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Abstract—As a special type of recurrent neural networks
(RNN), Long Short Term Memory (LSTM) is capable of process-
ing sequential data with a great improvement in accuracy and is
widely applied in image/video recognition and speech recognition.
However, LSTM typically possesses high computational complex-
ity and may cause high hardware cost and power consumption
when being implemented. With the development of Internet
of Things (IoT) and mobile/edge computation, lots of mobile
and edge devices with limited resources are widely deployed,
which further exacerbates the situation. Recently, Stochastic
Computing (SC) has been applied into neural networks (NN)
(e.g., convolution neural networks, CNN) structure to improve
the power efficiency. Essentially, SC can effectively simplify
the fundamental arithmetic circuits (e.g., multiplication), and
reduce the hardware cost and power consumption. Therefore, this
paper introduces SC into LSTM and creatively proposes an SC-
based LSTM architecture design to save the hardware cost and
power consumption. More importantly, the paper successfully
implements the design on a Field Programmable Gate Array
(FPGA) and evaluates its performance on the MNIST dataset.
The evaluation results show that the SC-LSTM design works
smoothly and can significantly reduce power consumption by
73.24% compared to the baseline binary LSTM implementation
without much accuracy loss. In the future, SC can potentially
save hardware cost and reduce power consumption in a wide
range of IoT and mobile/edge applications.

Index Terms—LSTM, stochastic computing, mobile and edge
devices, hardware resources and power efficiency, accuracy

I. INTRODUCTION

Recurrent neural networks (RNN) [1] have shown signifi-

cant competency for a wide variety of applications, such as

image/video recognition and speech recognition. As a special

type of RNN, Long Short Term Memory (LSTM) [2], [3]

successfully tackles the issue of vanishing gradient descent for

long time dependency data, which makes it great for sequential

data processing. Traditionally, an LSTM model is designed to

be deployed on high-performance CPU or GPU architectures

located in the cloud site, since it inherently involves high

* Authors with equal contribution

computational complexity, resource consumption, and energy

cost.

However, the wide-spread of Internet of Things (IoT) and

concerns about energy, latency and privacy have pushed the

intelligence deployment site on the verge of a major shift, from

the beefy cloud system to wimpy resource/energy-restricted

edge devices. We are expecting more neural networks run-

ning on embedded platforms such as FPGA and ASIC in

the near future. Existing solutions of implementing hardware

accelerators for LSTM mainly focus on shrinking the deep

neural networks (DNN) model size via weight pruning and

quantization [4]–[6]. Though they show promising results,

the DNN structure is still relatively large for those resource-

/power-restricted IoT/edge devices. We argue that the archi-

tecture design of edge-deployed LSTM accelerators should be

explored from a unconventional angle.

In this work, we set out to explore implementing edge-

based LSTM hardware accelerators in a manner of bitstream

processing. Our proposal is motivated by the fact that many

edge-deployed embedded accelerators require to process input

raw data (e.g. sound and speech) as form of bitstream [7],

which is naturally fit to the LSTM applications. However, a

conventional end-to-end speech recognition system involves

the conversion of bitstream data to LSTM recognizable binary

data and resource-hungry LSTM processing steps. It may also

need another conversion of processed data back to bitstream

data. We can observe that a conventional binary-based LSTM

architecture is not efficient for processing bitstream data.

To accommodate the bitstream data processing without

additional conversion, we employ stochastic computing (SC)

that enables efficient arithmetic circuits implementations (e.g.,

multiplication, addition, nonlinear functions) [8], [9]. The

stochastic computing has been adopted to optimize DNN (e.g.,

convolution neural networks) [10]–[12], which significantly

improves the hardware resource and power efficiency only

with trivial accuracy loss.
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In this paper, we propose a stochastic computing (SC)-

based LSTM inference engine, SC-LSTM, by successfully

applying SC into the complex LSTM model and leveraging

the high hardware efficiency of SC circuits to effectively

reduce the resource and power consumption of LSTM struc-

ture. Specifically, we substitute the computation units in the

conventional LSTM architecture with the computation units of

SC architecture, which may inherently save the hardware cost

and power consumption due to the high hardware efficiency.

