Mousse: A System for Selective Symbolic Execution of
Programs with Untamed Environments

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani
University of California, Irvine
{yingtong,hsinweih,ardalan}@uci.edu

Abstract

Selective symbolic execution (SSE) is a powerful program
analysis technique for exploring multiple execution paths
of a program. However, it faces a challenge in analyzing
programs with environments that cannot be modeled nor
virtualized. Examples include OS services managing I/O de-
vices, software frameworks for accelerators, and specialized
applications. We introduce Mousse, a system for analyzing
such programs using SSE. Mousse uses novel solutions to
overcome the above challenge. These include a novel process-
level SSE design, environment-aware concurrent execution,
and distributed execution of program paths. We use Mousse
to comprehensively analyze five OS services in three smart-
phones. We perform bug and vulnerability detection, taint
analysis, and performance profiling. Our evaluation shows
that Mousse outperforms alternative solutions in terms of
performance and coverage.

CCS Concepts: » Software and its engineering — Soft-
ware verification and validation; Distributed systems
organizing principles; « Theory of computation — Pro-
gram analysis.

Keywords: selective symbolic execution, program environ-
ment, program analysis

ACM Reference Format:

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani. 2020. Mousse: A
System for Selective Symbolic Execution of Programs with Untamed
Environments. In Fifteenth European Conference on Computer Sys-
tems (EuroSys °20), April 27-30, 2020, Heraklion, Greece. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3342195.3387556

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys °20, April 27-30, 2020, Heraklion, Greece

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6882-7/20/04...$15.00
https://doi.org/10.1145/3342195.3387556

1 Introduction

Selective symbolic execution (SSE) is a powerful program
analysis technique that can analyze multiple execution paths
of a program. As in symbolic execution, when the analyst
marks a variable as symbolic (i.e., capable of taking any arbi-
trary concrete value), the SSE engine executes and analyzes
all program paths possible for different values of the variable.
In order to avoid the path explosion that comes with sym-
bolic execution, the analyst can configure the SSE engine to
execute parts of the program in concrete mode, i.e., normal
execution with concrete variables.

In the past, SSE has been used to implement various types
of analysis, such as bug and vulnerability detection [17, 26,
35], performance profiling [17] and reverse-engineering of
binaries [15, 17]. In addition, it can be used for taint analy-
sis, hybrid fuzzing [38, 41], and for exploit generation and
analysis [6, 7].

In this paper, we address a critical challenge that hinders
the applicability of SSE to a large and important set of pro-
grams: programs with untamed environments. In order to
analyze multiple paths within a program, SSE runs multiple
forks, or instances, of the program, one per path, in order
to execute conditional statements with symbolic predicates.
To eliminate interference between the execution of these
program instances, each uses a separate instance of the pro-
gram’s environment. Two common approaches are modeling
the program’s environment in software [6, 7, 14, 37] and vir-
tualizing it [17]. Unfortunately, neither approach is feasible
for untamed environments, i.e., those that include diverse
hardware components and their device drivers. Examples
include OS services managing I/O devices (i.e., I/O services),
libraries (such as GPU-specific OpenGL/ES, OpenCL, and
CUDA libraries), and applications (such as vendor camera
and telephony applications in smartphones). Modeling is in-
feasible, due to the complexity of the hardware components
and their drivers; and virtualization is infeasible too, because
such hardware components do not support it.

The research community has explored two approaches.
The first uses a symbolic environment [15, 26, 35], i.e., all
the return values from the environment are marked as sym-
bolic (since the correct environment of the program is not
available). This approach results in path explosion and false
code coverage, as it executes program paths that would not
execute when actual return values from the real program
environment are used. The second approach, decoupled SSE,

https://doi.org/10.1145/3342195.3387556
https://doi.org/10.1145/3342195.3387556

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

is to allow the symbolic execution engine to communicate
with a concrete execution engine running on the actual en-
vironment of the program [2, 31, 42]. This approach has
noticeable overhead, due to the overhead of memory state
transfers between the two engines.

In Mousse, we tackle this challenge with three solutions.
First, we present a novel SSE design, called process-level SSE
(here, a process refers to an OS process), which integrates
the symbolic and concrete execution engines in the same OS
process containing the program. This allows both engines to
easily interact with the underlying environment. Moreover,
both engines use a unified memory, which eliminates the
need to transfer the memory state between them, resulting
in better performance. To support concurrent execution of
program paths, process-level SSE executes each program
path in a separate OS process. Whenever the SSE engine
explores a new path, it forks the current process and executes
the new path in the child process. Forking a process is fast
and efficient due to copy-on-write support in the kernel.

Second, we introduce environment-aware concurrency to
allow multiple program paths to execute concurrently on
top of the same environment, without observing inconsis-
tent environment state. To do this, Mousse keeps track of
the interactions of the different execution paths with the
environment, and restricts the execution of environmentally
inconsistent paths.

Third, while Mousse enables concurrent execution of mul-
tiple program paths in one device, the untamed environment
fundamentally limits concurrency. This, and the fact that
SSE is compute-heavy, means that analyzing complex pro-
grams, such as OS services, takes a long amount of time.
For example, testing a single API of an audio service with
symbolic input in Pixel 3 takes our SSE engine 9 hours when
using a single device. To address this problem, we introduce
a distributed execution approach that supports concurrent
execution of the analysis on multiple identical devices, while
avoiding duplicate paths.

To demonstrate the benefits of Mousse, we use it to analyze
five OS services: two camera services, two audio services,
and one graphics stack, in three smartphones, Pixel 3, Nexus
5X, and Nexus 5. We perform bug and vulnerability detection,
searching for incorrect memory access and incorrect use of
memory management APIs. We found two new crash bugs,
and two new double-free vulnerabilities in these services.
We also perform taint analysis, to study the propagation of
the inputs to the outputs of service APIs. We find that none
of the APIs of this service, except for one, propagates its
inputs to its outputs. This finding can be used to enhance
the accuracy of taint analysis for programs that use these
APIs. Moreover, we perform performance profiling of the
Pixel 3 audio service, and find that it experiences 19% more
L1 data cache misses for some playback configurations.

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani

1 int prog_main(int arg_s, int arg_c) {
2 if (arg_s >= 13)

3 return funcl(arg_s, arg_c);
4 else

5 return func2(arg_s, arg_c);
63

Figure 1. Simple hypothetical program used to describe the
inner workings of SSE.

We perform extensive evaluation of Mousse. We show
that Mousse’s process-level SSE design reduces the execu-
tion time by at least 63% with respect to the state-of-the-art
decoupled SSE. We also show that using a symbolic envi-
ronment results in path explosion, which in turn prevents
successful initialization of OS services even after running the
analysis for a few days. Our evaluation shows that Mousse’s
environment-aware concurrency and distributed execution
help reduce the SSE execution time by up to 84% compared
to running a single path at a time in one device.

We designed and built Mousse to analyze programs with
untamed environments. However, we note that Mousse is
capable of analyzing arbitrary programs, with high perfor-
mance and ease. We have open sourced Mousse, so that
others can leverage it in their analysis efforts [3].

2 Background & Motivation
2.1 Selective Symbolic Execution

Selective symbolic execution (SSE) is a powerful program
analysis technique that can analyze multiple execution paths
of a program [2, 14, 16-18, 29, 31, 42]. A path here refers to
one in the control-flow graph of the program. Different in-
puts to the program may result in the execution of different
paths, due to conditional statements. In SSE, similar to sym-
bolic execution, the analyst can mark a variable, including
an input argument, as symbolic (i.e., with unknown concrete
value); then the SSE engine executes the program paths cor-
responding to all possible values of the variable. In contrast
to plain symbolic execution, the analyst can configure the
SSE engine to execute some parts of the program in concrete
mode, i.e., normal execution with concrete variables, in order
to avoid path explosion.

We next use a simple example (Figure 1) to explain how
SSE works. Assume that the analyst wishes to explore all the
program paths that depend on the value of arg_s, but not
those that depend on arg_c. She marks arg_s as symbolic,
and assigns a concrete value to arg_c.

The SEE engine executes the program until it faces a con-
ditional predicate with a symbolic variable (line 2). At this
point, the execution forks, resulting in two instances of the
program, each executing one of two resulting paths. The
mechanism to fork the program depends on the SSE design,
e.g., OS process fork, and is discussed in §4. Both paths now

Mousse: A System for Selective Symbolic Execution of Programs with Untamed Environments

continue to use the symbolic variable, but they add con-
straints, derived from the conditional predicate. More specif-
ically, one path executes the then-branch of the conditional
(i.e., line 3) with the constraint arg_s >= 13. The other exe-
cutes the else-branch (i.e., line 5) with the constraint arg_s
< 13.

SSE supports selective symbolic execution. That is, parts
of the program can be executed in concrete mode, which can
help alleviate path explosion. Execution in concrete mode
is similar to how a program normally executes. That is, the
code in concrete mode does not use symbolic variables; it
can only use variables with concrete values. Therefore, no
new paths are forked.

