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Abstract

Multilingual data-parallel pipelines, such as Microsoft’s
Scope and Apache Spark, are widely used in real-world ana-
lytical tasks. While the involvement of multiple languages
(often including both managed and native languages) pro-
vides much convenience in data manipulation and transfor-
mation, it comes at a performance cost — managed languages
need a managed runtime, incurring much overhead. In ad-
dition, each switch from a managed to a native runtime
(and vice versa) requires marshalling or unmarshalling of an
ocean of data objects, taking a large fraction of the execution
time. This paper presents Niijima, an optimizing compiler for
Microsoft’s Scope/Cosmos, which can consolidate C#-based
user-defined operators (UDOs) across SQL statements, thereby
reducing the number of dataflow vertices that require the
managed runtime, and thus the amount of C# computations
and the data marshalling cost. We demonstrate that Niijima
has reduced job latency by an average of 24% and up to 3.3x,
on a series of production jobs.

CCS Concepts « Information systems — Data manage-
ment systems; « Software and its engineering — Com-
pilers;

Keywords Big Data system, Scope/Cosmos, compiler opti-
mization, SQL, user-defined operator

ACM Reference Format:
Guogqing Harry Xu, Margus Veanes, Michael Barnett, Madan Musu-
vathi, Todd Mytkowicz, Ben Zorn, and Huan He, Haibo Lin. 2019.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6873-5/19/10...$15.00
https://doi.org/10.1145/3341301.3359649

Niijima: Sound and Automated Computation Consolidation for Effi-
cient Multilingual Data-Parallel Pipelines. In SOSP ’19: Symposium
on Operating Systems Principles, October 27-30, 2019, Huntsville, ON,
Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3341301.3359649

1 Introduction

Modern data-parallel systems often involve components writ-
ten in different programming languages for increased expres-
siveness and convenience. For example, systems in Google
rely on interactions among Java, C++, and Go programs;
Microsoft’s Cosmos/Scope [5] jobs are written in SQL and
C#; Apache Spark [44], which runs on the Java Virtual Ma-
chine (JVM), allows developers to define processing logic in
four languages: Java, Scala, Python, or R. The execution of
an analytical job often alternates between a native runtime
and a managed runtime, requiring frequent format changes
when data flows from one environment into another.

1.1 Problem Statement

Scope is a multilingual data-parallel system used widely at
Microsoft for a range of data processing tasks. Scope consists
of a scripting language that provides seamless integration
of SQL and C# — SQL statements specify a dataflow graph,
forming the backbone of a Scope pipeline, while C# meth-
ods can be freely invoked on table columns in each SQL
statement to perform column transformations. User-defined
operators (UDO) such as PROCESS, COMBINE, and REDUCE are
table-valued functions that take a set of table rows as input
and output another set. They are written in C# and attached
to SQL statements [5]. The following snippet shows a sim-
ple Scope program that first generates a new table data1 by
selecting two columns A and B from data and turning all
strings in A into lower case; it next performs a Map/Reduce
style reduction based on column B using a UDO MyReducer.

datal = SELECT A.ToLower() AS C, B FROM data;
data2 = REDUCE datal ON B USING MyReducer;

A Scope script is compiled into a set of C++ and C# pro-
grams that mutually invoke each other — the relational logic
is implemented in C++ for efficiency while the C# meth-
ods are compiled into C# programs. This compilation model
brings two major challenges in efficiency. First, C# programs
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1 DAT = SELECT T.ToLower() AS T, ... FROM

2 EXTRACT T : string, . FROM "SearchLog. txt"

3 USING TextExtractor;

4 . /* 17 statements */

5 A = SELECT T, . FROM DAT WHERE cond1

6 UNION SELECT T, . FROM DAT WHERE cond2

7 . /* 8 SELECT statements here */

8 UNION SELECT T, . FROM DAT WHERE cond11;

9 . /* 23 statements */

10 B = SELECT StringToTime (T) AS Time,

11 ... /* 458 statements x/

12 C = SELECT Time, . FROM B HAVING Time.Date ==
FromBinary (5248277762427387904
/*2018-04-13T00:00:00.0000000Z%/) . Date;

(a) Code snippet from a Bing service.

. FROM A WHERE ...;
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1 DAT = SELECT StringtoTime (T.ToLower()) AS Time,... FROM
EXTRACT T : . FROM "SearchLog. txt"
USING TextExtractor;

2 string ,
3
4 ... /* 17 statements x/
5

A = SELECT Time, . FROM DAT WHERE condl &&

Time.Date == FromBinary(5248277762427387904) .Date

6 UNION SELECT Time, . FROM DAT WHERE cond2 &&
Time.Date == FromBinary(5248277762427387904).Date

7 ... /* 8 SELECT statements here =*/

8 UNION SELECT Time, . FROM DAT WHERE cond11 &&
Time.Date == FromBinary(5248277762427387904) .Date;

9 ... /* 23 statements */

10 B = SELECT Time, . FROM A WHERE ...;
11 ... /* 458 statements */
12 C = SELECT Time, . FROM B;

(b) Consolidated version.

Figure 1. A real consolidation example; highlighted in red are C# computations.

are notoriously more expensive to execute than native code
due to its need of a managed (NET) runtime. While effort
has been made to translate C# code into C++, translation is
generally difficult in the presence of dynamically allocated
objects since appropriately freeing these objects requires
understanding of their liveness, which is undecidable. Char-
acter encoding is another major obstacle because C++ and
NET use different encoding schemes to represent strings.
The second challenge is that mixing C++ with C# incurs
heavyweight data transfer costs between the native and NET
runtime. For example, to call ToLower in the above example,
all (e.g., billions of) rows from table data need to be deserial-
ized from native bytes into .NET objects, which will, in turn,
be serialized back to native bytes before they can be pushed
to the next dataflow vertex. Furthermore, many of these C#
computations are not strictly necessary at their current loca-
tions. For example, calling a C# method to transform all rows
of a table from one format to another and then filtering out
most rows is clearly an inefficiency. Delaying the method call
until the filtering is done can significantly reduce the amount
of computations if the filtering condition does not depend on
the result of the call. However, this optimization, although
simple, cannot be effectively performed by a SQL optimizer
that does not understand the semantics of imperative code.

State of the Art. Optimization of dataflow pipelines is an ex-
tensively studied topic [5, 6, 13, 17, 18, 26, 30, 39, 42-46]. Most
of these optimizations are system-level techniques that target
increased parallelism or reduced I/O for various throughput
and latency goals. Safely optimizing C# computations in SQL
requires an uniform representation of dependence for SQL
and C#, which none of the previous work has considered.
PeriScope [17] and Blitz [36] are two compiler-based tech-
niques that can reduce, respectively, the shuffle-related I/O
and number of compute stages by transforming/synthesizing
(C#-based) UDO code. They are both designed to optimize
for specific cases in Scope (e.g., PeriScope for REDUCE and
Blitz for JOIN). Furthermore, they are both unsound — they
can potentially change the semantics of a program; hence,

they can be used only for assisting manual tuning, not for
performing automated optimization in a production system.

1.2 Our Contributions

Niijima! is a sound and automated program transformation

technique that aims to minimize the amount of C# computa-
tions and/or their related serialization/deserialization costs
by consolidating these computations in a SQL-based Scope
pipeline. After consolidation, the C# computations, which
used to be scattered all over the pipeline, are moved into a
small number of SQL statements in a semantics-preserving
manner. To create more consolidation opportunities, Niijima
also attempts to pull up filters. Filter pullup leads to earlier
filtering of data items, reducing the costs of both computa-
tion and shuffling. Another important goal of filter pullup
is to get filters out of the way of computation consolidation,
enabling more opportunities for moving C# computations.

Motivating Example. Figure 1 depicts a consolidation ex-
ample, with (a) and (b) illustrating the original and the op-
timized program. The example in (a) is extracted from a
production script — it loads a number of columns from a text
file on the distributed storage using a C#-based extractor.
The extracted data goes through a sequence of format trans-
formation and filtering steps until it reaches Line 5 where the
results from 11 SELECT clauses are combined using a UNION
command. Later, Line 10 converts column T of each row
from String into Time using a C# API StringToTime. Eventu-
ally, Line 12 filters out rows whose Time is not 00:00:00 of
2018-04-13.

Niijima performs two optimizations on the example, as il-
lustrated in Figure 1(b). First, the C# operation StringToTime
is moved from Line 10 all the way up to the first statement —
it gets consolidated with another C# computation T. ToLower.
Second, predicate Time.Date == FromBinary(...) gets pulled
from Line 12 up to each of the 11 SELECT clauses from Line 5 to
Line 8 in the UNION statement. The type of the filter changes

INiijima is a Japanese volcanic island that was merged with another island
by lava in 2013.
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Action Benefit

Computation pushdown | Delayed compute;

reduced computation and serialization
Increased #pure SQL stmts;

reduced serialization

Earlier filtering;

reduced data and computation

Table 1. Three major benefits of Niijima’s optimizations.

Computation merging

Filter pullup

from HAVING to WHERE and it is merged with each of their
original WHERE conditions into a new predicate of the con-
junctive form. The filter type determines whether the filter
is applied before or after the C# computation. In particular,
WHERE is a pre-transformation filter that is applied before any
C# computation in the same statement is executed while
HAVING is a post-transformation filter that is applied after the
execution of all the C# computations in the statement.

