
Modelling and Simulation in Materials Science and Engineering

PAPER

Modeling the vertical growth of van der Waals stacked 2D materials
using the diffuse domain method
To cite this article: Zhenlin Guo et al 2020 Modelling Simul. Mater. Sci. Eng. 28 025002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 165.123.229.215 on 28/07/2020 at 21:32

https://doi.org/10.1088/1361-651X/ab5e9a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuA0ZaG8o7v9VWUjYsc4Nr7SInbtw-44G5va0SBzhiA9FBFVGnXVAu1NaWTykipYFpaw5w90v_tpf0nqMHDjAbTtZKdfx28HtgN-SWaub2TawWOqHJUE6ywkdqtrM5NwkxAWRuPQ674UNI3shb83cOjDak_M6zY5kTLUQr-b0Mr7iRVmdtMFFqSzsKwPAn07yX8CVswp_0ziFPwioq1uKm-E8gj6VnbnT5Rz0OR56rvfFQDwS0b&sig=Cg0ArKJSzCTXz66JXKq6&adurl=http://iopscience.org/books


Modeling the vertical growth of van der
Waals stacked 2D materials using the
diffuse domain method

Zhenlin Guo1 , Christopher Price2, Vivek B Shenoy2,3,4 and
John Lowengrub1,5

1 Department of Mathematics, University of California, Irvine, CA 92697-3875, United
States of America
2 Department of Materials Science and Engineering, University of Pennsylvania,
Philadelphia, PA 19104-6272, United States of America
3 Department of Mechanical Engineering & Applied Mechanics, University of
Pennsylvania, Philadelphia, PA 19104-6272, United States of America
4 Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6272, United
States of America
5 Department of Biomedical Engineering, University of California, Irvine, CA 92697-
3875, United States of America

E-mail: lowengrb@math.uci.edu

Received 8 October 2019, revised 20 November 2019
Accepted for publication 4 December 2019
Published 13 January 2020

Abstract
Vertically-stacked monolayers of graphene and other atomically-thin 2D
materials have attracted considerable research interest because of their
potential in fabricating materials with specifically-designed properties. Che-
mical vapor deposition has proved to be an efficient and scalable fabrication
method. However, a lack of mechanistic understanding has hampered efforts
to control the fabrication process beyond empirical trial-and-error approaches.
In this paper, we develop a general multiscale Burton–Cabrera–Frank type
model of the vertical growth of 2D materials to predict the necessary growth
conditions for vertical versus in-plane (monolayer) growth of arbitrarily-
shaped layers. This extends previous work where we developed such a model
assuming the layers were fully-faceted (Ye et al 2017 ACS Nano 11 12780–8).
To solve the model numerically, we reformulate the system using the phase-
field/diffuse domain method that enables the equations to be solved in a fixed
regular domain. We use a second-order accurate, adaptive finite-difference/
nonlinear multigrid algorithm to discretize and solve the discrete system. We
investigate the effect of parameters, including the van der Waals interaction
energies between the layers, the kinetic attachment rates, the edge-energies
and the deposition flux, on layer growth and morphologies. While the
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conditions that favor vertical growth generally follow an analytic thermo-
dynamic criterion we derived for circular layers, the layer boundaries may
develop significant curvature during growth, consistent with experimental
observations. Our approach provides a mechanistic framework for controlling
and optimizing the growth multilayered 2D materials.

Keywords: graphene, chemical vapor deposition, multiscale models, free-
boundary problems, diffuse interface methods

(Some figures may appear in colour only in the online journal)

1. Introduction

Two-dimensional (2D) materials including graphene and transition metal dichalcogenides
(TMDs) have garnered unprecedented interest in pursuit of unique electronic, optical,
mechanical, and thermal properties [1–5]. Compared to homogeneous monolayers, mul-
tilayered heterostructures contain many more degrees of freedom and thus can be ideal
platforms for electronic structure engineering of atomically thin 2D semiconducting
materials for novel applications. A key challenge in the realization of vertically integrated
2D layers is their synthesis [1, 6, 7]. Chemical vapor deposition (CVD) has proved to be an
efficient and scalable method to grow monolayer 2D materials on a variety of metal
substrates [8–11]. CVD, however, is a complex process that contains many parameters that
influence growth. For example, the growth temperature and the deposition flux have been
found to be critical parameters for switching from in-plane (monolayer) to vertically-
stacked multilayer growth. In WS2/MoS2 heterostructures on SiO2/Si substrates, high
temperatures favor the growth of vertically-stacked multilayers while low temperatures
favor monolayer growth [8]. In graphene, a lower deposition flux (e.g. higher concentra-
tions of H2 in the gas) also tends to favor multilayer growth [12, 13]. Determining proper
growth parameters is clearly a multivariable problem that until recently was tackled using
empirical trial-and-error approaches.

In recent work, we developed a multiscale model of the growth of vertically-stacked
2D materials on a substrate using CVD [14]. The model, which is of Burton–Cabrera–
Frank (BCF) type [15], accounts for attachment and diffusion of adatoms, van der Waals
(vdW) interactions between the layers and the substrate, and edge energies of the layers.
To simplify the system, the layers were assumed to be fully-faceted and so their shapes
were constrained to be equilateral polygons (e.g. triangles and hexagons). This work
predicted the thermodynamic requirements for growth of vertically-stacked faceted layers.
The vdW-BCF model predictions on monolayer versus multilayer morphologies were
validated by comparison with a variety of CVD-synthesized MX2 (M=Mo, W; X=S,
Se, Te) single-species samples grown under conditions of varying temperature and pre-
cursor flux.

However, as seen in the experiments in [10, 14] and in other references, the layers need
not to be faceted and can develop significant, and even negative, curvatures. Because the layer
morphologies influence growth and the material properties, it is important to accurately
predict the layer shapes as well. In this paper, we extend the vdW-BCF model in [14] to
account for arbitrary layer shapes. The resulting system is a highly nonlinear free boundary
problem. We analyze the model and derive an analytic thermodynamic criterion for vertical
growth assuming the layers are circular. To simulate the model when the layer geometries are
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unconstrained, we develop a second-order accurate phase-field/diffusion-domain method
(DDM) that enables us to simulate the system by solving a reformulated system (vdW-BCF-
DDM equations) in a fixed regular domain.

The diffuse-domain, or smoothed boundary, method is an attractive approach for
solving partial differential equations in complex geometries because of its simplicity and
flexibility. In this method the complex geometry is embedded into a larger, regular domain.
The original PDE is reformulated using a smoothed characteristic function of the complex
domain and source terms are introduced to approximate the boundary conditions. An
advantage of this approach is that the reformulated equations can be solved by standard
numerical techniques without requiring body-fitted meshes, additional interfacial meshes
or special stencils and the same solver can be used for any geometry. The diffuse-domain
method (DDM) was introduced in [16] to solve diffusion equations with Neumann (no-
flux) boundary conditions, to PDEs with Robin and Dirichlet boundary conditions in [17]
and to cases in which bulk and surface equations are coupled [18]. Later, in [19] and [20]
alternate derivations of diffuse-domain methods for such problems were presented. In [21]
a matched asymptotic analysis for general DDMs with Neumann and Robin boundary
conditions showed that for certain choices of the source terms, the DDMs were second-
order accurate in ò and in the grid size h in both the L2 and the ¥L norms, taking µ h, see
the recent paper [22] for a rigorous proof.

In [23], a DDM was proposed to solve a BCF model of epitaxial growth of thin,
crystalline films that combined a DDM reformulation of the adatom diffusion equations
together with a Cahn–Hilliard-type equation to model the dynamics of the films. This
approach considered only isotropic edge energies and kinetic coefficients and did not consider
vdW interactions. Further, the DDM used in [23] did not use a second-order accurate for-
mulation and thus was only first order accurate in ò (and h assuming ò∝h).

Here, we combine and extend the approaches from [21, 23] to develop a second-order
accurate adaptive finite-difference/nonlinear multigrid method to discretize and solve the
vdW-BCF-DDM equations numerically. We investigate the effect of parameters, including
vdW interaction energies between the layers, kinetic attachment rates, edge-energies and
deposition flux, on layer growth and morphologies. While the conditions that favor vertical
growth generally follow the thermodynamic criterion we derived for circular layers, the layer
boundaries may develop significant curvature during growth, consistent with experimental
observations, that can also influence the growth kinetics.

The outline of the paper is as follows. In section 2, we present and analyze the vdW-BCF
model for arbitrary layer shapes. In section 3 we present the phase-field/DDM reformulation
of the vdW-BCF model and briefly describe the numerical methods used. In section 4, we
present numerical simulation studies and in section 5 we present conclusions and discuss
future work. Additional details are provided in the appendices.

2. The vdW-BCF model for the growth of vertically-stacked multilayers

Let Ω0 denote the substrate, Ω1 denote a layer of atomic height 1 and Ω2 be a layer of atomic
height 2 with boundaries Γ0, Γ1 and Γ2, respectively. See the diagrams in figures E1 and E3
(left column). The system free energy is taken to be:
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where i is the binding energy of layer i that accounts for in-plane bonding and any
corresponding vdW interactions. In addition, γi=γi(θi) is the edge energy of layer i, θi is the
normal angle of layer i (e.g. the angle between the normal vector Gn i

, which points into W -i 1,
and the x-axis). The function ρi is the adatom concentration on layer i and ρref=Ωs is the
concentration of atomic sites (assumed to be the same on the layers). Further, kB is
Boltzmann’s constant, T is the temperature and the third term in equation (1) represents the
regular solution model free energy.

2.1. Model equations

By requiring mass to be conserved and that the free energy is non-increasing in time, we can
derive a thermodynamically-consistent BCF-like system of equations that govern the
dynamics of the adatom densities and the layer morphologies and sizes. Here, we only present
the nondimensional equations that include several simplifications. A detailed derivation of the
equations, a description and justification of the simplifications and the nondimensionalization
are given in appendix A.

The nondimensional adatom concentrations satisfy the diffusion equations

r r t r¶ = D + - W =-D F iin , 0, 1, 2, 2t i i i i d i i i,
1 ( )

where >D 0i is a dimensionless diffusion coefficient, Fi is a dimensionless deposition flux
and t-d i,

1 a dimensionless desorption rate. These are all assumed to be constant. At the layer
boundaries Γ2 and Γ1 mass conservation is imposed, which yields the kinetic boundary
conditions:

r r r r g k= - - = - - + ++
G G

+  q D v kn , 32 2 2 2 2 2 2 2 1 2 22 2
*· ∣ ( ( ˜ ) ( )

r r r r g k= + = - - + +-
G G

-  q D v kn , 42 1 1 1 2 2 1 2 1 2 22 2
*· ∣ ( ( ˜ ) ( )

Figure E1. (a) Schematic of epitaxial growth of 2D materials; (b) schematic of vdW
interactions between the layers and the substrate.
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r r r r g k- - = - - ++
G G

+ q D v kn , 51 1 1 1 1 1 1 1 1 11 1
*≔ · ∣ ( ( ˜ ) ( )

r r r r g k + = - - +-
G G

- q D v kn . 61 0 0 0 1 1 0 1 1 11 1
*≔ · ∣ ( ( ˜ ) ( )

Here, qi are the diffusion fluxes of adatoms to the layer boundaries, with the ‘+’ and ‘−’

subscripts denoting limits from the ith and i−1 layers, r* is a nondimensional measure of
the thermodynamic equilibrium density, g g q g q= + i i i i i˜ ( ) ( ), where the primes denote
derivatives with respect to θi, denotes the layer boundary (edge) stiffness, and κi is the
curvature of the edge Γi (i=1, 2). The constants ki are the dimensionless rates for
attachment of adatoms to the edges from the ith ( +ki ) and i−1 ( -ki ) layers, respectively. The
normal velocity of each layer boundary Γi is given by

b k= + + ¶+ -v q q , 7i i i s i
2 ( )

where the dimensionless constant β is related to the mobility of an adatom along a curved
edge. At the boundary of the substrate, we assume there is no flux of adatoms: r =Gn 00 0· .