Assume the analyst has decided to execute func1() and
func2() in concrete mode in the example. Once an execu-
tion path reaches either of these functions, the SSE engine
switches from symbolic to concrete mode. Here, it needs to
concretize any symbolic variables that are accessed by the
code in concrete mode. In our example, arg_s needs to be
concretized, as it is passed to these functions. To concretize
a variable, the engine uses a solver to choose some concrete
value that satisfies the path constraints. For instance, the
solver might choose arg_s = 14 when executing func1()
in concrete mode.

Thus, the SSE engine is composed of two execution en-
gines, the symbolic execution engine and the concrete execution
engine. Both engines typically execute the program by emu-
lating the instructions in the program binary. These engines
need to communicate, e.g., to share the memory state when
switching execution mode. Different SSE designs achieve
this communication differently (see §4 for more detail).

An SSE engine can support concolic variables as well. A
concolic variable is a symbolic variable that also has a con-
crete value attached to it, called concolic value. The concolic
value is used to determine which side of a conditional the
path should take, when facing a symbolic predicate, in case
forking is not needed. In the example, let us assume that the
analyst marks arg_s as concolic with a concolic value of 20.
Moreover, the analyst configures the SSE engine to not fork
at line 2. When it reaches this line, it branches by applying
the concolic value to the predicate. If it evaluates to true, it
executes the then-branch, otherwise the else-branch. In this
example, since 20 >= 13 evaluates to true, the then-branch
is executed.

2.2 Program Environment

The environment of a program is the set of all hardware and
software components that it interacts with. This includes
the OS kernel (including device drivers) and hardware com-
ponents. In SSE, the environment of the program is either
modeled or virtualized, so that each forked program instance
(executing a program path) can interact with a separate in-
stance of the environment. For instance in the code sample
in Figure 1, assume that func1() and func2() are syscalls.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

This means that both program paths interact with the under-
lying kernel. To make sure that these paths do not interfere
with each other, their impact on kernel state must be isolated.
One approach is to model the syscall [6, 7, 14, 37], i.e., to
implement an approximation of its behavior in software, and
to use that instead of the real syscall. Another approach is to
virtualize the kernel and use a separate Virtual Machine (VM)
for each path, forking the VM when forking the program
path [17].

Unfortunately, there exists an important set of programs,
whose environments cannot be easily modeled or virtualized.
These are programs that interact with different hardware
components and their drivers, such as I/O devices and accel-
erators. Modern mobile devices, such as smartphones, tablets,
voice assistants, and VR/AR headsets, employ a large number
of I/O devices, to stand out in a highly competitive market.
For example, a smartphone might employ a powerful camera
array [1] or an in-display fingerprint scanner [11]; a voice as-
sistant may employ arrays of speakers and microphones for
audio beamforming [32]; and a VR/AR headset may employ
high-resolution displays, requiring powerful GPUs [40]. Data
center servers, on the other hand, use various accelerators
such as GPUs, TPUs, and FPGAs. This trend is fueled by the
slowing down of Moore’s law and is predicted to grow [13].
The programs that interact with these devices include OS
services (such as various I/O services in Android), libraries
(such as GPU-specific OpenGL/ES, OpenCL, and CUDA li-
braries), and applications (such as customized vendor camera
and telephony applications in smartphones).

Modeling the hardware and/or its device driver is a non-
trivial task. Virtualizing the hardware is also non-trivial.
Most hardware components, including I/O devices in mobile
devices, do not support virtualization. The device assignment
approach, which is often used to give a VM direct access to
an I/O device [4, 10, 24, 27, 28], is not enough, as it does
create multiple virtual instances of the device.

3 Challenges & Design

Our goal is to apply SSE to complex programs that interact
with untamed environments. In this section, we introduce
three challenges that we have faced in doing so, and our
solutions to them.

Challenge I: direct access to the environment is criti-
cal. Since the untamed environment of a program cannot
be modeled nor virtualized, the real environment must be
used. To solve this, we introduce process-level SSE, an SSE de-
sign that enables both the symbolic and concrete execution
engines to interact with the environment and to share the
memory state. Thanks to this design, our SSE engine is the
first to comprehensively analyze I/O services in Android.
Challenge II: path concurrency is feasible but requires
environment-awareness. SSE execution is slow due to in-
struction emulation. To achieve acceptable performance, it is

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Server for
distributed
execution

OS process(es)

Process-level SSE Process-level SSE Process-level SSE

Env.-aware conc. Env.-aware conc. Env.-aware conc.

Devices with the program environment

Figure 2. Mousse design.

Remote device (device S) Device with the env.

/ OS process \ / OS process \

Symb. ;Z?Os?;i Symb. Concrete
execution m‘ " execution | | execution
Unified memory &
exec. state manager

Symbolic exec. gngine

IMemory
SSE engine
Symb. Concrete Userspace _ _ _|transfer 9!
execution || execution -\kemel /
Unified memory & User space
exec. state manager Concrete memory & e T T
- : exec. state
SSE engine execution mgr.
_ Concrete exec. engine) \ /
Hypervisor Device with the env.
(device C)

(a) VM-level SSE (b) Decoupled SSE 1 (c) Process-level SSE

Figure 3. Different SSE designs.

important to execute the program paths concurrently. How-
ever, the program’s interaction with the environment cre-
ates a concurrency issue. This is because the environment
is stateful (e.g., the state in a device driver or the underly-
ing hardware component). If one program path mutates the
environment state, other paths might receive unexpected
responses from the environment. Therefore, we introduce
environment-aware concurrency, a principled approach to ex-
ecuting program paths concurrently while preventing incon-
sistent environment state from corrupting their execution.
Environment-aware concurrency, in the worst case, can
result in sequential execution of all program paths. However,
we show that an opportunity for concurrency exists when
analyzing I/O services in Android: in the common case, mul-
tiple paths can execute concurrently. This is due to the fact
that interactions with the environment are not frequent.
Challenge III: path concurrency might be limited but
distributed execution helps. While Mousse enables con-
current execution of program paths, the degree of concur-
rency may be limited by the environment state. We show
that distributed execution can address this performance bot-
tleneck. To do so, when a device cannot execute a path, due
either to the environment state or to resource constraint, it

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani

offloads the path to another device. Offloading a path refers to
requesting a centralized server to assign the path to another
device for execution.

Figure 2 illustrates the design of Mousse. It shows a cen-
tralized server distributing program paths to several devices,
each of which uses process-level SSE and environment-aware
concurrency to execute the paths. The server does not per-
form any analysis on the program itself. It acts as a simple
work queue of paths waiting to be analyzed.

We next discuss the components of Mousse.

4 Process-Level SSE

In this section, we describe the process-level SSE design used
in Mousse. Our key contribution is to run both symbolic and
concrete execution engines in the OS process that contains
the program itself. We describe existing SSE designs and
their shortcomings, before presenting more details on our
design.

Existing SSE designs. To tackle the issue of applying SSE
to a program with untamed environment, the first design
that one might consider is VM-level SSE, as implemented
in S?E [17, 18]. Figure 3 (a) shows the design of VM-level
SSE. To use it, the analyst runs the program in a VM. The
symbolic and concrete execution engines are implemented
within the hypervisor and share a unified memory and ex-
ecution state. When a program path needs to be explored,
the SSE engine forks the whole VM, giving each program a
completely separate environment.

Unfortunately, using VM-level SSE for analyzing programs
with untamed environments is generally not feasible, since
virtualization of the hardware component in the program’s
environment (needed to run the program in a VM) is gen-
erally not possible (§2.2). For example, we are not aware of
a solution that can virtualize the various I/O devices of a
smartphone.

The second design one might consider is decoupled SSE, as
implemented in Avatar [42], Avatar? [31], and Symbion [2].
In these systems, the concrete execution engine is configured
to directly run on top of the program’s environment. The
symbolic execution engine runs elsewhere, e.g., in a server
or workstation, and communicates with the concrete execu-
tion engine remotely. Unlike VM-level SSE, the decoupled
SSE design is capable of analyzing programs with untamed
environments.

Figure 3 (b) shows the design of a decoupled SSE. We
illustrate two devices, C and S. Device C has the program’s
environment and a concrete execution engine. Device S does
not have the environment but has a symbolic execution
engine. The system starts the symbolic execution in Device
S, and transfers execution to C when the environment is
needed. In this case, as the symbolic and concrete execution
engines are in separate devices, they have to transfer the
memory state when switching the execution mode.

Mousse: A System for Selective Symbolic Execution of Programs with Untamed Environments

Unfortunately, as our experience shows, decoupled SSE
has two drawbacks. The first is the performance overhead
of transferring memory state between the symbolic and con-
crete execution engines. In §9.1, we evaluate this overhead
using Avatar?, and show that process-level SSE reduces ex-
ecution time by at least 63%. The second is that it is hard
to configure and use. This is because one needs to set up
the symbolic and concrete execution engines separately and
configure the memory state transfer channel between them.

