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Abstract—Gate-exhaustive faults address the fact that not all
the defect mechanisms and behaviors are known in advance, and
not all of them can be translated into fault models. Therefore, it is
advantageous to ensure that a test set covers unexpected defects
by exhaustive testing of gates or subcircuits. This paper observes
that these properties make gate-exhaustive faults suitable for
providing extra coverage for sites where coverage is missing
because of undetectable target faults from other fault models.
Undetectable faults result from logic redundancy, and leave
circuit sites uncovered. To allow subcircuits to be considered as
gates while avoiding the need to consider large numbers of faults,
the gate-exhaustive approach is applied selectively. Instead of
using all the input patterns of every gate, the iterative procedure
described in this paper uses increasing numbers of input patterns
of gates that include undetectable target faults in order to achieve
a coverage goal for these faults. Experimental results demonstrate
the extent to which it is possible to cover the sites of undetectable
single stuck-at faults using tests for gate-exhaustive faults.

I. INTRODUCTION

Defects that are encountered frequently in fabricated chips
provide the basis for the definition of fault models. Such fault
models are used by test generation procedures to produce test
sets that detect commonly occurring defects. For example,
bridge defects are addressed by bridging faults [1], and open
defects are addressed by transistor and interconnect open
faults [2]. New fault models are defined, or existing ones are
enhanced to address new defect behaviors in new technologies
[3]-[6]. An understanding of defect behaviors also drives the
definition of cell-aware faults [7]-[9]. A cell-aware approach
identifies input patterns that are likely to exhibit the presence
of defects in a cell. A test satisfies two conditions: (1) it assigns
the input pattern to the inputs of the cell, and (2) it propagates
the output value of the cell to an observable output.
Gate-exhaustive approaches are different in that they do not

attempt to relate faults with specific defect behaviors [10]-
[14]. This is suitable for addressing the fact that not all the
defect mechanisms and behaviors are known in advance, and
not all of them can be translated into fault models. Therefore,
it is advantageous to ensure that the test set covers unexpected
defects by exhaustive testing of gates or subcircuits.
Similar to a cell-aware fault, a gate-exhaustive fault is

defined by an input pattern of a gate, and has the same
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Fig. 1. Subcircuit

two requirements for a test. However, in a gate-exhaustive
approach there is no attempt to select input patterns that are
relevant to specific defects. Instead, all the input patterns of
the gate are used for defining faults. A shortcoming of a gate-
exhaustive approach is that it becomes infeasible when gates
have large numbers of inputs.
The region-exhaustive approach from [14] is an extension

of the gate-exhaustive approach where gates are replaced by
regions, which are subcircuits that consist of several gates. An
example of a region that consists of three gates is shown in
Figure 1. The region-exhaustive fault model associates a fault
with every input pattern of the region. The advantage of the
region-exhaustive fault model over the gate-exhaustive fault
model is that its test set exercises the region more thoroughly
than a test set for gate-exhaustive faults. Regions are selected
in [14] such that the total number of region-exhaustive faults
does not exceed the number of gate-exhaustive faults.
Subcircuits are also considered in this paper for defining

faults whose tests exercise the circuit more thoroughly than
tests for gate-exhaustive faults. For simplicity of discussion,
the faults are referred to as gate-exhaustive even though they
are based on subcircuits. The key differences between the
regions used in [14] and the subcircuits used in this paper
are related to the motivation for using gate-exhaustive faults.
In [14] the goal is to provide a better coverage for the entire
circuit uniformly. In this paper, a gate-exhaustive approach
is used selectively for providing alternate coverage for sites
where coverage is missing because of the presence of unde-
tectable target faults from other fault models. Undetectable
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faults exist because of logic redundancy. Instead of using all
the input patterns of every gate, the approach described in this
paper uses some of the input patterns of gates that include
undetectable target faults in order to achieve a coverage goal
for these faults based on the following rationale [15]-[16].
When a target fault is undetectable, because of logic redun-