These optimizations do not change the semantics of the
program because all of the C# methods involved are pure
methods without side effects. The performance benefit here is
two-fold. (1) Pulling the filter enables earlier filtering of 2/3
of all rows at the UNION statement so that only a very small
number of rows that pass the time check flow to the down-
stream operators. This leads to significantly reduced com-
putation and serialization. (2) Consolidating StringToTime
from Line 10 into Line 1 makes Line 10 a pure SQL statement.
Hence, the total number of C++ operators increases, leading
to fewer dataflow vertices that require the NET runtime and
thus less data serialization/deserialization effort. As a matter
of fact, Figure 1(b) runs 2.91x faster than Figure 1(a) when
processing a real-world dataset.

This example clearly shows how filter pulling and compu-
tation consolidation pave the way for each other. Without
consolidating StringToTime into Line 1, there would be no
way for us to pull the predicate at Line 12 because the predi-
cate uses column Time, which is defined by the C# method
call in Line 10. Hence, the improvement would be much less
significant if these optimizations are enabled individually.

Table 1 summarizes Niijima’s three major benefits. Filter
pulling and computation consolidation mutually benefit each
other — pulling a filter may remove dependences and enable
consolidation of more C# computations, while consolidating
C# computations may, similarly, make it possible for us to
pull filters that could not be pulled otherwise. Niijima per-
forms these two optimizations iteratively until a fixed point
is reached, guarded by a static profit metric that guarantees
the profitability of each move (§3.2.2).

Niijima v.s. Query Optimizations. These optimizations
appear to be similar to predicate push-down and operator fu-
sion performed by traditional database query optimizers. For
example, operator fusion fuses together operators in a query
plan to minimize the materialization overhead by passing
tuples efficiently between them. On the contrary, Niijima
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falls into the category of dataflow-based compiler optimiza-
tions, which differ from the existing query optimizations in
the following two ways.

First, as a compiler (front-end) technique, Niijima’s scope
is the whole program. It can consolidate computations in
the first SQL statement with those in the last statement,
even if these two statements are thousands of statements
apart. Operator fusion, however, focuses on operators close
to each other in a dependence neighborhood on a DAG. For
a program with thousands of statements, for example, fusing
the first and the last operator of the DAG would require
fusing most of the operators in the DAG — a task impossible
to do by any query optimizer.

Second, although we pull predicates, we do not claim that
predicate pulling is a new contribution. Instead, our novelty
is that by having a large scope for consolidating computa-
tions, Niijima enables more predicates to be pulled. Pulling
these predicates would, in turn, enable more computations to
be consolidated. In fact, none of the query optimizers could
perform the optimizations as shown in Figure 1 since such
optimizations require the optimizer to (1) have a global scope
and (2) move filters and computations simultaneously.

Niijima v.s. PeriScope and Blitz. Although techniques
such as PeriScope [17] and Blitz [36] can optimize Scope
programs, Niijima is the first fully automated and sound
technique implemented in Scope’s production compiler.
PeriScope aims to break C# code in REDUCE UDOs into parts
that can be executed before and after each shuffle (i.e., “smart
cut”) — this is, in general, a daunting task to achieve in a
semantics-preserving manner due to issues such as variable
aliasing and heap-related dependences. Blitz synthesizes new
UDOs to optimize joins. However, to use Blitz, a Scope pro-
gram has to be first modeled manually using a meta language,
creating practicality obstacles. The synthesizer is also un-
sound when handling loops. Note that while soundness is
less important for static bug finders, compiler optimizations
must be sound to be used in production systems.

The key insight leading to Niijima’s success is that it oper-
ates at a sweetspot in a vast space of possible optimizations.
Unlike traditional (back-end) query optimizations that focus
on relational logic, Niijima is a front-end optimization for
both SQL and C#, enabling and complementing the existing
back-end optimizations. Furthermore, unlike PeriScope and
Blitz that attempt to analyze and transform UDOs, Niijima
analyzes C# computations together with SQL statements but
never splits and transforms UDOs. Instead, Niijima moves C#
calls around SQL statements based on the inputs/outputs of
these calls.

UDOs, which are no different than any C# methods, often
have complex code logic and pointer usage. It is nearly im-
possible to safely and automatically transform or synthesize
UDOs because this would require safe and precise treat-
ment of pointer-induced aliasing and thus a whole-program
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pointer analysis to analyze the methods directly and transi-
tively reachable from each UDO. How to develop a precise
and scalable pointer analysis alone is an unsolved problem,
not to mention other practical challenges such as how to
create new UDOs holding the generated/split code, how to
create SQL statements to attach these UDOs, and how to
consistently change input/output schemas to accommodate
the UDO changes.

On the contrary, moving C# method calls around SQL
statements is a much more tractable task — this needs only
reasoning about (1) column dependences between relational
tables and (2) inputs/outputs of the involved C# methods.
Pointer-induced aliasing does not exist in this context. Ni-
ijima neither changes the body of any C# method nor the
schema of any table; it only moves filters and merges com-
putations with guaranteed safety. In addition, as dictated
by the Scope specifications, the C# methods embedded in
SQL are all side-effect-free methods whose execution would
not change the external state. Hence, when calls to these
methods are moved around, the program’s semantics would
remain the same as long as certain constraints regarding
column dependences are satisfied (§3.2).

Niijima v.s. Other Potential Alternatives. It is worth not-
ing that the ultimate goal of this work is to integrate Niijima
into the production system, offering the performance benefit
to thousands of (new and legacy) jobs at Microsoft. As a
result, practicality is our main concern throughout Niijima’s
development. A potential alternative to reducing the data
marshalling cost is to define a common standard data for-
mat, such as the one used in Apache Arrow [1], which can
make it easier to pass data across languages. However, data
format is a fundamental contract in the system on which
all components depend. Changing the data format dictates
re-implementation of most interfaces in the system, creating
significant practicality obstacles.

Another potential solution is to add compiler/runtime
support inside the .NET runtime to allow C# computations
to operate directly over native data, similarly to what was
proposed in Gerenuk [25] or Apache Tungsten [12]. However,
it was clear to us that Scope’s production runtime cannot use
a modified NET framework.

Compared to these alternatives, Niijima is a compiler-
based technique that performs source-to-source translation
directly on Scope scripts. It is much less intrusive than
these other potential approaches because it does not need to
change any runtime components.

This paper makes the following major contributions:

e a study demonstrating the opportunity for perfor-
mance improvement in production pipelines;

e a sound and fully automated program analysis
and transformation framework for UDO-heavy SQL
pipelines;
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e the first implementation of such a source-code-level
transformation in Scope’s production runtime, demon-
strating both ease of application and generality; by
contrast, PeriScope and Blitz were both implemented
as tuning tools that cannot be used without developers
in the loop;

e a set of results indicating significant reduction in over-
all time on real workloads. With the Niijima-enabled
runtime, we have optimized, on one of Microsoft’s
production clusters, 21 distinct Scope programs exe-
cuted between 4/3/18 and 4/13/18. Our optimization
improved their running time by up to 3.3%; the overall
(geometric means of) reductions in the total CPU and
serialization/deserialization time are, respectively, 20%
and 22%.

2 Background and Motivating Study

This section first provides a gentle introduction of the Scope
language. Next, we present a study over a set of production
scripts that motivates Niijima’s development.

2.1 Scope Background

Scope is a SQL-like declarative language [5] designed to facil-
itate large-scale data analytics at Microsoft. Like SQL, data is
modeled as sets of rows composed of typed columns. Every
rowset has a well-defined schema. Scope programs are exe-
cuted on top of Cosmos, a distributed runtime designed to
run on large clusters consisting of thousands of commodity
servers with support for fault tolerance, data partitioning,
resource management, and parallelism. Since the SQL-like
constructs in Scope all have standard semantics, we focus
our discussion on UDOs.

Input and Output UDOs. A Scope program reads input
data with command EXTRACT and writes output data with
command OUTPUT. Both EXTRACT and OUTPUT are C# methods.
Although Scope provides a set of built-in extractors and out-
putters, users can easily develop their customized EXTRACT
or OUTPUT logic by implementing standard interfaces.

Data Processing UDOs. In many cases, it is difficult or even
impossible to express a complex operation declaratively with
SQL commands. Examples include special data transforma-
tion (e.g., turning all strings in a column from upper to lower
cases) or customized aggregates. To overcome this challenge,
Scope provides three highly-extensible commands: PROCESS,
REDUCE, and COMBINE, all of which can be customized by the
user in C#. PROCESS takes a rowset as input, processes each
row in turn, and outputs a different rowset which may or may
not have the same schema as the input. REDUCE takes as input
a grouped rowset, processes each group, and outputs another
sequence of rows per group. COMBINE is a binary operator that
takes as input two rowsets, combining them and outputting
a sequence of rows. These user-defined commands can be
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used in a similar manner to traditional SQL commands such
as SELECT, but their semantics can be much richer than
the relational semantics of SQL commands because they are
defined by imperative code in C#.

Scope Compilation and Optimizations. The Scope com-
piler parses the script, checks the syntax, resolves names, and
generates a parse tree as the output. The parse tree is passed
down to the Scope optimizer that performs an extensive set of
query optimizations based on the Cascades framework [16],
which also powers the qeury optimizer in Microsoft’s SQL
Server. At a high level, the optimizer enumerates all possible
rewritings of a query expression and chooses the one with
the lowest estimated cost. Finally, the optimizer generates an
execution plan, which is submitted to the Cosmos execution
environment for execution.