A final option that one might consider is to use a symbolic
environment, where all return variables from the environ-
ment are marked as symbolic, and hence the real environ-
ment is not needed. This is the approach used in DDT [26],
RevNIC [15], and SymDrive [35]. Unfortunately, as we will
report, this approach significantly increases the number of
symbolic variables and hence results in path explosion as
well as false coverage. We tested this approach on three An-
droid I/O services. None of the services initialized correctly
even after a few days of execution. We do, however, note
that a better path scheduling algorithm, similar to the ones
used by SymDrive [35], could potentially alleviate the effect
of path explosion, but we did not explore that.
Process-level SSE. These challenges prompted us to design
and build a new SSE approach, which we call process-level
SSE. In this design, both the symbolic and concrete execution
engines run within the same OS process that hosts the pro-
gram. To analyze a program, one loads the SSE engine into a
process and have the engine load and execute the program.
Thus, both the symbolic and concrete execution engines can
easily interact with the environment. In the rest of the pa-
per, we refer to the interactions of the program with the
environment as environment calls (ecalls). Whenever the pro-
gram issues an ecall (either in concrete or symbolic modes),
the SSE engine passes it to the underlying environment for
execution.

Figure 3 (c) shows the design of process-level SSE. Both
engines are in the same process as the program, which is
located in the device with the environment of interest. The
two engines, similar to VM-level SSE, use a unified memory
and execution state and enable the program to interact with
its environment.

Process-level SSE supports concurrent execution of pro-
gram paths. To achieve this, it executes each program path
in a separate OS process. Whenever the SSE engine explores
a new path, it forks the current process and executes the
new path in the child process. Forking a process is fast and
efficient thanks to copy-on-write support in the kernel.

One key benefit of this design (compared to decoupled
SSE) is improved performance. As both engines share mem-
ory, this eliminates the need to transfer memory state. The
other benefit is that process-level SSE is easier to use than
counterparts. Analyzing a program with VM-level SSE re-
quires launching a VM and running the program in the VM.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Analyzing a program with decoupled SSE requires config-
uring the symbolic and concrete execution engines in two
separate devices and configuring a channel for memory state
transfer. In contrast, in Mousse, the analyst only needs to
load the SSE engine and the program in an OS process, which
can be done with a single command in the OS shell.

Process-level SSE has its own limitations. First, since the
engines execute in the same process as the program under
analysis, the device must have adequate computing power.
Process-level SSE is best suited to high-end mobile devices
(such as smartphones, tablets, and laptops) as well as desk-
tops and servers. Decoupled SSE is the right design for weak
devices, e.g., embedded devices. Moreover, process-level SSE
cannot analyze the OS kernel code, nor programs with mul-
tiple processes. VM-level SSE is the right design in these
cases.

4.1 Memory Virtualization

As mentioned, an SSE engine emulates the instructions in
a program. In doing so, it virtualizes the process address
space for the program. Therefore, the address space seen
by the program (i.e., guest address space) could be different
from that of the OS process that it runs inside (i.e., host
address space). This way, the memory used by the program
is isolated from the memory used by the SSE engine itself.
This virtualization requires the SSE engine to maintain the
mapping between the guest and host address spaces and to
translate when emulating memory-access instructions.

However, the native execution of syscalls creates a chal-
lenge for address space virtualization. That is, addresses
passed to the kernel through the syscall arguments are in
the guest address space, whereas the kernel uses the host ad-
dress space to dereference the memory pointers passed to it.
Unfortunately, simply translating the addresses in the syscall
arguments is not enough. This is because the data buffers
passed to the kernel must be contiguous in the host address
space. This is not necessarily the case, since the program
allocates these buffers in the guest address space.

To address this problem, we configure the guest addresses
to be identical to their underlying host addresses. This way,
if a buffer is contiguous in the guest address space, it is
contiguous in the host address space too. The limitation of
this approach is that those addresses used by the SSE engine
in the host address space cannot be used in the guest address
space. However, given the large set of addresses available
in an address space in modern ISAs, this limitation is not
serious in practice.

4.2 Concretization Strategies

Since the environment cannot be modeled nor virtualized,
any symbolic arguments passed to ecalls must be concretized.
In this section, we present two different concretization strate-
gies supported by Mousse.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Strategy I: constrained concretization. In this strategy,
the symbolic arguments passed to ecalls are concretized and
the execution path is constrained. That is, Mousse chooses a
concrete value for the symbolic argument that satisfies all
the path constraints, and adds a new constraint to the path
enforcing the value of the variable to be equal to the concrete
value. With this strategy, the ecall returns a concrete value.
This strategy results in no false positives since all executed
paths are correct program paths. However, this strategy can
potentially limit the coverage and the number of paths ex-
plored due to the additional constraints and the concrete
values of the outputs of ecalls. This limitation happens only
when an argument to an ecall is symbolic, forcing Mousse
to concretize it. Fortunately, as our experiments show, ecalls
with symbolic arguments are rare in OS services that we an-
alyze. In other words, the service inputs marked as symbolic
in the analysis rarely propagate to ecall arguments. The only
such case that we have noticed are when OS services log the
program inputs to the terminal by using a writev syscall.
To avoid these, the analyst can disable the logging in the
service.
Strategy II: concretization with unconstrained input
and symbolic output. In case a program does have ecalls
with symbolic arguments, constrained concretization lim-
its the coverage. To address this issue, Mousse provides a
second strategy, in which it takes two actions. First, when a
concrete value for the symbolic argument is chosen, it does
not add the corresponding constraint to the path. Second, it
marks the outputs of these ecalls as unconstrained symbolic
variables, hence allowing the forking and execution of paths
that depend on the values of the outputs of these ecalls.
Note that while this approach may result in false cover-
age, it forks fewer paths and produces less false coverage
compared to the symbolic environment approach discussed
earlier, as we will show empirically in §9.2. This is because
the latter marks the outputs of all ecalls as symbolic, whereas
the former marks only the outputs of ecalls with symbolic
arguments as symbolic.

5 Environment-Aware Path Concurrency

SSE is slow as both symbolic and concrete execution en-
gines emulate the instructions. Therefore, it is important
to execute different program paths concurrently to speed
up the execution. For example, in S?E, whenever a path is
forked, the whole VM is forked and the resulting VM can
run concurrently.

Key challenge. Unfortunately, for programs with untamed
environments, blind concurrent execution can result in unex-
pected program behavior that would not happen in normal
execution of the program. Given that the environment for a
program cannot be modeled nor virtualized, the ecalls must
be passed to the actual environment. Therefore, the con-
currently executing program paths can impact each other’s

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani

/* Audio service out_write API x/

1 static ssize_t out_write(struct audio_stream_out *stream, const
void *buffer, size_t bytes) {

2 struct stream_out *out = (struct stream_out *)stream;

3 lock_output_stream(out); //This function calls

pthread_mutex_lock(&out->lock);

4 long ns = (frames * (int64_t) NANOS_PER_SECOND) /
out->config.rate;

5 request_out_focus(out, ns);

6 ret = pcm_write(out->pcm, (void *)buffer, bytes_to_write);

7 pthread_mutex_unlock(&out->lock);

.

/* Code in the audio driver where the error happens */
1 void *q6asm_is_cpu_buf_avail(int dir, struct audio_client =*ac,
uint32_t *size, uint32_t *index)

unsigned char idx;

2

3 void *data;

4

5 struct audio_port_data *port;

// dir 0: used = @ means buf in use

6

7 // dir 1: used = 1 means buf in use

8 if (port->buf[idx].used == dir) {

9 // To make it more robust, we could loop and get the
10 // next avail buf, its risky though

1 pr_err("%s: Next buf idx[@x%x] not available, dir[%d]\n",
12 __func__, idx, dir);

13 mutex_unlock(&port->lock);

14 return NULL;

15 3}

16 }

Figure 4. A real code example demonstrating the importance
of environment-aware concurrency. We have modified and
eliminated parts of the code for clarity.

execution by mutating the state of the environment in un-
expected ways. This state mutation is not problematic (and
indeed desired) when only a single program path is executed,
as in native execution of the program. However, when multi-
ple paths are executed concurrently, some paths may see an
inconsistent environment state since all paths interact with
the same environment.

Figure 4 illustrates why blind concurrency does not work
using the example of a Pixel 3 audio service APL The API,
called out_write, writes audio frames through the audio
driver to the audio device. We perform SSE on this API by
marking its inputs as symbolic. The execution forks multiple
paths in function request_out_focus at line 5. Several of
these paths then continue to call the pcm_write function at
line 6, which issues an ioctl syscall to the audio driver to
pass the audio frames. We observe that multiple paths receive
an “out of memory” error from the driver, an unexpected
behavior for these paths. On further investigation, the driver
does not expect multiple concurrent writes. Indeed, this error
would not normally happen due to the critical section in the
out_write function in the audio service, which guarantees
that the writes to the driver are sequential. Yet, the forking

Mousse: A System for Selective Symbolic Execution of Programs with Untamed Environments

State-mutating
T ecall

N

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

State-mutating
ecall

environmentally
consistent paths

environmentally
consistent paths

] i '
env. incons. |env. incons. env. consis. env. Incons.

paths paths paths paths

Figure 5. Environment consistency for concurrent path execution. (Left) All paths to be executed in a device. (Middle) Environmen-
tally consistent and inconsistent paths after a state-mutating ecall. (Right) Paths after the second state-mutating ecall.

due to symbolic execution in the middle of this critical section
results in an unexpected behavior.

