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Abstract. The purpose of this article is to propose and analyze a new coupled multiphysics
model and a decoupled stabilized finite element method for the closed-loop geothermal system, which
mainly consists of a network of underground heat exchange pipelines to extract the geothermal heat
from the geothermal reservoir. The new mathematical model considers the heat transfer between
two different flow regions, namely the porous media flow in the geothermal reservoir and the free flow
in the pipes. Darcy’s law and Navier–Stokes equations are considered to govern the flows in these
two regions, respectively, while the heat equation is coupled with the flow equations to describe
the heat transfer in both regions. Furthermore, on the interface between the two regions, four
physically valid interface conditions are considered to describe the continuity of the temperature and
the heat flux as well as the no-fluid-communication feature of the closed-loop geothermal system.
In the variational formulation, an interface stabilization term with a penalty parameter is added to
overcome the difficulty of the possible numerical instability arising from the interface conditions in
the finite element discretization. To solve the proposed model accurately and efficiently, we develop
a stabilized decoupled finite element method which decouples not only the two flow regions but also
the heat field and the flow field in each region. The stability of the proposed method is proved. Four
numerical experiments are provided to demonstrate the applicability of the proposed model and the
accuracy of the numerical method.
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porous media flow, channel flow
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1. Introduction. As one major type of green energy, geothermal energy is re-
newable, independent of the weather or climate condition, environment-friendly, and
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widespread; hence it can significantly contribute to sustainable energy use [82, 38,
17]. One major technique to extract the geothermal energy is the closed-loop heat
exchanger, which circulates working fluid down to the rock mass with high tem-
peratures and then back to the surface through a continuous and closed-loop pipe
[92, 10, 107, 70]. Recent studies reveal that working fluid in the closed-loop geother-
mal system can be water, superheated steam, carbon dioxide, supercritical carbon
dioxide, and so on [92, 95, 83]. While the closed-loop system has some disadvantages
in the heat exchange efficiency, this system does not lose the working fluid which is
isolated from the geothermal reservoir by the closed-loop pipe [92, 95, 107, 70]. Fur-
thermore, for the liquid-dominated hydraulically fractured geothermal reservoir, the
closed-loop system does not need to deal with the mixture of the working fluid and
the natural fluid, which may erode the well and surface collection pipe [92].

In this paper, we consider the closed-loop system for the geothermal reservoir
with porous media flows [70, 34, 35, 99]. On one hand, since the working fluid in the
closed-loop pipe does not communicate with the porous media flow in the geothermal
reservoir, the traditional Navier/Stokes–Darcy model [41, 42, 62, 77, 96], which was
developed to accurately describe the interaction between the fluid flow in the pipe and
the porous media flow in the reservoir, is not suitable for the closed-loop geothermal
system. On the other hand, even though there is no fluid exchange but only heat
exchange between the closed-loop pipe and the geothermal reservoir, both the fluid
flow in the pipe and the porous media flow in the reservoir play a key role in the
heat transfer of the whole coupled system [70, 99, 89, 34, 106, 3, 45]. Moreover,
the geothermal heating system, which consists of a network of underground heat
exchange pipelines and pumps to transfer the geothermal heat, has a similar situation.
Therefore, there is still a great need to couple the governing PDEs of these physics
together in a physically faithful way, which can provide a novel tool to address the
effect of the fluid flow in the pipes and the porous media flow in the reservoir on the
heat transfer in the whole system.

To the best of our knowledge, there is no such PDE model for the closed-loop
geothermal system. Therefore, in this paper we propose a new coupled PDE model for
the closed-loop geothermal systems. This model combines the governing equations of
the fluid flow in the pipe, the porous media flow in the geothermal reservoir, and the
heat flow into a coupled system through the heat exchanging conditions and the no-
fluid-communication conditions on the interface between the pipe and porous media.
Basically, in the pipe region, the Boussinesq equation, which couples the Navier–
Stokes equation and the heat equation, is utilized to govern the fluid flow with heat
transfer. In the porous media region, Darcy’s law coupled with the heat equation is
utilized to govern the porous media flow with heat transfer. Even though the two
constitutional models on the two sides of the interface are regular models, the key of
an interface model is the appropriate interface conditions to couple the constitutional
models. This article is the first one to utilize the heat transfer conditions and no-
fluid-communication conditions to couple the two models together for the features of
the closed-loop geothermal system. On the interface between the pipe and porous
media, four physically valid interface conditions are imposed to ensure the continuity
of temperature, the continuity of heat flux, and no-fluid exchange. In addition to the
closed-loop geothermal system, the proposed model is also valid for other applications
with similar set-up.

The proposed model is a multiphysics interface problem. In the literature, there
are many existing methods to solve other types of multiphysics interface problems,
such as the interface Poisson/heat/wave equations [7, 32, 46, 68, 67, 69, 79, 103],
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interface elasticity problems [57, 80, 81], fluid-fluid interaction [37, 48, 14], Stokes–
Darcy model [13, 47, 51, 54, 58, 73, 76, 88, 97], Navier/Stokes–Darcy model [6, 20, 21,
25, 27, 33, 43, 56, 65, 94], and their extensions [84, 16, 29, 31, 40, 52, 64, 74, 100, 104].
These methods can be divided into two main categories, coupled methods [2, 27, 24,
53, 59, 63, 66] and decoupled methods [30, 44, 22, 23, 85, 87].