A physical execution plan is represented as a dataflow
DAG. Each vertex on the DAG is a program and each edge
represents a data channel. A vertex program is composed
from Scope physical operators, which are implemented in
C++. These operators may or may not call C#-based UDOs,
depending on whether the program involves customized
commands and/or C# methods. In cases they do call UDOs,
data serialization/deserialization will occur. Otherwise, the
vertex program is a pure C++ program running natively. Op-
erators within a vertex program are executed in a pipelined
manner. A vertex becomes runnable when its inputs are
ready. The Cosmos runtime tracks the state of vertices and
channels, schedules runnable vertices for execution, decides
where to run a vertex, sets up the containers to run a vertex,
and finally starts the program.

2.2 Motivating Study

Scope is being used daily for a variety of data analysis and
data mining applications inside Microsoft. To understand
how pervasively consolidation opportunities exist, we manu-
ally studied the 20 most expensive Scope programs executed
between 9/1/17 and 9/10/17 on each of the three production
clusters X, Y, and Z at Microsoft, each consisting of many
thousands of machines. Millions of jobs are processed on
these clusters every week. We sorted all jobs in this period on
their cumulative CPU time (i.e., the sum of the CPU time for
each vertex on the dataflow graph). The 60 highest ranked
jobs were obtained for manual inspection.

Statistics. Table 2 reports the statistics of the 60 programs
we manually inspected. In terms of functionality, they can
be roughly classified into three categories: search engine
related services (31), machine learning tasks (14), and repos-
itory mining (15). These jobs all have very large cumulative
CPU time. Each job has an average of 22 SQL statements, of
which 13 (59%) have embedded C# computations. Of these 60
programs, 44 (77.3%) were automatically generated by tools
and extremely difficult to understand by human (e.g., a SQL
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CL Time LoC SQL c# | AG
X | 2415/34381 (5668) | 167/3578(926) | 3/124(19) | 2/97 (11) | 14
Y | 1319/19196 (3167) | 59/14527 (1457) | 3/3792 (27) | 0/2114 (21) | 18
Z | 837/2401 (1409) | 48/2116 (431) | 3/160 (9) | 0/142(6) | 12

Table 2. For the 20 most expensive programs in each cluster
(CL), Time is cumulative CPU time (in hours), LoC is lines
of source code, SQL is the number of SQL statements, and
C# is the number of SQL statements that have embedded C#
computations, AG is the number of programs that were au-
tomatically generated. The first four columns are presented
as min/ max (geometric mean).

statement can span hundreds of lines and process hundreds
of columns).

To demonstrate why consolidation is a task best left for a
compiler, we tried by hand to manually optimize these pro-
grams. Due to their complexity, it took one developer a full
month to determine which programs and which statements
in a program are optimizable. Overall, we found that 56 of
the 60 programs can be consolidated. The 4 non-consolidable
jobs are very simple programs with only 3 SQL statements.
Based on statement types, we further classify the consoli-
dation opportunities into three patterns: EXTRACT-PROCESS
(EP), PROCESS-PROCESS (PP), and PROCESS-OUTPUT (PO).

An EP pattern exists if one C# computation on a process-
operator (e.g., SELECT, PROCESS, or REDUCE) can be consoli-
dated with another one in a previous data-loading extract-
operator. A PP pattern exists if the C# computations in mul-
tiple process-operators can be merged together, while a PO
pattern is such that a C# computation in a data-dumping
output-operator can be consolidated with another one in
a previous process- or extract-operator. In Figure 1, both
consolidating the C# computation and pulling the predicate
are PP instances.

M EP Rate

PP Rate PO Rate

[o]
S10%
(o]
0
X Y z

Figure 2. Percentages of consolidable Scope statements from
Microsoft’s three production clusters.

Figure 2 reports, for programs in each cluster, the average
percentage of consolidable statements in the three categories.
For the 60 inspected jobs, an overall of 28.6% SQL statements
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file = SELECT JobGUID.ToLower() AS Jobld,
Content, ManifestType, Filename
FROM (SSTREAM input_file_JobFileExt)
HAVING ManifestType IN (...) AND
Filename IN(...) AND ...;
Algebra = SELECT Jobld , . WHERE ! Content.IsEmpty () ;
Nebula = SELECT Jobld, . WHERE ! Content.IsEmpty () ;

(a) Original program.

file = SELECT JobGUID AS Jobld,
Content, ManifestType, Filename
FROM (SSTREAM input_file_JobFileExt)
HAVING ManifestType IN(...) AND
Filename IN(...) AND ...;
Algebra = SELECT Jobld.ToLower(),
WHERE ! Content.IsEmpty () ;
Nebula = SELECT JoblId.ToLower() ,
WHERE ! Content.IsEmpty () ;

(b) Consolidated program.

Figure 3. A simple consolidation resulted in a 22.9% reduc-
tion in end-to-end CPU time.

are amenable to consolidation. The majority (19.4%) are in-
stances of the PP pattern, while EP and PO take, respectively,
9.1% and 0.2%.

Performance. We performed manual consolidation for four
programs. The consolidation led to 5% — 38% reductions in
cumulative CPU time. Figure 3 provides a closer examina-
tion for one program that mines Scope job repositories. By
pushing the ToLower call from Line 1 down to the two down-
stream statements at Line 6 and 8, we reduced the CPU time
of this job from 1544 hours to 1190 hours over a 8TB dataset.

This is because (1) the computation is pushed across the
HAVING filter, which filters out 42% of all data rows; this re-
duction is significant as these statements are very close to
the data source and there is a large amount of data processed
by them; and (2) the first statement becomes a pure SQL
statement and hence no data serialization is needed there.
Note that moving the ToLower () call would not incur any ex-
tra serialization costs because these two statements already
involve C# computations — data needs to be deserialized
anyways to invoke Content.IsEmpty() in these statements.

Summary. We made four important observations in the
study. First, consolidation opportunities exist pervasively in
production scripts. Second, simple optimizations can lead to
large performance benefits. Third, an absolute requirement is
that all optimizations must be sound — the production system
would not accept any optimization that can potentially alter
program semantics even in a corner case. Fourth, a practical
solution must be fully automatic as many programs are auto-
generated and not human-readable. Neither PeriScope nor
Blitz can satisfy all of these requirements.
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3 Niijima Design and Implementation

Overview. Figure 4 shows an overview of Niijima. Niijima’s
transformation is done via rewriting of a program’s abstract
syntax tree (AST). Niijima contains two binding phases, one
before (1) and one after (2) the Niijima transformation. These
two phases bind types with nodes (e.g., representing different
expressions and constructs) of the AST of the original and
optimized program, respectively.

The first step towards a safe optimization is to explicitly
expose the dependences between program variables. Such
dependences provide a basis for determining the consolida-
tion scope — for example, we must not pull a filter up across
a computation if the filter uses a value that is defined by
the computation. Although def-use-based dependences are
widely used in the literature of program analysis, a unique
challenge here is how to model dependences for the two
involved languages in a unified manner so that constructs in
different languages can be analyzed together.

To overcome this challenge, we propose an intermediate
representation (IR) that captures an important set of prop-
erties of SQL and C# that are necessary for consolidation,
while abstracting away irrelevant details. Niijima takes a
Scope program as input and generates the IR for the program
on which consolidation is performed. Next, we turn the IR
into a dependence graph (DG) where control and data depen-
dences are explicitly modeled. The generation of IR/DG is
done within the first binding phase. The DG is then fed to the
consolidation phase, which outputs a new (optimized) AST
(i.e, AST’ in Figure 4). This AST goes to the semantic analy-
sis that performs type checking and dead code elimination.
This phase outputs another version of AST (i.e., AST").

At this point, there are two ways to proceed. We can
either (1) decode AST” back to the source code or (2) build
an execution plan for it and submit the plan to a cluster
for execution. The first way is primarily for the purpose of
program understanding — developers can read the decoded
program to see what optimizations have been performed,
while the second is the normal way leading to the execution
of the program.

In the rest of this section, we will first discuss our design
of the IR and DG. Then we will proceed to presenting our
consolidation algorithms based on the DG.
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3.1 Dependence Modeling

IR. Despite the existence of various query representations
(e.g., used in logic plan generators), these representations
are primarily syntax trees constructed on a per-query basis.
To enable Niijima to move UDO calls across queries, we
are interested in cross-query dependences, which cannot be
provided by existing representations.

We developed a new IR, which consists of a set of micro-
transformers. Each micro-transformer represents a transfor-
mation that turns a set of input columns into a single target
column. Our goal here is to expose three key pieces of infor-
mation necessary for our optimizations: columns involved
in a transformation, C# computations that perform the trans-
formation, and filters/shuffles that guard the transformation.

A
<Tin.C1, . Tl-n.Cn) _ Tout-D
FiLTER[PRE/PoOST, ¢]*
SuurrLE[PRE/PosT, (T;.C;, . . ., T;.Cj)]”

Figure 5. A rule-based language for modeling micro-
transformers.