In the figure, we also show the audio driver code (in the
kernel) that returns the error. It checks if the DMA audio
buffer is available for writing the data. In line 8, if the DMA
buffer (port->buf[idx]) is being used, the function returns
NULL (i.e., an error).

To address this challenge, Mousse keeps track of the in-
teractions of different program paths with the environment.
It prevents program paths from seeing inconsistent environ-
ment state.

We next define some terms and elaborate on our solution.
A state-mutating ecall is one that, when executed, mutates
the state of the environment in a way that could affect the
execution of another path. Note that not all ecalls are state-
mutating. For example, the execution of a memory allocation
syscall in one path does not affect other paths since mem-
ory is virtualized. A state-revealing ecall is one that reveals
the mutated state. Such an ecall returns a different result if
a state-mutating syscall has been previously issued by an-
other program path. In the previous example, the syscall to
the audio driver is both state-mutating and state-revealing.
We assume that the analyst specifies which ecalls are state-
mutating or state-revealing. In §8, we explain which ecalls
we specify as such in our prototype.

Mousse splits the set of paths into environmentally consis-
tent and environmentally inconsistent paths. Environmentally
consistent paths are those whose execution is consistent with
the state of the environment. In the beginning of the anal-
ysis and before the execution of any state-mutating ecalls,
all paths are environmentally consistent. Environmentally
consistent paths can execute with no restriction. Environ-
mentally inconsistent paths are those whose execution is not
consistent with the state of the environment, as a result of
a state-mutating ecall issued by another path. Environmen-
tally inconsistent paths can also execute but their execution is
restricted.

The restriction enforced on environmentally inconsistent
paths are two-fold. First, Mousse needs to prevent a path
from seeing unexpected responses from the environment.

Therefore, Mousse does not allow an environmentally in-
consistent path to issue a state-revealing ecall, which may
return unexpected responses due to the state-mutating ecall
issued by some other path. Second, Mousse tries to prevent
all paths from turning inconsistent. This is a heuristic de-
signed to ensure some paths can fully finish their execution
in the device. Therefore, Mousse does not allow an environ-
mentally inconsistent path to issue a state-mutating ecall. If
allowed, the state of the environment would be inconsistent
with all executing paths.

Whenever a path issues a state-mutating ecall, it turns
all other environmentally consistent paths into inconsistent
ones. However, the paths that are later forked from this
current path (i.e., children paths) remain environmentally
consistent since they share the state-mutating ecall. Figure 5
illustrates this issue. Figure 5 (Left) shows the set of all paths,
which are all environmentally consistent in the beginning.
Figure 5 (Middle) shows what happens when one of the paths
executes a state-mutating ecall. That path and its children
remain consistent because the state-mutating ecall is part of
their correct execution. However, the rest of the paths are
turned inconsistent. Figure 5 (Right) shows what happens
after a second state-mutating ecall. Similarly, the path ex-
ecuting this ecall and its children remain environmentally
consistent, but the rest of the paths are turned inconsistent.

As mentioned, environmentally inconsistent paths can re-
sume execution as long as they do not issue a state-mutating
or state-revealing ecall. But if they attempt to execute one,
Mousse suspends their execution and offloads them. §6 pro-
vides more details on the offloading process.

Mousse continues executing the paths until there are no
other paths left that can be executed. At this point, it reboots
the system to refresh the state of the environment. After
the reboot, it contacts the server and ask for new paths to
execute (§6).

Opportunity? Does concurrency provide any benefits in
the presence of state-mutating and state-revealing ecalls? In
other words, doesn’t environment-aware concurrency sim-
ply result in sequential execution of all program paths? In
§9.1, we show that even in the presence of such ecalls, concur-
rent execution can provide performance benefits. Moreover,

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

when such calls are not present, Mousse’s solution automat-
ically increases the degree of concurrency.

6 Path Offloading & Distributed Execution

Mousse cannot execute all paths concurrently due to the
environment state limitation (§5). Moreover, SSE is a time-
consuming analysis due to instruction emulation and multi-
path execution. For example, analyzing a single API call
of an audio service with symbolic input in Pixel 3 takes 9
hours in our prototype when using a single smartphone with
environment-aware path concurrency. To address this issue,
Mousse adopts a distributed execution framework. That is,
it distributes the program paths to multiple devices in order
to reduce the execution time. In this section, we discuss
our distributed execution strategy and our solution to an
environment-related challenge.

Mousse’s distributed execution strategy is dynamic and
on-demand. That is, instead of assigning different program
paths to different devices statically, it assigns one device
to start the analysis. Then, if for some reason, some paths
cannot be executed in that device, the paths are offloaded to a
centralized server. The server does not perform any analysis
on the program itself. It acts as a simple work queue for the
devices to analyze different program paths. That is, devices,
when idle, contact the server to download the program paths
for execution.

Paths are offloaded from a device for two reasons: (i) in-
consistent environment state, where the execution of one
path makes the execution of another path infeasible (§5), and
(ii) resource constraint, which limits the number of program
paths that can be executed concurrently in a device. Cur-
rently, we set a fixed upper limit (determined empirically)
for the total number of concurrent paths in one device. Al-
ternatively, Mousse can dynamically monitor the resource
consumption in the device to determine how many paths it
can execute concurrently.

6.1 Path Offloading

The key component of distributed execution in Mousse is
path offloading. Mousse performs path offloading using con-
colic program inputs. In SSE, one analyzes a program by
marking its select inputs (e.g., API inputs or configuration
options) as symbolic. During execution, whenever a path
needs to be offloaded, Mousse solves the constraints on the
path and generates a set of concrete values for program’s
symbolic inputs. It then offloads these values to the server.
When the path is later downloaded by a device for execution,
these concrete values can be used to mark the API inputs
as concolic variables (§2.1), i.e., concolic inputs. The role of
these concolic inputs is to guide the symbolic execution to
re-execute the offloaded path from scratch.

One might wonder why Mousse does not offload the state
of the execution of the path so that it does not need to be

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani

1 int prog_main(int arg) {

2 if (arg >= 13) {

3 return syscall(SYSCALL_NR_1, ...); /* state-mutating */
4 3} else {

5 int ret = syscall(SYSCALL_NR_2, ...); /* state-revealing */
6 if (arg <= 4)

7 return ret;

8 else

9 return func(ret);

10 3

13}

Figure 6. Simple hypothetical program used to demonstrate
the offloading strategy in Mousse.

re-executed from scratch. The reason behind this is that
the untamed environment state cannot be captured. This is
because a hardware component and its driver might not pro-
vide an interface for taking snapshots of their state. Mousse’s
approach allows the path to re-execute from the beginning,
which correctly reconstructs the environment state.

When a device downloads a path to execute, it performs
the execution in two steps. In the first step, it uses the con-
colic inputs to execute the path from the beginning all the
way to the point where the offload happened (i.e., the re-
executed part of the path). In this part of the execution, no
new paths will be forked. Instead, the concolic inputs are
used to guide the execution through the conditional state-
ments with symbolic predicates. In the second step, execu-
tion continues in the parts of the program that were not
executed before (i.e., the new part of the path). When exe-
cuting this part, forking is enabled and the concolic inputs
are not needed anymore.

Disabling the forks in the re-executed part of the path is
needed to avoid forking duplicate paths. This re-execution
itself is not problematic and it is in fact needed to recreate the
state of the environment. However, if this re-executed part
contains a conditional statement with a symbolic predicate
and hence forks a new path, the fork would be a duplicate and
hence the child path will be identical to one forked before.

To identify the separation between the re-executed and

the new parts of the path, Mousse uses a forking skip depth
variable, which is offloaded alongside the concolic inputs
when a path is offloaded. This variable specifies the number
of symbolic forks to skip when re-executing the path from
scratch. In other words, this variables splits the path into the
re-executed and new parts using the number of symbolic
predicates visited on the path.
Example. Figure 6 shows a simple hypothetical program.
Assume that the analyst has marked the arg variable as
symbolic. This means that three paths need to be executed
as a result of two conditional statements on arg (lines 2
and 6). For simplicity of discussion, assume that Mousse is
configured to execute one path at a time per device (i.e., no
concurrency).

Mousse starts the execution and faces the first symbolic
branch predicate at line 2. It forks the execution resulting in

Mousse: A System for Selective Symbolic Execution of Programs with Untamed Environments

two different paths, and arbitrarily chooses to first execute
the then-branch. This path issues a state-mutating ecall (line
3), which makes the other path (i.e., the else branch at line
5) inconsistent with the environment state. Mousse finishes
executing the then-branch path and then tries to resume the
execution of the else-branch path. This path however needs
to issue a state-revealing ecall (line 5) and hence cannot
be executed in the device anymore. To offload this path,
Mousse solves the path constraints (i.e., arg < 13)and finds
a concolic input, e.g., arg = 3.1t offloads this concolic input
as well as the forking skip depth, which is 1 since the path
has seen one symbolic fork so far.