First, we propose a series of hardware-efficient SC circuit

implementations of the LSTM architecture. Considering that

LSTM is a vector processing structure, the process of cal-

culating each element of the output vector is assigned to an

individual hardware core in our design. This will thus con-

struct a multi-core design to achieve maximum parallelism on

hardware. To avoid potential accuracy lost(representing range

overflow), a single core is designed to employ a stochastic-

binary hybrid method (i.e., combining the binary-circuit design

and SC-circuit design methods).

Second, together with the output of the previous time-step,

the input data of each core is converted to an array of stochastic

values. These values are then passed into a gating module that

is in charge of SC dot-product and SC activation function

approximations. In order to retain the temporal behavior of

LSTM, cell state computation module is cautiously designed

to expand the representing range for the temporal value of cell

state from [-1,1] to [-B,B]. Besides, we implement the addition

functions as both APC-based [13] and MUX-based and obtain

the optimized design with the best performance trade-off.

Finally, we implement our SC-LSTM design on Xilinx

Zedboard FPGA and evaluate our design. We first implement

a conventional binary LSTM module on an FPGA platform as

a baseline. We evaluate our design with a set of experiments

on the MNIST [14] dataset. We test the SC-LSTM imple-

mentation under different settings of core count and time-

step window size to evaluate our design in terms of power

consumption, accuracy, and runtime. In addition, we compare

the performance of the SC-LSTM design with the baseline.

Our test results show that the recognition accuracy increases

from 66.12% to 90.75% for the APC implementation and

73.68% to 92.71% for the MUX implementation with the core-

count increasing from 8 cores to 16 cores. Accordingly, the

power consumption increases by 132% for the APC imple-

mentation and 85% for the MUX implementation. Notably,

by increasing the window size from 212 to 216, the accuracy

increases by 9.43% for the APC implementation and 38.08%

for the MUX implementation. Comparing to the binary LSTM

baseline, both the APC-based and the MUX-based design

consume much less power. The power consumption of MUX-

based implementation is 73.24% less than binary baseline.

Overall, this paper makes the following contributions:
• We introduce a scalable hardware-efficient SC circuit

implementation of the LSTM inference engine. To the

best of our knowledge, this is the first scalable SC based

LSTM architecture implementation.

• We creatively propose a SC addition design between

two bit-stream with different weight, and we successfully

validate the SC-LSTM design on an FPGA board with a

set of experiments to evaluate the performance of the

design in terms of power consumption, accuracy and

runtime.

• Considering that SC can greatly simplify the fundamen-

tal arithmetic circuit, especially multiplication, which is

largely involved in LSTM model, the SC-LSTM design

can significantly reduce the power consumption of the

complex LSTM structure without much loss of accuracy

when being compared to the binary LSTM design, which

would benefit the application of LSTM in many mobile

and edge devices.

The remainder of this paper is organized as follows: Section

II introduces background knowledge involved in the system

design, including LSTM, SC, etc. Section III elaborates our

design on the SC-LSTM structure. Section IV shows the eval-

uation results. Section V discusses the related work. Section

VI concludes the paper.

II. BACKGROUND

A. LSTM

LSTM is one of the mostly used RNN structure. RNN is

a class of deep neural networks (DNN) where connections

between nodes form a directed graph along a temporal se-

quence and thus, exhibits temporal dynamic behavior. RNN is

greatly applicable to tasks such as unsegmented and connected

handwriting recognition or speech recognition. In practice,

LSTM can utilize gating mechanism to effectively mitigate the

issue of the vanishing gradient during the training. Therefore,

LSTM can effectively avoid catastrophic errors and typically

achieve higher performance in terms of accuracy compared to

the primitive RNN.

LSTM is explicitly designed to avoid the long-term de-

pendency problem and able to remember information for

long periods. Specifically, LSTM uses gating mechanisms

to operate on a cell state (i.e., a vector that contains the

memory of the LSTM) at time-step t, Ct, and each gate is

responsible for determining how much information is allowed

to be remembered or forgotten from the cell state. Typically,

there are four types of gates, each of which is represented by

a neuron operation, including: Input gate (I), Cell gate (C′),
Forget gate (F), and Output gate (O). Each gate is the output

of a matrix multiplication, a bias addition, and an activation

function. The following equations represent the functions used

to calculate the next hidden state, ht [15]:

F = sigmoid(Wf · [ht−1, xt] +Bf ) (1)

I = sigmoid(Wi · [ht−1, xt] +Bi) (2)

C
′
= tanh(Wc · [ht−1, xt] +Bc) (3)

O = sigmoid(Wo · [ht−1, xt] +Bo) (4)

Ct = Ct−1 ∗ F + I ∗ C ′
(5)

ht = tanh(Ct) ·O (6)
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Fig. 1: The internal structure of a LSTM layer.