We designed a rule-based language, as shown in Figure 5,
to model micro-transformers. {T;,.C1, ..., T;,.C,) are the
input columns, where T, is the name of the input table
and Cy, ..., C, are column names. These columns serve as
arguments for the C# computation A, which produces a new
column T,,;.D. FILTER represents a filter condition such as
WHERE and HAVING, which takes two parameters. The first
one specifies whether it is a pre-transformation (PRE) or a
post-transformation (POST) filter.

For example, WHERE is a pre-transformation filter that is
applied before any embedded C# computation is executed
in a SQL statement while HAVING is a post-transformation
filter that is not applied until all C# computations in the
statement are executed. This information is important for
us to determine the target location when moving filters or
computations. The second parameter is a boolean formula ¢,
which is the condition defining the filter.

A number of relational operations, such as JOIN, GROUP-BY,
SORT-BY, PARTITION-BY, or REDUCE, need to shuffle data. A
shuffle operation needs to be explicitly modeled because (1) it
may lead to row reductions and (2) the columns on which the
shuffle is performed may induce data dependences. We use
SHUFFLE to expose such information. Each SHUFFLE clause
also takes two parameters, one specifying whether it is a pre-
or post-transformation shuffle, and a second exposing the
set of columns on which the shuffle is performed.

»Example. For the example statement in Figure 6(a), its
Niijima IR is illustrated in Figure 6(b). Since the statement
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selects two columns and invokes C# methods on them, Ni-
ijima generates two micro-transformers, each for a column
transformation. These micro-transformers have the same
SHUFFLE and FILTER clauses because they belong to the same
query statement. The two SHUFFLE clauses represent, respec-
tively, the JOIN operator (i.e., pre-transformation shuffle) and
the GROUP-BY operator (i.e., post-transformation shuffle) with
the involved columns exposed. The two FILTER clauses corre-
spond to the WHERE (i.e., pre-transformation) filter and HAVING
(i.e., post-transformation) filter, respectively. «

From IR to DG. The micro-transformers expose necessary
information that enables fine-grained modeling of depen-
dences. As the next step, Niijima computes a dependence
graph from the IR to explicitly model column-based depen-
dences. A DG has a set of data nodes and a set of control
nodes. Each data node in the DG represents one of the three
possible states of a table column:

e Post-having column (PHC): each PHC node of a col-
umn C represents the state of C right after a post-
transformation filter and/or shuffle is applied.

e Post-where column (PWC): each PWC node of a col-
umn C represents the state of C right after a pre-
transformation filter and/or shuffle is applied.

e Transformed column (TC): each TC node of a column
C represents the state of C right after C is generated
by transforming other columns.

These three states of a column are the static abstractions of
the locations of the column data when they flow through the
pipeline. Such location information determines where a filter
or a C# computation can be moved (see §3.2). In addition
to data nodes, there are two kinds of control nodes: filter
nodes and shuffle nodes. Each filter/shuffle node represents a
FILTER/SHUFFLE clause in the IR.

These data and control nodes give rise to a set of data and
control dependence edges. A data dependence edge exists
between two data nodes or from a data node to a control
node if data flows from the first node to the second. If a C#
computation (4) is needed to transform the first into the sec-
ond, the edge is annotated with A. A control dependence edge
exists from a control node to a data node if the filter/shuffle
represented by the control node can change the volume of
data flowing to the data node.

»Example. Figure 6(c) shows the DG generated from the
IR in (b). Orange, blue and white boxes represent, respec-
tively, PHC, PWC, and TC nodes. Filter and shuffle nodes
are represented by diamonds and ovals, respectively. Solid
and dashed edges represent data and control dependences,
respectively.

The three PHC nodes on the top (in orange) represent
the three input columns T;.C, T,.C, and T,.D at the moment
they are produced from the previous SQL query and about
to flow into query Q. Upon entering Q, data is subject to
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1 T3=SELECT T1.C.ToLower() AS C1, SHUrrLE[PRE, (T1.C, T3.C) ] Join Wnere
. SHUFFLE[POST, (T3.C1)] o SSSgrsmm e
Helper . Transf T2.D) AS D1 - -
elper. Transform ( ) FILTER[PRE, !Ty.D.IsNull()] ch—\ TC ]—T§D—|

2 FROM T1 INNER JOIN T2 ON

FILTER[POST, T3.Cy.StartWith(“market”)] 7. P
Helper. Transform(T2.D)

Helper Transform(T,.D)

T3.D;

T1.C==T2.C
3 GROUP BY C1 (T5.D)
4 WHERE !T2.D.IsNull ()
5 HAVING

C1.StartWith (" market") ;

(@)

SHUFFLE[PRE, (T1.C, T2.C) ]
SHUFFLE[POST, (T5.C1)]

FiLTER[PRE, !T,.D.IsNull()]
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Figure 6. A Scope query (a), and its IR (b) and DG (c); in the DG, boxes, ovals, and diamonds represent column, shuffle, and filter
nodes, respectively; boxes with orange, blue, and white background represent post-having column (PHC) nodes, post-where

column (PWC) nodes, and transformed column (TC) nodes.

the first (pre-transformation) round of shuffling (by JOIN)
and filtering (by WHERE). Since JOIN is performed on T;.C and
T5.C, the control node representing JOIN is data-dependent
on the PHC nodes T;.C and T;.C; a similar dependence exists
for WHERE. After the shuffling and filtering, the three columns
are in their PWC states (shown in blue). These PWC nodes
are control-dependent on both JOIN and WHERE, while data-
dependent on their corresponding PHC nodes.

Next, T;.C gets transformed by the C# computation
T;.C.ToLower into T5.C; while T,.D gets transformed by
Helper.Transform into T5.D;. Two TC nodes (in white) exist
to represent the generated columns 75.C; and T5.D;. There is
a data dependence edge from the PWC node T;.C (i.e., input
of the transformation) to the TC node T5.C; (i.e., output of the
transformation), and another one from the PWC node T;.D
(input) to the TC node T5.D; (output). These edges are anno-
tated, respectively, with the two C# methods performing the
transformations.

At this point, data is subject to another (post-
transformation) round of shuffling (by GROUP-BY) and
filtering (by HAVING). After this round, the columns T5.C4
and T5.D; are in their PHC states (shown in orange). These
two PHC nodes are control-dependent on the shuffle and
filter nodes, and data-dependent on their corresponding TC
nodes. They are the output of query Q and will be connected
to pre-transformation filter/shuffle nodes of the successor
SQL queries.

The DG exits at each data destination node (i.e., a special
column node), representing the output file to which the pro-
cessed data is written. For simplicity of algorithm design, we
always create PWC and PHC nodes for each query regard-
less of whether the statement has filter/shuffle operations. In
cases where a statement does not have any filter/shuffle, we
still create data dependence edges to connect these nodes,

but no control dependence exists. The IR-to-DG algorithm
is straightforward and omitted in the paper. «

Handling of UDOs. There are two ways to handle a UDO.
In Scope, a UDO needs to explicitly declare its input and
output schema. A conservative approach is to treat a UDO
as a blackbox — one can create a PWC node a for each input
column and a TC node b for each output column, and link
each pair (a, b) with a data dependence edge annotated with
the name of the UDO, assuming that any output column b
depends on any input column a.

A more precise handling, as we used in Niijima, is to an-
alyze the UDO to create precise, fine-grained input-output
dependences. We used a sound and precise dependence anal-
ysis [15] to extract dependences in the C# code and add these
dependences as edges into the graph we build.

3.2 Code Motion

The dependence graph can be used for a variety of optimiza-
tion tasks, including dead column elimination, common com-
putation substitution, invariant code hoisting, etc. While this
paper focuses on computation consolidation, future work
can easily develop other optimizations based on the proposed
IR and dependence graph.

Both the optimizations of pulling up filters and consolidat-
ing C# computations can be formulated as a graph traversal
problem over the dependence graph. Niijima iteratively per-
forms filter pullup and computation consolidation until no
new opportunity can be found (i.e., a fixed point is reached).
In the rest of this section, we assume that the C# computa-
tions embedded in SQL are all side-effect-free.

3.2.1 Filter Pullup

While filter optimizations have been performed in different
contexts [17, 34], most of these techniques work at the back-
end — e.g., targeting the query plans or even the imperative
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Algorithm 1: The filter pullup algorithm that imple-
ments a breadth-first search of the DG.

Input: DG G = (V, E)
1 foreach Filter noden € V do

2 I «—INEDGES(n)

3 do

4 NewEdges «— 0

5 foreach Edgee € I do

6 /*Case 1: e has a lambda*/

7 if CONTAINSLAMBDA(e) then

8 L RECORDANDCONTINUE()

9 /*Case 2: e.src has another edge going to a
different statement*/

10 foreach Edge ¢’ €OUTEDGES(e.src) AND e # e’
do

11 if e.stmt # e’.stmt then

12 L L RECORDANDCONTINUE()

13 /*Case 3: pulling a filter may lose an argument”/

14 if n’s in-neighbors belong to different statements
and they contribute different sets of columns to n
then

15 L RECORDANDCONTINUE()

16 NewEdges < NewEdges U INEDGES(e. src)

17 while I « NewEdges

code generated. On the contrary, Niijima operates at the
frontend and moves filters by directly modifying the AST of
a Scope program.

Although our predicate-pulling algorithm is similar in
spirit to existing algorithms, Niijima can optimize filters
and computations together across the entire program. By
contrast, prior techniques are designed primarily for rela-
tional algebra and do not work well in the presence of large
numbers of UDOs. We demonstrate, empirically, in §4 that
many additional opportunities were found by Niijima even
when jobs were executed on the production runtime that
has mature query optimizations enabled.