Now imagine another device (or the same device after

reboot) downloads this path to execute. To do so, it starts the
execution from the beginning, marks arg as concolic, and
assigns the concrete value of 3 to it. When it faces the first
conditional with a symbolic predicate, it avoids forking due
to the forking skip depth being 1. Mousse then inserts the
concrete value of arg into the branch predicate and executes
the True side of the branch (which is the else-branch). The
importance of the forking skip depth is clear in this example:
had the execution performed a fork here, the same path that
was executed previously (i.e., line 3) would be executed again.
The execution now resumes, forks another path at line 6, and
manages to finish executing both paths. As can be seen, all
three paths are eventually executed, one on the first device
and the other two on the second device (or the second boot
of the same device).
Global fork limiters. Loops create a problem for SSE and
can result in a large number of program paths. Existing SSE
solutions, such as S*E, use fork limiters to limit the number of
forks at a given program counter value. Mousse also uses fork
limiters, but it needs to use a global one since the execution
is distributed. To achieve this, Mousse’s server implements
global fork limiters. When performing a symbolic fork, each
device contacts the server to inquire the value of the fork
limiter, hence providing a global one. Moreover, Mousse uses
both the program counter and the hash of the stack trace to
identify a forking location. Compared to using the program
counter only, this allows for a more accurate identification of
loop forks. That is, this approach can differentiate between
a function containing a loop being called from different call
sites.

6.2 Environment-Forced Symbolic Variables

Outputs of ecalls marked as symbolic create a difficulty for
offloading a path. Such variables are present when Mousse
leverages its concretization with symbolic output (Strategy II
in §4.2) or when we use a symbolic environment in our base-
line experiments. We refer to these variables as environment-
forced symbolic variables. In the presence of these variables,
the solution to the path constraints might depend on specific
values of these variables. However, these values cannot be
simply fed to the program upon path re-execution.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

To solve this problem, Mousse records and offloads some
metadata information for each such symbolic variable. More
specifically, it records the location of the ecall in the code
(i.e., program counter value as well as the hash of the stack
trace). When a device downloads this path to execute, it uses
this metadata information to set the concolic value of the
symbolic output accordingly. Along with the forking skip
depth variable discussed earlier, this concolic value helps
direct the path execution and avoid duplicate paths.

Note that we do not use the concrete value returned from
the ecall itself for the concolic value of this variable on re-
execution. This is because some paths cannot be triggered
with the actual return value from the environment. If such a
path is offloaded, a concrete value that can lead the execution
correctly in this path needs to be offloaded as well.

7 Analysis

We have used Mousse to analyze Android I/O services. Specif-
ically, we have performed three analyses: bug and vulnera-
bility detection, taint analysis, and performance profiling.

7.1 Android I/O Services

We next provide some background information on Android
I/O services. Android employs a large number of customized
services tailored for each mobile device (more specifically,
tailored for the hardware available in a specific mobile de-
vice). These services are often used to provide I/O API for
applications. For example, the audio service is used to pro-
vide audio API while the camera service is used for camera
API Other such services include the WiFi service, bluetooth
service, input service, sensor service, and telephony service.

An I/O service in Android may comprise of two compo-
nents: a server component, which provides the application-
facing API, and the Hardware Abstraction Layer (HAL),
which provides the hardware-specific implementation needed
to support the I/O functionality. The HAL service is imple-
mented by the vendor of the hardware component and is
typically closed source. In the rest of the paper, we treat the
server and HAL components as separate services and ana-
lyze them independently. This is because these two compo-
nents are developed independently and even run in separate
processes (especially in newer Android devices [30]). Smart-
phones incorporate a large number of closed source vendor
services. For example, Pixel 3 incorporates 50 binary executa-
bles and 844 binary libraries for services from corresponding
vendors, all adding up to 343 MBs of binary code.

7.2 Target Analyses

We next describe some of the analyses we perform using
Mousse. Taking examples from S?E [17, 18], we perform
bug and vulnerability analysis and performance profiling. In
addition, we perform taint analysis.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

Bug and vulnerability detection. We develop checkers to
analyze the execution of the program, both in symbolic and
concrete modes, in order to find bugs and vulnerabilities.
First, we try to find out-of-bounds access, null-pointer derefer-
ence, control-flow hijacking, and stack smashing bugs and vul-
nerabilities. To do so, our checkers looks for symbolic mem-
ory accesses, i.e., when the memory address used is symbolic.
Since in the analysis, we mark the inputs of the service API
as symbolic, a symbolic address identifies a memory access
that can be controlled by an attacker. We then check (using
some manual effort) the constraints to see whether the ac-
cess is adequately constrained. Second, we try to find double-
free and use-after-free vulnerabilities. To do so, our checkers
investigate the use of memory management APIs in libc in-
cluding all heap allocation, reallocation, and deallocation
calls, namely free, malloc, calloc, realloc, memalign,
posix_memalign, pvalloc, valloc, and aligned_alloc to
detect incorrect uses. Note that our checkers do have false
positive reports requiring some manual effort in analyzing
the reports. This is, however, a limitation of our checkers,
not of Mousse.

Taint analysis. While Mousse can be used for different taint
analysis goals, we deploy a specific analysis in this work:
the flow of program inputs to its outputs. The results of
this analysis can be used to enhance the accuracy of taint
analysis for programs that use these APIs. For example, data
flow analysis engines for Android apps (e.g., FlowDroid [5],
Amandroid [39], and DroidSafe [25]) are unable to accurately
model the data flow in Android APIs. Mapping the flow of the
input to output of such API can complement these engines.
Performance profiling. Mousse can be used to profile the
performance of different execution paths in a program. For
example, given the cache properties (e.g., cache size, eviction
algorithm, etc.), it can determine the number of cache misses
in each program path. This can then be used to determine
how some program inputs impact its performance and to
find performance bottlenecks.

Testing methodology. Mousse can support arbitrary test-
ing methods using SSE. However, in our evaluation, we focus
on the following testing methods. The first method, which we
mainly use to measure Mousse’s performance, is single-API
testing. By an API, we refer to one of the procedures in the ex-
ternal interface provided by the program. Each I/O service in
Android provides several procedures that can be called using
IPC. For single-API testing, we initialize a service and then
call a specific service API with symbolic inputs. Sometimes,
when an API has a critical dependency on another API (e.g.,
all AudioProvider APIs require a call to adev_open first), we
satisfy it in our test. The second method is multi-API test-
ing. In one variant of this test, which we use mainly in our
performance profiling, we first call one API with symbolic
input and then call and execute another API concretely. In
another variant, which we use mainly in bug and vulnerabil-
ity detection, we may call multiple APIs, all (or some) with

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani

symbolic inputs. In the third method, which we also use for
bug and vulnerability detection, we mark the variables read
from the service configuration file as symbolic. We use this
method to analyze the initialization code in the service.

8 Implementation

To implement the Mousse prototype, we developed 14,000
SLoC. In addition, we leveraged and integrated with Mousse
parts of some existing systems, namely S?E [17, 18], QEMU
(user-mode execution) [8], and KLEE [12]. We use user-mode
QEMU as the concrete execution engine in Mousse and KLEE
as its symbolic execution engine. We use SE to integrate
these two engines and to provide an extension framework
to develop plugins (such as the checkers explained in §7.2).
Mousse fully supports ARMv7 (which we use in our eval-
uations). We also plan to support x86 and ARMvS in the
future. The code that we developed is mainly for implement-
ing process-level SSE (e.g., address space support, integration
with user-mode QEMU, KLEE, etc.), support for ARM (both
as the ISA of the program binary and as the ISA of the device
to perform the analysis in), multi-threaded program support,
environment-aware concurrency, distributed execution (in-
cluding the server code), and the checkers described earlier.
Note that using Mousse does not require any changes to
the OS. However, in order to apply Mousse to Android I/O
services, one needs root access on the smartphone.
Workflow. When Mousse is assigned to execute a program,
the dynamic translator in QEMU first translates the program
binary into Tiny Code Generator (TCG) [9] intermediate
instructions. It then translates the TCG intermediate instruc-
tions into host instructions per basic block and starts the
execution in concrete mode. In concrete mode, if it detects a
symbolic variable, it switches to symbolic mode, translates
the TCG instructions to LLVM instructions, and uses KLEE
to execute the LLVM instructions. When no symbolic vari-
able is present in a basic block, it resumes the execution back
in concrete mode.

We adopted this workflow from S?E, albeit with some dif-
ferences. First, S’E switches from symbolic mode to concrete
mode when there are no symbolic values in CPU registers
used in the next block. However, this approach is not feasible
in Mousse because it cannot translate syscall handlers to in-
structions (since they are in the kernel). Therefore, it does not
know if a syscall would access symbolic registers just based
on the translated instructions. To solve this, Mousse adopts
a more conservative approach. That is, it switches from sym-
bolic mode to concrete mode only if all registers become
concrete. Second, when facing a syscall, Mousse switches to
native execution, whereas S?E handles the syscall similar to
the program’s code.

State-mutating and state-revealing syscalls. In our ex-
periments, we mark several syscalls as state-mutating in-
cluding a driver ioctl syscalls and writes to a file, a socket,

Mousse: A System for Selective Symbolic Execution of Programs with Untamed Environments

and a pipe. We also mark several syscalls as state-revealing
including a driver ioctl syscalls and reads from a file, a
socket, and a pipe. We note that we are conservative and
assume all syscalls to a device driver can affect each other.
It would be feasible to encode more fine-grained policies in
Mousse, but that requires understanding the semantics of
driver syscalls. Since ease of use is one of our goals, we opted
for the easier, yet more conservative, approach.

