2019 IEEE 37th International Conference on Computer Design (ICCD)

An FPGA Implementation of Stochastic
Computing-based LSTM

Guy Maor”*
ECE Department
The University of Texas at Dallas
Richardson, U.S.
Guy.Maor @utdallas.edu

Xiaoming Zeng*
ECE Department
The University of Texas at Dallas
Richardson, U.S.
Xiaoming.Zeng @utdallas.edu

Zhendong Wang*
ECE Department
The University of Texas at Dallas
Richardson, U.S.
Zhendong.Wang @utdallas.edu

Yang Hu
ECE Department
The University of Texas at Dallas
Richardson, U.S.
Yang.Hu4 @utdallas.edu

Abstract—As a special type of recurrent neural networks
(RNN), Long Short Term Memory (LSTM) is capable of process-
ing sequential data with a great improvement in accuracy and is
widely applied in image/video recognition and speech recognition.
However, LSTM typically possesses high computational complex-
ity and may cause high hardware cost and power consumption
when being implemented. With the development of Internet
of Things (IoT) and mobile/edge computation, lots of mobile
and edge devices with limited resources are widely deployed,
which further exacerbates the situation. Recently, Stochastic
Computing (SC) has been applied into neural networks (NN)
(e.g., convolution neural networks, CNN) structure to improve
the power efficiency. Essentially, SC can effectively simplify
the fundamental arithmetic circuits (e.g., multiplication), and
reduce the hardware cost and power consumption. Therefore, this
paper introduces SC into LSTM and creatively proposes an SC-
based LSTM architecture design to save the hardware cost and
power consumption. More importantly, the paper successfully
implements the design on a Field Programmable Gate Array
(FPGA) and evaluates its performance on the MNIST dataset.
The evaluation results show that the SC-LSTM design works
smoothly and can significantly reduce power consumption by
73.24% compared to the baseline binary LSTM implementation
without much accuracy loss. In the future, SC can potentially
save hardware cost and reduce power consumption in a wide
range of IoT and mobile/edge applications.

Index Terms—LSTM, stochastic computing, mobile and edge
devices, hardware resources and power efficiency, accuracy

I. INTRODUCTION

Recurrent neural networks (RNN) [1] have shown signifi-
cant competency for a wide variety of applications, such as
image/video recognition and speech recognition. As a special
type of RNN, Long Short Term Memory (LSTM) [2], [3]
successfully tackles the issue of vanishing gradient descent for
long time dependency data, which makes it great for sequential
data processing. Traditionally, an LSTM model is designed to
be deployed on high-performance CPU or GPU architectures
located in the cloud site, since it inherently involves high

* Authors with equal contribution

computational complexity, resource consumption, and energy
cost.

However, the wide-spread of Internet of Things (IoT) and
concerns about energy, latency and privacy have pushed the
intelligence deployment site on the verge of a major shift, from
the beefy cloud system to wimpy resource/energy-restricted
edge devices. We are expecting more neural networks run-
ning on embedded platforms such as FPGA and ASIC in
the near future. Existing solutions of implementing hardware
accelerators for LSTM mainly focus on shrinking the deep
neural networks (DNN) model size via weight pruning and
quantization [4]-[6]. Though they show promising results,
the DNN structure is still relatively large for those resource-
/power-restricted IoT/edge devices. We argue that the archi-
tecture design of edge-deployed LSTM accelerators should be
explored from a unconventional angle.

In this work, we set out to explore implementing edge-
based LSTM hardware accelerators in a manner of bitstream
processing. Our proposal is motivated by the fact that many
edge-deployed embedded accelerators require to process input
raw data (e.g. sound and speech) as form of bitstream [7],
which is naturally fit to the LSTM applications. However, a
conventional end-to-end speech recognition system involves
the conversion of bitstream data to LSTM recognizable binary
data and resource-hungry LSTM processing steps. It may also
need another conversion of processed data back to bitstream
data. We can observe that a conventional binary-based LSTM
architecture is not efficient for processing bitstream data.

To accommodate the bitstream data processing without
additional conversion, we employ stochastic computing (SC)
that enables efficient arithmetic circuits implementations (e.g.,
multiplication, addition, nonlinear functions) [8], [9]. The
stochastic computing has been adopted to optimize DNN (e.g.,
convolution neural networks) [10]-[12], which significantly
improves the hardware resource and power efficiency only
with trivial accuracy loss.

978-1-5386-6648-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCD46524.2019.00014

38

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

In this paper, we propose a stochastic computing (SC)-
based LSTM inference engine, SC-LSTM, by successfully
applying SC into the complex LSTM model and leveraging
the high hardware efficiency of SC circuits to effectively
reduce the resource and power consumption of LSTM struc-
ture. Specifically, we substitute the computation units in the
conventional LSTM architecture with the computation units of
SC architecture, which may inherently save the hardware cost
and power consumption due to the high hardware efficiency.

First, we propose a series of hardware-efficient SC circuit
implementations of the LSTM architecture. Considering that
LSTM is a vector processing structure, the process of cal-
culating each element of the output vector is assigned to an
individual hardware core in our design. This will thus con-
struct a multi-core design to achieve maximum parallelism on
hardware. To avoid potential accuracy lost(representing range
overflow), a single core is designed to employ a stochastic-
binary hybrid method (i.e., combining the binary-circuit design
and SC-circuit design methods).