Where to Move. Starting at each (WHERE or HAVING) filter
node, we traverse the DG backwards to check whether the
filter can be pulled to an upstream query. Algorithm 1 shows
our BFS-based traversal algorithm. The backward graph tra-
versal stops at an edge when any of the three conditions (i.e.,
Line 7, 10, and 14) holds. These conditions represent three
constraints we need to respect when moving code; they are
illustrated by the three examples in Figure 7.

Case 1 represents a dataflow define-use constraint, illus-
trated by Figure 7(a). The traversal stops upon reaching an
edge with a C# computation, because the computation gen-
erates a value that is later used by the filter.

Case 2 represents a control flow constraint, illustrated by
Figure 7(b). The traversal stops when seeing an edge whose
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Figure 7. The three conditions under which the traversal
needs to stop.

source node has another edge going to a different statement
(e.g., Q). Pulling the filter would inappropriately filter out
data that should flow to Q.

Case 3 represents an argument constraint, illustrated by
Figure 7(c). This case is concerned specifically about joins.
A join operation combines the columns from multiple input
tables into an output table T If the filter requires data from
a set of T’s columns and these columns come from different
incoming tables, we cannot pull up the filter across the join
as each incoming table itself is not sufficient to invoke the
filter. In Figure 7(c), for example, the filter requires data from
the columns C, D, and E, while C and D exist in table Tj,
and D and E exist in table T,. Neither T; nor T, can alone
satisfy the filter if we pull the filter into the two upstream
statements.

When the graph traversal stops at one of these conditions,
the RECORDANDCONTINUE function records the current lo-
cation (i.e., node) and then continues the loop at Line 5. In
cases where there are multiple paths leading to the filter
node in the DG (such as the scenario shown in Figure 8(a)),
this function would direct the algorithm to stop the search
in one path and continue to search in the other paths. When
the algorithm finishes, it returns a set of target locations to
which the filter can be moved.

How to Move. For each target location returned by the algo-
rithm, we create a clone of the predicate and insert the clone
at the location. Finally, we remove the original filter from
the DG. The AST of the program is updated accordingly.

There are four major challenges in conducting the actual
move. The first challenge is what the filter type should be,
that is, whether the target filter should be a HAVING or a WHERE
filter. This is determined by the type of the node at the target
location — if the target location contains a PWC node, the
moved filter should be a WHERE filter; otherwise, it should be
a HAVING filter.

The second challenge is how to deal with aliasing. Since
a SELECT operator may contain many AS clauses (e.g., A AS
B), these clauses give rise to aliasing (e.g., A and B become
aliases). To overcome this challenge, we maintain an alias
map and add aliasing information into the map as we en-
counter AS clauses during graph traversal. Upon inserting
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the filter to the target location [, we replace the variables
involved with their corresponding aliases at [ by consulting
with the alias map.

/\ dlle
/\ cp§> cp&&¢<?
VAR
AT AT

(@) (b) ()

Figure 8. Filter pullup examples: (a) the challenge in a multi-
path scenario, (b) merging filters from multiple paths (i.e.,
disjunction); (c) merging filters if the target location has an
existing one (i.e., conjunction).

The third challenge is how to deal with filters in disjoint
paths. Case 2 in Algorithm 1 is often too strict. Many real
Scope programs have a diamond-shape dataflow graph, as
illustrated in Figure 8(a). Applying Algorithm 1 would move
¢ up to the top of each of the two paths, but not be able to pull
the filter further out of these paths due to the conservative
handling of Case 2.

As an optimization, we add an additional step after Algo-
rithm 1 is done. This step relaxes the handling of Case 2 to
pull multiple filters together from disjoint paths if they are
at the top of these paths. Instead of stopping at the branching
point (as done in Case 2), this step pulls filters from all these
paths and merges them by creating a disjunctive predicate.

Figure 8(b) shows such an example — after pulling, the
new filter has a predicate ¢||¢ where ¢ and ¢ were originally
the top nodes of the two disjoint paths. In this case, however,
we cannot remove the original filters ¢ and ¢ unless they
are the same filter (e.g., pulled up from the same origin, as
illustrated in Figure 8(a)).

The final challenge is what to do if the target location
contains another filter. In this case, we need to turn them into
a conjunctive predicate, as illustrated in Figure 8(c).

3.2.2 Computation Consolidation

Unlike filters that can only be pulled up, C# computations
can be moved in either direction for consolidation. Niijima
consists of two phases for moving C# computations: a for-
ward and a backward phase. For each data dependence edge
annotated with a non-UDO C# computation, the forward
phase traverses the DG forward, attempting to push the com-
putation to a downstream statement. If this phase cannot
find any consolidation opportunities, the second phase is
started to traverse the DG backwards.

The forward phase is potentially more beneficial than the
backward phase — if we can push a computation across a fil-
ter (not data-dependent on the computation), less data would
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Algorithm 2: The forward phase for consolidation.
Input: DG G = (V, E)
Output: A set S of target locations

1 foreach Edge e € E with a A annotation do

2 O «—OuTEDGES(e. tgt)

3 do

4 foreach Edge f € O do

5 /*Case 1: Cannot push across another lambda*/
6 if CoNTAINSLAMBDA(f) then

7 L RECORDANDCONTINUE()

8 /*Case 2: Cannot push across a filter/shuffle*/

9 if f.tgt is a filter/shuffle node then

10 L RECORDANDCONTINUE()

1 /*Case 3: Cannot lose more than one argument®/
12 if the statement containing f.tgt does not preserve
at least n -1 arguments of A then

13 L RECORDANDCONTINUE()
14 | NewEdges < NewEdges U {f.tgt}
15 | while O « NewEdges

flow to the computation and, hence, both computation and
serialization can be reduced. Based on this insight, we run
the forward phase first and do not run the backward phase
unless the forward phase cannot find any consolidation op-
portunities.

Forward Phase. Algorithm 2 shows our forward traversal
algorithm. Similarly to Algorithm 1, there are three stop-
conditions for the traversal. The first and second conditions
represent dataflow define-use constraints. For example, we
cannot push down a computation A across another computa-
tion A’ if A” uses the value defined by A (as indicated by the
reachability on the DG). Neither can we push A down across
a filter or shuffle node that uses a column defined by A.

The third condition represents an argument constraint.
We cannot push A to a statement where more than one of
the arguments of A are not preserved. The following code
snippet shows such an example:

dl = SELECT A+B AS C FROM d;

d2 = SELECT C.ToLower() FROM d1;

Since neither argument A nor B is preserved in the second
statement, we cannot push the string concatenation computa-
tion A+ B down and consolidate it with C. ToLower. Although
we could modify the code to select additional columns to pre-
serve these arguments, such modification would increase the
amount of data flowing between these statements, causing
an unpredictable performance impact. To be conservative,
we stop the traversal upon encountering such cases.

Note that we can still perform consolidation if only one
argument (B) is missing, such as the following case:



Niijima: Sound and Automated Computation Consolidation ...

d1

SELECT A, A+B AS C FROM d;

d2 = SELECT C.ToLower() FROM d1;

Since the computation (e.g., A+B) will be pushed to the target
statement, column C is freed up and can thus be used to pass
the missing argument B. The optimized program becomes

d1 = SELECT A, B AS C FROM d;

d2 = SELECT (A+C).ToLower() FROM d1;

Similarly to the handling of filters, when the traversal stops
at an edge, it records the current location and continues the
loop at Line 15 to search for opportunities in other paths.
Our merging algorithm will be discussed shortly.

Backward Phase. The backward phase has four stop-
conditions. The first three are exactly the same as the three
cases in Algorithm 1. An additional condition here is that
the traversal stops upon encountering a control-dependence
edge. The following code snippet illustrates such a case:

d1 = SELECT B, A+B AS C FROM d HAVING B != "m";
d2 = SELECT C.ToLower() AS D FROM d1;

Due to the HAVING filter, there are control dependences
from the HAVING node to the PHC nodes representing the
resulting columns B and C of d;. The backward traversal
starting at C.ToLower () has to stop at the HAVING node due
to the control dependences although there does not exist a
data dependence between them. This is because pulling the
computation up across the filter would potentially cause the
computation to be performed on more data. Hence, we could
not consolidate C.ToLower into A+B.

However, the backward consolidation would be possible if
we change the filter type from HAVING to WHERE — the control
dependences would be “lifted” before the computation A+B,
removing the barrier for the backward traversal to reach A+B.
Note that it is always possible (and more profitable) to push
A+B down and consolidate it forward into C.ToLower (). This
is the reason why we always run the forward phase first.

Computation Merging. We run these two phases for each
edge annotated with a C# computation based on their topo-
logical order in the DG, excluding those annotated with
UDOs. UDOs are special computations that bind with specific
types of SQL statements and thus cannot be safely moved.
The traversal algorithm returns a set of target locations to
which the computation can be moved. Unlike filter pullup,
which is always beneficial, moving C# computations may or
may not produce runtime benefit. To guarantee that moving
a computation is profitable, we define a static profit metric
guarding each move. The metric considers two criteria: (1) if
the move is a forward move, it needs to cross one or multiple
filters/shuffles, implying reduced computations; or (2) the
target location contains another C# computation so that
the two computations can be merged; this implies reduced
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serialization. We do not conduct a move unless at least one
criterion is met.