2.2. Analysis of vdW-BCF model: radial solutions and growth criteria

For simplicity, we consider a configuration in which the two layers and substrate are circular
and centered at the same point O. We assume that the edge energy and the kinetic coefficients
are isotropic. We solve the system (2)–(7) analytically to derive necessary and sufficient
conditions for the growth of layer 2. The layers Ω1 and Ω2 have radii R1(t) and R2(t). The
substrate has radius ¥R , which is fixed. We assume that initially < < <R R R0 0 02 1 0( ) ( )
and that the dynamics are dominated by diffusion so that the time derivative on the left hand
side of equation (2) is set to zero (quasi-steady case). We further assume the desorption of
adatoms is small and so we set t =- 0d i,

1 . The reduced system can be solved analytically. Here,
we present only the results, a complete derivation of the solutions is provided in appendix B.

The analytical solutions for the densities ρi are:
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where Ai and Bi are given in appendix B. When the flux of adatoms is only non-zero on the
substrate (e.g. = =F F F0, 00 2 1 ), which reflects the catalytic decomposition of CH4 vapor
on the substrate surface into mobile radicals (e.g. CH and C) that can attach to the graphene
layers [24], the normal velocities of the layer boundaries are given by
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where γ1 and γ2 are isotropic edge energies. The velocities for the more general case with F1

and F2 not necessarily equal to zero can be found in appendix B. Define = -  2,1 2 1 to be
the binding energy density between the two layers and = 1,0 1 to be the binding energy
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density between layer 1 and the substrate. The difference between these two energies

D = - = -    2 , 112,1 1,0 2 1 ( )

is the gain in energy by adding atoms to layer 2 instead of layer 1. An analysis of v2 in
equation (10) reveals a sufficient condition for the growth of layer 2:

g g
D > -

R R
, 122

2

1

1
( )

since the denominator in equation (10) is always non-positive. This is analogous to the
growth criterion derived in [14] for faceted layers. This condition states that the difference
between the binding energies, D , must be large enough to overcome the energy penalty of
increasing the layer perimeter. It follows that if g> DR R c2 2, 2≔ , then layer 2 always
grows, regardless of the size of layer 1. This is analogous to a critical nucleation size. Further,
if > g

g -D
R R c R1 1,

1

2 2
≔ then layer 2 always shrinks. When R2 is close to R c2, , layer 2 may

grow due to kinetic effects. That is, R2 may surpass R c2, before R1 surpasses R c1, . Whether this
occurs depends on the values of the parameters. For example, slowing down the growth of the
first layer (e.g. by decreasing F0) or increasing the rate of growth of the second layer (e.g. by
increasing -D k,1 2 or +k1 ) increases the region of kinetically-driven growth. We call R k2, the
kinetic critical radius—that is, if > >R R R0c k2, 2 2,( ) , then the second layer grows due to the
kinetics of the system.

By solving for the radii R1 and R2 numerically and varying the initial radii, we can estimate
R k2, numerically and construct a phase diagram for the growth of the 2nd layer. As an example, we
fix the parameters g g rD = = = = = = = =- + F D k k0.05, 0.1, 0.01, 0.5, 1, 0.50 1 2 1 2 1*
and =¥R 3.8. We then vary the initial sizes of the layers R1(0) and R2(0), keeping R2(0)�R1(0).
The resulting phase diagram is shown in figure E2(a). Also observe that for R2 in between R1, c and
R k2, , the 2nd layer grows transiently before shrinking to zero size. Example trajectories of the layer
dynamics are shown in figure E2(b).

3. Reformulation of the vdW-BCF model of multilayer growth using the diffuse
domain method

To solve the vdW-BCF equations for unconstrained layer geometries, we reformulate the
system using the diffuse domain method (DDM). Here, we combine and extend the
approaches from [21, 23] to develop a fully-second order accurate DDM for the vdW-BCF
system. We embed the substrate and layer domains into a larger, rectangular domain W̃ and
we introduce a diffuse domain function j to mark the locations of the layers and substrate
(e.g. approximate atomic height). In particular, j≈0 in the substrate (Ω0), j≈1 in layer 1
(Ω1) and j≈2 in layer 2 (Ω2).

In order to facilitate comparisons with theory from the previous section, we assume that
the outer boundary of the substrate is circular and so we introduce another diffuse domain
functionj¥ to identify the deposition domain È ÈW = W W W0 1 2, wherej »¥ 1, within the
larger domain W̃. See figure E3(a). The diffuse domain variables change rapidly but smoothly
across the boundaries (e.g. steps) as shown in figure E3(b). The width of these narrow
transition layers is ≈ò, a small parameter. The boundaries of the substrate and layers 1 and 2
correspond to j≈0.5 and j≈1.5, respectively. The kinetic boundary conditions are
incorporated via source terms and the dynamics of the layers are captured by evolving the
diffuse domain function j. In addition, we follow [23] and solve only two adatom diffusion
equations in the extended domain W̃. A brief description of the derivation and an asymptotic
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analysis of the vdW-BCF-DDM, which demonstrates that the vdW-BCF-DDM system
approximates the sharp interface vdW-BCF model to O(ò2), are given in appendix C. Here,
we present only the resulting equations:

j j r j j j r j j j

j j t r j j j r r j g j m

 



= +

- - - +
¥ ¥ ¥

¥
-

¥
-

 

 

H H D H F

H k , 13

t

d

0 0 0 0 0 0 0

0
1

0 0 0
1*

( ( ) ) · ( ( ) ( ) ) ( ) ( )

( ) ∣ ∣ ( )( ( ( ) ( ) ) ( )

Figure E2. (a) Morphology diagram, assuming that the layers are circular, showing the
dependence of layer 2 growth on the size of layers 1 and 2. In particular, the sign of v2
is shown for different sizes of the layers (R1, R2). When >R R c2 2, layer 2 always
grows. When >R R c1 1, layer 2 always shrinks. When < <R R Rc k1, 2 2, layer 2 grows
transiently before shrinking. When >R R k2 2, layer 2 grows because R2 increases past
R c2, sooner than R1 crosses R c1, . See text for details on R R,c k1, 2, and R c2, . (b) Sample
trajectories of the layer radii R1 and R2 in time, starting from different initial radii. The
parameters are as in equation (42) except with = 1.052 so that D = 0.05.
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where the kinetic boundary conditions (3)–(6) are modeled by the extra source terms
containing j∣ ∣, which approximates the surface delta function. Equation (13) models the
adatom diffusion equations on the substrate and layer 2, e.g. r0 approximates the adatom
concentration on both the substrate, where j≈0, and layer 2, where j≈2. Equation (14)
models adatom diffusion on layer 1 and r1 is the corresponding approximate adatom
concentration. For simplicity, we have assumed t t=d i d, . The functions H0, H1 are extended
approximate characteristic functions of the layer domains and substrate. In particular, H0 is
the approximate characteristic function of the substrate and layer 2:

j
j j

j j
=

- Î
- Î

H
1 for 0, 1 ,

1 for 1, 2 ,
150

⎧⎨⎩( )
[ ]
( ]

( )

and H1 is the approximate characteristic function of layer 1:

j
j j

j j
=

Î
- Î

H
for 0, 1 ,

2 for 1, 2 .
161

⎧⎨⎩( )
[ ]
( ]

( )

Further, the flux F0(j) corresponds to the flux on the substrate

j
j
j

=
<
Î



F
F for ,
0 for , 2 ,

170
0⎧⎨⎩( )

[ ]
( )

and D0(j) corresponds to the adatom diffusion coefficients on the substrate and layer 2

j
j
j

=
Î
Î

D
D
D

for 0, 1 ,
for 1, 2 .

180
0

2

⎧⎨⎩( )
[ ]
( ]

( )

Figure E3. Schematic of the diffuse domain method. Top: the sharp (physical) interface
domain is embedded in a larger, square domain W̃ where a phase-field functions f and
f¥ approximate the height of the layers and the characteristic function of the deposition
domain, respectively. Bottom: a slice across the sharp interface domain and slices of
the phase-field functions j and j¥.
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Analogously, the extended vdW energies and kinetic attachment rates are defined as

j
j
j

=
- Î
- + Î




 

for 0, 1 ,
for 1, 2 ,

191

2 1

⎧⎨⎩( )
[ ]
( ]

( )
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j
j
j

=
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for 1, 2 ,
200
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( ]
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Î
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-k
k
k

for 0, 1 ,
for 1, 2 .

211
1

2

⎧⎨⎩( ) [ ]
( ]
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The evolution of the layers is implicitly captured by evolving j:

j j j r r j g j m j r r j g j m

b j m



 

¶ = - + + - +

+

- -

-

 



  k k

G ,

22

t 0 0
1

1 1
1

2

* *∣ ∣( ( )( ( ( ) ( ) ) ( )( ( ( ) ( ) ))

· ( ( ) )
( )

m j j= - D + ¢ B , 232 ( ) ( )

where the right hand side of equation (22) models the normal velocity from equation (7). Note
that since the outer boundary of the substrate does not change we do not need to pose an
evolution equation for j0. In equations (22) and (23), j j=G B2( ) ( ) is an extended double
well potential:

j
j j j
j j j

=
- Î

- - Î
B

18 1 for 0, 1 ,

18 1 2 for 1, 2 .
24

2 2

2 2

⎧⎨⎩( )
( ) [ ]

( ) ( ) ( ]
( )

As shown in appendix C, and confirmed by our numerical results in the next section, the
vdW-BCF-DDM system is second order accurate with respect to the interface thickness ò.
Moreover, our diffuse interface model can be extended to simulate the more nonlinear model
derived in appendix A and to simulate an arbitrary number of vertically-stacked layers (see
appendix A.5).

Finally, at the boundary of the larger domain ¶W̃, we take the conditions

r r j m   = = = = n n n n 0. 250 1· · · · ( )

The model is insensitive, however, to the choice of boundary conditions on ¶W̃.