Second, together with the output of the previous time-step,
the input data of each core is converted to an array of stochastic
values. These values are then passed into a gating module that
is in charge of SC dot-product and SC activation function
approximations. In order to retain the temporal behavior of
LSTM, cell state computation module is cautiously designed
to expand the representing range for the temporal value of cell
state from [-1,1] to [-B,B]. Besides, we implement the addition
functions as both APC-based [13] and MUX-based and obtain
the optimized design with the best performance trade-off.

Finally, we implement our SC-LSTM design on Xilinx
Zedboard FPGA and evaluate our design. We first implement
a conventional binary LSTM module on an FPGA platform as
a baseline. We evaluate our design with a set of experiments
on the MNIST [14] dataset. We test the SC-LSTM imple-
mentation under different settings of core count and time-
step window size to evaluate our design in terms of power
consumption, accuracy, and runtime. In addition, we compare
the performance of the SC-LSTM design with the baseline.
Our test results show that the recognition accuracy increases
from 66.12% to 90.75% for the APC implementation and
73.68% to 92.71% for the MUX implementation with the core-
count increasing from 8 cores to 16 cores. Accordingly, the
power consumption increases by 132% for the APC imple-
mentation and 85% for the MUX implementation. Notably,
by increasing the window size from 2'2 to 2'6, the accuracy
increases by 9.43% for the APC implementation and 38.08%
for the MUX implementation. Comparing to the binary LSTM
baseline, both the APC-based and the MUX-based design
consume much less power. The power consumption of MUX-
based implementation is 73.24% less than binary baseline.
Overall, this paper makes the following contributions:

e We introduce a scalable hardware-efficient SC circuit
implementation of the LSTM inference engine. To the
best of our knowledge, this is the first scalable SC based
LSTM architecture implementation.

o« We creatively propose a SC addition design between

39

two bit-stream with different weight, and we successfully
validate the SC-LSTM design on an FPGA board with a
set of experiments to evaluate the performance of the
design in terms of power consumption, accuracy and
runtime.

o Considering that SC can greatly simplify the fundamen-
tal arithmetic circuit, especially multiplication, which is
largely involved in LSTM model, the SC-LSTM design
can significantly reduce the power consumption of the
complex LSTM structure without much loss of accuracy
when being compared to the binary LSTM design, which
would benefit the application of LSTM in many mobile
and edge devices.

The remainder of this paper is organized as follows: Section

II introduces background knowledge involved in the system
design, including LSTM, SC, etc. Section III elaborates our
design on the SC-LSTM structure. Section IV shows the eval-
uation results. Section V discusses the related work. Section
VI concludes the paper.

II. BACKGROUND
A. LSTM

LSTM is one of the mostly used RNN structure. RNN is
a class of deep neural networks (DNN) where connections
between nodes form a directed graph along a temporal se-
quence and thus, exhibits temporal dynamic behavior. RNN is
greatly applicable to tasks such as unsegmented and connected
handwriting recognition or speech recognition. In practice,
LSTM can utilize gating mechanism to effectively mitigate the
issue of the vanishing gradient during the training. Therefore,
LSTM can effectively avoid catastrophic errors and typically
achieve higher performance in terms of accuracy compared to
the primitive RNN.

LSTM is explicitly designed to avoid the long-term de-
pendency problem and able to remember information for
long periods. Specifically, LSTM uses gating mechanisms
to operate on a cell state (i.e., a vector that contains the
memory of the LSTM) at time-step t, C;, and each gate is
responsible for determining how much information is allowed
to be remembered or forgotten from the cell state. Typically,
there are four types of gates, each of which is represented by
a neuron operation, including: Input gate (I), Cell gate (C'),
Forget gate (F), and Output gate (O). Each gate is the output
of a matrix multiplication, a bias addition, and an activation
function. The following equations represent the functions used
to calculate the next hidden state, h; [15]:

F = sigmoid(Ws - [ht—1, 2] + By) (D
I = sigmoid(W; - [hy_1,x4] + B;) 2)
C' = tanh(W, - [hy_1, 2] + B.) 3)
O = sigmoid(W, - [hi—1,z¢] + By) 4)
C,=C, xF+I1xC (5)

hy = tanh(Cy) - O (6)

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

\ A
<

v

=

T e ‘\f'

Gigmoid) Csigmoid) tanh) (sigmoid)

(< —»+)

[*WrBf | [*WitBi | [“WetBe | [“WotBo |
L 1 L] |

hi-1
X

Fig. 1: The internal structure of a LSTM layer.

LSTM actually has the form of a chain of repeating modules
of NN. Fig. 1 only shows the internal structure of an LSTM
layer. The input to the LSTM layer is the current input, x4,
concatenated with the output of previous time step, h;_1, and
the output is h;. In LSTM, there are two important non-linear
activation functions that are critical to our design, sigmoid
(sigm), and hyperbolic tangent (tanh). The sigm function is
the activation function that is a part of the forget gate, input
gate, and output gate, while the tanh function is the activation
function of the cell gate.