In this paper, a stabilization term with a penalty parameter is introduced to en-
sure the stability since the numerical instability occurs due to the interface condition of
the heat flux. We first present the basic coupled finite element method which directly
arises from the naturally coupled weak formulation of the proposed model. Then, we
focus on the development of a decoupled method since it is more cost efficient. A
decoupled stabilized finite element method is developed for the spatial discretization,
and the backward Euler scheme is utilized for the temporal discretization. In the
decoupled scheme, we first decouple the governing equations in the two different flow
regions, namely the porous media flow region in the geothermal reservoir and the free
flow region in the pipes. Then we decouple the heat equation from the flow equation
in each of these two regions. Hence, we finally divide the whole system into four
separated equations. The stability of the stabilized decoupled scheme is proved. Four
numerical examples are provided to demonstrate the features of the proposed model
and numerical method. The first experiment is to show the optimal convergence rate
of the proposed method as well as the impact of the penalty parameter on the conver-
gence. The second numerical test is presented to simulate a benchmark problem for
thermal convection in a squared cavity. In the third and fourth examples, we study
the heat transfer in a simplified closed-loop geothermal system and investigate the
effect of different sets of parameters.

This paper is organized as follows. In section 2, the new coupled multiphysics
model is proposed. In section 3, the weak formulation, well-posedness, spatial dis-
cretization, and the coupled scheme are presented. In section 4, the decoupled stabi-
lized finite element method is proposed and analyzed. In section 5, numerical results
are provided. In section 6, a conclusion is drawn.

2. The governing equations. As illustrated in Figure 2.1, the global domain
Ω consists of two subdomains, Ωf and Ωp, where Ωf , Ωp ∈ R

2 are open, regular,
simply connected, and bounded by Lipschitz continuous boundaries of ∂Ωf \ I and
∂Ωp \ I. Here Ωf ∩ Ωp = ∅, Ω̄f ∩ Ω̄p = I, and Ω̄f ∪ Ω̄p = Ω̄. n̂f and n̂p are the unit
normal vectors that point outward from the free flow region Ωf and porous media
flow region Ωp, respectively. The unit outward normal vectors satisfy the condition
of n̂p = −n̂f on the interface I. The time frame is considered in [0, T ].

In Ωf , we assume that the fluid flow with heat transfer is governed by the Boussi-
nesq equation, which combines the Navier–Stokes equation with the heat equation
[11, 108, 19]:

∂�uf
∂t

− PrΔ�uf + (�uf · ∇)�uf +∇pf = PrRa�ξθf + �ff in Ωf × (0, T ],(2.1)

∇ · �uf = 0 in Ωf × (0, T ],(2.2)

�uf = 0 on ∂Ωf \ I× (0, T ],(2.3)

�uf(0, x) = �u0f(x) in Ωf ,(2.4)

∂θf
∂t

− kfΔθf + �uf · ∇θf = Υf in Ωf × (0, T ],(2.5)

θf = 0 on ΓM × (0, T ],(2.6)
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Fig. 2.1. The global domain Ω consists of free fluid flow subdomain Ωf and porous media fluid
flow subdomain Ωp, separated by a common interface I.

∂θf
∂n̂f

= 0 on ΓE × (0, T ],(2.7)

θf (0, x) = θ0f (x) in Ωf .(2.8)

Here �uf , pf , and θf denote the free fluid flow region velocity vector field, pressure,

and temperature, respectively. The unit vector �ξ = [0, 1]T denotes the direction

of the gravitational acceleration. �ff and Υf are the external force terms. Pr is the
Prandtl number. Ra represents the Rayleigh number, which is the product of Grashof
number and Prandtl number. kf is the nondimensional parameter related to thermal
conductivity. ΓM , ΓE denote the Dirichlet and the Neumann boundary conditions,
respectively, in the pipe region boundaries where ΓM ∪ ΓE = ∂Ωf \ I.

We assume the porous media region Ωp is homogeneous and isotropic. The porous
media flow with heat transfer can be governed by the following Darcy’s law coupled
with a heat equation:

CaDa
∂�up
∂t

+ Pr�up = −Da∇φp + PrDaRa�ξθp in Ωp × (0, T ],(2.9)

∇ · �up = 0 in Ωp × (0, T ],(2.10)

�up(0, x) = �u0p(x) in Ωp,(2.11)

�up · n̂p = 0 on ∂Ωp \ I,(2.12)

∂θp
∂t

− kpΔθp + �up · ∇θp = Υp in Ωp × (0, T ],(2.13)

θp = 0 on ΓN × (0, T ],(2.14)

∂θp
∂n̂p

= 0 on ΓZ × (0, T ],(2.15)

θp(0, x) = θ0p(x) in Ωp.(2.16)