4. Numerical results

To solve the vdW-BCF-DDM system (13)–(25) numerically, we develop a mass-con-
servative, semi-implicit, second-order accurate, adaptive finite-difference method using
Crank-Nicholson discretization in time and centered differences in space, by extending our
previous work, e.g. [25]. To solve the nonlinear discrete system at the implicit time level, we
use a full approximation storage (FAS) nonlinear multigrid method. Block-structured adap-
tive mesh refinement is utilized to efficiently discretize the system. The details of the method
are provided in appendix D.

We begin by considering the isotropic, quasi-steady case so we may compare our
numerical results to the analytical solutions presented in section 2.2 to validate the accuracy
of our approximations. We then consider time-dependent diffusion and anisotropic edge
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energies and kinetic coefficients. We perform parametric studies to determine the effect of
parameters on the growth and morphologies of the layers.

4.1. Quasi-stationary dynamics

We consider the same set up as in section 2.2. Initially, two layers are centered at the origin
with different radii R1 and R2 and the edge energy and kinetic coefficients are isotropic. The
two islands are bounded by a larger circular substrate with radius R0. The initial condition for
the diffuse domain variable is

j = -
-

+ -
-

 
x

x R x R
, 0
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2
1 tanh

3 1

2
1 tanh
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such that j≈1 approximates layer 1 and j≈2 approximates layer 2. We take

j = -
-
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1 tanh
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, 270⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( ) ( )

which corresponds to the region containing the substrate and the two layers where deposition
and growth take place. The parameter ò is the thickness of the layer and substrate boundaries.
The initial radii of the layers are R1(0)=1.2 and R2(0)=0.6. The outer radius of the
substrate is =¥R 1.8. The physical parameters are taken to be

r g g

t b

= = = = = = = = = = =

= = = - = -
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-  

k k D D D F F F1, 0.01, 1, 1, 2,
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*

( )
The computations are carried out on a square domain - ´ -2, 2 2, 2[ ] [ ]. A four-level
adaptive mesh is employed, which consists of a root level with mesh size h0 and three
refinement levels above it so that the finest mesh size =h h 83 0 . In order to test the
convergence rate corresponding to different values of ò, we refine the root level grid size h0
and ò together, and hence all the finer level grid sizes h1, h2 and h3 are refined as well. In
particular, we set = h3 6.4

. The mesh is refined according to values of j j + 0∣ ∣ ∣ ∣ over the
entire domain (see appendix D). The time step is taken to beD = ´ -t 10

0.8
4 to ensure that

the time errors are small compared to spatial errors; the method is stable (and accurate) for
larger time steps.

Five different values of ò are used for the convergence test, namely, = 0.8,1

= = =  0.4, 0.2, 0.12 3 4 and ò5=0.05. The difference between the analytical solutions
and our numerical results are computed using the following metrics:

j r r
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where k=0 denotes the substrate and k=1, 2 denote the layers. The convergence rate is
obtained by = r r- - r E Elni 1 , ,i k i k1

(·) (·) , where òi and -i 1 represent consecutive values of ò. The
horizontal slices of the adatom concentrations rk for different ò together with the analytical
solution are shown at time t=0.1 in figure E4(a). We can observe that the numerical results
approach the analytical solution as ò decreases. The corresponding errors and rates of
convergence are presented in table 1, which indicates that the numerical method converges to
the analytic solution with an overall second order convergence rate in both the ℓ2 and ¥ℓ
norms, as predicted by the asymptotic analysis in appendix C.
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Figure E4. Comparisons between the numerical results and analytical solution at time
t=0.1. In (a) the quasi-steady dynamics are shown from section 4.1. In (b) the fully-
time dependent dynamics are shown from section 4.2. The dashed and dotted lines
represent the horizontal slices of densities ρ2, ρ1 and ρ0 at different ò, as labeled. In (a)
the black solid lines give the analytical solution. The radii of the layers are shown as a
function of time in (c) the adatom concentrations and gradients are larger in the quasi-
steady case, which give rise to faster dynamics in the quasi-steady case.
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4.2. Fully time-dependent case

Next, we include the time derivatives in the adatom diffusion equations. The physical
parameters, the computational domain and the numerical parameters are the same as in the
previous section. Since we do not have an analytic solution in this case, we compare the
results obtained using different ò (and hence h0) with each other. The horizontal slices of the
adatom concentrations r r ,2 1 and r0 are shown at time t=0.1 in figure E4(b). Compared to
the quasi-steady case, the adatom concentrations in each layer are smaller and there is less
variation across the layers. Correspondingly, the layers do not move as rapidly in the time-
dependent case with the first layer growing more slowly than the second, compared to the
quasi-steady case (figure E4(c)). Figure E4(b) also shows that the results converge as ò is
decreased. To estimate the accuracy and quantify the rate of convergence, we define the
consecutive errors as
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where the jj, with j=0, 1 and 2 are the approximate characteristic functions on the substrate,
layer 1 and layer 2 respectively. They are defined as
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Table 1. Convergence test for the adatom concentrations ρ2, ρ1 and ρ0 under quasi-
steady dynamics from section 4.1.

t=0.10 ℓ2

ò rE ,
2

2

( ) Rate rE ,
2

1

( ) Rate rE ,
2

0

( ) Rate

0.8 5.252×10−2
— 5.143×10−2

— 2.095×10−1
—

0.4 1.514×10−2 1.80 2.020×10−2 1.35 6.557×10−2 1.66
0.2 3.229×10−3 2.23 3.858×10−3 2.40 1.529×10−2 2.10
0.1 8.198×10−4 1.98 9.945×10−4 1.96 4.198×10−3 1.87
0.05 1.801×10−4 2.12 2.411×10−4 2.04 1.001×10−3 2.07

t=0.10 ¥ℓ

ò r
¥
E , 2

( ) Rate r
¥
E , 1

( ) Rate r
¥
E , 0

( ) Rate

0.8 6.132×10−2
— 5.812×10−2

— 3.271×10−1
—

0.4 1.914×10−2 1.68 2.360×10−2 1.30 1.214×10−1 1.43
0.2 5.058×10−3 1.92 5.429×10−3 2.12 3.368×10−2 1.85
0.1 1.453×10−3 1.80 1.496×10−3 1.86 1.058×10−2 1.67
0.05 3.946×10−4 1.88 4.007×10−4 1.90 2.996×10−3 1.82
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and these functions are evaluated at = i. The errors and rates of convergence, which are
calculated from the consecutive errors at time t=0.1 in an analogous way as in the previous
section, are presented in table 2. As in the quasi-steady case, we observe that the results
converge with second order accuracy in both the ℓ2 and ¥ℓ norms.

4.3. Anisotropic dynamics

We now consider the case in which the edge energies and kinetic coefficients are anisotropic:

j q
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where

x q q q= - - n1 cos , 36k k n, 0( ) ( ( )) ( )

is the kinetic coefficient anisotropy function, θ is the normal angle (e.g. angle between the
normal vector and the x-axis), and θ0 is a reference angle which is taken to be θ0=π/n. The
edge energies are defined analogously:

g q g x q x q= +  , 37s s( ) ( ( ) ( )) ( )

x q q= -  n1 cos , 38s s n,( ) ( ) ( )

where ξs is the edge energy anisotropy function. The coefficients k n, and s n, measure the
anisotropy strengths. In this paper, we only consider three-fold (n= 3) and six-fold (n= 6)
anisotropies, which reflect the symmetries of MoS2 and graphene multilayers, respectively.
The trigonometric functions are calculated using j:

Table 2. Convergence test for concentrations ρ2, ρ1 and ρ0 under the fully time-
dependent dynamics in section 4.2.

t=0.10 ℓ2

ò r- E , ,
2
i i1 2

( ) Rate r- E , ,
2
i i1 1

( ) Rate r- E , ,
2
i i1 0

( ) Rate

0.4 3.978×10−3
— 8.066×10−3

— 5.648×10−3
—

0.2 2.315×10−3 0.78 3.299×10−3 1.29 2.224×10−3 1.35
0.1 6.977×10−4 1.73 9.287×10−4 1.83 5.779×10−4 1.94
0.05 1.781×10−4 1.97 2.258×10−4 2.04 1.239×10−4 2.22

t=0.10 ¥ℓ

ò r
¥
- E , ,i i1 2

( ) Rate r
¥
- E , ,i i1 1

( ) Rate r
¥
- E , ,i i1 0

( ) Rate

0.4 4.316×10−3
— 4.167×10−3

— 3.241×10−3
—

0.2 2.521×10−3 0.78 2.299×10−3 0.86 1.816×10−3 0.84
0.1 9.029×10−4 1.48 8.187×10−4 1.49 6.444×10−4 1.49
0.05 2.606×10−4 1.80 2.368×10−4 1.80 1.892×10−4 1.77
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where we introduce a small parameter d = -10 6 to avoid singularities. Then, qcos 3( ) and
qcos 6( ) can be calculated using the trigonometric identites:
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We next consider the quasi-steady dynamics of two anisotropic layers. Initially, the
layers are taken to be circular with radii R1(0)=1.0 and R2(0)=0.2. The outer boundary of
the substrate is =¥R 3.8. The physical parameters are taken to be:
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Note that unlike the previous examples, the only non-zero flux is on the substrate F0, which
as discussed before reflects the assumption that the reactions to produce the attaching
species occur only on the substrate surface [24]. Note that D = 0.4 and g -R 02 2 ( )
g =R 0 0.041 1( ) so that growth would occur under isotropic, quasi-steady dynamics (recall
the growth condition in equation (12)). The parameters for the anisotropy are set as

= = =
= = =

 

 

n

n

6, 0.3, 0.01,
3, 0.7, 0.01. 43
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, , ( )

The morphologies of the growing layers are shown in figure E5(a). In both the six-fold and
three-fold anisotropic cases, layers 1 and 2 grow. In the six-fold case, the layers are nearly
faceted at early times while the corners are smoothed slightly from the surface diffusion. At
later times, both layers develop negative curvature. In the three-fold case, layer 1 evolves to a
convex triangular shape at early times while layer 2 develops negative curvature early on. At
later times, the corners of layer 1 somewhat elongate with their curvature being set by the
surface diffusion coefficient (see figure E9(c)). The corresponding adatom concentrations are
shown in figure E5(b) where we see the adatoms diffusing toward both layers driving their
growth. In figure E5(c), the adaptive mesh is shown for the six-fold anisotropic case. Observe
that there is a fine mesh near the outer boundary of the substrate, which does not change.
The mesh near the boundaries of layers 1 and 2 is dynamically refined and and the mesh in
the bulk regions is coarsened. In the anisotropic case, we also observe second-order accurate
convergence in ℓ2 and ¥ℓ , see appendix E.

4.4. Parameter studies

We next investigate the effects of the physical parameters on the growth of the layers. In
particular, we consider the binding energy differencesD , the edge energy γ and the surface
diffusion β, flux F0 and the kinetic attachment rates -k2 and +k1 . We fix all the other para-
meters as in equation (42) and describe only those parameters that are changed.