B. Stochastic Computing

In conventional computing, we represent numbers using
base 2 notation, i.e., each bit is represented by either O or 1.
This notation does not change with time (i.e., no matter how
many clock cycles of the system pass, the bits don’t change).
Meanwhile, we map n bits of a number to an n-bits bus (i.e.,
the 0 or 1 corresponds to the high or low level voltage in
digital circuit). However, in SC, the number is represented with
a probability p, [16]. The probability, p, is associated with a
stochastic value, v, which is represented by using a single bit
and may change with each system clock cycle. Each clock
cycle, any wire storing a stochastic value has a probability, p,
of being a 1 bit, and probability, 1 — p, of being a 0 bit. The
probability, p, defines what that value being stored represents.
For example, we are reading a stochastic value for 100 clock
cycles. During those 100 cycles, we notice that 30 of those
clock cycles, the bit is 1; in this case, we say the probability
of that wire bit is 0.3.

There are two ways of interpreting a stochastic value, v
[16]. The first way is non-polarized. Non-polarized maps the
probability, p, directly to its logical value, v. If p is 0.3, we
say the logical value, v, is 0.3 as well. The problem with
non-polarized mapping is that we cannot represent negative
numbers. The second way of interpreting a stochastic value,
v, is polarized. Specifically, we map the value of p from
the range [0,1] to the logical value, v, within the range
[-1,1]. Thats to say, if p is 0.5, the mapped value, v, is
0. Compared to non-polarized way, polarized allows us to
represent values as negative numbers. In our SC-LSTM design,
we use polarized way to interpret stochastic values considering
that some parameters, like weights, can be negative. The
following equations represent the specific mappings between
the probability, p, and the logical value, v:

40

p=(+1)/2

v=2xp—1

)
®)

1) Multiplication: Matrix multiplications are widely used
in LSTM model; however, in conventional computing, the im-
plementation of multiplication on hardware is very expensive,
which indispensably involves complex arithmetic circuit com-
binations. In contrast, the multiplier in SC can be efficiently
implemented merely with a simple XNOR gate [16]. Since
the output of an XNOR gate is 1 if only both the inputs are
the same values (i.e., either 1 or 0 simultaneously), the output
probability is the probability of both inputs being the same. In
the following equations, p; and py represent the probabilities
of inputs 1 and 2 being 1s, and p,,; represents the output
probability. The values v, v2, and v,,; represent the stochastic
values of the probabilities pl, p2, and p,,:, respectively.

Pout = P(inputy == inputs))

Pout = P(input; == 1 and inputs == 1) (10)
+ P(input; == 0 and inputy == 0)

Pout =pP1*p2+ (1 —p1) x (1 —p2) an

Based on equation 7, we can substitute the probability values,
p, in equation 11 above with the stochastic values, v, as
follows:

(Vout +1)/2=(v1 +1)/2 % (vg +1)/2
+(1 = (v1+1)/2) % (1 = (v2 +1)/2)

Vout = U1 * V2

12)

13)

2) Addition: In stochastic computing, there are multiple
approaches to implement addition operation [17]. Even so,
chances are that adding two stochastic values together can
produce a value outside of the allowable range. In this case,
we have no choice but to resort to a stochastic-binary hybrid
circuit design to achieve an addition operation. To perform
addition, intuitively, we use an Approximate Parallel Counter
(APC) [13], which takes in N inputs and produces a binary
output value that equals the number of 1 bit at the input.
The downside of doing so is that the APC has to involve a
large number of adders and may consume significant power.
Alternatively, instead of an APC, a MUX can be leveraged
to achieve the addition functionality as well, which can ef-
fectively mitigate the issue of high power consumption at the
expense of higher runtime.

III. DESIGN
A. Top Level Design

In this section, we discuss the top-level design of the whole
system architecture. Fig. 2 shows the main modules involved
in the architecture, which is mainly composed of two RAM
modules, a memory writer and stochastic memory, the SC-
LSTM module, and output port. The two RAM modules
mainly contain the data (i.e., parameter and input data) to be
written to Stochastic Memory (SM). Specifically, Data RAM

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

DATA
RAM

3

ZYNQ

@iﬂ@

Fig. 2: The top level design of the SC-LSTM architecture.

contains the binary values of the parameter and input while
address RAM (Addr RAM) contains the locations where the
corresponding values will be written into SM. The Memory
Writer (Mem Writer) sequentially reads data from both block
RAMs and stores the values in SM where their addresses are
specified in Addr RAM. The primary objective of SM is to
convert binary data into stochastic values. It contains stochastic
registers for the parameter and input data. Once the binary data
is converted into stochastic value through SM, the value goes
into the SC-LSTM module, which is constructed by utilizing
a multi-core design structure to perform the main SC-LSTM
algorithm. Finally, the output port allows the user to read the
output values of the SC-LSTM module.

B. SC-LSTM module

1) multi-core Design: This section discusses how the scal-
able SC-LSTM module is constructed through a multi-core
design approach. In essence, LSTM is a function going from
a vector to another vector. It begins by performing matrix
multiplication on the input vector concatenated with the pre-
vious output vector. After that, all the other functions in the
LSTM model are achieved based on element-wise operations
(i.e., element-wise sigmoid, element-wise tanh, element-wise
multiplication, and element-wise addition). In this case, when
these operations are implemented on hardware, the operation
of each element can be assigned to a core, which drives us
to construct the module through a multi-core design. That’s
to say, each hidden output of the SC-LSTM is assigned
to a single core to be processed. Fig. 3 (a) illustrates the
multi-core design with an example of the output dimension
being m, which indicates that the m cores are required to
process the computation. Since our HDL implementation is
all parameterized, which makes our design scalable with the
model size changes.