If a target location already contains a C# computation,
the two computations need to be merged. Merging can be
done by expression substitution. Formally, the following
rule explains our substitution algorithm for a forward con-
solidation. Suppose the statements that contain the source
and target computations are P and Q, respectively. Above
the line are the pre-merge source and target computations
while their post-merge counterparts are shown below the
line. AL1As is a map that takes as input a column name Y
and a statement Q, and returns another column name that is
the alias of Y at Q.

Source Query P: f(X1,X2,...,Xi,...)ASY,
Target Query O : g(Y1,Ys,...,Y},...) AS Z,

X is the non-preserved argument, ALias(Y, Q) = Y;

Source Query P’ : X; ASY
Target Query Q” : g(Y1, Ya, . .., f(ALIaS(X], Q), AL1as(X7, Q),
Y. )ASZ

Suppose f and g are two C# methods and the call of f
needs to be merged into that of g. We first find the argu-
ment (i.e., X;) from the source statement P that does not get
preserved in the target statement Q. Note that if multiple
arguments are not preserved in Q, we cannot perform the
consolidation as prevented by Case 3 in Algorithm 2. Our
idea here is that we can change the source to preserve X;
while pushing f to Q. Hence, we modify the source compu-
tation to X; AS Y, using column Y to preserve X;. Method
composition is done at the target statement Q. In particular,
the original argument Y; (which is the alias of Y) is replaced
with the call to f with all its arguments replaced with their
corresponding aliases at Q.

Although this rule deals only with forward consolidation,
backward consolidation can be done in a similar manner and
is not shown due to space constraints.

4 FEvaluation

We implemented Niijima in the Scope’s production runtime.
Our implementation, which supports the full-blown Scope
language with more than 100 relational and imperative con-
structs, has approximately 7500 lines of C# code: 3.5K lines
for the IR generation and dependence graph construction
and 4K lines for the graph traversal, code motion, as well
as AST rewriting. The integration into the production run-
time made it possible for us to run legacy scripts without
any modification of their source code. We evaluated Niijima
using a production A/B testing tool — the Niijima-enabled
runtime was uploaded onto a cluster; the tool automatically
ran each selected job using this new runtime and then com-
pared its performance with its logged performance from a
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previous run (on a standard runtime). Due to their unsound-
ness, neither PeriScope nor Blitz was implemented in the
production runtime and thus neither could automatically
run jobs without any user intervention.

4.1 Experiment Setup

Although our goal was to evaluate Niijima with a large num-
ber of jobs, we faced several practical obstacles that limited
what we could do. First, we were granted access to only
one virtual cluster (i.e., a permission group), and thus, we
were not able to access any datasets for jobs in other virtual
clusters. Second, our evaluation was done when the product
team was running extensive testing for their next release.
Due to our low scheduling priority, each job submitted by
us was often queued for a long time (e.g., normally an hour
and up to dozens of hours) before it was executed.

We started with 58 distinct jobs available to us in the
week from 4/6/18 to 4/13/18 and excluded those that have
very short (< 5 minutes) and very long (> 2.5 hours) run-
ning times — the performance of short-running jobs may
often be impacted by noise while long-running jobs would
take too long to finish. This gave us a set of 21 jobs for our
performance evaluation.

Note that although these jobs have relatively small run-
ning times, they were executed on thousands of machines
and their CPU times can be quite long (e.g., more than 1000
hours). They were submitted by various groups for different
purposes including repository analysis (4), machine learning
(4), and data cooking and recooking (13). The added compi-
lation time due to Niijima’s optimizations is negligible (e.g.,
< 5 seconds).

4.2 Performance

Overall Performance. Table 3 shows the statistics of these
jobs and their running times. We ran each job at least three
times to minimize the noise from the distributed environ-
ment; reported here are the medians. We took care to guar-
antee that each run had the same scheduling priority and
used the same resource allocation from the cluster: 35 con-
tainers were allocated for each job and each container had a
maximum of 6GB memory. The running time of each job is
referred to as the latency of the job in Scope’s terminology.
The latency improvements after Niijima’s optimizations are
shown in column SP.

For the four jobs (job3, job8, job9, and job15), the post-
optimization latencies are longer than their pre-optimization
counterparts. We inspected these programs and found that
it was impossible for our optimizations to hurt performance.
Hence, we consider them to be normal variations, which
show that Niijima’s optimizations are ineffective for these
four programs. Our inspection also found that the optimized
filters/computations in these programs are all close to the
data destination (i.e., the OUTPUT statements) — the amount
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Job LoC F| C Data LPr LPo SP Variation
job1 606 0 9 2636.6 58.1 43.4 1.34 (-2%, +3.1%)
job2 179 0 4 10225.1 156.6 139.9 1.12 (-4.5%, +1.1%)
job3 68 1 18 0.12 234 23.9 0.98 (-2.1%, +1.2%)
job4 128 0 3 7938.5 74.9 70.0 1.07 (-5.0%, +4.3%)
job5 61 0 12 0.44 9.4 5.6 1.68 (-1.9%, +1.5%)
job6 395 1 7 442.8 43.1 40.9 1.05 (-1.8%, +6.1%)
job7 237 1 6 2056.1 50.2 43.8 1.15 (-0.3%, +4.0%)
job8 246 2 0 1.04 15.5 16.1 0.96 (-0.4%, +5.1%)
job9 233 4 9 1035.4 244 25.5 0.96 (-3.3%, +3.1%)
job10 167 3 8 1.16 8.2 6.6 1.24 | (-3.0%, +2.4%)
job11 || 1195 || 7 | 19 512 | 425 | 146 | 291 | (-2.9%, +2.8%)
job12 280 5 0 1832.9 28.5 24.7 1.15 (-6.0%, +1.7%)
job13 243 1 13 6327.1 79.3 71.3 1.11 (-2.5%, +3.0%)
job14 89 2 6 24.7 39.2 36.8 1.07 (-7.2%, +2.3%)
job15 89 3 8 45.6 37.4 38.0 0.98 (-1.5%, +0.4%)
jobi6 || 413 || 1| 23 1.0 6.0 1.8 | 333 | (-2.5%, +3.8%)
job17 167 0 4 1.2 7.8 7.5 1.04 | (-3.4%, +0.2%)
job18 1524 8 16 8024.6 80.5 68.6 1.17 (-1.1%, +5.0%)
job19 310 4 5 288.5 28.6 23.6 1.21 (-1.3%, +4.2%)
job20 108 4 8 3258.4 75.6 67.1 1.13 (-2.0%, +2.1%)
job21 694 3 12 3250.8 77.7 65.0 1.20 (-1.0%, +4.6%)
GM - - - - - | 1.24

Table 3. Programs evaluated: reported are their numbers
of lines of code (LoC), numbers of filters pulled (F), num-
bers of computations moved (C), data processed (Data
in GB), pre-optimization latencies (LPr in minutes), post-
optimization latencies (LPo), speedups (SP), and time varia-
tions (Variation).

of data flowing through the optimized filters/computations
is rather small, making the optimizations less effective.

Overall, Niijima improves latency by 24% over the pro-
duction runtime whose query optimizer was based on the
Cascades framework [16] and has been continuously opti-
mized for more than a decade. The runtime also selectively
replaced C# methods with their C++ counterparts (known
as intrinsics) if they exist. However, many commonly-used
C# methods — especially those handling strings, such as
TolLower, StartWith, or IndexOf that we use as examples in
this paper — cannot be easily implemented in C++ as they
are by default culture-variant. Due to the culture-variant se-
mantics as well as different encodings used in C# (UTF16)
and C++ (UTF8), it is difficult even to correctly calculate the
index for a given character.

Of these programs, 13 see a gain of more than 10%, which
is significant enough to overcome the detrimental impact of
noise. Noticeably, job5, job11, and job16 are sped up by 1.68x,
2.91x%, and 3.33x. Figure 1 is actually a simplified version
of job1l where Niijima pulls the predicate up to each of
the eleven SELECT clauses in the UNION statement. This is
only possible because a computation that used to define
Time in each such SELECT is pulled and merged with another
computation in an earlier statement. This example clearly
demonstrates the benefit of the iterative process of filter
pullup and computation consolidation.

CPU, I/0O, and Serialization. To better understand Ni-
ijima’s benefit, we profiled, for each job, its cumulative CPU
time, the amount of data read/written, and its vertex initial-
ization time. The deltas for these three metrics between the
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Figure 9. (a) Speedups (the higher the better) achieved by Niijima in cumulative CPU time and vertex initialization time; (b)
sizes of data read/written normalized to those of original programs (the lower the better).
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Figure 10. Correlations between latency and CPU as well
as latency and vertex initialization reductions.

pre- and post-optimization executions are shown in Figure 9.
These metrics measure, respectively, the amounts of compu-
tation (Figure 9(a)), serialization/deserialization (Figure 9(a)),
and I/O (Figure 9(b)). Note that we could not obtain the ac-
tual time spent on I/O and serialization/deserialization, as
these efforts overlap with the computation. To overcome this
challenge, we had to use the amount of data read/written
to approximate I/O. Furthermore, since a major component
of the initialization of each dataflow vertex is to set up the
NET runtime and deserialize native bytes into .NET objects,
we use the cumulative cost of vertex initialization to approx-
imate the serialization/deserialization effort.