LSTM actually has the form of a chain of repeating modules

of NN. Fig. 1 only shows the internal structure of an LSTM

layer. The input to the LSTM layer is the current input, xt,

concatenated with the output of previous time step, ht−1, and

the output is ht. In LSTM, there are two important non-linear

activation functions that are critical to our design, sigmoid

(sigm), and hyperbolic tangent (tanh). The sigm function is

the activation function that is a part of the forget gate, input

gate, and output gate, while the tanh function is the activation

function of the cell gate.

B. Stochastic Computing

In conventional computing, we represent numbers using

base 2 notation, i.e., each bit is represented by either 0 or 1.

This notation does not change with time (i.e., no matter how

many clock cycles of the system pass, the bits don’t change).

Meanwhile, we map n bits of a number to an n-bits bus (i.e.,

the 0 or 1 corresponds to the high or low level voltage in

digital circuit). However, in SC, the number is represented with

a probability p, [16]. The probability, p, is associated with a

stochastic value, v, which is represented by using a single bit

and may change with each system clock cycle. Each clock

cycle, any wire storing a stochastic value has a probability, p,

of being a 1 bit, and probability, 1− p, of being a 0 bit. The

probability, p, defines what that value being stored represents.

For example, we are reading a stochastic value for 100 clock

cycles. During those 100 cycles, we notice that 30 of those

clock cycles, the bit is 1; in this case, we say the probability

of that wire bit is 0.3.

There are two ways of interpreting a stochastic value, v
[16]. The first way is non-polarized. Non-polarized maps the

probability, p, directly to its logical value, v. If p is 0.3, we

say the logical value, v, is 0.3 as well. The problem with

non-polarized mapping is that we cannot represent negative

numbers. The second way of interpreting a stochastic value,

v, is polarized. Specifically, we map the value of p from

the range [0,1] to the logical value, v, within the range

[-1,1]. Thats to say, if p is 0.5, the mapped value, v, is

0. Compared to non-polarized way, polarized allows us to

represent values as negative numbers. In our SC-LSTM design,

we use polarized way to interpret stochastic values considering

that some parameters, like weights, can be negative. The

following equations represent the specific mappings between

the probability, p, and the logical value, v:

p = (v + 1)/2 (7)

v = 2 ∗ p− 1 (8)

1) Multiplication: Matrix multiplications are widely used

in LSTM model; however, in conventional computing, the im-

plementation of multiplication on hardware is very expensive,

which indispensably involves complex arithmetic circuit com-

binations. In contrast, the multiplier in SC can be efficiently

implemented merely with a simple XNOR gate [16]. Since

the output of an XNOR gate is 1 if only both the inputs are

the same values (i.e., either 1 or 0 simultaneously), the output

probability is the probability of both inputs being the same. In

the following equations, p1 and p2 represent the probabilities

of inputs 1 and 2 being 1s, and pout represents the output

probability. The values v1, v2, and vout represent the stochastic

values of the probabilities p1, p2, and pout, respectively.

pout = P (input1 == input2) (9)

pout = P (input1 == 1 and input2 == 1)

+ P (input1 == 0 and input2 == 0)
(10)

pout = p1 ∗ p2 + (1− p1) ∗ (1− p2) (11)

Based on equation 7, we can substitute the probability values,

p, in equation 11 above with the stochastic values, v, as

follows:

(vout + 1)/2 = (v1 + 1)/2 ∗ (v2 + 1)/2

+(1− (v1 + 1)/2) ∗ (1− (v2 + 1)/2)
(12)

vout = v1 ∗ v2 (13)

2) Addition: In stochastic computing, there are multiple

approaches to implement addition operation [17]. Even so,

chances are that adding two stochastic values together can

produce a value outside of the allowable range. In this case,

we have no choice but to resort to a stochastic-binary hybrid

circuit design to achieve an addition operation. To perform

addition, intuitively, we use an Approximate Parallel Counter

(APC) [13], which takes in N inputs and produces a binary

output value that equals the number of 1 bit at the input.