dancy, a test that would have covered its site is missing from
the test set. As a result, the test set may not detect defects
around this site, even if the defects are detectable. In [15],
this issue is addressed by using fault models with orthogonal
detection conditions. Let f0 and f1 be two faults from different
fault models that are associated with the same site. Suppose
that f0 is undetectable. With the existing fault models, in many
cases, f0 being undetectable implies that f1 is undetectable.
With the approach suggested in [15], the detection conditions
of f1 are orthogonal to those of f0, and f1 can be detectable
even if f0 is not. Specifically in [15], a bridging fault model
is defined whose detection conditions require two-cycle tests,
and are orthogonal to those of transition faults. This allows the
bridging faults to cover sites of undetectable transition faults.
In [16], what are called optimistic unspecified transition faults
are used for addressing the presence of undetectable standard
single-cycle transition faults under multicycle tests.
The advantage of a gate-exhaustive approach in this context

is that it is comprehensive in considering the alternate faults
that may be used for covering sites of undetectable target
faults. Specifically, if a target fault f0 is undetectable, it is not
necessary to search for a detectable fault f1 from a different
fault model that is associated with the same site. The gate-
exhaustive approach will allow all the input patterns around
the site of f0 to be considered until sufficient coverage for
the site of f0 is achieved. The tests that are added to the test
set to detect gate-exhaustive faults will not detect f0, which is
undetectable. However, they are expected to detect detectable
defects around the site of f0 in the same way as a test for f0
is expected to detect such defects. These defects may not be
otherwise detected if the site of f0 remains uncovered.
Referring to Figure 1, if g is a line with an undetectable

target fault, the subcircuit around it provides options for input
patterns that can be used for covering the site of the fault.
The procedure described in this paper defines overlapping
subcircuits in order to increase the number of options further.
To address the fact that the number of gate-exhaustive faults

can be excessive, the procedure described in this paper extends
the set of gate-exhaustive faults that it considers iteratively
until the coverage goal for the sites of undetectable target faults
is reached. This allows subcircuits with arbitrary numbers of
inputs to be used.
Only undetectable single stuck-at faults are considered

in this paper. Other fault models can be considered in a
similar way. To cover undetectable delay faults, two-cycle
gate input patterns should be considered as gate-exhaustive
faults. Undetectable single stuck-at faults exist because of
logic redundancy.
The fault g stuck-at a is denoted by g/a. To simplify the

discussion, a test that is added to the test set in order to cover

TABLE I
INPUT PATTERNS

h0 h1 h2 h3 g z
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 0 1
1 0 0 0 0 0
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

the site of an undetectable single stuck-at fault is said to cover
the fault (the fault is not detected since it is undetectable).
The paper is organized as follows. Section II discusses the

use of gate-exhaustive faults for covering undetectable single
stuck-at faults. Section III describes the iterative test genera-
tion procedure. Section IV presents experimental results.

II. GATE-EXHAUSTIVE FAULTS

Figure 1 shows an example of a gate G with four inputs,
h0, h1, h2 and h3, an output z, and an internal line g.
All the 16 input patterns of the gate are shown in Table I.
The corresponding values assigned to line g and gate output
z are also shown. An input pattern corresponds to a gate-
exhaustive fault whose detection requires that the input pattern
be assigned to the inputs of the gate, and its output value would
be propagated to an observable output.
Suppose that the target fault g/0 is undetectable because

of logic redundancy. An input pattern of G (and the corre-
sponding gate-exhaustive fault) is said to cover the site of g/0
if it assigns g = 1. This value is required for activating the
fault. It ensures that the tests, which are used for covering
g/0, are different from the tests that are used for covering or
detecting g/1. This is important in case g/1 is detectable and
does not require additional coverage. The input patterns that
assign g = 1 are shown in the lower part of Table I. A test for
a gate-exhaustive fault from the lower part of Table I is said
to cover g/0.
Considering the target fault g/1, and assuming that it is

undetectable because of logic redundancy, an input pattern of
G is said to cover the fault if it assigns g = 0. The input
patterns that assign g = 0 in Figure 1 are shown in the upper
part of Table I. A test for one of the gate-exhaustive faults in
the upper part of Table I is said to cover the target fault g/1.
In general, a gate G has inputs h0, h1, ..., hn−1 and output

z. An input pattern of G is denoted by v = v0v1...vn−1, where
vi is the value of hi, for 0 ≤ i < n.
The gate includes a set of lines that is also denoted by G.

The inputs and output of the gate are included in G. Logic
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simulation of G under an input pattern v yields a value v(g)
for every line g ∈ G.
A target fault g/a is said to be included in G if g ∈ G.