Most ecalls are syscalls, e.g., an ioctl syscall to a device
driver. However, another form of ecall requires special atten-
tion: shared memory. For example, a program can use the
mmap syscall to map, in its address space, the MMIO registers
of a device or a memory buffer that is also accessed by a
device driver. As another example, a program may use the
shared memory support in the OS to share a buffer with an-
other process. Mousse treats writes and reads to/from such
a shared memory segment similarly to explicit ecalls. We
add support for various implementations of shared memory
available in Android such as mmap, ashmem, and ION.

We do not currently support signals, as none of the pro-
grams we have analyzed use signals from the environment,
e.g., from the driver. Instead, these programs use syscalls
(such as poll and select) to receive notifications. We do,
however, support per-process signals, such as SIGTERM.
Syscall inputs and outputs. Mousse needs to correctly
identify all inputs and outputs of syscalls. It needs to know
the inputs for concretization. It needs to know the outputs
to mark them as symbolic in concretization strategy II (§4.2).
Implementing this is challenging since syscall inputs and out-
puts may contain untyped pointers. One important syscall
that exhibits this behavior is the ioctl syscall, which re-
ceives three arguments (struct file *file, long cmd,
void =xarg). The type of the third argument depends on
the value of the second one. This syscall is used heavily by
device drivers, and hence is called frequently in Android I/O
services.

To address this issue, Mousse needs to know the type of
these pointers. We manually extract the type information
from the header files in a driver source code and include it
inside Mousse’s source code.

9 Evaluation

We evaluate three aspects of Mousse: performance, code
coverage, and analysis results. In our evaluation, we use
five OS services in three smartphones: two audio services
in Pixel 3 (AudioServer and AudioProvider), two camera
services in Nexus 5X (CameraServer and CameraDaemon),
and the OpenGLES graphics libraries in Nexus 5. Unless
otherwise stated, for distributed execution, we use five Pixel
3 smartphones, four Nexus 5X smartphones, and one Nexus
5 smartphone. We set the fork limiter threshold to 10 (similar
to S?E).

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

6 6
g 5 g 5| |

=} o

£ E

o 4 o 4

£ £

£ 3 2 3

= =

£ 2 £ 2

=3 =

2 2 1l

g 1 H g 1

[8a) 8]

017376 9 12 07376 9 12

Max # concurrent paths Max # concurrent paths

(b) out_write (issues state-
mutating syscalls)

(a) adev_set_parameters (no
state-mutating syscalls)

Figure 7. Impact of environment-aware concurrency on exe-
cution time.

9.1 Performance

In this section, we provide empirical evidence that Mousse’s
solutions for environment-aware concurrency and distributed
execution provide performance benefits. We also provide
results quantifying the execution time of analysis using
Mousse. We report the overall execution time of an exper-
iment, from when it started until when the last path was
executed. Finally, we compare the performance of Mousse’s
process-level SSE design with an existing decoupled SSE so-
lution. Note that we do not enable our checkers (§7.2) for
these experiments so that we (i) we can measure the perfor-
mance of SSE execution itself and (ii) we can compare the
results with an existing SSE design, which does not have
similar checkers. However, our measurements show that the
checkers, if enabled, increase the execution time by 19.9%.
Environment-aware concurrency. Figure 7 shows the ex-
ecution time of two APIs of the AudioProvider in Pixel 3
when varying the maximum number of concurrent paths
allowed on the device. The figure shows significant bene-
fit from concurrency for one API and modest benefit for
the other. This is due to state-mutating syscalls. The first
API (adev_set_parameters) does not issue state-mutating
syscalls, allowing paths to execute concurrently with no
restriction, resulting in 59% reduction in execution time.
The second API (out_write) issues state-mutating syscalls,
which limit concurrency (§5). However, even in this case,
concurrent execution reduces the execution time by 24%.
Moreover, for the second API, the figure shows an increase
in execution time for 9 and 12 concurrent paths compared to
6. This is because when we increase the number of concur-
rent paths, there are more path execution conflicts (due to
interactions with the environment) and hence more offloads.
As mentioned earlier, an offloaded path is executed from
scratch hence resulting in wasted execution time, which can
negate the benefits of concurrency.

As discussed in §6, we empirically determine the maxi-
mum number of concurrent program paths. Accordingly to
the results of this experiment, we set this threshold to 9 in
the rest of the experiments.

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

3 5
3 2.5 3 4l
S Ll <
£ E 3
£ L5 e
I g7
E E
3 0.5 g It
a8 M
0 0

1.2 3 4

5 1.2 3 45
Number of smartphones

Number of smartphones

(b) out_write (issues state-
mutating syscalls)

(a) adev_set_parameters (no
state-mutating syscalls)

Figure 8. Impact of distributed execution on execution time.

Distributed execution. Figure 8 shows the execution time
with distributed execution enabled. We show the results for
using a different number of Pixel 3 smartphones (1 to 5).
The results show that distributed execution significantly im-
proves performance. Figure 8a shows the results for when
there are no state-mutating syscalls. In this case, the per-
formance improvement almost saturates with three devices,
as all three devices can execute several paths concurrently.
Figure 8b shows an API with state-mutating syscalls. In this
case, adding the 4th and 5th devices further helps improve
performance. Overall, distributed execution reduces the exe-
cution time by 63% and 64% for these two cases. Moreover,
distributed execution and environment-aware concurrency
together reduce the execution time by 84% and 73% for these
cases.

Testing all APIs. To quantify the execution time of testing
the APIs of a system service, we tested all the APIs of OS
services using the max number of devices available to us as
reported earlier. Table 1 shows the results for three services.
The table also shows the overall number of paths as well
as the offloads due to environment consistency and due to
resource constraint. The number of paths varies significantly
depending on the API resulting in short (a few minutes)
to long (a couple of hours) experiments. Also, the results
show that both the environment and resource constraint
may result in path offloads.

Comparison with decoupled SSE. We compare the per-
formance of Mousse’s process-level SSE design with the
state-of-the-art decoupled SSE solution, Avatar® [31]. We
note that Avatar? does not support concurrent execution
of program paths interacting with the environment. It does
not support distributed execution either. Therefore, we only
compare the performance of a single path execution using a
single smartphone.

We use Avatar? to test one API of the AudioProvider ser-
vice, adev_open in Pixel 3. We run the symbolic execution
engine of Avatar? in an x86 server, run the concrete execution
engine in a Pixel 3 smartphone, and have them communicate
using Android Debug Bridge (ADB). Avatar? uses GDB for

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani

#of #of
Exe- off- off-
Ser: R
vice API name C}ltlon #of | loads | loads
time path | due due
name (minutes) to to
Res. Env.
eglCreateWindowSurface 115.9 11 1 9
eglQuerySurface 118.8 88 40 21
Gs eglGetDisplay 8.7 1 0 0
glCreateShader 34.2 5 0 3
glShaderSource 1605.8 371 148 95
glViewport 14.6 6 5 0
adev_open_output_stream 390.1 612 264 0
adev_open_input_stream 170.1 566 234 0
adev_open 2.2 12 0 0
adev_set_parameters 107.7 237 122 0
AP adev_set_mode 2.8 3 0 0
adev_set_voice_volume 2.7 1 0 0
adev_set_mic_mute 34 1 0 0
out_write 89.6 50 24 10
out_set_parameters 25.9 136 34 0
out_drain 5.8 2 0 0
getNumberOfCameras 47.6 46 28 3
connectDevice 29.0 19 2 5
getCameraCharacteristics | 28.9 45 18 0
supportsCameraApi 4.1 2 0 0
CS submitRequestlList 20.7 18 2 7
cancelRequest 4.1 1 0 0
endConfigure 4.2 1 0 0
createStream 93.6 87 33 7
createDefaultRequest 4.9 1 0 0

Table 1. Single-API testing of OS services with Mousse. Abbre-
viations used in the table: GS = GPU Stack, AP = AudioProvider,
CS = CameraServer, Res. = Resource constraint, Env. = Envi-
ronment consistency.

its concrete execution engine. We start with concrete exe-
cution on the smartphone. We use GDB to set a breakpoint
right before the call to adev_open. Then, we switch the exe-
cution from concrete mode on the smartphone to symbolic
mode on the server. We also set two breakpoints after the
switch to measure the execution time from the switch to the
time the execution reaches the breakpoints. After the switch,
Avatar? reads the memory of the concrete execution engine
over ADB to synchronize the state of the symbolic execution
engine.

Avatar? took 24.86 seconds to initialize the AudioProvider
all in concrete mode. However, it then took 257.47 seconds
to switch the execution mode, read the remote memory, and
reach the first breakpoint in symbolic mode. Unfortunately,
Avatar? could not reach the second breakpoint. More specifi-
cally, Avatar? was aborted due to a “read-miss” error after
running for another 1 hour and 44 minutes.