The downside of doing so is that the APC has to involve a

large number of adders and may consume significant power.

Alternatively, instead of an APC, a MUX can be leveraged

to achieve the addition functionality as well, which can ef-

fectively mitigate the issue of high power consumption at the

expense of higher runtime.

III. DESIGN

A. Top Level Design

In this section, we discuss the top-level design of the whole

system architecture. Fig. 2 shows the main modules involved

in the architecture, which is mainly composed of two RAM

modules, a memory writer and stochastic memory, the SC-

LSTM module, and output port. The two RAM modules

mainly contain the data (i.e., parameter and input data) to be

written to Stochastic Memory (SM). Specifically, Data RAM
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Fig. 2: The top level design of the SC-LSTM architecture.

contains the binary values of the parameter and input while

address RAM (Addr RAM) contains the locations where the

corresponding values will be written into SM. The Memory

Writer (Mem Writer) sequentially reads data from both block

RAMs and stores the values in SM where their addresses are

specified in Addr RAM. The primary objective of SM is to

convert binary data into stochastic values. It contains stochastic

registers for the parameter and input data. Once the binary data

is converted into stochastic value through SM, the value goes

into the SC-LSTM module, which is constructed by utilizing

a multi-core design structure to perform the main SC-LSTM

algorithm. Finally, the output port allows the user to read the

output values of the SC-LSTM module.

B. SC-LSTM module

1) multi-core Design: This section discusses how the scal-

able SC-LSTM module is constructed through a multi-core

design approach. In essence, LSTM is a function going from

a vector to another vector. It begins by performing matrix

multiplication on the input vector concatenated with the pre-

vious output vector. After that, all the other functions in the

LSTM model are achieved based on element-wise operations

(i.e., element-wise sigmoid, element-wise tanh, element-wise

multiplication, and element-wise addition). In this case, when

these operations are implemented on hardware, the operation

of each element can be assigned to a core, which drives us

to construct the module through a multi-core design. That’s

to say, each hidden output of the SC-LSTM is assigned

to a single core to be processed. Fig. 3 (a) illustrates the

multi-core design with an example of the output dimension

being m, which indicates that the m cores are required to

process the computation. Since our HDL implementation is

all parameterized, which makes our design scalable with the

model size changes.

Fig. 3: (a) the multi-core design with an m-dimension output;

(b) the internal structure of each core.

Next, we further explore the internal structure of each core

in the multi-core design. In short, the single core is designed

by using a stochastic-binary hybrid method (i.e., combining

the binary-circuit design and SC-circuit design methods). The

input to the core is an array of stochastic values. The stochastic

values are passed into DotProduct + Activation neuron,

which is shown in Fig. 3 (b). These functions perform the

matrix multiplications and activation functions of different

gates. The outputs of the Input and Cell gates are multiplied

with each other using element-wise multiplication. Both the

result of the multiplication and the Forget gate go into the cell

state, which is in charge of maintaining the cell state value as

well as applying a tanh to the cell state before passing it to

the output where its multiplied with the Output gate using an

XNOR gate.

2) Neuron: The entire design of a Neuron cannot easily

be implemented using only SC. Instead, we use a Stochastic-

Binary hybrid. As we mentioned before, either an APC or a

MUX can be adopted to construct a Neuron. Fig. 4 shows the

internal structure of the Neuron [18]. The inputs to this module

are composed of the input vector and the weights. The input

vector is the x vector concatenated with the previous time-step

output, ht−1. The input vector is multiplied element-wise with

the weight vector, then, the result is passed into the APC or

MUX to complete the matrix multiplication.