If g/a is undetectable, g/a is said to be covered by every
input pattern v of G such that v(g) = a. The requirement
v(g) = a exists for a test that detects g/a, and it is made a
requirement for covering g/a if it is undetectable. This ensures
that different tests are used for g/a and g/a. If g/a is covered
by v, a test for the gate-exhaustive fault defined by v is said
to cover the fault g/a.
For a constant NC , the coverage goal for an undetectable

target fault g/a is to detect NC gate-exhaustive faults that
cover g/a. During fault simulation or test generation, the
actual number of detected gate-exhaustive faults that cover
g/a is denoted by nc(g/a).
An undetectable target fault g/a cannot be covered if it is

not possible to obtain the value a on g. In this case, nc(g/a) =
0 will be obtained.

III. TEST GENERATION PROCEDURE

The iterative test generation procedure for gate-exhaustive
faults is described in this section.

A. Overview

The set of target faults (single stuck-at faults in this paper)
is denoted by Ftarg . The procedure accepts a test set T for
the set Ftarg . Fault simulation with fault dropping of Ftarg

under T yields the set of undetected target faults Utarg. If the
test generation procedure for Ftarg is complete, and run to
completion, Utarg contains only undetectable faults that exist
because of logic redundancy. In addition, aborted faults, and
other types of undetected faults, if any exist, are also included
in Utarg, and treated in the same way as undetectable faults.
The procedure also accepts a partition of the circuit into

subcircuits that are denoted by G0, G1, ..., GN−1. These
subcircuits are used for defining gate-exhaustive faults.
The procedure maintains a set of gate-exhaustive faults

that is denoted by Fgexh. An entry of Fgexh is an input
pattern vj,k of a gate Gj . Initially, Fgexh = ∅. The procedure
proceeds iteratively as illustrated by Figure 2. The dashed
boxes represent the following two options for applying test
generation.
(1) The first option is to apply test generation in every

iteration. In this case, every iteration adds faults to Fgexh and
tests to T . In this form, gate-exhaustive faults are computed
only as necessary for achieving coverage goals.
(2) The second option is to perform test generation only

after the iterative part of the procedure defines the set Fgexh

without performing test generation. In this form, the iterative
part of the procedure evaluates the ability of the initial test set
to cover undetectable single stuck-at faults before any tests
are added to it. Test generation is then performed to improve
this ability. This form of the procedure is used for presenting
experimental results.
The details of the procedure are discussed next.

simulate Ftarg under T , and
find the subsetUtarg

assign i = 1

find a subset Fgexh,i of
gate-exhaustive faults

that cover faults inUtarg

add Fgexh,i to Fgexh

simulate Fgexh,i under T ,
mark detected faults, and

update the coverage ofUtarg

perform test generation for
the undetected faults in Fgexh,i ,
add the resulting tests to T , and

update the coverage ofUtarg

if termination conditions
are met, stop

assign i = i +1

perform test generation for
faults from Fgexh,

add the resulting tests to T , and
update the coverage ofUtarg

Fig. 2. Test generation procedure

B. Gate-Exhaustive Faults

In iteration i ≥ 1, the procedure adds a subset of gate-
exhaustive faults to Fgexh. The subset is denoted by Fgexh,i,
and it is determined as follows.
For every gate Gj , where 0 ≤ j < N , and a constant

NA, the procedure attempts to add NA input patterns of Gj

to Fgexh,i. For this purpose, the procedure selects NA input
patterns of Gj randomly. Every input pattern vj,k that is
selected for Gj is processed as follows.
If vj,k is already included in Fgexh, vj,k is discarded without

being considered further.
Next, the procedure assigns the values from vj,k to the

inputs of Gj , and finds the implications of these values. A
conflict may occur if the inputs are not independent of each
other. If a conflict occurs, vj,k is discarded.
If a conflict does not occur, the implications yield a value

for every line of Gj , including its output, zj . Let the value of
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zj be v(zj). If the fault zj/v(zj) is undetectable, the procedure
will not be able to detect the gate-exhaustive fault associated
with vj,k. In this case, vj,k is discarded.

Next, the procedure considers every fault g/a ∈ Utarg such
that nc(g/a) < NC . The procedure checks whether g ∈ Gj ,
and v(g) = a. These are the conditions under which a test for
vj,k covers g/a. If the conditions are satisfied, the fault g/a is
stored in a set that is denoted by Cj,k. If the gate-exhaustive
fault vj,k is detected later on, the coverage of the faults in
Cj,k will increase.
If Cj,k = ∅, the detection of vj,k will not increase the

coverage of any fault from Utarg. In this case, vj,k is discarded
without being considered further.
If vj,k passes all the checks without being discarded, it is

added to Fgexh,i.
After considering NA input patterns for every gate, the pro-

cedure adds Fgexh,i to Fgexh. It then performs fault simulation
for the faults in Fgexh,i, and marks which faults are detected.