4.4.1. Binding energy differences. We first investigate the effects of D on the growth rate
of layer 2. The morphologies and adatom concentrations for six-fold anisotropic layers
obtained from the quasi-steady dynamics are shown in figures E6(a) and (b), respectively.
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Consistent with theory (section 2.2), the vertical growth of layer 2 is only preferable when
D > 0.04, based on equations (12) and (42), and that growth rate increases with D .
Further, the growth of layer 2 occurs at the expense of that of layer 1; the size of layer 1 is a

Figure E5. The quasi-steady dynamics of layers 1 and 2 using six-fold and three-fold
symmetric anisotropic edge energies and kinetic coefficients under conditions for
which both layers should grow. See text for parameters. (a) Time evolution of the layer
morphologies; (b) time evolution of the adatom concentrations on the layers. (c) The
dynamic adaptive mesh for six-fold anisotropic layers. As both layers grow, driven by
fluxes of the adatoms, negative curvatures develop in both layers in the six-fold case
and in layer 2 in the three-fold case. The corners of the layers are more affected by
surface diffusion in the three-fold case compared to the six-fold case.

Figure E6. The effects of binding energy differencesD for the quasi-steady dynamics
of layers 1 and 2 using six-fold symmetric anisotropic edge energies and kinetic
coefficients. See text for other parameters. (a) Time evolution of the layer
morphologies; (b) Time evolution of the adatom concentrations on the layers. The
growth conditions for six-fold anisotropic layers follow the thermodynamic criterion in
equation (12), derived in the isotropic, quasi-steady case (circular layers), that relates
D and the sizes of the layers. Further, when layer 2 grows, it does so at the expense of
layer 1.
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decreasing function of D . In all the cases, layer 1 is nearly faceted at early times, and
develops negative curvatures at late times as layer 1 increases in size. Similar morphologies
are observed for layer 2 with negative curvatures occurring when layer 2 is large enough
(e.g. D = 0.8).

For comparison, the morphologies for six-fold anisotropy obtained from the fully time-
dependent dynamics are shown in E7. Compared to the quasi-steady case, we observe that the
growth of layer 1 is significantly slower but that layer 2 actually grows more rapidly. Further,
layer 2 grows even whenD = 0. This reflects the fact that vertical growth is more favorable
when the growth rate of layer 1 is decreased, which is suggested by the theory in section 2.2.

In figures E8(a) and (b), the morphologies and adatom concentrations are shown,
respectively, for three-fold anisotropic layers using the fully time-dependent dynamics.
Qualitatively, the results are similar to the six-fold case in figure E7 although we observe that
negative curvature occurs first in layer 2 before being manifest in layer 1.

4.4.2. Edge energy, surface diffusion and flux. In figure E9(a), we show the effects of edge
energy γ on the growth of the layers in the fully time-dependent case. In both six-fold and
three-fold anisotropies, we see that the growth rate of layer 2 decreases as we increase γ, and
the layer 2 even shrinks when γ is large enough (γ=0.16 or larger). The size of layer 1 is
also decreased and the layer morphologies are smoother and the negative curvature on the
layers disappears as γ is increased.

As seen in figure E9(b), surface diffusion also decreases the sizes of layer 2 and
smoothens the layer corners although the negative curvature of the layers remains. In the six-
fold anisotropic case, layer 1 is also decreased in size as β increases while in the three-fold
anisotropic case, layer 1 is actually a little larger due to the decreased curvature at the vertices.

Next, we examine the effects of the adatom flux F0 on the layer dynamics. As shown in
figure E9(c), decreasing the supply of adatoms on the substrate (F0) benefits the growth of
second layer, which agrees with reported experimental observations for vertical growth of 2D

Figure E7. The effects of binding energy differences D for the time-dependent
dynamics of layers 1 and 2 using six-fold symmetric anisotropic edge energies and
kinetic coefficients. (a) Time evolution of the layer morphologies; (b) time evolution of
the adatom concentrations on the layers. Compared to the quasi-steady case shown in
figure E6, layer 1 grows more slowly but layer 2 grows more rapidly. In fact, layer 2
grows even when D = 0, in contrast to the quasi-steady case where layer 2 shrinks
when D = 0.
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materials (e.g. [14]). Moreover, in the case of six-fold anisotropy, we see that both layers
develop negative curvatures at small F0, but as F0 is increased the shapes become more
facetted. Similar features are observed in the three-fold anisotropic case, except when
F0=100, where kinks with negative curvature develop at the boundary of layer 1. This
feature persists under mesh refinement and seems to be associated with deposition only
occurring on the substrate. If adatoms are deposited on all the layers, then layer 1 is convex at
an equivalent size.

4.4.3. Kinetic coefficients. In figure E10(a), the kinetic parameter -k2 is varied from 0.5 to 4.0
for layers with six-fold anisotropies. As predicted by the theory in section 2.2, increasing -k2

favors the growth of layer 2 at the expense of layer 1. Both layers acquire negative curvature
as they grow. In figure E10(b), we take =+ -k k1 1 and vary this value from 0.5 to 4.0. In this
case, the growth of layer 2 is insensitive to these changes, which is surprising because theory
suggests that increasing +k1 increases layer 2 growth (equation (10)). The reason for the
discrepancy is that a morphological instability occurs on layer 1 that accelerates its growth
relative to that of layer 2. Because layer 1 grows faster, this reduces the number of adatoms
available for layer 2 growth.

The growth of three-fold anisotropic layers subject to the same changes in the kinetic
parameters shows somewhat different results. As seen in figures E11(a) and (b), increasing -k2

and +k1 both favor the growth of layer 2. Further, when -k2 is increased, only layer 2 acquires
negative curvature while layer 1 remains convex, in contrast to the results found for six-fold
anisotropy. In addition, when +k1 is increased, the morphological instability of layer 1 found
in the six-fold case is not present in the three-fold case. Because of this layer 1 in the three-
fold case does not grow as rapidly, relative to that of layer 2, which enables more adatoms to
be available to drive the growth of layer 2.

Figure E8. The effects of binding energy differences D for the time-dependent
dynamics of layers 1 and 2 using three-fold symmetric anisotropic edge energies and
kinetic coefficients. (a) Time evolution of the layer morphologies; (b) time evolution of
the adatom concentrations on the layers. Qualitatively the growth criterion for layer 2
growth is similar to that for the six-fold, fully time-dependent case shown in figure E7.
Quantitatively, the layers grow more rapidly in the three-fold case. Further, the
negative curvature of the sides is more pronounced on layer 2.
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5. Conclusions

Epitaxial growth of 2D materials is a complex process, influenced by thermodynamic, kinetic
and growth parameters, often leading to diverse and complex growth morphologies deter-
mined both by atomic-scale phenomena and by the elastic interactions of surface features and
defects and transport of diffusing molecules over length scales of hundreds of nanometers. No
single model can describe all the processes involved. In this paper, we derived a general
continuum vdW-BCF model to describe the growth of vertically-stacked, arbitrarily-shaped
multilayered 2D materials. The model accounted for (i) energy changes upon incorporation of
adatoms into the growing 2D layers, (ii) kinetic barriers to attachment, (iii) distinct vdW
interactions between the 2D layers and the substrate, (iv) energy penalties associated with the
layer edges, and (v) the entropy of the adatoms. This is an extension of our previous work
where we developed and analyzed an analogous model for faceted layers where the layer
dynamics was much simpler [14]. The vdW-BCF system presented here represents a highly
nonlinear free boundary problem.

We analyzed a nondimensional version of the vdW-BCF model and derived an analytic
thermodynamic criterion for vertical growth of stacked 2D materials assuming the layers are

Figure E9. The morphologies of the six-fold and three-fold anisotropic layers at
approximately the same sizes for different choices of edge energy strengths γ in (a),
surface diffusion coefficients β in (b) and deposition fluxes F0 in (c) All these
parameters inhibit layer 2 growth. In (a) and (b), the six-fold and three-fold shapes are
shown at times t=9.6 and t=8.4, respectively. In (c), the times shown for the six-
fold case are (F0=0.01: t=60, F0=0.1: t=9.6, F0=1.0: t=2.8, F0=10.0:
t=0.8, F0=10.0: t=0.18) and for the three-fold case: (F0=0.01: t=56, F0=0.1:
t=8.4, F0=1.0: t=2.25, F0=10.0: t=0.65, F0=10.0: t=0.15). See text for
all the parameters.
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circular. To solve the system numerically, we used a second-order accurate phase-field/DDM
that enabled us to solve the dynamic equations in a fixed regular domain. To discretize
and solve the vdW-BCF-DDM reformulated system, we developed a second-order accurate

Figure E10. The effects of kinetic attachment coefficients on the dynamics of six-fold
anisotropic layers 1 and 2. See text for parameters. In (a), only -k2 is varied. In (b)

=+ -k k1 1 are varied together. The kinetic parameter -k2 promotes layer 2 growth, as
predicted by theory. The growth of layer 2 is insensitive to simultaneous changes in +k1

and -k1 although layer 1, however, is significantly affected and undergoes a
morphological instability.

Figure E11. The effects of kinetic attachment coefficients on the dynamics of three-fold
anisotropic layers 1 and 2. See text for parameters. In (a), only -k2 is varied. In (b),

=+ -k k1 1 are varied together. In contrast to the six-fold case shown in figure E10, both
kinetic parameters -k2 and =+ -k k1 1 promote the growth of layer 2 in the three-fold
case. Further, the morphological instability observed in the six-fold case is not present
in the three-fold case.
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finite-difference/nonlinear multigrid method using adaptive, block-structured Cartesian mesh
refinement. We demonstrated convergence of the numerical methods and investigated the
effect of parameters on the layer growth and morphological evolution. While the conditions
that favor vertical growth generally follow the thermodynamic criterion we derived for cir-
cular layers, the layer boundaries may develop significant curvature during growth and even
morphological instabilities. These deviations from faceted shapes can alter the growth
dynamics of the layers and can hinder or enhance vertical growth.

Experiments show a wide variety of layer morphologies, including layers with negative
curvature, which our model is capable of reproducing. A small sample of experimental layer
morphologies are shown in figure E12 together with our numerical simulations. Figure E12(a)
shows a SEM image of bilayer graphene from [10] (left) that exhibits a star-shaped layer 1
and a nearly circular layer 2. The image on the right in figure E12(a) is a numerical simulation
at time t=4 with the parameters from equation (42) except that = =-k F10, 11 0 and

= 1.02 . Figure E12(b) shows a SEM image of bilayer graphene with a twisted layer 2 from
[10] (left). This experiment was motivated by the observation that electronic structure of
bilayer graphene can be altered by changing the relative twist angle, yielding a new class of
low-dimensional carbon systems. To simulate twisted bilayer graphene, we modify the
reference angle θ0 of the kinetic coefficient ξk(θ) in equation (36). In particular, we set

q
q j

j
=

+ ´ Î

Î

p p

p

for 1, 2 ,

for 0, 1 ,
440

6
2
360

6

⎪
⎪

⎧
⎨
⎩

˜ ( ]

[ ]
( )

where q̃ denotes the twist angle of layer 2. Here, we take q = 10o˜ and all the other parameters
are as in equation (42). The numerical result at time t=8 is shown in the right figure of
figure E12(b). Consistent with the experiment, layer 1 develops a hexagon shape with slight
negative curvature while the twisted 2nd layer is nearly faceted. Figure E12(c) shows an

Figure E12. Experiments show a wide variety of bilayer morphologies of 2D materials,
including layers with negative curvature, which our mathematical model is capable of
reproducing. (a) Left: SEM image of bilayer graphene adapted from [10], with
permission. Right: numerical simulation. (b) Left: SEM image of bilayer graphene with
a twisted layer 2 adapted from [10], with permission. Right: numerical simulation with
twist angle q = 10o˜ (see text). (c), (d) Left: optical images of TMD samples showing
vertically-stacked bilayers of MoS2 adapted from [14], with permission. Right:
numerical simulations. See text for model parameters.
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optical image of a vertically-stacked bilayer of MoS2 from [14] (left) where layer 1 has a
triangular shape with negatively curved sides and contains two smaller layer 2 triangles that are
nearly faceted. The image on the right shows our numerical approximation at time t=3.84,
which uses the parameters in equation (42) except with g g= = = = -k k3.0, 6.0, 0.021 2 1 2 ,
and = 1.02 . Finally, in figure E12(d), an optical image of a vertically-stacked bilayer of MoS2
from [14](left) is shown where layer 2 nearly overlaps with layer 1 and both have shapes that are
almost faceted. The figure on the right shows our numerical approximation at time t=2.8,
which uses the parameters in equation (42) except with g g= = =F0.04, 0.0121 2 0 ,
and = 5.02 .

