, Yin K B, Capellini G, Niu G, Gong Y J, Zhou W, Ajayan P M and He Y H 2015
Spectroscopic signatures of aa’ and ab stacking of chemical vapor deposited bilayer MOS, ACS
Nano 9 12246-54

Chen W, Cui P, Zhu W G, Kaxiras E, Gao Y F and Zhang Z Y 2015 Atomistic mechanisms for
bilayer growth of graphene on metal substrates Phys. Rev. B 91 045408

Zhang X Y, Wang L, Xin J, Yakobson B I and Ding F 2014 Role of hydrogen in graphene
chemical vapor deposition growth on a copper surface J. Am. Chem. Soc. 136 3040-7

Ye H, Zhou J D, Er D Q, Price C C, Yu Z Y, Liu Y M, Lowengrub J S, Lou J, Liu Z and
Shenoy V B 2017 Toward a mechanistic understanding of vertical growth of van der waals
stacked 2d materials: a multiscale model and experiments ACS Nano 11 12780-8

Burton W K, Cabrera N and Frank F C 1951 The growth of crystals and the equilibrium structure
of their surfaces Proc. R. Soc. A 243 299-358

Kockelkoren J, Levine H and Rappel W-J 2003 Computational approach for modeling intra- and
computational approach for modeling intra- and extracellular dynamics Phys. Rev. E 68 037702

Li X, Lowengrub J, Ratz A and Voigt A 2009 Solving pdes in complex geometries: a diffuse
domain approach Commun. Math. Sci. 7 81-107

Teigen K E, Li X, Lowengrub J, Wang F and Voigt A 2009 A diffuse-interface approach for
modeling transport, diffusion and adsorption/desorption of material quantities on a deformable
interface Commun. Math. Sci. 7 1009-37

Yu Y C, Chen H Y and Thornton K 2012 Extended smoothed boundary method for solving partial
differential equations with general boundary conditions on complex boundaries Modelling
Simul. Mater. Sci. Eng. 20 075008

Poulsen S O and Voorhees P W 2018 Smoothed boundary method for diffusion-related partial
differential equations in complex geometries Int. J. Comput. Methods 15 1850014

Lervag K'Y and Lowengrub J 2015 Analysis of the diffuse-domain method for solving PDEs in
complex geometries Commun. Math. Sci. 13 1473-500

Burger M, Elvetun O L and Schlottbom M 2017 Analysis of the diffuse domain method for second
order elliptic boundary value problems Found. Comput. Math. 17 627-74

Ritz A 2015 A new diffuse-interface model for step flow in epitaxial growth IMA J. Appl. Math.
80 697-711

Meca E, Shenoy V B and Lowengrub J 2017 H 2 -dependent attachment kinetics and shape
evolution in chemical vapor deposition graphene growth 2D Mater. 4 031010