The use of NA > 1 takes into consideration that gate-
exhaustive faults may be discarded, or remain undetected after
fault simulation and test generation. A large enough value of
NA ensures that significant numbers of faults are added to
make the iteration useful in increasing the coverage of the
sites of undetectable target faults.

C. Iterative Test Generation and Termination Conditions

When test generation is performed iteratively, the target
faults for iteration i ≥ 1 are the faults in Fgexh,i that are
not already detected by T .
The goal of test generation for a fault vj,k ∈ Fgexh,i is

to assign the input values specified by vj,k , and propagate a
fault effect from the output of Gj to a primary output. The
test generation procedure used for the implementation in this
paper starts from a test that detects the output fault of Gj ,
and modifies the test to assign its input values. Other test
generation procedures can be used instead.
If a test t is generated for a gate-exhaustive fault vj,k ∈

Fgexh,i, fault simulation is carried out for the undetected faults
in Fgexh,i under t.
As gate-exhaustive faults from Fgexh,i are detected, the

coverage of single stuck-at faults from Utarg is updated as
follows. For every fault vj,k ∈ Fgexh,i that is detected by T ,
and every fault g/a ∈ Cj,k, if nc(g/a) < NC , nc(g/a) is
incremented by one.
The procedure terminates if nc(g/a) = NC for every

undetectable fault g/a ∈ Utarg. Otherwise, the procedure
terminates after a constant number of consecutive iterations
where the coverage does not increase for any fault in Utarg.
The constant is denoted by NI .

D. Evaluating the Initial Test Set

To evaluate the ability of the initial test set to cover the
faults from Utarg, test generation is performed only after the
iterative part of the procedure terminates without performing
test generation. In this case, test generation considers the faults

in Fgexh one by one. A fault vj,k ∈ Fgexh is considered as
follows.
If vj,k is already detected, it is not considered further.
Next, the procedure checks the coverage of the faults in

Cj,k. If every fault g/a ∈ Cj,k has nc(g/a) = NC , vj,k is not
considered further.
Test generation is carried out for vj,k only if it is not

already detected, and there is at least one fault g/a ∈ Cj,k

with nc(g/a) < NC . If a test t is generated for vj,k, fault
simulation is carried out for Fgexh under t, and the coverage
of undetectable single stuck-at faults is updated.

IV. EXPERIMENTAL RESULTS

The procedure outlined in Figure 2 is applied to benchmark
circuits with undetectable single stuck-at faults as follows.
Two-level subcircuits are obtained by tracing the circuit

backward starting from every gate output. This results in
overlapping subcircuits, with more opportunities to cover
undetectable single stuck-at faults.
The coverage target for undetectable single stuck-at faults

is NC = 8. In every iteration, NA = 8 gate-exhaustive faults
are considered based on every gate. The two parameters match
such that a single iteration will be sufficient if NA = 8 gate-
exhaustive faults are added to Fgexh based on every gate, and
all the faults are detected. In effect, fewer faults are typically
added, and fewer faults are detected in every iteration.
If the coverage goals are not reached for all the undetectable

target faults, the procedure terminates after NI = 128 con-
secutive iterations where the coverage of undetectable single
stuck-at faults is not increased.
Test generation is applied after the iterative derivation and

simulation of gate-exhaustive faults in order to evaluate the
initial test set.
Two compact test sets for single stuck-at faults are used as

initial test sets, a one-detection test set, and a ten-detection test
set. Both test sets detect all the detectable faults. Undetectable
faults exist because of logic redundancy. The ten-detection test
set is interesting for the following reason.
In a ten-detection test set, every detectable single stuck-at

fault is detected ten times, by ten different tests. The increased
number of detections improves the ability of the test set to
detect defects around the sites of detectable target faults [17]-
[18]. If this is sufficient for covering the sites of undetectable
target faults, the procedure from Figure 2 will not add any new
tests to the test set. The expectation is that the use of a ten-
detection test set will enhance the coverage of undetectable
target faults, but the procedure from Figure 2 will be able to
provide additional coverage.
To measure the quality of the test set T produced by the