Although we performed our study using a range of nondimensional parameters, atomistic
and mesoscale models can be used to provide specific material parameters. For example, DFT
simulations can provide estimates for vdW interaction energies as well as edge energies and
kinetic barriers for attachment [12, 26, 14]. Incorporating such parameter estimates will be
explored in future work.

Further, in this paper we have focused on single material homostructures due to perfect
lattice matching and hence there are no interior strains. In the TMD family, one can go further
and consider MoX WX2 2 heterostructures (M=Mo, W; X=S, Se, Te) without introducing
lattice mismatch. However, taking full advantage of the device properties accessible through
marriage of disparate 2D materials requires understanding the role of strain in the competition
between vertical and in-plane lateral growth. We expect that strain-driven defect formation
and stacking-site symmetry breaking will significantly modify the potential energy surface,
affecting the thermodynamics of monolayer versus multilayer morphologies and the kinetics
of adatom attachment. Such effects will also be considered in future work.
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Appendix A. Details of the derivation of the vdW-BCF model of vertically-
stacked multilayer growth

A.1. Mass conservation

We define the total mass to be:

ò ò òå
È

r= + W + W
= W W W W

M A A Ad d d , A.1
i

i s s
0

2

,1 ,2
i 1 2 2

( )

where Ws i, are the concentrations of atomic sites in the layers (i=1, 2). Then, mass
conservation requires
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where Fi is the deposition flux on layer i and t-d i,
1 are desorption rates. Combining these two

equations and using the Reynolds transport theorem gives:
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where vi are the velocities of the adatoms on the layers and substrate. For simplicity, we
assume that W = Ws i s, . We also assume that the boundary of the substrate Γ0 does not move.
Therefore, combining equations (A.2) and (A.3) and using the divergence theorem we obtain
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where = Gv v ni i· is the normal velocity of layer i, and r r r r= =+
G

-
- G,i i i i 1i i∣ ∣ are the

boundary conditions for the densities at the ith layer from the step up and down respectively.
Next, assuming that

r t r¶ = - + - -FJ , A.5t i i i d i i,
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then the last term in equation (A.4) can be written as
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where Ji (for i=1, 2) denote the fluxes at the ith layer from a step up and down,
respectively, with

= =G
+

G
+J JJ n J n, , A.72 2 1 12 1· · ( )

= =G
-

G
-J JJ n J n, , A.81 2 0 12 1· · ( )

and we have assumed that there is no flux at the substrate boundary: = =¶G JJ n 00 00· .
Further, the boundary conditions for equation (A.5) on Γi are taken to be

r= -+ + +q J v , A.9i i i i ( )

r= - +- - -q J v . A.10i i i i ( )

Substituting (A.6) and (A.9), (A.10), into (A.4), we obtain
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In order to satisfy mass conservation, we then have

=
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where ∂s denotes the arclength derivative and i represents surface fluxes (e.g. arising from
the diffusion of adatoms along the layer edges). To obtain constitutive laws for the fluxes
q J,i i and i, we require that the system dissipates the free energy when the deposition flux
Fi=0 and desorption coefficient t =- 0d i,

1 .
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A.2. Free energy dissipation

Taking the time derivative of the free energy E from equation (1) and using the Reynolds
transport theorem, we obtain
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where g g q g q= + i i i˜ ( ) ( ) and the primes denote derivatives with respect to θ, the normal
angle (e.g. angle that the normal vector makes with the x-axis). Defining the free energy
density f and the chemical potential μ to be
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and applying the divergence theorem, we obtain
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where m m r=i i( ). Next, using equation (A.5) in equation (A.17) we obtain
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Integrating by parts and using the divergence theorem, we obtain
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where we have defined m m r= 
i i( ). See the previous subsection for the definitions of ri and

Ji . Using equations (A.9), (A.10), (A.12) and (A.13) in equation (A.19) we obtain:
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where we have integrated by parts on the edges Γ1 and Γ2 and defined
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Hence, to have energy dissipation (in the absence of flux and desorption), we may take the
constitutive relations for the fluxes:
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where the βi are related to the mobility of an edge atom along a curved step, and the (linear)
kinetic boundary conditions:
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where ki are kinetic attachment coefficients.

A.3. Model simplification
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Further, m
i can be approximated as
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We further neglect the effects of anisotropy in the surface fluxes (e.g. we assume that the edge
energy anisotropy is small g q g»i i˜ ( ) ¯ ), although we keep the effects of anisotropy in the
kinetic coefficients and in ri

BC. Surface diffusion anisotropy will be considered in future work.
It follows that the diffusional and surface fluxes can be approximated by
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A.4. Nondimensionalization

Let r = W ,sref be the characteristic size of layer 1 and take the time scale to be
= W  Dk T4s

2
B( )/ , where D is a characteristic diffusion constant. Define the nondimen-

sional density r r¢ = Wi i s and the nondimensional flux ¢ = WF Fi i s, where the nondimen-
sional desorption coefficient is t t¢ = d i d i, , . Then, the nondimensional adatom density
equation (A.39) becomes:
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where ¢ =D D Di i is the nondimensional diffusion coefficient. The kinetic boundary
conditions become
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and  is a characteristic value of the binding energies. Finally, the nondimensional velocities
are:
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¯ are nondimensional edge diffusion coefficients. Dropping the primes, this
is the system given in section 2.1.

A.5. The vdW-BCF model equations for an arbitrary number of vertically-stacked layers

One can extend the vdW-BCF model derived in the previous sections to describe the
dynamics of an arbitrary number of layers. The resulting (nondimensional) system is

r r t r¶ = D + - W =-D F i nin , 0, 1 ,... , A.48t i i i i d i i
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where n is the number of layers. The boundary conditions at the boundary of the first layer
with the substrate, Γ1, are given as
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and for all the layer boundaries (e.g. steps) Γi (for i=2, K, n) are:
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where γi denotes the step stiffness and κi is the curvature of the ith step Γi, for i=1, 2...n.
The normal velocity of each step Γi is given by

b k= + + ¶+ -v q q . A.53i i i s i
2 ( )

Appendix B. Details of the derivation of radial solutions to the vdW-BCF model

We now derive the analytic solutions ρi(r, t) in the quasi-steady state limit. That is, we drop
the time derivatives in the adatom diffusion equations. We first rewrite equation (2) as

Modelling Simul. Mater. Sci. Eng. 28 (2020) 025002 Z Guo et al

26



r- ¶ ¶ =
D

r
r F, B.1i

r r i i( ) ( )

where we have also neglected desorption and taken t =- 0d i,
1 . Integrating twice we obtain:

r = - + + =
F

D
r A r B i

4
ln , for 0, 1, 2, B.2i

i

i
i i

2 ( ) ( )

where Ai and Bi are unknown constants.
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2*

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

We then obtain

r
g

= = + + - + ++  A B
F R

D

F R

k R
0,

4 2
. B.52 2

2 2
2

2

2 2

2
2 1

2

2
*

⎛
⎝⎜

⎞
⎠⎟ ( )

For < <R r R2 1, the solution in equation (B.2) satisfies

r r r
g

¶ = - - + + =-  D k
R

r R, at , B.6r1 1 2 1 2 1
2

2
2*

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

r r r
g

- ¶ = - - + =+ D k
R

r R, at . B.7r1 1 1 1 1
1

1
1*

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )

At r=R2, we obtain

r
g

= - + - + + - + +-  B
F R

D
A R

D

k

F R

D

A

R R4
ln

2
. B.81

1 2
2

1
1 2

1

2

1 2

1

1

2
2 1

2

2
*

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

At r=R1, we obtain

r
g

= - - - + + - ++ B
F R

D
A R

D

k

F R

D

A

R R4
ln

2
, B.91

1 1
2

1
1 1

1

1

1 1

1

1

1
1

1

1
*

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

such that

r r
=

- + - + + - - - - +

- -

g g
+ -

- +

  
A

R R

ln
. B.10

F

D R

F R

k

F R

k R

R

R

D

k R

D

k R

1
4 2

2
1
2

2 1 2 2 1
1

1

2

2

1 1

1

1 2

2

1

1

2

1

1

2 2

1

1 1

* *

( )
( ) ( )( )

( )

For < < ¥R r R1 , the solution in equation (B.2) satisfies

r r r
g

¶ = - - + =- D k
R

r R, at , B.11r0 0 1 0 1
1

1
1*

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟ ( )
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r¶ = = ¥r R0, at . B.12r 0 ( )

At r=R1, we obtain

r
g

- + + - - + = - +- 
F R

D
A R B

D

k

F R

D

A

R R4
ln

2
. B.130 1

2

0
0 1 0

0

1

0 1

0

0

1
1

1

1
*

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

At r=R0, we obtain

=A
F

D
R

2
. B.140

0

0
0
2 ( )

such that

r
g

= - - + + - +- - B
F R

D

F R

D
R

F R

k

F R

k R R4 2
ln

2 2
. B.150

0 1
2

0

0 0
2

0
1

0 1

1

0 0
2

0 1
1

1

1
*

⎛
⎝⎜

⎞
⎠⎟ ( )

Summarizing, we obtain the analytic solution

r

r

r

=- + + <

=- + + < <

=- + + <

F

D
r A r B x R

F

D
r A r B R x R

F

D
r A r B R x

4
ln , ,

4
ln , ,

4
ln , , B.16

2
2

2

2
2 2 2

1
1

1

2
1 1 2 1

0
0

0

2
0 0 1

( )

( )

( ) ( )

where

r
g

r r

r
g

r
g

=

= + + - + +

=
- + - + + - - - - +

- -

= - - - + + - +

=

= - - + + - +

g g

+

+

- -

+ -

- +

 

  





A

B
F R

D

F R

k R

A
R R

B
F R

D
A R

D

k

F R

D

A

R R

A
F

D
R

B
F R

D

F R

D
R

F R

k

F R

k R R

0,

4 2
,

ln
,

4
ln

2
,

2
,

4 2
ln

2 2
.