Because the result of APC-addition is non-deterministic,

the output result will not always be consistent. We would

rather average the result over 2M (number of data to be

accumulated) clock cycles. The more clock cycles, the more

consistent the result will be. We use an Accumulator to

sample the results for 2M samples. Rather than dividing the

Accumulator result, we leave the result undivided to retain

information. If the result is L bits, the Accumulator result

will be M+L bits. After the Accumulator step, the next step

is to perform the activation function. Theoretically, there are

two types of activation functions: Tanh and Sigmoid. In

practice, both activation functions are approximated by using

Binary Piecewise Functions. Depending on which function,

different Piecewise functions are used. A RNG with two types

of different action functions are described in equations (14)

and (15). Equation(16)-(17) and (18) depicts the comparator

with function Tanh and Sigmoid, respectively.
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Fig. 4: The internal structure of Dot Product with Activation

Neuron within each core.

RNGsigmoid : [−n window size ∗ 4,
n window size ∗ 4] (14)

RNGtanh : [−n window size,

n window size]
(15)

Sigmoidtemp = Accumulator ∗ 2−
N ∗ n window size+ n window size ∗ 2 (16)

Sigmoid = [max(Sigmoidtemp, 0) > RNGsigmoid]

? 1 : 0
(17)

Tanh = [(Accumulator ∗ 2−N ∗ n window size)

> RNGtanh] ? 1 : 0
(18)

3) Store And Release: In this section, we discuss the

concept of a store and release module (S&R), which is critical

to the implementation of the SC-LSTM module. The module’s

goal is to read in a stochastic input for one time window,

which is defined by the number of clock cycles, and use it as

the output for the next window. The motivation behind this is

that we can emulate the temporal behavior of a cell state and

hidden state of the LSTM model. Fig. 5 shows the structure of

the (S&R) module, which is composed of two components, the

store and the release. The store component’s job is to count the

number of 1 bits from the input and accumulate it till the next

time window. At the end of the window, the accumulated value

is passed to the release component and the store component

is reset to 0. In the release component, we utilize the stored

value to generate a bit-stream of random values proportional

to the stored value. We do so by leveraging a random number

generator (RNG) to generate a random integer, which will be

compared with the stored value. If the random integer is less

than or equal to the stored value, a 1 is outputted. Otherwise,

its a 0.

For example, lets assume that during the store phase, an

input bit-stream has a probability 0.3 of being a 1 bit. With

a window size of 1000 bits, the expected value to be stored

is 300 (3 out of every 10 bits is a 1). During the release

phase, a number between 1 and 1000 is generated at random

for multiple times. The probability that the number will be

less than 300 is 0.3. This indicates that the output will be a

bit-stream with a probability of 0.3 which is the same as the

input.

Fig. 5: The structure of store and release component.

In order for the store and release module to work properly,

we have to create an RNG that produces a random integer

between 0 and the window size, W. Any other range and

the output probability will not match the input probability. To

implement an RNG, we use Linear Feedback Shift Registers

(LFSR) [19]. Using a prime polynomial of degree 32, we can

construct a 32 bit random number generator. If we want fewer

bits, we can mask out the other bits we do not need. This,

however, means we can only produce an RNG with a range

that is a power of 2. This means that we must restrict the

window size, W, to a power of 2 as well.

4) Cell State: In this section, we discuss how the cell state

is implemented and the issues we had with implementing it.

The biggest issue with implementing the cell state is the fact

that it is an unbounded value. The value of the cell state can

theoretically approach infinity as the number of time-steps

approaches infinity. As we discussed before, with stochastic

computing, we can only represent stochastic values within the

range of [-1,1]. To solve this issue, we have to come up with a

way of representing stochastic values in a wider range. Rather

than map the probability value, p, from [0,1] to [-1,1], we

select a bound value, B, and map p from [0,1] to [-B, B]. For

instance, the probability, p = 0.75, maps to the logical value,

B/2; once the cell state reaches B or −B, it saturates. If the

value, B, is too large, it will decrease the accuracy, while if

B is too small, the cell state may saturate too early, leading to

computational errors. Therefore, it’s critical to select a proper

B value that is neither too large nor too small. Fig. 6 shows

the internal structure of the cell state module. We modify the

S&R and use it to implement the temporal behavior of the

cell state. The previous cell state value (ct−1) is the output of

the S&R module. We multiply (ct−1) with the forget gate (F)

as described in equation 5. Next, we add the resulting value

with I ∗ C ′
(I

′
) in binary (1 if the input is 1, -1 if the input

is 0). Considering that the cell state’s range is B times larger

than the range of I
′
, the cell state is weighted B times as I

′
is

weighted. Finally, the output binary value is accumulated back

into the S&R. The final step is to use a tanh function on the

cell state. Similar to a neuron, we use linear approximation to

approximate the tanh function. We pass the current window

cell state value into an accumulator. If the current window

cell state is L bits, the accumulator value will be L+M bits

as the number of samples is 2M . An M bit RNG produces a

signed number which is compared to the Accumulator value.