38


https://doi.org/10.1002/wcms.1300
https://doi.org/10.1021/acsnano.7b07436
https://doi.org/10.1021/acsnano.7b07436
https://doi.org/10.1021/acsnano.7b07436
https://doi.org/10.1002/adma.201706103
https://doi.org/10.1002/admi.201601054
https://doi.org/10.1088/1361-6641/aad6c3
https://doi.org/10.1039/C7CS00556C
https://doi.org/10.1039/C7CS00556C
https://doi.org/10.1039/C7CS00556C
https://doi.org/10.1039/C7CS00160F
https://doi.org/10.1039/C7CS00160F
https://doi.org/10.1039/C7CS00160F
https://doi.org/10.1038/nmat4091
https://doi.org/10.1038/nmat4091
https://doi.org/10.1038/nmat4091
https://doi.org/10.1021/acs.nanolett.5b02423
https://doi.org/10.1021/acs.nanolett.5b02423
https://doi.org/10.1021/acs.nanolett.5b02423
https://doi.org/10.1021/nn3059828
https://doi.org/10.1021/nn3059828
https://doi.org/10.1021/nn3059828
https://doi.org/10.1021/acsnano.5b05474
https://doi.org/10.1021/acsnano.5b05474
https://doi.org/10.1021/acsnano.5b05474
https://doi.org/10.1103/PhysRevB.91.045408
https://doi.org/10.1021/ja405499x
https://doi.org/10.1021/ja405499x
https://doi.org/10.1021/ja405499x
https://doi.org/10.1021/acsnano.7b07604
https://doi.org/10.1021/acsnano.7b07604
https://doi.org/10.1021/acsnano.7b07604
https://doi.org/10.1098/rsta.1951.0006
https://doi.org/10.1098/rsta.1951.0006
https://doi.org/10.1098/rsta.1951.0006
https://doi.org/10.1103/PhysRevE.68.037702
https://doi.org/10.4310/CMS.2009.v7.n1.a4
https://doi.org/10.4310/CMS.2009.v7.n1.a4
https://doi.org/10.4310/CMS.2009.v7.n1.a4
https://doi.org/10.4310/CMS.2009.v7.n4.a10
https://doi.org/10.4310/CMS.2009.v7.n4.a10
https://doi.org/10.4310/CMS.2009.v7.n4.a10
https://doi.org/10.1088/0965-0393/20/7/075008
https://doi.org/10.1142/S0219876218500147
https://doi.org/10.4310/CMS.2015.v13.n6.a6
https://doi.org/10.4310/CMS.2015.v13.n6.a6
https://doi.org/10.4310/CMS.2015.v13.n6.a6
https://doi.org/10.1007/s10208-015-9292-6
https://doi.org/10.1007/s10208-015-9292-6
https://doi.org/10.1007/s10208-015-9292-6
https://doi.org/10.1093/imamat/hxu012
https://doi.org/10.1093/imamat/hxu012
https://doi.org/10.1093/imamat/hxu012
https://doi.org/10.1088/2053-1583/aa74f1

Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

[25] Feng W, Guo Z, Lowengrub J S and Wise S M 2018 A mass-conservative adaptive FAS multigrid
solver for cell-centered finite difference methods on block-structured, locally-cartesian grids
J. Comput. Phys. 352 463-97

[26] Rajan A G, Warner J H, Blakschtein D and Strano M S 2016 Generalized mechanistic model for
the chemical vapor deposition of 2d transition metal dichalcogenide monolayers ACS Nano 10

4330-44

39


https://doi.org/10.1016/j.jcp.2017.09.065
https://doi.org/10.1016/j.jcp.2017.09.065
https://doi.org/10.1016/j.jcp.2017.09.065
https://doi.org/10.1021/acsnano.5b07916
https://doi.org/10.1021/acsnano.5b07916
https://doi.org/10.1021/acsnano.5b07916
https://doi.org/10.1021/acsnano.5b07916

	1. Introduction
	2. The vdW-BCF model for the growth of vertically-stacked multilayers
	2.1. Model equations
	2.2. Analysis of vdW-BCF model: radial solutions and growth criteria

	3. Reformulation of the vdW-BCF model of multilayer growth using the diffuse domain method
	4. Numerical results
	4.1. Quasi-stationary dynamics
	4.2. Fully time-dependent case
	4.3. Anisotropic dynamics
	4.4. Parameter studies
	4.4.1. Binding energy differences
	4.4.2. Edge energy, surface diffusion and flux
	4.4.3. Kinetic coefficients


	5. Conclusions
	Acknowledgments
	Appendix A.
	A.1. Mass conservation
	A.2. Free energy dissipation
	A.3. Model simplification
	A.4. Nondimensionalization
	A.5. The vdW-BCF model equations for an arbitrary number of vertically-stacked layers

	Appendix B.
	Appendix C.
	C.1. Matched asymptotic expansions

	Appendix D.
	D.1. Numerical method
	D.2. Implementation

	Appendix E.
	References