41

=
store and release :

: (S&R) :
! [x,he-1,1] e
1 1
I | e hus ||
2
1 1
I “es 1
1 [
1 1
1 [
1 1
1 I
L

Dot Product
+Sigmoid

| ;[Cell

|) State
Dot Product 1
+Sigmoid
Dot Product r_r}
+Tanh lc’

Dot Product
+Sigmoid |

Fig. 3: (a) the multi-core design with an m-dimension output;
(b) the internal structure of each core.

Next, we further explore the internal structure of each core
in the multi-core design. In short, the single core is designed
by using a stochastic-binary hybrid method (i.e., combining
the binary-circuit design and SC-circuit design methods). The
input to the core is an array of stochastic values. The stochastic
values are passed into DotProduct + Activation neuron,
which is shown in Fig. 3 (b). These functions perform the
matrix multiplications and activation functions of different
gates. The outputs of the Input and Cell gates are multiplied
with each other using element-wise multiplication. Both the
result of the multiplication and the Forget gate go into the cell
state, which is in charge of maintaining the cell state value as
well as applying a tanh to the cell state before passing it to
the output where its multiplied with the Output gate using an
XNOR gate.

2) Neuron: The entire design of a Neuron cannot easily
be implemented using only SC. Instead, we use a Stochastic-
Binary hybrid. As we mentioned before, either an APC or a
MUX can be adopted to construct a Neuron. Fig. 4 shows the
internal structure of the Neuron [18]. The inputs to this module
are composed of the input vector and the weights. The input
vector is the = vector concatenated with the previous time-step
output, h;_1. The input vector is multiplied element-wise with
the weight vector, then, the result is passed into the APC or
MUX to complete the matrix multiplication.

Because the result of APC-addition is non-deterministic,
the output result will not always be consistent. We would
rather average the result over 2™ (number of data to be
accumulated) clock cycles. The more clock cycles, the more
consistent the result will be. We use an Accumulator to
sample the results for 2 samples. Rather than dividing the
Accumulator result, we leave the result undivided to retain
information. If the result is L bits, the Accumulator result
will be M+L bits. After the Accumulator step, the next step
is to perform the activation function. Theoretically, there are
two types of activation functions: T'anh and Sigmoid. In
practice, both activation functions are approximated by using
Binary Piecewise Functions. Depending on which function,
different Piecewise functions are used. A RNG with two types
of different action functions are described in equations (14)
and (15). Equation(16)-(17) and (18) depicts the comparator
with function T'anh and Sigmoid, respectively.

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

X
7> g L M+L
N £ 3§ ;
2 Binary Piecewise Function o £
é‘ g‘ (tanh/sigmoid) 1 ;;
; = &
W —o"—PN = RNG PR E
A 7 '
e (tanh/sigmoid) P O

Fig. 4: The internal structure of Dot Product with Activation
Neuron within each core.

RN Gsigmoid : [—n_window_size x 4,
. . (14)
n_window_size * 4]
RNGianp : [-n_window_size, 15
n_window_size]
Sigmoidiemp = Accumulator * 2— (16)
N *n_window_size + n_window_size * 2
Sigmoid = [maz(Sigmoidiemp, 0) > RNGsigmoid)
) (I7)
71 :0
Tanh = [(Accumulator * 2 — N x n_window_size) (18)

> RNGiann] 71 : 0

3) Store And Release: In this section, we discuss the
concept of a store and release module (S&R), which is critical
to the implementation of the SC-LSTM module. The module’s
goal is to read in a stochastic input for one time window,
which is defined by the number of clock cycles, and use it as
the output for the next window. The motivation behind this is
that we can emulate the temporal behavior of a cell state and
hidden state of the LSTM model. Fig. 5 shows the structure of
the (S&R) module, which is composed of two components, the
store and the release. The store component’s job is to count the
number of 1 bits from the input and accumulate it till the next
time window. At the end of the window, the accumulated value
is passed to the release component and the store component
is reset to 0. In the release component, we utilize the stored
value to generate a bit-stream of random values proportional
to the stored value. We do so by leveraging a random number
generator (RNG) to generate a random integer, which will be
compared with the stored value. If the random integer is less
than or equal to the stored value, a 1 is outputted. Otherwise,
its a 0.

For example, lets assume that during the store phase, an
input bit-stream has a probability 0.3 of being a 1 bit. With
a window size of 1000 bits, the expected value to be stored
is 300 (3 out of every 10 bits is a 1). During the release
phase, a number between 1 and 1000 is generated at random
for multiple times. The probability that the number will be
less than 300 is 0.3. This indicates that the output will be a
bit-stream with a probability of 0.3 which is the same as the
input.

42

release component

Release Register

8 5

= =

a 8

& 3

input = g output

= 5}

= O

7]

! |
' i
[1
! 1
1 I
i I
1 1
1| stochastic stochastic ||
1 Il
! 1
i 1
! 1
= !
! Il
!

Fig. 5: The structure of store and release component.

In order for the store and release module to work properly,
we have to create an RNG that produces a random integer
between 0 and the window size, W. Any other range and
the output probability will not match the input probability. To
implement an RNG, we use Linear Feedback Shift Registers
(LFSR) [19]. Using a prime polynomial of degree 32, we can
construct a 32 bit random number generator. If we want fewer
bits, we can mask out the other bits we do not need. This,
however, means we can only produce an RNG with a range
that is a power of 2. This means that we must restrict the
window size, W, to a power of 2 as well.