The output is an aproximation of the tanh function on the cell

state.
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Fig. 6: The structure of cell state.

C. Stochastic Memory

In order to implement an NN on a stochastic architecture,

the parameters and input data have to be stored as stochastic

values. As we stated in the top level design, the SM module

mainly works to convert a binary value into a stochastic value.

Stochastic Memory is composed of stochastic registers and

random number generators. Each stochastic register contains

a register for storing a binary value, while the RNG and

comparator are critical to achieving the converting mechanism.

Each stochastic register contains a register for storing a single

binary value and a comparator for converting the stored value

to a stochastic value. Specifically, the comparator reads in both

the binary value and the random number generated by a RNG.

If the random number is less than the binary value, it outputs

a 1, otherwise, it outputs a 0. In order to generate a stochastic

value correctly, the size of the RNG, in terms of bits, must

be as the same as that of the binary value. In other words,

the largest possible binary value, generated by the RNG is

mapped to a stochastic 1, while the smallest possible binary

value generated by the RNG, is mapped to a stochastic -1.

Due to the large structure of the SM, the SM consumes a

lot of power. Therefore, we adopt a couple of approaches to

save resources and power. First, we quantify the input data and

parameters. Rather than store all 32 bits of a binary value, we

limit the number of bits we used to represent a parameter or

data value. This not only reduces the number of flip-flops used

to store a value, but also halves the precision with each bit we

remove. Second, we reduce the number of RNGs we use by

sharing them among stochastic registers. Generally, sharing

RNG may cause interference to the computation results and

is supposed to be avoided at all costs. However, in our case,

if two stochastic values produced by stochastic registers do

not go into the same Neuron, it is acceptable for those two

stochastic registers to share an RNG. This is because when

the stochastic values go into the Neuron, the data is converted

into binary and the random sequences are lost. Once the

random sequences are lost, it is impossible to tell if the random

sequences were produced by the same RNG.

In order to access the address locations we want as easily

as possible, we created an easy addressing scheme for the

Matrix Domain Gate Core Index

Input Weight WI(0) F, I, C, orO(0, 1, 2, 3) [0 : corecount− 1] [0 : inputdimension− 1]
Hidden State WH(1) F, I, C, orO(0, 1, 2, 3) [0 : corecount− 1] [0 : corecount− 1]
Input Vector X(2) NA(0) NA(0) [0 : inputdimension− 1]
Bias B(3) F, I, C, orO(0, 1, 2, 3) [0 : corecount− 1] NA(0)

TABLE I: Easy addressing scheme for stochastic memory.

stochastic memory, which is shown Table I. Specifically, each

stochastic register has an address composed of 4 components,

which includes the register domain, gate, core, and index in the

core. The domain component determines whether the register

belongs to the input weight matrix, the hidden state weight

matrix, the input, or the bias; the gate determine which gate

the parameter of the register belongs to; the core determines

which core the parameter goes to, and the index determines

which vector index the parameter or data value belongs to

should that parameter or data value be a part of a vector (i.e.

for a weight matrix, the parameter column represents the core

while the parameter row represents the index). For a weight

matrix, there are two possible domains: WI and WH (i.e.,

input weight matrix and hidden state matrix). Each component

of the weight parameter address needs to be populated because

it could be in any possible gate, core, and index. For the input

values of the LSTM, the index component is the index of

the vector it belongs to. However, every input goes into every

core, meaning we populate the index component of the address

but leave the core component blank. Also, we leave the gate

component unpopulated due to the fact that each input vector

goes into each gate. In contrast, every bias vector element

has a unique core, but does not belong to a single index. We

populate the core and gate components but leave the index

component unpopulated.

IV. EVALUATION

In this section, the SC-LSTM design is verified and its

performance is evaluated. First, we introduce the environment

setup of our experiments. Then, we evaluate the performance

of the SC-LSTM system design in terms of power consump-

tion and recognition accuracy as well as runtime. Finally, we

compare the SC-LSTM design with the binary LSTM design.