procedure from Figure 2, 16-detection fault simulation of T
is carried out for single stuck-at faults. Let nd(g/a) be the
number of tests in T that detect a detectable fault g/a. With
16-detection fault simulation, nd(g/a) ≤ 16 is obtained. The
average value of nd(g/a) considering the detectable target
faults is used for assessing the quality of the test set.
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TABLE II
EXPERIMENTAL RESULTS (ONE-DETECTION TEST SET)

s.a. faults gate-exh faults undet
circuit pi ts sim tg tests incr cov 16det bridg tot inp cov cov ntime
systemcaes 928 1 27 - 121 1.000 99.997 11.305 91.491 18 6 33.333 6.000 4.50
spi 274 1 3 - 406 1.000 99.992 10.559 82.222 15 6 60.000 8.000 1.12
pci spoci ctrl 83 1 141 - 146 1.000 99.968 9.847 79.236 135 9 5.926 8.000 40.82
s526 24 1 2 - 51 1.000 99.905 7.504 78.342 6 3 50.000 3.000 2.14
b04 78 1 14 - 44 1.000 99.869 9.441 84.623 45 7 13.333 5.667 7.12
b04 78 1 - 11 47 1.068 99.869 9.671 84.689 60 7 16.667 8.000 65.56
b07 53 1 4 - 52 1.000 99.845 8.933 80.995 17 4 47.059 2.667 2.46
b07 53 1 - 7 53 1.019 99.845 9.037 81.014 17 4 52.941 3.000 48.54
s38417 1664 1 117 - 103 1.000 99.680 12.429 93.698 5714 10 11.481 3.976 29.93
s38417 1664 1 - 3918 156 1.515 99.680 13.427 93.810 5762 10 13.763 4.494 159.73
tv80 372 1 971 - 489 1.000 99.380 11.064 83.734 12789 16 3.292 5.419 56.12
tv80 372 1 - 4842 751 1.536 99.529 11.889 84.116 13445 16 6.828 6.029 384.36
b11 38 1 58 - 59 1.000 99.290 8.009 76.108 354 9 9.887 2.692 20.54
b11 38 1 - 360 68 1.153 99.290 8.451 76.300 372 9 11.828 3.385 85.92
s1423 91 1 40 - 38 1.000 99.086 8.465 85.594 148 6 35.135 2.962 34.24
s1423 91 1 - 93 41 1.079 99.086 8.770 85.678 148 6 37.162 3.115 132.46
s13207 700 1 80 - 238 1.000 98.869 12.435 88.667 1793 9 29.002 3.752 10.39
s13207 700 1 - 1677 305 1.282 98.869 12.990 88.913 1799 9 34.186 4.104 124.21
s5378 214 1 26 - 111 1.000 98.867 11.785 90.099 466 7 36.695 2.958 6.93
s5378 214 1 - 440 117 1.054 98.867 11.974 90.193 467 7 37.901 3.008 48.67
b15 483 1 251 - 393 1.000 98.540 10.896 79.048 34575 16 4.746 3.731 55.69
b15 483 1 - 15184 418 1.064 98.540 11.005 79.120 43923 16 3.816 3.789 221.43
s15850 611 1 391 - 118 1.000 97.511 12.132 90.756 8680 13 13.687 2.537 48.52
s15850 611 1 - 5876 302 2.559 97.511 13.853 91.416 9014 13 16.130 2.946 437.98
b05 36 1 70 - 61 1.000 96.774 8.868 83.733 4257 12 4.933 3.552 29.05
b05 36 1 - 4452 83 1.361 96.774 10.182 84.544 6170 12 3.825 3.917 184.16
s38584 1464 1 782 - 142 1.000 95.567 11.144 85.048 11738 11 21.154 1.742 109.42
s38584 1464 1 - 7208 227 1.599 95.567 12.840 86.094 11776 11 22.113 1.803 260.10
b14 280 1 224 - 332 1.000 95.326 10.573 82.923 12922 10 9.975 2.239 25.71
b14 280 1 - 12767 656 1.976 95.832 11.395 83.533 12925 10 13.880 2.560 580.55
s9234 247 1 286 - 143 1.000 93.946 10.240 85.957 2340 10 22.778 1.554 36.63
s9234 247 1 - 2296 214 1.497 93.946 11.255 86.251 2341 10 26.826 1.703 165.65
s35932 1763 1 7 - 20 1.000 89.781 4.807 82.320 6143 3 34.983 0.434 13.86
s35932 1763 1 - 6123 79 3.950 89.781 12.872 82.394 6144 3 36.117 0.447 2268.70