F

D R

F R

k

F R

k R

R

R

D

k R

D

k R

2

2
2 2

2

2

2 2

2
2 1

2

2

1
4 2

2
1
2

2 1 2 2 1

1
1 1

2

1
1 1

1

1

1 1

1

1

1
1

1

1

0
0

0
0
2

0
0 1

2

0

0 0
2

0
1

0 1

1

0 0
2

0 1
1

1

1

1

1

2

2

1 1

1

1 2

2

1

1

2

1

1

2 2

1

1 1

*

* *

*

*

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )( )

The corresponding velocities of the layer boundaries are

r r= - ¶ - ¶ =
-

+=v D D
R F F D A

R2
, B.17r r r R2 2 2 1 1

2 2 1 1 1

2
2

( )∣ ( ) ( )

r r= - ¶ - ¶ =
-

+
-

=v D D
R F F D A D A

R2
. B.18r r r R1 1 1 0 0

1 1 0 0 0 1 1

1
1

( )∣ ( ) ( )
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Appendix C. The diffuse domain method: details and asymptotic analysis

For simplicity, consider the problem with a single layer:

r r t r¶ = D + - W-D F t, in , C.1t i i i i i i
1 ( ) ( )

where i=0, 1 denote the substrate and layer, respectively. The kinetic boundary conditions
are:

r r r r g k= -  - = - - ++ + q D v kn , C.21 1 1 1 1 1 1 1 1 1*· ( ( ˜ )) ( )

r r r r g k=  + = - - +- - q D v kn C.31 0 0 1 0 1 1 0 1 1*· ( ( ˜ )) ( )

with the normal velocity of Γ1(t)=∂Ω1(t) given by

b k= + + ¶+ -v q q . C.4s1 1 1
2 ( )

In the above, κ is the curvature of Γ1.
Next, following [21, 17], we can reformulate equations (C.1)–(C.3) as

jr j r j t r j r¶ =   + - -  -- +   D F k g , C.5t 1 1 1 1
1

1 1 1( ) · ( ) ( ) ∣ ∣( ) ( )

j r j r j t r j r¶ =   + - -  -- -   D F k g , C.6t
c c c

0 0 0 0
1

0 1 0( ) · ( ) ( ) ∣ ∣( ) ( )

r g m= - + -g , C.71
1

1*( ˜ ) ( )

where j=j(x, t) is a phase-field function that approximates the characteristic function of
j jW = -t , 1c

1( ) approximates the characteristic function of the substrate Ω0, and
m j j= ¢ - DB 2( ) is the chemical potential where j j j= -B 18 12 2( ) ( ) is a double well
free energy. Equations (C.5) and (C.6) are solved in a large rectangular domain W̃ that
contains Ω1 and Ω2. For simplicity, we do not include j¥ to specify that the deposition
domain on the substrate is a circle and we assume that the kinetic parameters and edge
energies are isotropic. The evolution of the layer is captured by the Cahn–Hilliard-like model:

j j r r
b

f m¶ =  - + - +  + -


 k g k g G , C.8t 1 1 1 0 2

∣ ∣( ( ) ( )) · ( ( ) ) ( )

m j j= ¢ - DB , C.92( ) ( )

j j j= -B 18 1 C.102 2( ) ( ) ( )

j j=G B2 . C.11( ) ( ) ( )
Below, we demonstrate using the method of matched asymptotic expansions that the

DDM (C.5)–(C.11) yields a second-order accurate approximation of the sharp interface
system (C.1)–(C.4). The analysis can easily be extended to the more complete model pre-
sented in the main text in section 3 where two layers are considered and the substrate
geometry is circular (implemented via j¥).

C.1. Matched asymptotic expansions

Away from the layer 1 boundary Γ1(t), we assume that all variables are smooth and have
regular expansions in ò, e.g.

r r r r= + + +  ..., C.12i i i i
0 1 2 2 ( )( ) ( ) ( )
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while away from Γ1, j=1 inside Ω1 and j=0 outside Ω1 to all orders. Accordingly, we
see that ri

0( ) satisfies equation (C.1), while the first order perturbations satisfy:

r r t r¶ = D - W-D tin . C.13t i i i i i
1 1 1 1 ( ) ( )( ) ( ) ( )

To provide the boundary conditions for the diffusion equations, we need to analyze the
behavior of the system near Γi. To argue that ri is a second order approximation to the sharp
interface solution ρi, we need to demonstrate that r = 0i

1( ) .
Near Γi, we introduce a stretched, local coordinate system:

= + s t s t z s tx X n, ; , , C.14( ) ( ) ( ) ( )

where s tX ,( ) is a parameterization of Γ1(t), s is arclength, n(x, t) is the normal vector that
points out of W = z r tx, ,1 ( ) is a stretched normal coordinate and r(x, t) is the signed
distance from x to Γ1(t). In the local coordinate system, derivatives become:

k
 = ¶ +

+
¶

  z
n s

1 1

1
, C.15z s ( )

k
k k k

D = ¶ +
+

¶ +
+

¶
+

¶
    z z z

1 1

1

1

1

1

1
, C.16zz z s s2

⎛
⎝⎜

⎞
⎠⎟ ( )

¶ = - ¶ + ¶


v
, C.17t z t

1 ( )

where the time derivative on the left-hand side of equation (C.17) is the full time derivative
and the time derivative on the right hand side is the time partial derivative in the inner
variables, and v1 is the effective diffuse interface normal velocity of Γ1. Note that

j j= - n ∣ ∣. We assume that near Γ1(t), the inner variables can be expressed as

r r= +  z s t s t z s t tX n, , , , , . C.18i iˆ ( ) ( ( ) ( ) ) ( )

We assume that in the inner expansion, all variables have a regular expansion in the stretched
coordinates, e.g.

r r r r= + + +  z s t z s t z s t z s t, , , , , , , , .... C.19i i i i
0 1 2 2ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )( ) ( ) ( )

To match the inner and outer expansions, we assume that there is a region of overlap where
both expansions are valid and must match. In particular, if we evaluate the outer solution in
the inner variables, this must match the limits of the inner solutions away from the interface.
That is

r r+ ~ z t z s tX n, , , , C.20i i( ) ˆ ( ) ( )

as  ¥z and  0 with   z 0 . Using the inner and outer expansions and equating the
powers of ò, we obtain

r r~z s t s t, , , , C.21i i
0 0ˆ ( ) ( ) ( )( ) ( )

r r r~ + z s t s t z s tn, , , , , C.22i i i
1 1 0ˆ ( ) ( ) · ( ) ( )( ) ( ) ( )

r r r r~ +  + z s t s t z s t
z

s tn n n, , , ,
2

, ,

C.23

i i i i
2 2 1

2
0ˆ ( ) ( ) · ( ) · ( ) ·

( )

( ) ( ) ( ) ( )



where r r=s t s t tX, , ,i
k

i
k( ) ( ( ) )( ) ( ) .
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Next, transforming the equations, plugging in the inner expansions and equating powers
of ò we derive equations governing the inner solutions. At leading order O(ò−2), we obtain

j r¶ ¶ = 0, C.24z z
0

1
0( ˆ ˆ ) ( )( ) ( )

j r¶ - ¶ =1 0 C.25z z
0

0
0( ˆ ) ˆ ) ( )( )

From these equations (and the matching conditions), we conclude that

r r¶ = ¶ = 0, C.26z z1
0

0
0ˆ ˆ ( )( ) ( )

so that r0
0ˆ ( ) and r1

0ˆ ( ) are constant in z across the inner layer. At the next order O(ò−1) we
obtain:

j r j r r j- ¶ = ¶ ¶ + - ¶+v D k g , C.27z z z z1
0 0

1
0

1
0

1
1

1 1
0 0 0( ˆ ˆ ) ( ˆ ˆ ) ( ˆ ˆ ) ˆ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j r j r r j- ¶ - = ¶ - ¶ + - ¶-v D k g1 1 . C.28z z z z1
0 0

0
0

0
0

0
1

1 0
0 0 0( ˆ ) ˆ ) ( ˆ ) ˆ ) ( ˆ ˆ ) ˆ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Integrating these equations from -¥ to ¥ in z, using that v1
0( ) is independent of

j +¥ =z, 00ˆ ( )( ) and j +¥ = 10ˆ ( )( ) , we obtain

r r r¶ -¥ + = - -+D v k g , C.29z1 1
1

1
0

1
0

1 1
0 0ˆ ( ) ˆ ( ˆ ˆ ) ( )( ) ( ) ( ) ( ) ( )

r r r- ¶ -¥ - = - -D v k g , C.30z0 0
1

1
0

0
0

1
0

0
0 0ˆ ( ) ˆ ( ˆ ˆ ) ( )( ) ( ) ( ) ( ) ( )

where we have additionally used equation (C.26) and assumed that ¶ =g 0z
0ˆ( ) , a fact that will

be justified later. From the matching conditions equations (C.21) and (C.22), we obtain

r r r-  - = -+D v k gn , C.311 1
0

1
0

1
0

1 1
0 0· ( ) ( )( ) ( ) ( ) ( ) ( )

r r r + = -D v k gn , C.320 0
0

1
0

0
0

1
0

0
0 0· ( ) ( )( ) ( ) ( ) ( ) ( )

where, as stated earlier, ri
0( ) are the limiting values of the leading order outer solution on Ωi

and we have defined =g g0 0ˆ( ) ( ). Now, using that r g k= - -g 0
1 1*( ˜ )( ) , another fact we will

demonstrate later, then we recover the kinetic boundary conditions equations (C.2) and (C.3).
This implies that ri

0( ) satisfies the sharp interface diffusion equations and kinetic boundary
conditions, e.g. equations (C.1)–(C.3).