A. Experimental Setup

Platform. Zedboard FPGA (Xilinx Zynq-7000 AP SoC, Dual-

core ARM Cortex-A9, 512 MB DDR3, 256 MB Quad-SPI

Flash, etc.) and Xilinx Design Suite software, which is shown

in Fig. 7.

Dataset. MNIST [14] which are widely applied in image

recognition tasks. With MNIST, each 28x28 image can be

treated as a sequence of rows which needs 28 time-step

to process. The LSTM weights are constrained between the

range [-1,1] in order to be possible to represent them as

stochastic values. We train the LSTM model using standard

32-bit floating point or FP32 via Keras on Ubuntu 18.04.

Settings. After acquiring the trained LSTM model, We test

the SC-LSTM inference engine under different settings of

core count and time-step window size to evaluate the de-

signs in terms of power consumption, recognition accuracy,
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Fig. 7: The real-case implementation of SC-LSTM on Zed-

board.

and runtime. In addition, we compare the performance of

the SC-LSTM design with the baseline (i.e., binary LSTM

implementation on the same Zedboard) which has been imple-

mented with the structure configuration of 28-16. For the APC

implementation, the cell state window size, cell state bound

and activation function window size as well as stochastic

data size are set 256, 8, 256, and 11, respectively. For the

MUX implementation, these values are 1024, 8, 64, and 11.

The reason why these parameters are different is that MUX-

based design suffer more from latency than APC-based design

does.Both of them running at 100MHZ clock.

Performance metrics. We choose the following performance

metrics to evaluate our implementation. a) power consumption:

The amount of power consumed by the LSTM module, which

is reported by power estimator in Vivado. b) accuracy: The

ratio of datapoints where the prediction correctly matches the

label to the total number of datapoints. c) runtime: The amount

of time used to make a prediction on a single datapoint. This

is measured by measuring the time to execute 1000 datapoints

and dividing that time by 1000.

B. Evaluation Results

Fig. 8 shows the results of evaluation on the performance

of the SC-LSTM system. Fig. 8.(a)-(c) illustrate the effect

of increasing the core count on the performance of the

system in terms of power, accuracy and runtime. With the

core count increasing from 8 cores to 16 cores, the power

consumption increases by 132% for the APC implementation

and 85% for the MUX implementation. Obviously, more cores,

more power consumption. In comparison, with the core count

increasing, the runtime hardly increases at all. This is because

all cores work in parallel with each other and the runtime

is controlled by the window size. Notably, with the MNIST

dataset, the accuracy increases from 66.12% to 90.75% for

the APC implementation and 73.68% to 92.71% for the MUX

implementation with the cores count increasing. This is due

to the fact that, as we trained the LSTM model, increasing the

LSTM hidden layer dimension increased the accuracy. Fig.

8.(d)-(f) illustrate the effect of increasing the window size on

the performance of the SC-LSTM system. The increase of the

window size almost has no effect on the power consumption.

This is because changing the window size does not change

Design Power(mw) Accuracy Runtime(ms)

baseline binary 142 94.00% 0.17
APCbased SC 72 90.75% 18.58
MUXbased SC 38 92.31% 18.58

TABLE II: Performance Comparison between baseline and

SC-LSTM design.

Design LUT FF DSP RAM

baseline binary 7741 2412 1 3.58KB
APCbased SC 9529 8456 0 0
MUXbased SC 6763 5928 0 0

TABLE III: Resource utilization comparison between baseline

and SC-LSTM design.

the architecture, only the amount of time it runs per timestep.

We see that increasing the window size also increases the

accuracy. By increasing the window size from 212 to 216, the

accuracy increases by 9.43% for the APC implementation and

38.08% for the MUX implementation. This is due to the fact

that the entire system is non-deterministic, the more bits we

sample, the more consistent the computation results will be.

Meanwhile, the runtime increases from 1.392 ms to 18.590 ms.

Obviously, as the window size increases, the amount of time

it consumes to run a single timestep increases. We can safely

conclude that there exists a trade-off between the accuracy and

runtime. Considering that our proposed SC-LSTM design is

configurable in terms of latency, a proper configuration can be

fully investigated and applied to deal with various scenarios.