The geometric means of the improvements in these three
aspects are, respectively, 1.20, 1.02, and 1.22. The vertex ini-
tialization time is sped up by 1.22, which confirms with
our hypothesis that consolidation can lead to fewer runtime
switches and thus reductions in serialization/deserialization.
The latency reductions align well with the reductions in the
CPU times as well as the serialization/deserialization costs,
as illustrated in Figure 10.

The reduction in the size of data read/written is marginal
— this is expected as our optimizations are not designed for
reducing input/output. For job4, job6, and job9, the optimized
programs read/wrote more data than their original versions.

Job || F | FGain || C | CGain
job1 [0 off ol 253%
jobs | 0 0 12| 40.0%
job10 || 1| 22% || 0 0
jobll || 2| 153% || 8| 5.4%
job16 || 0 0 21| 686%

Table 4. Contributions of filter pullup and computation con-
solidation: reported are the numbers of filters pulled without
computation consolidation (F), the performance improve-
ments from filter pullup alone (FGain), the numbers of C#
computations moved (C), and the performance improve-
ments from computation consolidation alone (CGain).

We inspected these optimized programs and confirmed that
this could not be due to our optimizations. According to the
product team, the extra data accessed might have come from
failure recoveries during the execution.

Individual Contributions. To understand the individual
contributions of filter pullup and computation consolida-
tion, we picked the five jobs with the largest gains (i.e., job1,
job5, job10, job11, and job16). We ran each job with either
filter-pullup or computation moving alone and measured
its latency. The comparisons are reported in Table 4. As no
filter was pulled for job1 and job5, their performance gains
were entirely due to computation consolidation. This is also
the case for job16. For the other two jobs, it is clear to see
the close relationship between filter pullup and computation
consolidation. For example, for job11, when these two opti-
mizations were done together, 7 filters and 19 computations
were moved. On the contrary, when they were done individ-
ually, only 2 filters or 8 computations could be moved. This
clearly demonstrates the importance of the co-existence of
these two optimizations — existing work that focuses only
on moving filters would not be effective in the presence of
C# code unless these computations are moved as well.
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shows job1’s running times.

4.3 Scalability

We studied the effectiveness of our optimizations on differ-
ent sizes of data processed. Since job1 mines the Scope job
repository, we ran it on five different datasets, consisting
of the execution data of the jobs executed in five different
time ranges: 4/3-4/13, 4/3-4/11, 4/3-4/9, 4/3-4/7, and 4/3-4/5.
Figure 11 shows the comparison results on these different
datasets. It is expected that our optimizations are more ef-
fective on large datasets than small datasets. There are two
reasons — early filtering has greater impact when a large
amount of data can be filtered out. Furthermore, serializa-
tion/deserialization has a much higher cost; hence, larger
savings in serialization can be expected when more data
needs to be frequently converted between native bytes and
NET objects.

Evaluation Summary. C# computations are pervasive in
Scope programs. Our evaluation demonstrates that compu-
tation consolidation is a powerful optimization for most of
the Scope programs we studied, especially when they pro-
cess large datasets. The majority of the performance gains
come from reduced CPU time as well as reduced serializa-
tion and deserialization costs. Our results also suggest that
filter pullup and computation consolidation should be done
simultaneously to fully unleash the power of the optimiza-
tions. Doing either individually can significantly limit their
usefulness.

5 Related Work

Scope Optimizations. Two existing works most closely re-
lated to Niijima are PeriScope [17] and Blitz [36], which are
both designed to optimize the Scope pipelines. As discussed
earlier in §1, they both attempt to modify UDOs, which often
invoke directly or transitively a sea of other library methods.
Hence, neither could guarantee soundness in program trans-
formation. For example, PeriScope breaks apart code in a

Xu, Veanes, Barnett, Musuvathi, Mytkowicz, Zorn, He, and Lin

REDUCE UDO by performing “smart cut” without considering
side effects and pointer aliasing. To use Blitz, each program
needs to be manually modeled using a meta language and the
synthesizer is also unsound. It is clear that unsound compiler
techniques are unacceptable in production settings.

Optimizations of Database-backed Applications. There
exists a body work [7-10, 37], focusing on SQL manage-
ment and optimizations in the context of general-purpose
languages. For example, Sqlcache [37] analyzes SQL queries
issued by web applications to cache their results. Pyxis [8] is
a program analysis based approach that partitions a database-
backed application and turns part of it into stored procedures
executed on the database server. QBS [10] synthesizes SQL
queries from their imperative language implementations
to take advantage of effective optimizations performed by
query optimizers. Sloth [9] is a compiler-based technique
that identifies and exploits batching opportunities across
multiple queries.

Although these techniques all need to model dependences,
they focus primarily on better integration of SQL and impera-
tive code rather than moving imperative calls across multiple
SQL queries. As a result, their dependence modeling differs
significantly from that of ours.

Dataflow Systems and Optimizations. In the past decade,
a variety of data computation models and processing systems
have been developed [2, 3, 5, 11, 13, 20, 33, 39-42, 44]. Most of
these systems were developed in managed languages such as
Java, C#, and Scala, and suffered from performance penalties
coming from the managed runtime systems. There is a line
of work [4, 14, 23, 24, 26-29] that attempts to analyze and
optimize the runtime system to improve the performance
and scalability of Big Data systems. In particular, ITask [14]
is a programming model that allows the runtime system to
systematically interrupt processing logic in the presence of
high memory pressure. Yak [28] is a garbage collector that
incorporates region-based memory management into gener-
ational garbage collection for more efficient object collection
in big data systems. Skyway [26] is a JVM-based technique
that aims to reduce the cost of serializing/deserializing Java
objects in systems such as Spark. Despite these efforts, none
of them are designed for multilingual pipelines with rela-
tional and imperative code.

Database Query Optimizations. Query optimization [21]
has been extensively studied in the database community.
However, traditional database query optimizations are not
designed for multilingual data pipelines — for example, early
selection/filtering of columns has been widely adopted in
SQL engines; however, it is unclear how a filter can be pulled
if the filter contains a C# operation or the SQL statements
to which the filter is attached contain C# operations, unless
fine-grained dependence information can be computed as
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done in this work. In addition, as demonstrated in §4, the ef-
fectiveness of filter pullup alone can be very limited without
computation consolidation.

There exists a body of work [19, 35] on optimizing queries
with user-defined operators. For example, Hueske et al. [19]
propose an analysis-based approach that analyzes user-
defined operators to extract a set of conditions to perform
common rewriting such as reordering and bushy join-order
enumeration. Sofa [35] is a logical optimizer that can op-
timize data flows with user-defined functions based on a
declarative dataflow language called Meteor. Unlike Niijima
that focuses on optimization of imperative calls embedded
in a SQL pipeline, these techniques attempt to recover logical
query optimizations that were disabled due to the unknown
semantics of user-defined operators.

Niijima can be thought of as a multiple query optimiza-
tion [38] technique. However, Niijima differs from the ex-
isting techniques, most of which target optimization of sub-
queries such as common subquery sharing. Niijima is a com-
piler optimization that optimizes C# calls rather than rela-
tional subqueries; hence, it is orthogonal to the past multi-
query optimization techniques.

Code Analysis for Big Data. Code analysis has made its
way into Big Data systems. FlumeJava [6] is a library that
contains optimizations for data-parallel pipelines. Deca [22]
is an analysis-based technique that aims to optimize mem-
ory management for Spark. Facade [29] and Generuk [25]
provide compiler and runtime system support for a man-
aged Big Data system to use native memory. Weld [31, 32]
is a common IR and runtime that aims to optimize across
machine learning functions and libraries for the entire work-
flow. While Niijima and Weld share similar goals, they focus
on different optimization domains. Furthermore, Weld re-
quires developers to provide annotations while Niijima’s
optimizations are completely automated.

6 Conclusion

Data processing systems become increasingly multilingual
and heterogeneous. Niijima is a sound and automated com-
piler technique designed to perform global optimizations
across the language boundaries and can be readily used in
production settings. While the main ideas were implemented
for Scope, the proposed IR can also be used to perform a va-
riety of dataflow optimizations.

Acknowledgements

We thank the anonymous reviewers for their thorough and
insightful comments. We are especially grateful to our shep-
herd Alexandra (Sasha) Fedorova for her feedback. Harry
Xu acknowledges support from MSR’s academic visiting
program as well as National Science Foundation grants CNS-
1613023, CNS-1703598, and CNS-1763172, and Office of Naval
Research grants N00014-16-1-2913 and N00014-18-1-2037.

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

References

[1] Apache arrow: A cross-language development platform for in-memory
data. https://arrow.apache.org, 2019.

[2] Hadoop: Open-source implementation of MapReduce. http://hadoop.
apache.org.

[3] BORKAR, V. R., CAREY, M. J., GROVER, R., ONOSE, N., AND VERNICA,
R. Hyracks: A flexible and extensible foundation for data-intensive
computing. In ICDE (2011), pp. 1151-1162.

[4] Bu, Y., BORKAR, V., XU, G., AND CAREY, M. J. A bloat-aware design for
big data applications. In ISMM (2013), pp. 119-130.

[5] CHAIKEN, R., JENKINS, B., LARSON, P.-A., RaMSEY, B., SHAKIB, D.,

WEAVER, S., AND ZHOU, J. SCOPE: easy and efficient parallel pro-

cessing of massive data sets. Proc. VLDB Endow. 1, 2 (2008), 1265-1276.