A bridging fault coverage is used as an additional quality
metric. Since bridging faults are not targeted by the procedure
from Figure 2, they can be used for representing unmodeled
faults as well as defects. A set B of four-way non-feedback
bridging faults is selected such that, for every line g, and every
value a ∈ {0, 1}, eight lines are selected randomly as the line
h that dominates g when h = a is assigned, and eight bridging
faults are included in B.
The results are shown in Tables II and III as follows. In

Table II, the initial test set is the one-detection test set, and in
Table III, the ten-detection test set.
The first row for every test set shows the results of the

iterative part of the procedure from Figure 2 without test
generation. The results are shown after the last iteration that
detects new gate-exhaustive faults by adding new faults and
performing fault simulation. The procedure performs addi-
tional iterations where it adds and simulates gate-exhaustive
faults but cannot detect them using existing tests. As a result,
the fault coverage of gate-exhaustive faults decreases, but the
same number of gate-exhaustive faults are detected.
The second row shows the results of the procedure from

Figure 2 after test generation. The second row is omitted if
test generation does not produce new tests.
After the circuit name, column pi shows the number of

primary inputs. Column ts has a one when the initial test set
is the one-detection test set, and a ten when the initial test
set is the ten-detection test set. Column sim shows the index
of the iteration of the procedure from Figure 2. Column tg
shows the index of the last gate-exhaustive fault for which the
procedure from Figure 2 generates a new test.
Column tests shows the number of tests in T . With an

initial test set Tinit, column incr shows the ratio |T |/|Tinit|.
Column s.a. faults subcolumn cov shows the fault cov-

erage for single stuck-at faults. Subcolumn 16det shows the
average number of times a detectable single stuck-at fault
is detected when 16-detection fault simulation is carried out.
Column bridg shows the bridging fault coverage.
Column gate − exh faults subcolumn tot shows the

total number of gate-exhaustive faults in Fgexh. Subcolumn
inp shows the maximum number of inputs for a gate that
contributes gate-exhaustive faults to Fgexh. Subcolumn cov
shows the fault coverage obtained for gate-exhaustive faults.
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TABLE III
EXPERIMENTAL RESULTS (TEN-DETECTION TEST SET)

s.a. faults gate-exh faults undet
circuit pi ts sim tg tests incr cov 16det bridg tot inp cov cov ntime
systemcaes 928 10 181 - 1115 1.000 99.819 15.666 96.662 8587 15 9.223 5.181 10.79
systemcaes 928 10 - 6914 1156 1.037 99.862 15.676 96.686 10788 15 8.083 5.000 90.29
spi 274 10 3 - 3695 1.000 99.992 15.165 90.128 15 6 66.667 8.000 1.04
pci spoci ctrl 83 10 22 - 1392 1.000 99.968 15.073 85.089 68 9 11.765 8.000 2.89
s526 24 10 2 - 492 1.000 99.905 15.199 87.702 6 3 50.000 3.000 1.31
b04 78 10 23 - 348 1.000 99.869 15.513 91.851 51 7 13.725 5.667 5.00
b04 78 10 - 14 352 1.011 99.869 15.520 91.879 60 7 21.667 8.000 30.17
b07 53 10 4 - 434 1.000 99.845 15.253 87.545 17 4 52.941 3.000 1.55
s38417 1664 10 41 - 784 1.000 99.680 15.691 99.449 3486 10 22.318 4.380 5.53
s38417 1664 10 - 3308 808 1.031 99.680 15.711 99.449 3607 10 23.371 4.624 61.90
tv80 372 10 424 - 4095 1.000 99.390 15.540 91.016 6513 16 8.030 6.159 10.70
tv80 372 10 - 2921 4232 1.033 99.536 15.541 91.078 7062 16 10.564 6.119 140.26
b11 38 10 58 - 572 1.000 99.290 14.878 82.375 346 9 10.405 2.769 7.26
b11 38 10 - 330 578 1.010 99.290 14.911 82.478 364 9 11.538 3.231 28.91
s1423 91 10 26 - 269 1.000 99.086 15.478 94.805 145 6 37.931 3.154 5.57
s13207 700 10 37 - 2341 1.000 98.869 15.319 97.375 1600 9 36.625 3.926 4.62
s13207 700 10 - 1355 2382 1.018 98.869 15.326 97.376 1622 9 38.903 4.104 66.34
s5378 214 10 23 - 992 1.000 98.867 15.556 97.560 433 7 42.956 3.008 3.20
s5378 214 10 - 431 997 1.005 98.867 15.566 97.563 435 7 43.908 3.142 21.99
s15850 611 10 126 - 983 1.000 97.511 15.559 97.728 6608 13 20.248 2.769 10.99
s15850 611 10 - 3617 1077 1.096 97.511 15.611 97.752 7116 13 20.756 2.963 147.79
b05 36 10 444 - 514 1.000 96.774 15.573 93.702 7501 12 3.053 3.802 120.86
b05 36 10 - 6895 536 1.043 96.774 15.586 93.754 7870 12 3.189 4.125 243.16
s38584 1464 10 782 - 1191 1.000 95.567 15.675 92.805 11142 11 23.604 1.794 58.42
s38584 1464 10 - 4789 1210 1.016 95.567 15.689 92.952 11180 11 23.739 1.808 105.88
b14 280 10 224 - 3058 1.000 95.326 15.469 87.916 12793 10 10.670 2.369 15.97
b14 280 10 - 12642 3351 1.096 95.827 15.471 88.059 12796 10 14.278 2.548 360.85
s9234 247 10 172 - 1132 1.000 93.946 15.352 95.677 2255 10 26.386 1.623 7.87
s9234 247 10 - 1987 1151 1.017 93.946 15.375 95.681 2256 10 27.793 1.677 39.71
s35932 1763 10 7 - 129 1.000 89.781 15.186 92.769 6143 3 36.122 0.447 2.94