Table II shows the comparison of the baseline and SC-

LSTM designs in terms of power, accuracy and runtime.

The baseline architecture is a single LSTM layer with input

dimension of 28 , hidden and output dimension of 16. We

use a window size of 216 cycles on both the APC and

MUX implementation. Obviously, either the APC-based or the

MUX-based design consumes much less power than baseline

does; APC-based only consumes half of the power the baseline

does and the MUX-based even consumes less than 1/3 of the

power baseline power does. Meanwhile, the results indicate

that, despite the system being non-deterministic, the reduction

in accuracy is at most 3.25% and 1.69% for APC-based SC-

LSTM and MUX-based SC-LSTM, respectively. In order to

achieve best inference accuracy, window-size of both APC-

based and MUX-based design is configured as 65535 (i.e.,

216) cycles. Therefore, the runtime of baseline is a few of

magnitudes less than that of the APC-/MUX-based design.

Table III shows the resource utilization under the three dif-

ferent designs, including the baseline and the two SC-LSTM

designs. It appears that the SC design consumes more LUTs

and FFs compared to the baseline. However, the fact is that, the

whole SC design is merely made up of LUTs and FFs while

the baseline design utilizes one more DSP Macro and 3.58KB

RAM besides the regular LUTs and FFs. The DSP Macro

works for MAC operation and RAM is for activation function

look-up table, which greatly contributes to the reduction of

LUTs and FFs consumption.
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Fig. 8: Performance of the SC-LSTM design in terms of power consumption and accuracy as well as runtime, including

APC-based and MUX-based.

V. RELATED WORK

Considering that LSTM can improve recognition accuracy

significantly especially for sequential data at the cost of

increased computational complexity, many designs have been

proposed to improve the hardware efficiency of LSTM-RNN.

[4] proposed a balance-aware pruning algorithm to improve

the parallel processing efficiency. [20] utilized Fast Fourier

Transform (FFT) and inverse FFT to reduce the complexity

of matrix multiplication of LSTM. [5] developed a structured

compression technique to compress the weight matrices of

LSTM. However, it’s still challenging to implement a LSTM

model on resource-limited mobile or edge devices.

Generally speaking, NN model inherently involve complex

architecture and the high computational cost, some highly-

parallel and specialized hardware has been designed to ac-

celerate its execution and reduce its hardware cost, enabling

its applications in the mobile and edge devices. [21], [22]

used GPGPU to accelerate the CNN implementation; [23],

[24] explored the optimization on CNN using FPGA [12].

Even so, due to the inherent inefficiency of conventional

computing methods or general-purpose computing devices in

implementing complex NN, there still exists a large margin

to improve the hardware efficiency. On the other hand, SC

has been introduced to implement neural networks earlier as

a low-cost alternative to conventional binary computing [25].

[13], [26], [27] have done a lot of research on designing ele-

mentary stochastic computational elements, such as APC and

approximate activation functions. [28] proposed a hardware

implementation of a radial basis function neural network by

leveraging stochastic logic. [18] and [29] developed a deep

belief network using stochastic computational. [30] explored

the design space for hardware-efficient stochastic computing

using discrete cosine transformation as a case study. [16],

[31] tried to explore the trade-off between energy efficiency

and accuracy when applying SC in DNN. [12] presented a

highly efficient SC-based inference framework of the large-

scale DCNNs that achieves high energy efficiency and low

area/hardware cost. Further more, [32] has proposed an end-

to-end stochastic system to further reduce power for the whole

structure.
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VII. CONCLUSION

In this paper, we propose an general scalable SC-LSTM

design, which effectively integrates the stochastic computing

with complex LSTM model. We successfully implement the

design on the ZedBoard platform, and evaluate the perfor-

mance of design in terms of power efficiency, recognition and

runtime using MNIST dataset. Both APC and MUX based SC

neuron design is implemented and experimented. Meanwhile,

the baseline binary LSTM is constructed on the same FPGA

platform. With the hidden-size being 16 and window-size 216,

in the best case, the power consumption of SC-LSTM is

73.24% less than the baseline LSTM implementation; on the

other hand, the accuracy of SC-LSTM is also competitive to

the baseline LSTM implementation.
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