CHAMBERS, C., RANIwWALA, A., PERRY, F., ApAMs, S., HENRY, R. R,,

Brapsuaw, R., AND WEIZENBAUM, N. FlumeJava: easy, efficient data-

parallel pipelines. In PLDI (2010), pp. 363-375.

CHENEY, J., LINDLEY, S., AND WADLER, P. A practical theory of language-

integrated query. In ICFP (2013), pp. 403-416.

CHEUNG, A., MADDEN, S., ARDEN, O., AND MYERS, A. C. Automatic

partitioning of database applications. Proc. VLDB Endow. 5, 11 (2012),

1471-1482.

CHEUNG, A., MADDEN, S., AND SOLAR-LEZAMA, A. Sloth: Being lazy is a

virtue (when issuing database queries). In SIGMOD (2014), pp. 931-942.

[10] CHEUNG, A., SOLAR-LEZAMA, A., AND MADDEN, S. Optimizing database-
backed applications with query synthesis. In PLDI (2013), pp. 3-14.

[11] ConpbiE, T., CoNwAY, N., ALVARO, P., HELLERSTEIN, J. M., ELMELEEGY,
K., AND SEARS, R. MapReduce online. In NSDI (2010), pp. 21-21.

[12] DataBricks. Spark tungsten. https://databricks.com/glossary/
tungsten, 2015.

[13] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data processing
on large clusters. In OSDI (2004), pp. 137-150.

[14] Fang, L., NGUYEN, K., XU, G., DEMSKY, B., AND Lu, S. Interruptible
tasks: Treating memory pressure as interrupts for highly scalable
data-parallel programs. In SOSP (2015), pp. 394-409.

[15] GARBERVETSKY, D., PAVLINOVIC, Z., BARNETT, M., MUSUVATHI, M.,
MyTtkowicz, T., AND Zoprl, E. Static analysis for optimizing big data
queries. In FSE (2017), pp. 932-937.

[16] GRAEFE, G. The cascades framework for query optimization. Data
Engineering Bulletin 18 (1995).

[17] Guo, Z., Fan, X., CHEN, R., ZHANG, J., ZHou, H., McDIrMmID, S., L1u, C.,
Lin, W, ZHOU, ]., AND ZHOU, L. Spotting code optimizations in data-
parallel pipelines through PeriSCOPE. In OSDI (2012), pp. 121-133.

[18] HeropoTou, H., LM, H,, Luo, G., Borisov, N., Dong, L., CETIN, F. B.,
AND BaBU, S. Starfish: A self-tuning system for big data analytics. In
CIDR (2011), pp. 261-272.

[19] HUESKE, F., PETERS, M., SAX, M. J., RHEINLANDER, A., BERGMANN, R.,
KRETTEK, A., AND TzouMas, K. Opening the black boxes in data flow
optimization. Proc. VLDB Endow. 5, 11 (2012), 1256-1267.

[20] Isarp, M., Bupiu, M., Yu, Y., BIRRELL, A., AND FETTERLY, D. Dryad:
distributed data-parallel programs from sequential building blocks. In
EuroSys (2007), pp. 59-72.

[21] JarxkE, M., AND KocH, J. Query optimization in database systems. ACM
Comput. Surv. 16, 2 (1984), 111-152.

[22] Lu, L., Su1, X., ZHOU, Y., ZHANG, X., JIN, H., PE1, C., HE, L., AND GENG, Y.
Lifetime-based memory management for distributed data processing
systems. Proc. VLDB Endow. 9, 12 (2016), 936—947.

[23] Maas, M., Harris, T., Asanovi¢, K., AND KuBiaTowicz, J. Trash Day:
Coordinating garbage collection in distributed systems. In HotOS
(2015).

[24] Maas, M., Harris, T., Asanovi¢, K., aNp KuBiatowicz, J. Tau-
rus: A holistic language runtime system for coordinating distributed
managed-language applications. In ASPLOS (2016), pp. 457-471.

G

—

[7

—

[8

[}

[9

—


http://hadoop.apache.org
http://hadoop.apache.org
https://databricks.com/glossary/tungsten
https://databricks.com/glossary/tungsten

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Navasca, C., Ca1, C.,, NGUYEN, K., DEMSKY, B,, Lu, S., Kim, M., AND
Xu, G. H. Gerenuk: Thin computation over big native data using
speculative transformation. In SOSP (2019).

NGUYEN, K, FANG, L., Navasca, C., Xu, G., DEMsKY, B., AND Lu, S.
Skyway: Connecting managed heaps in distributed big data systems.
In ASPLOS (2018), pp. 56-69.

NeuyeN, K., FANG, L., Xu, G., AND DEMsKY, B. Speculative region-based
memory management for big data systems. In PLOS (2015), pp. 27-32.
NGuUYEN, K., FANG, L., Xu, G., DEMSKY, B., Lu, S., ALAMIAN, S., AND
MurTLy, O. Yak: A high-performance big-data-friendly garbage collec-
tor. In OSDI (2016), pp. 349-365.

NGuYEN, K., WaNG, K., Bu, Y., Fang, L., Hu, J., AND XU, G. FACADE:
A compiler and runtime for (almost) object-bounded big data applica-
tions. In ASPLOS (2015), pp. 675-690.

OLsTON, C., REED, B., SR1vAasTAVA, U., KUMAR, R., AND TOMKINS, A.
Pig Latin: a not-so-foreign language for data processing. In SIGMOD
(2008), pp. 1099-1110.

PALKAR, S., THOMAS, ., NARAYANAN, D., THAKER, P., NEGL, P., PALAMUT-
TAM, R., SHANBHAG, A., OLGER PIRK, SCHWARZKOPF, M., AMARASINGHE,
S., MADDEN, S., AND ZAHARIA, M. Evaluating end-to-end optimization
for data analytics applications in Weld, booktitle = VLDB, year = 2018,.
PALKAR, S., THOMAS, ]J., SHANBHAG, A., NARAYANAN, D., Pirk, H,,
SCHWARZKOPF, M., AMARASINGHE, S., AND ZAHARIA, M. Weld: A
common runtime for high performance data analytics. In CIDR (2017).
PIKE, R., DORWARD, S., GRIESEMER, R., AND QUINLAN, S. Interpreting
the data: Parallel analysis with Sawzall. Sci. Program. 13, 4 (2005),
277-298.

PROEBSTING, T. A., AND WATTERSON, S. A. Filter fusion. In POPL (1996),
pp. 119-130.

RHEINLANDER, A., BECKMANN, M., KUNKEL, A., HEISE, A., STOLTMANN,
T., AND LESER, U. Versatile optimization of udf-heavy data flows with
sofa. In SIGMOD (2014), pp. 685-688.

Xu, Veanes, Barnett, Musuvathi, Mytkowicz, Zorn, He, and Lin

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

SCHLAIPFER, M., RajaN, K., LaL, A., AND SAMAK, M. Optimizing big-
data queries using program synthesis. In SOSP (2017), pp. 631-646.
SculLy, Z., AND CHLIPALA, A. A program optimization for automatic
database result caching. In POPL (2017), pp. 271-284.

SeLLis, T. K. Multiple-query optimization. ACM Trans. Database Syst.
13,1 (1988), 23-52.

THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P., ANTHONY, S.,
Liu, H., WYCKOFF, P., AND MURTHY, R. Hive: a warehousing solution
over a map-reduce framework. Proc. VLDB Endow. 2, 2 (2009), 1626—
1629.

YANG, H.-c., DASDAN, A., Hs1a0, R.-L., AND PARKER, D. S. Map-reduce-
merge: simplified relational data processing on large clusters. In
SIGMOD (2007), pp. 1029-1040.

Yu, Y., GUuNDA, P. K., AND IsARrD, M. Distributed aggregation for data-
parallel computing: Interfaces and implementations. In SOSP (2009),
pp. 247-260.

Yu, Y., IsaArD, M., FETTERLY, D., Bup1iu, M., ERLINGSSON, U., GUNDA,
P. K., AND CURREY, J. DryadLINQ: a system for general-purpose
distributed data-parallel computing using a high-level language. In
OSDI (2008), pp. 1-14.

ZAHARIA, M., CHOWDHURY, M., Das, T., DAVE, A., M4, J., MCCAULEY,
M., FRANKLIN, M. J., SHENKER, S., AND STOICA, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing.
In NSDI (2012), pp. 2-2.

ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J., SHENKER, S., AND
Stoica, I. Spark: Cluster computing with working sets. HotCloud,
p. 10.

ZHoU, J., LARsON, P.-A., AND CHAIKEN, R. Incorporating partitioning
and parallel plans into the SCOPE optimizer. In ICDE (2010), pp. 1060
1071.

Znou, Y., CHENG, H., AND Yu, J. X. Graph clustering based on struc-
tural/attribute similarities. Proc. VLDB Endow. 2, 1 (2009), 718-729.



	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Our Contributions

	2 Background and Motivating Study
	2.1 Scope Background
	2.2 Motivating Study

	3 Niijima Design and Implementation
	3.1 Dependence Modeling 
	3.2 Code Motion

	4 Evaluation
	4.1 Experiment Setup
	4.2 Performance
	4.3 Scalability

	5 Related Work
	6 Conclusion
	References