4) Cell State: In this section, we discuss how the cell state
is implemented and the issues we had with implementing it.
The biggest issue with implementing the cell state is the fact
that it is an unbounded value. The value of the cell state can
theoretically approach infinity as the number of time-steps
approaches infinity. As we discussed before, with stochastic
computing, we can only represent stochastic values within the
range of [-1,1]. To solve this issue, we have to come up with a
way of representing stochastic values in a wider range. Rather
than map the probability value, p, from [0,1] to [-1,1], we
select a bound value, B, and map p from [0,1] to [-B, B]. For
instance, the probability, p = 0.75, maps to the logical value,
B/2; once the cell state reaches B or —B, it saturates. If the
value, B, is too large, it will decrease the accuracy, while if
B is too small, the cell state may saturate too early, leading to
computational errors. Therefore, it’s critical to select a proper
B value that is neither too large nor too small. Fig. 6 shows
the internal structure of the cell state module. We modify the
S&R and use it to implement the temporal behavior of the
cell state. The previous cell state value (c;—1) is the output of
the S& R module. We multiply (c;_1) with the forget gate (F)
as described in equation 5. Next, we add the resulting value
with I« C" (I') in binary (1 if the input is 1, -1 if the input
is 0). Considering that the cell state’s range is B times larger
than the range of 1 ', the cell state is weighted B times as I "is
weighted. Finally, the output binary value is accumulated back
into the S&R. The final step is to use a tanh function on the
cell state. Similar to a neuron, we use linear approximation to
approximate the tanh function. We pass the current window
cell state value into an accumulator. If the current window
cell state is L bits, the accumulator value will be L+M bits
as the number of samples is 2. An M bit RNG produces a
signed number which is compared to the Accumulator value.
The output is an aproximation of the tanh function on the cell
state.

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

I ‘ 1‘
] —» ‘ =
— i—a. . Ea
N 4 A
0 I | 0’
Accumulator RNG
M+L M
Tanh | Cﬂmplﬂralor ‘
¥ Output

Fig. 6: The structure of cell state.

C. Stochastic Memory

In order to implement an NN on a stochastic architecture,
the parameters and input data have to be stored as stochastic
values. As we stated in the top level design, the SM module
mainly works to convert a binary value into a stochastic value.
Stochastic Memory is composed of stochastic registers and
random number generators. Each stochastic register contains
a register for storing a binary value, while the RNG and
comparator are critical to achieving the converting mechanism.
Each stochastic register contains a register for storing a single
binary value and a comparator for converting the stored value
to a stochastic value. Specifically, the comparator reads in both
the binary value and the random number generated by a RNG.
If the random number is less than the binary value, it outputs
a 1, otherwise, it outputs a 0. In order to generate a stochastic
value correctly, the size of the RNG, in terms of bits, must
be as the same as that of the binary value. In other words,
the largest possible binary value, generated by the RNG is
mapped to a stochastic 1, while the smallest possible binary
value generated by the RNG, is mapped to a stochastic -1.

Due to the large structure of the SM, the SM consumes a
lot of power. Therefore, we adopt a couple of approaches to
save resources and power. First, we quantify the input data and
parameters. Rather than store all 32 bits of a binary value, we
limit the number of bits we used to represent a parameter or
data value. This not only reduces the number of flip-flops used
to store a value, but also halves the precision with each bit we
remove. Second, we reduce the number of RNGs we use by
sharing them among stochastic registers. Generally, sharing
RNG may cause interference to the computation results and
is supposed to be avoided at all costs. However, in our case,
if two stochastic values produced by stochastic registers do
not go into the same Neuron, it is acceptable for those two
stochastic registers to share an RNG. This is because when
the stochastic values go into the Neuron, the data is converted
into binary and the random sequences are lost. Once the
random sequences are lost, it is impossible to tell if the random
sequences were produced by the same RNG.

In order to access the address locations we want as easily
as possible, we created an easy addressing scheme for the

43

Matrix Domain ~ Gate Core Index

Input Weight W;(0) F,1.C,0r0(0,1,2,3) [0: corecount —1] [0 : inputdimension — 1]
Hidden State Wy(1) F,1,C,0r0(0,1,2,3) [0: corecount —1] [0 corecount — 1]

Input Vector X(2) NA(0) NA(0) [0 inputdimension — 1]
Bias B(3) FI1,C0r0(0,1,2,3) [0:corecount—1] NA(0)

TABLE I: Easy addressing scheme for stochastic memory.

stochastic memory, which is shown Table I. Specifically, each
stochastic register has an address composed of 4 components,
which includes the register domain, gate, core, and index in the
core. The domain component determines whether the register
belongs to the input weight matrix, the hidden state weight
matrix, the input, or the bias; the gate determine which gate
the parameter of the register belongs to; the core determines
which core the parameter goes to, and the index determines
which vector index the parameter or data value belongs to
should that parameter or data value be a part of a vector (i.e.
for a weight matrix, the parameter column represents the core
while the parameter row represents the index). For a weight
matrix, there are two possible domains: W; and Wy (i.e.,
input weight matrix and hidden state matrix). Each component
of the weight parameter address needs to be populated because
it could be in any possible gate, core, and index. For the input
values of the LSTM, the index component is the index of
the vector it belongs to. However, every input goes into every
core, meaning we populate the index component of the address
but leave the core component blank. Also, we leave the gate
component unpopulated due to the fact that each input vector
goes into each gate. In contrast, every bias vector element
has a unique core, but does not belong to a single index. We
populate the core and gate components but leave the index
component unpopulated.