To justify the assumptions for g 0ˆ( ) and to determine the normal velocity v1
0( ), we need to

analyze the Cahn–Hilliard-like system (C.8) and (C.9). Before doing this, however, we
proceed to the next order in the inner expansion for the adatom diffusion equations in order to
determine the boundary conditions for equation (C.13) for the outer solution at the next order,
ri

1( ). At O(1), and after manipulation, we obtain

j r j r j r

j r kj r j r

r j j

-¶ + + ¶

= ¶ ¶ + ¶ + ¶

+ - ¶ ++

v v

D

k g F , C.33

z t

z z z ss

z

1
1 0

1
0

1
0 0

1
1 0

1
0

1
0

1
2 0

1
1 0

1
0

1 1
1 1 0 0

1

( ˆ ˆ ˆ ˆ ) ( ˆ )

( ( ˆ ˆ ) ˆ ˆ ˆ ˆ )

( ˆ ˆ ) ˆ ˆ ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

and

j r j r j r

j r k j r j r

r j j

-¶ - + - + ¶ -

= ¶ - ¶ + - ¶ + - ¶

+ - ¶ + --

v v

D

k g F

1 1 1

1 1 1

1 , C.34

z t

z z z ss

z

1
1 0

0
0

1
0 0

0
1 0

0
0

0
0

0
2 0

0
1 0

0
0

1 0
1 1 0 0

0

( ( ˆ ) ˆ ( ˆ ) ˆ ) (( ) ˆ )

( (( ˆ ) ˆ ) ( ˆ ) ˆ ( ˆ ) ˆ )

( ˆ ˆ ) ˆ ( ˆ ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) (

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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where we have used

r r r j¶ - - ¶ - - =+v D k g 0, C.35z z
0

1
0

1 1
1

1 1
0 0 0(( ˆ ˆ ( ˆ ˆ )) ˆ ) ( )( ) ( ) ( ) ( ) ( ) ( )

r r r j¶ - - ¶ - - - =-v D k g 1 0, C.36z z
0

0
0

0 0
1

1 0
0 0 0(( ˆ ˆ ( ˆ ˆ ))( ˆ )) ( )( ) ( ) ( ) ( ) ( ) ( )

which follow from equations (C.27) and (C.28) and using the matching conditions. Next, we
observe that on Γi:

r r k r r-  = D -  - ¶D Dn n n C.37i i i i i ss i
0 0 0 0· · ( · ) ( )( ) ( ) ( ) ( )

r k r r=¶ - -  + ¶F D n , C.38t i i i i ss i
0 0 0( · ) ( )( ) ( ) ( )

where we have used that ri
0( ) satisfies equation (C.1). Using this in the matching conditions

(C.21)–(C.23), we obtain:

r r r r r r

r r k r r

-  - - ~ - ¶ - -

+ +  + ¶ - -  + ¶

+ +

+

D k v D k v

k v z z F D

n

n n . C.39

z

t ss

1 1
1

1 1
1 0

1
1

1 1
2

1 1
1 0

1
1

1
0

1
0

1
0

1 1 1
0

1
0

· ˆ ˆ ˆ

( ) · ( ( · )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

This motivates us to rewrite equation (C.33) as

j r j r j r j r

j r j r k r r

kj r j r r j j

j r j r k r r

-¶ ¶ + + + ¶

- ¶ - ¶ - + - ¶ - ¶

= ¶ + ¶ + - ¶ +

- ¶ - ¶ - + - ¶ - ¶

+ +

+

+ +

D v v

k z F k D D

D k g F

k z F k D D

,

. C.40

z z t

z t z ss

z ss z

z t z ss

1
0

1
2

1
1 0

1
0

1
0 0

1
1 0

1
0

1
0

1
1 0

1
0

1 1 1 1
1

1 1
0

1
0

1
1 0

1
0

1 1
1 1 0 0

1

1
0

1
1 0

1
0

1 1 1 1
1

1 1
0

( ˆ ˆ ˆ ˆ ˆ ˆ ) ( ˆ ˆ )

( ˆ ˆ ˆ ( ˆ ( ) ˆ ˆ ))

( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ) ˆ ˆ

( ˆ ˆ ˆ ( ˆ ( ) ˆ ˆ )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

where we have used that r r r¶ = ¶ - ¶vt t z1
0

1
0 0

1
1ˆ ˆ( ) ( ) ( ) ( ). Next, after a series of calculations, we

rewrite equation (C.40) as

j r j r j r j r

j r k r r

j

j r k r r

-¶ ¶ + + +

- ¶ - + - ¶ - ¶

= - ¶

+ ¶ ¶ - + - ¶ - ¶

+

+

+

+

D v v k

z F k D D

k g

z F k D D C.41

z z

t z ss

z

z t z ss

1
0

1
2

1
1 0

1
0

1
0 0

1
1

1
0

1
1

0
1

0
1 1 1 1

1
1 1

0

1
1 0

0
1

0
1 1 1 1

1
1 1

0

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ( ˆ ( ) ˆ ˆ ))
ˆ ˆ
ˆ ( ˆ ( ) ˆ ˆ ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

where we have also assumed that j¶ = 0t
0ˆ ( ) , which will be shown later. Integrating

equation (C.41) in z from -¥ to +¥, using the matching conditions and that r¶z 1
1ˆ ( ) is

independent of z from equations (C.27) and (C.29), we obtain

r r r r-  - = + -+D v v k gn . C.421 1
1 0

1
1 1

1
0

1 1
1 1· ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

An analogous argument can be performed to show that

r r r r + = - + -+D v v k gn . C.430 0
1 0

0
1 1

0
0

1 0
1 1· ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

Assuming that =v 01( ) and =g 01( ) , facts that we will prove later, we can then conclude that
r r= = 01

1
0
1( ) ( ) since these are the unique solutions of equations (C.13) and (C.42), (C.43).

Next, we analyze the Cahn–Hilliard-like system equation (C.8)–(C.11). At the outer
scale, equations (C.8), (C.9) yield 0=0 to all orders in ò because j=0 or 1 to all orders.
The profiles of j across Γ1 and the normal velocity are solely determined from inner
expansions. At leading order in the inner scale O(ò−4), we obtain

j m¶ ¶ =G 0, C.44z z
0 0( ( ˆ ) ˆ ) ( )( ) ( )
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m j j= ¢ - ¶B . C.45zz
0 0 0ˆ ( ˆ ) ˆ ( )( ) ( ) ( )

From the matching conditions, we conclude that

m = 0, C.460ˆ ( )( )

j = - z1 2 1 tanh 3 . C.470ˆ ( ) ( )( )

Observe that j¶ = 0t
0ˆ ( ) as assumed earlier. At the next order O(ò−3), we obtain

j m¶ ¶ =G 0, C.48z z
0 1( ( ˆ ) ˆ ) ( )( ) ( )

m j j j k j=  - ¶ - ¶B . C.49zz z
1 0 1 1 0ˆ ( ˆ ) ˆ ˆ ˆ ( )( ) ( ) ( ) ( ) ( )

From the matching conditions, we conclude that m¶ = 0z
1ˆ ( ) so that m m= s t,1 1ˆ ˆ ( )( ) ( ) .

Multiplying equation (C.49) by j 0ˆ ( ) and integrating from -¥ to +¥ in z, we obtain

m k=s t s t, , , C.501ˆ ( ) ( ) ( )( )

j
k

= -s z t
s t

z, ,
,

36
1 sech 3 , C.511 2ˆ ( ) ( ) ( ) ( )( )

where we have used that ò j¶ =
-¥

+¥
zd 1z

0 2( ˆ )( ) . At the next order, -O 2( ), we obtain

j m¶ ¶ =G 0, C.52z z
0 2( ( ˆ ) ˆ ) ( )( ) ( )

m j j j j j k j k j=  + ¢¢¢ - ¶ - ¶ + ¶B B z
1

2
. C.53zz z z

2 0 2 0 1 2 2 1 2 0ˆ ( ˆ ) ˆ ( ˆ )( ˆ ) ˆ ˆ ˆ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

From the matching conditions, we also conclude that m¶ = 0z
2ˆ ( ) and m m= s t,2 2ˆ ˆ ( )( ) ( ) .

Multiplying equation (C.53) by j¶z
0ˆ ( ) and integrating from -¥ to +¥ in z, we obtain

òm j j j=  ¶
-¥

+¥
s t B z, d , C.54z

2 0 1 1ˆ ( ) ( ˆ ) ˆ ˆ ( )( ) ( ) ( ) ( )

where we have integrated by parts and used that

ò j j= ¶ ¶
-¥

+¥
z0 d , C.55z z

0 1ˆ ˆ ( )( ) ( )

ò j= ¶
-¥

+¥
z z0 d , C.56z

0 2( ˆ ) ( )( )

ò j j j=  - ¶ ¶
-¥

+¥
B z0 d . C.57zz z

0 2 0( ( ˆ ) ˆ ) ˆ ( )( ) ( ) ( )

Next, from equations (C.49) and (C.50) observe that

j j j j k j j k j ¶ = ¶ ¶ + ¶ ¶ + ¶B
1

2
. C.58z z z z z z

0 1 1 1 2 1 0 1( ˆ ) ˆ ˆ ( ˆ ) ˆ ˆ ˆ ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

Combining equations (C.54) and (C.58), we conclude that

m =s t, 0 C.592ˆ ( ) ( )( )

since ò j¶ =
-¥

+¥
zd 0z

1ˆ ( ) .
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At the next order O(ò−1), we obtain

j b j m b j m

j r r

- ¶ = ¶ ¶ + ¶

- ¶ - + -+ -

v G G

k g k g . C.60

z z z ss

z

1
0 0 0 3 0 1

0
1 1

0 0
1 0

0 0

ˆ ( ( ˆ ) ˆ ) ( ˆ ) ˆ
ˆ ( ( ˆ ˆ ) ( ˆ ˆ )) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Integrating equation (C.60) from -¥ to +¥ in z, we obtain

b k r r= ¶ + - + -+ -v k g k g , C.61ss1
0

1 1
0 0

1 0
0 0( ˆ ) ( ˆ ) ( )( ) ( ) ( ) ( ) ( )

where we have used that m k=1ˆ ( ) from equation (C.50). Next, from equations (C.7) and
(C.50) we obtain

r g k= - +g . C.620
1*ˆ ( ˜ ) ( )( )

Using these in equation (C.61), we obtain

b k r r g k r r g k= ¶ + - - + + - - ++ - v k k , C.63ss1
0

1 1
0

1 1 0
0

1* *( ( ˜ )) ( ( ˜ )) ( )( ) ( ) ( )

which recovers the sharp interface velocity in equation (C.4). Thus, at leading order we
recover the original sharp interface system. Finally, we move to the next order O(1). Here, we
obtain

j j b j m b j j m

bk j m b j j m
b j m k m

j r r

j r r

- ¶ - ¶ = ¶ ¶ + ¶ ¢ ¶

+ ¶ + ¶ ¢ ¶
- ¶ + ¶ ¶

- ¶ - + -

- ¶ - + -

+ -

+ -

v v G G

G G

zG

k g k g

k g k g

3

. C.64

z z z z z z

z s s

ss s s

z

z

1
1 0

1
0 1 0 4 0 1 3

0 3 0 1 1

0 1 1

0
1 1

1 1
1 0

1 1

1
1 1

0 0
1 0

0 0

ˆ ˆ ( ( ˆ ) ˆ ) ( ( ˆ ) ˆ ˆ )
( ˆ ) ˆ ( ( ˆ ) ˆ ˆ )
( ˆ )( ˆ ˆ )

ˆ ( ( ˆ ˆ ) ( ˆ ˆ ))

ˆ ( ( ˆ ˆ ) ( ˆ ˆ )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Integrating equation (C.64) in z from -¥ to +¥, we obtain

ò òj r r bk j m- ¶ - - = ¶
-¥

+¥
+ -

-¥

+¥
v k k z G zd d , C.65z z

0
1

1
1 1

1
1 0

1 0 3ˆ ( ˆ ˆ ) ( ˆ ) ˆ ( )( ) ( ) ( ) ( ) ( ) ( )

where we have used that = = ¢ = ¢ =G G G G0 1 0 1 0( ) ( ) ( ) ( ) and

r g m= =g 0 C.661
1

2*ˆ ˜ ˆ ( )( ) ( )