As a comparison, using Mousse with one phone executing
one path at a time (i.e., no concurrency), we were able to
finish testing a path of adev_open completely in 104 seconds.
Mousse took 40 seconds to initialize the AudioProvider ser-
vice, which is slower than Avatar?. This is because Mousse’s
concrete execution engine, based on QEMU, fully emulates
all instructions. However, Mousse’s unified memory avoids

Mousse: A System for Selective Symbolic Execution of Programs with Untamed Environments

costly memory transfers, allowing it to significantly out-
perform Avatar?. Compared to Avatar?, which took 282.33
seconds to reach the first breakpoint after the switch, Mousse
improves performance by at least 63% as it finishes the whole
path in 104 seconds.

9.2 Coverage

We measure the coverage of Mousse and compare it with that
of concrete execution. We measure coverage in two steps: (i)
the initialization coverage, i.e., the coverage resulting from
the initialization of the service and calling some other APIs
that our API of interest has dependency on, and (ii) the API
coverage, i.e., the added coverage when testing the API. Both
Mousse and concrete execution result in the same coverage
for the initialization phase. Hence, we mainly report the API
coverage.

For concrete execution, we try two approaches and report
the best one. One is using a known good input to the API
that results in deep code coverage. The other is black-box
fuzzing, where we try a large number of random inputs to
the API and measure the combined coverage.

Figure 9 shows the API coverage for concrete execution
and Mousse with its two concretization strategies (§4.2).
The figure shows two important points. First, it shows that
Mousse achieves better coverage than concrete execution.
Second, it shows that, in the absence of syscalls with sym-
bolic arguments, both concretization strategies in Mousse
achieve the same coverage (Figure 9a). Syscalls with sym-
bolic arguments are rare in Android I/O services that we
have analyzed. The only such syscalls are those for logging,
as discussed in §4.2, which one can disable before analysis.
However, in the presence of such syscalls, the second con-
cretization strategy achieves higher coverage (Figures 9b and
9c¢). But we note that it is not known how much of this is
false coverage, i.e., execution that would not occur in normal
execution. Determining how much requires further analysis.

We also run these tests with a symbolic environment, for
which we mark the output of a syscall as symbolic when
the syscall is handled by the device driver used by a service,
e.g., the audio device driver used by the audio service. In
this case, as a result of path explosion, the three services
that we test (i.e., CameraServer, CameraDaemon, and Audio-
Provider) all fail to correctly initialize (i.e., no paths within
them successfully finish the initialization phase) even after 1
to 2 days of execution using Mousse’s distributed execution
with multiple smartphones.

9.3 Analysis Results

Bugs and vulnerabilities. We analyze all our services to
find bugs and vulnerabilities. We find two new crash bugs
(both null-pointer dereferences) and two double-free vulner-
abilities. We then use Mousse to analyze these in the binary
(demonstrating another benefit of Mousse, which can help

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

21200 2 4000
2 1000 1027 1027 82500 2065 83500 3029 3395
f 874 r-\52000 %3000 2479
E 800) E]soo Ezsoo
£ 60 g 1157 22000
5400 5 1000 5%
£ £ w0 £1000
200 E

z z 48 Z 500

OConc. M-I MHIT OCone. M-I MHID 0Cone. M-I MEID

(a) adev_open_input_ (b) createStream of Cam- (c) on_mct_process_serv
stream of AudioProvider eraServer in Nexus 5X _msg of CameraDaemon in
in Pixel 3 Nexus 5X

Figure 9. Code coverage for different APIs of Android I/O
services. Conc., M-I, and M-II refer to concrete execution and
Mousse with concretization strategies I and II (§4.2), respec-
tively.

analyze the execution). One null-pointer bug is due to ac-
cessing a gyroscope-related handle in the CameraDaemon
without checking if it is null or not. The other is due to access
to a parameter buffer, which can be null. Moreover, one of
the double-free vulnerabilities calls free on the same pointer
three times.

Taint analysis. We analyze the propagation of inputs to
the outputs of the AudioProvider service, which is a binary
provided by the vendor. Our results show that no APIs prop-
agate their inputs to their outputs with the exception of
out_write, which returns its size input parameter as its
output.

Performance profiling. We analyze the performance im-
pact of audio quality configurations on the execution of audio
playback code in the AudioProvider service. To do so, we
configure the audio quality with symbolic inputs, call the
playback API with concrete inputs, and then measure the
cache misses. We model a two-level cache system using spec-
ifications from ARM Cortex-A53 (write-through LRU with
64 byte line size; 2-way associative/32 kB for L1D, 4-way
associative/32kB for L1, and 16-way associative/512 kB for
L2).

Marking the audio quality configurations as symbolic re-
sults in 112 execution paths. We observe that different paths
can experience 19% difference in the L1 data cache misses
(i.e., the path with the maximum cache misses vs. the path
with the minimum) whereas the cache misses for the L1 in-
struction cache and the L2 cache do not change noticeably.
This shows that different paths execute almost the same code,
but with different data access patterns.

10 Other Related Work

Charm [36] ports some of the device drivers of mobile devices
to run inside VMs. It does so by forwarding the drivers’
I/0 interactions with the hardware to the mobile device for
execution. One may attempt to use Charm along with S?E to
analyze I/O services of mobile devices (indeed, this is the first
approach we considered). However, Charm requires some
engineering effort to support each device driver (in the order
of days). Moreover, it may not port the drivers fully, e.g., it

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

does not support DMA for a GPU driver. Finally, Charm does
not virtualize the device, hence S?E cannot use multiple VMs
to interact with it. Since S?E does not orchestrate interactions
with an I/O device hardware (an untamed environment),
concurrent execution of VMs would result in unexpected
behavior.

Under-constrained symbolic execution, as mainly real-
ized by Under-Constrained KLEE (UC-KLEE) [20, 33, 34],
uses symbolic execution to analyze functions with systems
code. It does not execute full program paths and simply
considers the function arguments to be symbolic. This re-
sults in false positives. UC-KLEE therefore provides both
automated heuristics and manual methods to add precon-
ditions to the function’s input in order to prevent some of
the false positives. Mousse, on the other hand, can execute
fully-constrained program paths.

DART and SAGE [21-23] automatically generate input for
testing of programs by executing them, collecting path con-
straints, and solving the constraints, an approach otherwise
known as concolic testing. Mousse also uses concolic inputs
to drive the execution in a desired path (§6.1).

MAYHEM [14] and CENTAUR [29] implement a decoupled
SSE design. However, their designs are not conducive to
analyzing programs with untamed environments. MAYHEM
runs the concrete execution engine in a VM so that its state
can be checkpointed. Hence, similar to S2E, it requires to
virtualize the hardware to analyze programs with untamed
environments. CENTAUR uses a decoupled SSE design to ana-
lyze Android frameworks. However, it can analyze Java code
only, whereas the programs of interest to us are typically
written in native code. Moreover, it executes the initialization
phase of the framework in concrete mode, and then moves
to symbolic mode, after which it is not capable of switching
back to the concrete mode.

AEG [6, 7] uses symbolic execution to automatically gener-
ate exploits. Driller [38] uses concolic execution to enhance
the performance of fuzzing, an approach referred to as hy-
brid fuzzing. Both systems model the environment and hence
cannot analyze programs with untamed environments.

QsyMm [41] is a fast concolic execution engine used for
hybrid fuzzing. Qsym avoids taking any path state snapshots
and hence re-executes all the paths from scratch using con-
colic execution. As a result, it can allow the paths to interact
with the actual underlying environment. However, Qsym
does not provide support for environment-aware concur-
rency and needs the interactions with the environment to
be side-effect free.

Cloud9 [19] distributes symbolic execution over multiple
nodes. It, however, does not address the issue of the environ-
ment and targets pure symbolic execution (and not selective
symbolic execution). Moreover, Cloud9’s approach for dis-
tributing the execution is different from Mousse’s. Cloud9
either uses state copying or state reconstruction to transfer a
path from one node to another. State copying is not feasible

Yingtong Liu, Hsin-Wei Hung, Ardalan Amiri Sani

for programs with untamed environments. State reconstruc-
tion is feasible and is indeed what Mousse does. However,
Cloud9 uses a bitvector to encode the then/else decisions
whereas Mousse uses concolic inputs. Moreover, Cloud9 does
not deal with environmentally-forced symbolic variables.

Chipounov et al. define different execution consistency
models for SSE, each resulting from different transition points
between symbolic and concrete executions and hence result-
ing in a different set of program paths being analyzed [18].
We note that concretization strategy I in Mousse results in
the Strictly Consistent Unit-Level Execution (SC-UE) consis-
tency model whereas concretization strategy II results in the
Relaxed Local Consistency (RC-LC) model.

11 Conclusions

We presented Mousse, a system designed to perform selec-
tive symbolic execution (SSE) on programs with untamed
environments. Mousse provided three novel solutions to
deal with such program environments: process-level SSE,
environment-aware concurrency, and distributed execution.
Through extensive evaluations, we showed that Mousse out-
performs alternative solutions in terms of performance and
coverage. We also used Mousse to perform various analy-
ses on Android I/O services including bug and vulnerability
detection, taint analysis, and performance profiling.

Acknowledgments

The work was supported by NSF Award #1763172. The au-
thors thank Felix Xiaozhu Lin and Zhiyun Qian for their
invaluable feedback on an earlier draft of this paper. They
also thank the paper shepherd, Marc Shapiro, for his sig-
nificant help in improving the final version of this paper.
In addition, they thank the anonymous reviewers for their
insightful comments.