IV. EVALUATION

In this section, the SC-LSTM design is verified and its
performance is evaluated. First, we introduce the environment
setup of our experiments. Then, we evaluate the performance
of the SC-LSTM system design in terms of power consump-
tion and recognition accuracy as well as runtime. Finally, we
compare the SC-LSTM design with the binary LSTM design.

A. Experimental Setup

Platform. Zedboard FPGA (Xilinx Zyng-7000 AP SoC, Dual-
core ARM Cortex-A9, 512 MB DDR3, 256 MB Quad-SPI
Flash, etc.) and Xilinx Design Suite software, which is shown
in Fig. 7.

Dataset. MNIST [14] which are widely applied in image
recognition tasks. With MNIST, each 28x28 image can be
treated as a sequence of rows which needs 28 time-step
to process. The LSTM weights are constrained between the
range [-1,1] in order to be possible to represent them as
stochastic values. We train the LSTM model using standard
32-bit floating point or FP32 via Keras on Ubuntu 18.04.
Settings. After acquiring the trained LSTM model, We test
the SC-LSTM inference engine under different settings of
core count and time-step window size to evaluate the de-
signs in terms of power consumption, recognition accuracy,

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: The real-case implementation of SC-LSTM on Zed-
board.

and runtime. In addition, we compare the performance of
the SC-LSTM design with the baseline (i.e., binary LSTM
implementation on the same Zedboard) which has been imple-
mented with the structure configuration of 28-16. For the APC
implementation, the cell state window size, cell state bound
and activation function window size as well as stochastic
data size are set 256, 8, 256, and 11, respectively. For the
MUX implementation, these values are 1024, 8, 64, and 11.
The reason why these parameters are different is that MUX-
based design suffer more from latency than APC-based design
does.Both of them running at 100MHZ clock.

Performance metrics. We choose the following performance
metrics to evaluate our implementation. a) power consumption:
The amount of power consumed by the LSTM module, which
is reported by power estimator in Vivado. b) accuracy: The
ratio of datapoints where the prediction correctly matches the
label to the total number of datapoints. ¢) runtime: The amount
of time used to make a prediction on a single datapoint. This
is measured by measuring the time to execute 1000 datapoints
and dividing that time by 1000.

B. Evaluation Results

Fig. 8 shows the results of evaluation on the performance
of the SC-LSTM system. Fig. 8.(a)-(c) illustrate the effect
of increasing the core count on the performance of the
system in terms of power, accuracy and runtime. With the
core count increasing from 8 cores to 16 cores, the power
consumption increases by 132% for the APC implementation
and 85% for the MUX implementation. Obviously, more cores,
more power consumption. In comparison, with the core count
increasing, the runtime hardly increases at all. This is because
all cores work in parallel with each other and the runtime
is controlled by the window size. Notably, with the MNIST
dataset, the accuracy increases from 66.12% to 90.75% for
the APC implementation and 73.68% to 92.71% for the MUX
implementation with the cores count increasing. This is due
to the fact that, as we trained the LSTM model, increasing the
LSTM hidden layer dimension increased the accuracy. Fig.
8.(d)-(f) illustrate the effect of increasing the window size on
the performance of the SC-LSTM system. The increase of the
window size almost has no effect on the power consumption.
This is because changing the window size does not change

44

Design Power(mw) Accuracy Runtime(ms)
baseline binary 142 94.00% 0.17
APChaseq SC 72 90.75% 18.58

MU Xpgseq SC 38 92.31% 18.58

TABLE 1II: Performance Comparison between baseline and
SC-LSTM design.

Design LUT FF DSP RAM
baseline binary 7741 2412 1 3.58KB
APCyqsea SC 9529 8456 0 0
MUXpasea SC 6763 5928 0 0

TABLE III: Resource utilization comparison between baseline
and SC-LSTM design.

the architecture, only the amount of time it runs per timestep.
We see that increasing the window size also increases the
accuracy. By increasing the window size from 2'2 to 2'6, the
accuracy increases by 9.43% for the APC implementation and
38.08% for the MUX implementation. This is due to the fact
that the entire system is non-deterministic, the more bits we
sample, the more consistent the computation results will be.
Meanwhile, the runtime increases from 1.392 ms to 18.590 ms.
Obviously, as the window size increases, the amount of time
it consumes to run a single timestep increases. We can safely
conclude that there exists a trade-off between the accuracy and
runtime. Considering that our proposed SC-LSTM design is
configurable in terms of latency, a proper configuration can be
fully investigated and applied to deal with various scenarios.