ò j= ¶
-¥

+¥
z0 d , C.67z

1ˆ ( )( )

ò ò

ò

j j j j

j

= ¢ = ¢ ¶

=

-¥

+¥

-¥

+¥

-¥

+¥

G z G z

zG z

0 d d ,

0 d . C.68

s
0 1 0 1

0

( ˆ ) ˆ ( ˆ ) ˆ

( ˆ ) ( )

( ) ( ) ( ) ( )

( )

To make further progress, we observe that

j j= ¶G M , where C.69z
0 0( ˆ ) ( ˆ ) ( )( ) ( )

j j j= -M 2 3 . C.700 0 3 0 2( ˆ ) ( ˆ ) ( ˆ ) ( )( ) ( ) ( )

Using these in equation (C.60), together with the matching conditions, we obtain:

b j m b j j k¶ = + ¶G M . C.71z ss
0 3 0 0( ˆ ) ˆ ( ( ˆ ) ˆ ) ( )( ) ( ) ( ) ( )
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A direct calculation shows that

ò j j+ =
-¥

+¥
M zd 0. C.720 0( ( ˆ ) ˆ ) ( )( ) ( )

Combining this with equation (C.65) we obtain

ò j r r= ¶ - -
-¥

+¥
+ -v k k z0 d C.73z

0
1

1
1 1

1
1 0

1ˆ ( ˆ ˆ ) ( )( ) ( ) ( ) ( )

Next, from equations (C.35) and (C.36), and the matching conditions, we have

r r r r= - + -+s t
D

z v k g,
1

, C.741
1

1
1

1
1

0
1

0
1 1

0 0ˆ ( ) ( ˆ ( ˆ ˆ )) ( )( ) ( ) ( ) ( ) ( ) ( )

r r r r= - + --s t
D

z v k g,
1

. C.750
1

0
1

0
1

0
0

0
1 0

0 0ˆ ( ) ( ˆ ( ˆ ˆ )) ( )( ) ( ) ( ) ( ) ( ) ( )

Using equations (C.74) and (C.75) in equation (C.73), we conclude that

r r= ++ -v k s t k s t, , . C.761
1

1 1
1

1 0
1( ) ( ) ( )( ) ( ) ( )

Finally, using equation (C.76) in equations (C.42) and (C.43), we obtain

r r r r r r-  - = + ++ -D v k kn 1 , C.771 1
1 0

1
1

1 1
1

1
0

1 0
1

1
0· ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

r r r r r r + = - -- +D v k kn 1 . C.780 0
1 0

0
1

1 0
1

0
0

1 1
1

0
0· ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

We can therefore conclude that r r= = 01
1

0
1( ) ( ) , since these are the unique solutions of

equations (C.13) and (C.77), (C.78), and that =v 01
1( ) . Thus, in the region where the outer

expansion is valid, we have shown

r r= +  O , C.791 1
2( ) ( )

r r= +  O , C.800 0
2( ) ( )

= + v v O , C.811 1
2( ) ( )

which demonstrates that the DDM (C.5)–(C.9) provides a 2nd order accurate approximation
in ò to the sharp interface model.

Appendix D. Details of the numerical method and implementation

D.1. Numerical method

We use the Crank–Nicolson scheme to discretize the fully time-dependent system
equations (13)–(25) in time on larger square domain W̃. In particular, we let δt>0 denote the
time step, and assume that r r r, ,n n n

0 1 0 and m
n are the solutions at time t=nδt. We then find the

solutions at time t=(n+1)δt: r r r+ + +, ,n n n
0

1
1

1
0

1 and m +n 1 by solving
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j j r j j r

d
j j j r

j j j j j t r

j j j r r j g j m

j j j r j j j j j t r

j j j r r j g j m

 



 



-
=

+ -

- - +

+ + -

- - +

¥
+ +

¥
¥

+ + +

¥
+ +

¥
+ - +

¥
+ + + + - + +

¥ ¥ ¥
-

¥
-









H H

t
H D

H F H

k

H D H F H

k

1

2

1

2
, D.1

n n n n
n n n

n n n
d

n

n n n n n n

n n n n n n
d

n

n n n n n

0
1

0
1

0 0
0

1
0

1
0

1

0
1

0
1

0
1 1

0
1

1
0

1
0

1 1 1 1 1

0 0 0 0 0 0
1

0

0 0
1

*

*

( ) ( )
{ · ( ( ) ( ) )

( ) ( ) ( )

∣ ∣ ( )[ ( ( ) ( ) )]}

{ · ( ( ) ( ) ) ( ) ( ) ( )

∣ ∣ ( )[ ( ( ) ( ) )]} ( )

j j r j j r

d
j j r

j j j j t r j j j r

r j g j m

j j r j j j j t r

j j j r r j g j m

 



 



-
=

+ - -

- +

+ + -

- - +

¥
+ +

¥
¥

+ +

¥
+

¥
+ - +

¥
+ + +

+ - + +

¥ ¥ ¥
-

¥
-









H H

t
H D

H F H k

H D H F H

k

1

2

1

2
, D.2

n n n n
n n

n n
d

n n n n

n n n

n n n n
d

n

n n n n n n

1
1

1
1

1 1
1

1
1 1

1

1
1

1 1
1 1

1
1 1

1
1

1
1

1 1 1 1

1 1 1 1 1 1
1

1

1 1
1

*

*

( ) ( )
{ · ( ( ) )

( ) ( ) ∣ ∣ ( )[
( ( ) ( ) )]}

{ · ( ( ) ) ( ) ( )

∣ ∣ ( )[ ( ( ) ( ) )]} ( )

j j
d

b j m b j m

j j r r j g j m

j r r j g j m

j j r r j g j m

j r r j g j m

   





-
= +

+ - +

+ - +

+ - +

+ - +

+
- + + -

+ + + + - + +

+ + + - + +

-

-

 

















t
B B

k

k

k

k

1

2
1

2

1

2
, D.3

n n
n n n n

n n n n n n

n n n n n

n n n n n n

n n n n n

1
2 1 1 1

1
0

1
0

1 1 1 1 1

1
1

1
1 1 1 1 1

0 0
1

1 1
1

*

*

*

*

{ · ( ( ) ) · ( ( ) )}

{∣ ∣ [ ( )( ( ( ) ( ) )

( )( ( ( ) ( ) )]}

{∣ ∣ [ ( )( ( ( ) ( ) )

( )( ( ( ) ( ) )]} ( )

m j j= - D + ¢+ + + G , D.4n n n1 2 1 1( ) ( )

with the following boundary conditions

r r j m   = = = = ¶W+ + + +n n n n 0 on . D.5n n n n
0

1
1

1 1 1· · · · ˜ ( )

Moreover, we add a small positive parameter d = -10 5 to the functions H0, H1 and B(j) in all
second-order differential operators in (D.1)–(D.4) as a regularization.

D.2. Implementation

Standard, cell-centered central-difference finite difference methods are used, together with a block-
structured adaptive mesh, to discretize the equations in space. The nonlinear equations at the
implicit time level are solved using an efficient nonlinear FAS multigrid solver. See [25] for details.
Here, we use a four-level block-structured adaptive mesh, which consists of one root level (grid
size h0) and three refinement levels (grid size hi) with refinement ratio of 2. For each adaptive mesh
level, we refine the grid cell (i, j) wherever j >h qi i j, tol∣ ∣ . Here, we set qtol=0.01.

Appendix E. Convergence of anisotropic layer dynamics

Here we present the convergence analysis using the fully time-dependent dynamics. The results for
quasi-steady dynamics are similar (not shown). Using the parameters in section 4.3, we analyze the
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convergence of our schemes at time t=0.1. The consecutive errors (e.g. equation (30)) and
convergence rates for the adatom concentrations are given in tables E1 and E2 for six-fold and
three-fold symmetric anisotropic edge energies and kinetic coefficients, respectively. The results
suggest the scheme is second-order convergent in both the ℓ2 and ¥ℓ norms.
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Zhenlin Guo https://orcid.org/0000-0003-3219-6418

Table E1. Convergence test for adatom concentrations ρ2, ρ1 and ρ0 using six-fold
symmetric anisotropic edge energies and kinetic coefficients in section 4.3.

t=0.1 ℓ2

ò r- E , ,
2
i i1 2

( ) Rate r- E , ,
2
i i1 1

( ) Rate r- E , ,
2
i i1 0

( ) Rate

0.4 1.172×10−3
— 1.642×10−3

— 1.007×10−3
—

0.2 1.143×10−3 0.04 1.454×10−3 0.18 1.065×10−3 −0.08
0.1 6.485×10−4 0.82 8.359×10−4 0.80 7.196×10−4 0.57
0.05 1.942×10−4 1.74 2.631×10−4 1.67 2.734×10−4 1.40
0.025 5.304×10−5 1.87 6.413×10−5 2.04 7.654×10−5 1.84

t=0.1 ¥ℓ

ò r
¥
- E , ,i i1 2

( ) Rate r
¥
- E , ,i i1 1

( ) Rate r
¥
- E , ,i i1 0

( ) Rate

0.4 2.255×10−3
— 3.240×10−3

— 4.006×10−3
—

0.2 3.491×10−3 −0.63 4.574×10−3 −0.50 5.693×10−3 −0.50
0.1 2.345×10−3 0.57 3.233×10−3 0.50 4.758×10−3 0.26
0.05 7.939×10−4 1.56 1.413×10−3 1.19 1.848×10−3 1.36
0.025 1.823×10−3 2.12 4.094×10−4 1.79 5.537×10−4 1.74

Table E2. Convergence test for adatom concentrations ρ2, ρ1 and ρ0 using three-fold
symmetric anisotropic edge energies and kinetic coefficients in section 4.3.

t=0.1 ℓ2

ò E(2)
òi−1, òi, ρ2 Rate r- E , ,

2
i i1 1

( ) Rate r- E , ,
2
i i1 0

( ) Rate

0.4 1.584×10−3
— 2.700×10−3

— 1.872×10−3
—

0.2 1.752×10−3 −0.15 2.253×10−3 0.26 1.685×10−3 0.15
0.1 1.016×10−3 0.79 1.031×10−3 1.13 7.835×10−4 1.10
0.05 3.223×10−4 1.66 2.789×10−4 1.89 1.872×10−4 2.07
0.025 8.852×10−5 1.86 7.001×10−5 1.99 4.502×10−5 2.06

t=0.1 ¥ℓ

ò r
¥
- E , ,i i1 2

( ) Rate r
¥
- E , ,i i1 1

( ) Rate r
¥
- E , ,i i1 0

( ) Rate

0.4 7.321×10−3
— 5.747×10−3

— 4.228×10−3
—

0.2 1.001×10−2 −0.45 6.091×10−3 −0.08 4.982×10−3 −0.24
0.1 5.620×10−3 0.83 4.623×10−3 0.40 2.686×10−3 0.89
0.05 1.934×10−3 1.54 1.940×10−3 1.25 7.734×10−4 1.80
0.025 5.500×10−4 1.82 5.590×10−4 1.80 1.931×10−4 2.00
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