Subcolumn undet cov shows the average coverage of an
undetectable single stuck-at fault. This is the average value of
nc(g/a) for a fault g/a ∈ Utarg. With NC = 8, nc(g/a) ≤ 8.
Column ntime shows runtime information as follows. Let

the runtime for single stuck-at fault simulation of the initial
test set be ρinit. Let the cumulative runtime for the procedure
from Figure 2 be ρFig2. The normalized runtime is computed
as ρFig2/ρinit. The normalized runtime captures the increase
in the runtime because of the need to compute gate-exhaustive
faults and perform fault simulation and test generation for
them.
There are variations in the results for the one-detection and

ten-detection test sets because different gate-exhaustive faults
are selected, and different tests are generated. Beyond these
variations, the following points can be observed.
Among the circuits where the single stuck-at fault coverage

exceeds 99.9%, there are cases where test generation for gate-
exhaustive faults does not add any new tests to the one-
detection test set. There are also cases where the one-detection
test set is extended to improve its coverage of undetectable
single stuck-at faults, but the ten-detection test set does not
require additional tests. In these cases, gate-exhaustive faults
can be used for evaluating how well the initial test set covers
the sites of the undetectable single stuck-at faults.
With a lower single stuck-at fault coverage, the initial test

set is typically increased to a larger extent in order to achieve
an improved coverage of the sites of undetectable single stuck-
at faults. While a higher increase in the number of tests occurs
for the one-detection test set, the ten-detection test set also has
to be extended in order to cover the sites of undetectable single
stuck-at faults.
The tests that are added to the test set increase the coverage

of undetectable single stuck-at faults significantly. They also
increase the numbers of detections for detectable single stuck-
at faults, and the bridging fault coverage. The increase occurs
even when only a small number of tests are added to the test
set.
The maximum number of gate inputs varies with the circuit.

The iterative selection of input patterns allows subcircuits with
large numbers of inputs to be considered without producing
excessive numbers of gate-exhaustive faults.

V. CONCLUDING REMARKS

Gate-exhaustive faults address the fact that not all the defect
mechanisms and behaviors are known in advance, and not
all of them can be translated into fault models. This paper
used these properties to obtain extra coverage for sites where
coverage is missing because of undetectable single stuck-at
faults that result from logic redundancy. To allow subcircuits
to be considered as gates while avoiding the need to consider
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large numbers of faults, the gate-exhaustive approach was
applied selectively, using increasing numbers of the input
patterns of gates that include undetectable single stuck-at
faults. Experimental results demonstrated the extent to which
it is possible to cover the sites of undetectable single stuck-at
faults using tests for gate-exhaustive faults.
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