References

[1] 2019. Nokia 9 PureView. https://www.nokia.com/phones/en_int/nokia-
9-pureview/. (2019).

[2] 2019. Symbion: fusing concrete and symbolic execution. https://angr.
io/blog/angr_symbion/. (2019).

[3] 2020. Mousse source code. https://trusslab.github.io/mousse/. (2020).

[4] D. Abramson,]. Jackson, S. Muthrasanallur, G. Neiger, G. Regnier, R.
Sankaran, I. Schoinas, R. Uhlig, B. Vembu, and J. Wiegert. 2006. Intel
Virtualization Technology for Directed 1/O. Intel Technology Journal
(2006).

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. 2014. FlowDroid: Precise Context, Flow,
Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps. In Proc. ACM PLDI.

[6] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. 2011. AEG:
Automatic Exploit Generation. In Proc. Internet Society NDSS.

[7] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D.
Brumley. 2014. Automatic Exploit Generation. Commun. ACM (2014).

[8] F. Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In
USENIX ATC, FREENIX Track.

[9] F. Bellard. 2020. Tiny Code Generator. https://git.qemu.org/?p=qemu.
git;a=blob_plain;f=tcg/README;hb=HEAD. (2020).

https://www.nokia.com/phones/en_int/nokia-9-pureview/
https://www.nokia.com/phones/en_int/nokia-9-pureview/
https://angr.io/blog/angr_symbion/
https://angr.io/blog/angr_symbion/
https://trusslab.github.io/mousse/
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=tcg/README;hb=HEAD
https://git.qemu.org/?p=qemu.git;a=blob_plain;f=tcg/README;hb=HEAD

Mousse: A System for Selective Symbolic Execution of Programs with Untamed Environments

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]
[22]
(23]

[24]

[25]

[26]

[27]

M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon,
A. Liguori, O. Wasserman, and B. A. Yassour. 2010. The Turtles Project:
Design and Implementation of Nested Virtualization. In Proc. USENIX
OSDIL.

C. S. Brown and J. Westenberg. 2018. The first phone
with an under-glass fingerprint sensor officially announced.
https://www.androidauthority.com/vivo-inscreen-fingerprint-
launch-831822/. (2018).

C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs. In Proc. USENIX OSDIL

L. Ceze, M. D. Hill, and T. F. Wenisch. 2016. Arch2030: A Vision of
Computer Architecture Research over the Next 15 Years. A Computing
Community Consortium (CCC) white paper (2016).

S.K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. 2012. Unleashing
MAYHEM on Binary Code. In Proc. IEEE Symposium on Security and
Privacy (S&P).

V. Chipounov and G. Candea. 2010. Reverse Engineering of Binary
Device Drivers with RevNIC. In Proc. ACM EuroSys.

V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. 2009. Selective
Symbolic Execution. In Proc. USENIX Workshop on Hot Topics in System
Dependability (HotDep).

V. Chipounov, V. Kuznetsov, and G. Candea. 2011. S2E: a Platform
for In-Vivo Multi-Path Analysis of Software Systems. In Proc. ACM
ASPLOS.

V. Chipounov, V. Kuznetsov, and G. Candea. 2012. The S2E platform:
Design, implementation, and applications. ACM Transactions on Com-
puter Systems (TOCS) (2012).

L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea. 2010.
Cloud9: A Software Testing Service. SIGOPS Operating System Review
(2010).

D. Engler and D. Dunbar. 2007. Under-constrained Execution: Making
Automatic Code Destruction Easy and Scalable. In Proc. Int. Symp. on
Software Testing and Analysis (ISSTA).

P. Godefroid, N. Klarlund, and K. Sen. 2005. DART: Directed Automated
Random Testing. In Proc. ACM PLDL

P. Godefroid, M. Y. Levin, and D. Molnar. 2008. Automated Whitebox
Fuzz Testing. In Proc. Internet Society NDSS.

P. Godefroid, M. Y. Levin, and D. Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Commun. ACM (2012).

A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, D. Tsafrir,
and A. Schuster. 2012. ELIL: Bare-Metal Performance for I/O Virtualiza-
tion. In Proc. ACM ASPLOS.

M. I Gordon, D. Kim,]J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard. 2015. Information Flow Analysis of Android Applications in
DroidSafe. In Proc. Internet Society NDSS.

V. Kuznetsov, V. Chipounov, and G. Candea. 2010. Testing Closed-
Source Binary Device Drivers with DDT. In Proc. USENLX ATC.

J. Liu, W. Huang, B. Abali, and D. K. Panda. 2006. High Performance
VMM-Bypass I/O in Virtual Machines. In Proc. USENIX ATC.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

EuroSys ’20, April 27-30, 2020, Heraklion, Greece

M. Liu, T. Li, N. Jia, A. Currid, and V. Troy. 2015. Understanding the
Virtualization “Tax” of Scale-out Pass-Through GPUs in GaaS Clouds:
An Empirical Study. In Proc. IEEE HPCA.

L.Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang, X. Xing,
and P. Liu. 2017. System Service Call-Oriented Symbolic Execution
of Android Framework with Applications to Vulnerability Discovery
and Exploit Generation. In Proc. ACM MobiSys.

1. Malchev. 2017. Here comes Treble: A modular base for
Android. https://android-developers.googleblog.com/2017/05/here-
comes-treble-modular-base-for.html. (2017).

M. Muench, D. Nisi, A. Francillon, and D. Balzarotti. 2018. Avatar?:
A Multi-target Orchestration Platform. In Proc. Workshop on Binary

Analysis Research (BAR).
M. Owen. 2018. A deep dive into HomePod’s adaptive au-

dio, beamforming and why it needs an A8 processor. https:
//appleinsider.com/articles/18/01/27/a-deep-dive-into-homepods-
adaptive-audio-beamforming-and-why-it-needs-an-a8-processor.
(2018).

D. A. Ramos and D. Engler. 2015. Under-Constrained Symbolic Execu-
tion: Correctness Checking for Real Code. In Proc. USENIX Security
Symposium.

D. A. Ramos and D. R. Engler. 2011. Practical, Low-Effort Equiva-
lence Verification of Real Code. In Proc. Int. Conf. on Computer Aided
Verification (CAV).

M. J. Renzelmann, A. Kadav, and M. M. Swift. 2012. SymDrive: Testing
Drivers without Devices. In Proc. USENIX OSDL

S. M. Seyed Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. Amiri Sani,
and Z. Qian. 2018. Charm: Facilitating Dynamic Analysis of Device
Drivers of Mobile Systems. In Proc. USENILX Security Symposium.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna. 2016. SoK:
(State of) The Art of War: Offensive Techniques in Binary Analysis. In
Proc. IEEE Symposium on Security and Privacy (S&P).

N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y.
Shoshitaishvili, C. Kruegel, and G. Vigna. 2016. Driller: Augmenting
Fuzzing Through Selective Symbolic Execution. In Proc. Internet Society
NDSS.

F. Wei, S. Roy, X. Ou, and Robby. 2014. Amandroid: A Precise and
General Inter-component Data Flow Analysis Framework for Security
Vetting of Android Apps. In Proc. ACM CCS.

C. Welch. 2018. Pimax opens preorders for its very expensive 8K and 5K
VR headsets. https://www.theverge.com/2018/10/24/18019254/pimax-
8k-5k-vr-headset-preorders-now-available-features-price. (2018).

I Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. 2018. QSYM: A Practical Con-
colic Execution Engine Tailored for Hybrid Fuzzing. In Proc. USENIX
Security Symposium.

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. 2014. Avatar:
A framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares. In Proc. Internet Society NDSS.

https://www.androidauthority.com/vivo-inscreen-fingerprint-launch-831822/
https://www.androidauthority.com/vivo-inscreen-fingerprint-launch-831822/
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://appleinsider.com/articles/18/01/27/a-deep-dive-into-homepods-adaptive-audio-beamforming-and-why-it-needs-an-a8-processor
https://appleinsider.com/articles/18/01/27/a-deep-dive-into-homepods-adaptive-audio-beamforming-and-why-it-needs-an-a8-processor
https://appleinsider.com/articles/18/01/27/a-deep-dive-into-homepods-adaptive-audio-beamforming-and-why-it-needs-an-a8-processor
https://www.theverge.com/2018/10/24/18019254/pimax-8k-5k-vr-headset-preorders-now-available-features-price
https://www.theverge.com/2018/10/24/18019254/pimax-8k-5k-vr-headset-preorders-now-available-features-price

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Selective Symbolic Execution
	2.2 Program Environment

	3 Challenges & Design
	4 Process-Level SSE
	4.1 Memory Virtualization
	4.2 Concretization Strategies

	5 Environment-Aware Path Concurrency
	6 Path Offloading & Distributed Execution
	6.1 Path Offloading
	6.2 Environment-Forced Symbolic Variables

	7 Analysis
	7.1 Android I/O Services
	7.2 Target Analyses

	8 Implementation
	9 Evaluation
	9.1 Performance
	9.2 Coverage
	9.3 Analysis Results

	10 Other Related Work
	11 Conclusions
	References