Table II shows the comparison of the baseline and SC-
LSTM designs in terms of power, accuracy and runtime.
The baseline architecture is a single LSTM layer with input
dimension of 28 , hidden and output dimension of 16. We
use a window size of 2'6 cycles on both the APC and
MUX implementation. Obviously, either the APC-based or the
MUX-based design consumes much less power than baseline
does; APC-based only consumes half of the power the baseline
does and the MUX-based even consumes less than 1/3 of the
power baseline power does. Meanwhile, the results indicate
that, despite the system being non-deterministic, the reduction
in accuracy is at most 3.25% and 1.69% for APC-based SC-
LSTM and MUX-based SC-LSTM, respectively. In order to
achieve best inference accuracy, window-size of both APC-
based and MUX-based design is configured as 65535 (i.e.,
216) cycles. Therefore, the runtime of baseline is a few of
magnitudes less than that of the APC-/MUX-based design.
Table III shows the resource utilization under the three dif-
ferent designs, including the baseline and the two SC-LSTM
designs. It appears that the SC design consumes more LUTs
and FFs compared to the baseline. However, the fact is that, the
whole SC design is merely made up of LUTs and FFs while
the baseline design utilizes one more DSP Macro and 3.58KB
RAM besides the regular LUTs and FFs. The DSP Macro
works for MAC operation and RAM is for activation function
look-up table, which greatly contributes to the reduction of
LUTs and FFs consumption.

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

—
=3
=

“=APC #«MUX X
= 80 < .
é 60 - g 75 —_—
T £
s 40 a 30
Z 20 - “=APC =MUX
£ < L5 [wapc M 10 Are -
6 8 10 12 14 16 18 6 8 10 12 14 16 18 6 8 10 12 14 16 18
(a) # Cores (b) # Cores (© # Cores
84.4 100 20
SC———— o N “+APC -=MUX
E 644 S ,/0’/‘?‘_* 16 Vd
= = 75 =
T 444 2 /
2 244 g =0
S 44 SABC SMIK | < +APC +MUX
1112 13 14 15 16 17 1112 13 14 15 16 17 1112 13 14 15 16 17
@ Window Size(log2) (e) Window Size(log2) (f) Window Size(log2)

Fig. 8: Performance of the SC-LSTM design in terms of power consumption and accuracy as well as runtime, including

APC-based and MUX-based.
V. RELATED WORK

Considering that LSTM can improve recognition accuracy
significantly especially for sequential data at the cost of
increased computational complexity, many designs have been
proposed to improve the hardware efficiency of LSTM-RNN.
[4] proposed a balance-aware pruning algorithm to improve
the parallel processing efficiency. [20] utilized Fast Fourier
Transform (FFT) and inverse FFT to reduce the complexity
of matrix multiplication of LSTM. [5] developed a structured
compression technique to compress the weight matrices of
LSTM. However, it’s still challenging to implement a LSTM
model on resource-limited mobile or edge devices.

Generally speaking, NN model inherently involve complex
architecture and the high computational cost, some highly-
parallel and specialized hardware has been designed to ac-
celerate its execution and reduce its hardware cost, enabling
its applications in the mobile and edge devices. [21], [22]
used GPGPU to accelerate the CNN implementation; [23],
[24] explored the optimization on CNN using FPGA [12].
Even so, due to the inherent inefficiency of conventional
computing methods or general-purpose computing devices in
implementing complex NN, there still exists a large margin
to improve the hardware efficiency. On the other hand, SC
has been introduced to implement neural networks earlier as
a low-cost alternative to conventional binary computing [25].
[13], [26], [27] have done a lot of research on designing ele-
mentary stochastic computational elements, such as APC and
approximate activation functions. [28] proposed a hardware
implementation of a radial basis function neural network by
leveraging stochastic logic. [18] and [29] developed a deep
belief network using stochastic computational. [30] explored
the design space for hardware-efficient stochastic computing
using discrete cosine transformation as a case study. [16],
[31] tried to explore the trade-off between energy efficiency
and accuracy when applying SC in DNN. [12] presented a
highly efficient SC-based inference framework of the large-

45

scale DCNNs that achieves high energy efficiency and low
area/hardware cost. Further more, [32] has proposed an end-
to-end stochastic system to further reduce power for the whole
structure.

VI. ACKNOWLEDGMENT

We thank all the anonymous reviewers for invaluable and
insightful comments to make this paper better. This work is
supported in part by NSF grant CCF-1822985. The corre-
sponding author is Yang Hu.

VII. CONCLUSION

In this paper, we propose an general scalable SC-LSTM
design, which effectively integrates the stochastic computing
with complex LSTM model. We successfully implement the
design on the ZedBoard platform, and evaluate the perfor-
mance of design in terms of power efficiency, recognition and
runtime using MNIST dataset. Both APC and MUX based SC
neuron design is implemented and experimented. Meanwhile,
the baseline binary LSTM is constructed on the same FPGA
platform. With the hidden-size being 16 and window-size 216,
in the best case, the power consumption of SC-LSTM is
73.24% less than the baseline LSTM implementation; on the
other hand, the accuracy of SC-LSTM is also competitive to
the baseline LSTM implementation.

REFERENCES
[1] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical review
of recurrent neural networks for sequence learning. arXiv preprint
arXiv:1506.00019, 2015.
Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.
Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with Istm. 1999.

[2]
[3]

[4] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin
Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese:
Efficient speech recognition engine with sparse Istm on fpga. In

Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 75-84. ACM, 2017.

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

[51

[6]

[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi Wang,
and Yun Liang. C-lstm: Enabling efficient Istm using structured com-
pression techniques on fpgas. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
11-20. ACM, 2018.

Zhe Li, Caiwen Ding, Siyue Wang, Wujie Wen, Youwei Zhuo, Chang
Liu, Qinru Qiu, Wenyao Xu, Xue Lin, Xuehai Qian, et al. E-rnn:
Design optimization for efficient recurrent neural networks in fpgas. In
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 69-80. IEEE, 2019.

Kyle Daruwalla, Heng Zhuo, Carly Schulz, and Mikko Lipasti. Bitbench:
A benchmark for bitstream computing. In Proceedings of the 20th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, LCTES 2019, pages 177-187, New
York, NY, USA, 2019. ACM.

Brian R Gaines. Stochastic computing systems. In Advances in
information systems science, pages 37-172. Springer, 1969.

Di Wu and Joshua San Miguel. In-stream stochastic division and
square root via correlation. In Proceedings of the 56th Annual Design
Automation Conference 2019, page 162. ACM, 2019.

Zhe Li, Ao Ren, Ji Li, Qinru Qiu, Yanzhi Wang, and Bo Yuan.
Dscnn: Hardware-oriented optimization for stochastic computing based
deep convolutional neural networks. In 2016 IEEE 34th International
Conference on Computer Design (ICCD), pages 678-681. IEEE, 2016.
Hyeonuk Sim, Saken Kenzhegulov, and Jongeun Lee. Dps: Dynamic
precision scaling for stochastic computing-based deep neural networks.
In Proceedings of the 55th Annual Design Automation Conference,
page 13. ACM, 2018.

Zhe Li, Ji Li, Ao Ren, Ruizhe Cai, Caiwen Ding, Xuehai Qian, Jeftrey
Draper, Bo Yuan, Jian Tang, Qinru Qiu, et al. Heif: Highly efficient
stochastic computing based inference framework for deep neural net-
works. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. Approximate de-
randomizer for stochastic circuits. In 2015 International SoC Design
Conference (ISOCC), pages 123-124. IEEE, 2015.
Christopher J.C. Burges Yann LeCun, Corinna Cortes.
database of handwritten digits.

Understanding Istm networks, 2015.

Bradley D Brown and Howard C Card. Stochastic neural computation.
i. computational elements. IEEE Transactions on computers, 50(9):891—
905, 2001.

Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai
Qian, and Bo Yuan. Sc-denn: Highly-scalable deep convolutional neural
network using stochastic computing. ACM SIGOPS Operating Systems
Review, 51(2):405-418, 2017.

Yidong Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han. An energy-
efficient stochastic computational deep belief network. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1175-1178. IEEE, 2018.

Pong P Chu and Robert E Jones. Design techniques of fpga based
random number generator. In Military and Aerospace Applications of
Programmable Devices and Technologies Conference, volume 1, pages
28-30. Citeseer, 1999.

Zhe Li, Shuo Wang, Caiwen Ding, Qinru Qiu, Yanzhi Wang, and Yun
Liang. Efficient recurrent neural networks using structured matrices in
fpgas. arXiv preprint arXiv:1803.07661, 2018.

Endre Laszl6, Péter Szolgay, and Zoltan Nagy. Analysis of a gpu based
cnn implementation. In 2012 13th International Workshop on Cellular
Nanoscale Networks and their Applications, pages 1-5. IEEE, 2012.
GEORGE VALENTIN STOICA, RADU DOGARU, and C Stoica. High
performance cuda based cnn image processor, 2015.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep con-
volutional neural networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
161-170. ACM, 2015.

Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil
Ghiasi. Design space exploration of fpga-based deep convolutional
neural networks. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 575-580. IEEE, 2016.

Armin Alaghi and John P Hayes. Survey of stochastic computing. ACM
Transactions on Embedded computing systems (TECS), 12(2s):92, 2013.

The mnist

46

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Behraoz Parhami and Chi-Hsiang Yeh. Accumulative parallel counters.
In Conference Record of The Twenty-Ninth Asilomar Conference on
Signals, Systems and Computers, volume 2, pages 966-970. IEEE, 1995.

Bingzhe Li, Yaobin Qin, Bo Yuan, and David J Lilja. Neural network
classifiers using stochastic computing with a hardware-oriented approx-
imate activation function. In 2017 IEEE International Conference on
Computer Design (ICCD), pages 97-104. IEEE, 2017.

Yuan Ji, Feng Ran, Cong Ma, and David J Lilja. A hardware
implementation of a radial basis function neural network using stochastic
logic. In Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pages 880-883. EDA Consortium, 2015.

Kayode Sanni, Guillaume Garreau, Jamal Lottier Molin, and Andreas G
Andreou. Fpga implementation of a deep belief network architecture
for character recognition using stochastic computation. In 2015 49th
Annual Conference on Information Sciences and Systems (CISS), pages

1-5. IEEE, 2015.

Bo Yuan, Chuan Zhang, and Zhongfeng Wang. Design space exploration
for hardware-efficient stochastic computing: A case study on discrete
cosine transformation. In 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6555-6559.

IEEE, 2016.

Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun
Lee, and Kiyoung Choi. Dynamic energy-accuracy trade-off us-
ing stochastic computing in deep neural networks. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6.

IEEE, 2016.
Mikko Lipasti and Carly Schulz. End-to-end stochastic computing, 2017.

Authorized licensed use limited to: University of Florida. Downloaded on July 28,2020 at 20:49:36 UTC from IEEE Xplore. Restrictions apply.