Here �up, φp, and θp denote the porous medium fluid flow region velocity vector field,
pressure, and temperature, respectively. The source term is denoted by Υp. Da
is the Darcy number which represents the relative effect of the permeability of the
medium versus the cross-sectional area. Ca is the dimensionless parameter known as
acceleration coefficient. kp denotes the nondimensional parameter related to the ther-
mal conductivity. ΓN , ΓZ denote the Dirichlet and Neumann boundary conditions,
respectively, in the porous media region boundaries where ΓN ∪ ΓZ = ∂Ωp \ I.
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Remark 2.1. The above closed-loop geothermal system (2.1)–(2.16) is presented
in a nondimensional form. The dimensional form of the Navier–Stokes equation and
Darcy equation with Boussinesq approximation, and heat equation without initial
condition, boundary condition and incompressibility condition can be written as [12,
11, 90, 75, 4, 72, 62, 9]:

ρ
∂�̃uf

∂t̃
+ ρ(�̃uf · ∇̃)�̃uf − μΔ̃�̃uf + ∇̃p̃f = −ρg�ξ

(
1− β(θ̃f − θ̃f,ref)

)
+ ρ �̃ff ,(2.17)

Caρ
∂�̃up

∂t̃
+
μ

k
�̃up = −∇̃φ̃p − ρg�ξ

(
1− β(θ̃p − θ̃p,ref)

)
,(2.18)

∂θ̃�

∂t̃
− α̃�Δ̃θ̃� + �̃u� · ∇̃θ̃� = Υ̃�,(2.19)

where 
 = f or p represent the fluid domain and porous media domain, respectively.
μ, k, g, and β are the dynamic viscosity, permeability, acceleration due to gravity,
and thermal expansion coefficient, respectively. θ̃f,ref and θ̃p,ref are the reference or

fixed temperature. Thermal diffusivity is represented by α̃� = k̃�

ρCp�
, where Cp� is

the specific heat, ρ is the density of fluid, and k̃� is the thermal conductivity. To
nondimensionalize the closed-loop geothermal system [12, 93, 49, 28], we introduce the

nondimensional variables by choosing x̃ = Lx, �̃u� = α�

L �u�, t̃ = L2

α�
t, p̃f =

ρα2
f

L2 pf ,

φ̃p =
ρα2

p

L2 φp, θ̃� = (θ�,H − θ�,c)θ� + θ�,c, �̃ff =
α2

f

L3
�ff , Υ̃� =

α�(θ�,H−θ�,c)
L2 Υ�,

Ra =
βL3g(θ�,H−θ�,c)

να�
, Pr = ν

α�
, Da = k

L2 , and α̃� = α�k�. Here L represents
the characteristics length, ν represents the kinematic viscosity, θ�,H represents the
hot wall, and θ�,c represents the cold wall. By plugging the above nondimensional
variables into (2.17)–(2.19), one can easily derive the closed-loop geothermal system
(2.1)–(2.16). Moreover, the units of the variables and parameters can be defined as

ρ = kgm−3, �̃u� = ms−1, θ̃� = K, θ̃�,ref = K, p̃f = Pa or kgm−1s−2, φ̃p = Pa or
kgm−1s−2, μ = Pa · s or kgm−1s−1, ν = m2s−1, β = K−1, α̃� = m2s−1, g = ms−2,
and k = m2. The units of the terms in (2.17)–(2.19) can be verified to be consistent
by plugging the above units into the equations.

Since the closed-loop system does not have fluid communication but only heat
transfer between the reservoir and the pipe, we use the following two heat exchanging
interface conditions and two no-fluid-communication conditions on the interface I

[91, 18, 72, 60].
• Continuity of temperature across the interface:

θf = θp on I.(2.20)

• Continuity of heat flux across the interface:

n̂f · kf∇θf = −n̂p · kp∇θp on I.(2.21)

• No-communication and no-slip conditions for the free flow on the interface:

�uf · n̂f = 0, �uf · �τ= 0 on I,(2.22)

where �τ denotes the unit tangential vector along the interface.
• No-porous media flow passing through the interface:

�up · n̂p = 0 on I.(2.23)
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3. Preliminaries, variational formulation, and the coupled discretiza-
tion scheme. We use standard notation throughout the paper for Lebesgue and
Sobolev spaces. The inner product in L2(D) is associated with (·, ·) and the norm of
L2(D) is denoted by ‖ · ‖L2(D), where D may be Ωf ,Ωp, or I.

In order to derive the variational formulation for the model problem (2.1) to
(2.23), we define the following spaces:

Yf : = H1
0 (Ωf )

2 := {�vf ∈ H1(Ωf )
2 : �vf = 0 on ∂Ωf},

Yp : = H(div; Ωp) := {�vp ∈ L2(Ωp)
2,∇ · �vp ∈ L2(Ωp) : �vp · n̂p = 0 on ∂Ωp},

Tf : = H1
0 (Ωf ) := {ϕ ∈ H1(Ωf ) : ϕ = 0 on ΓM},

Tp : = H1
0 (Ωp) := {ω ∈ H1(Ωp) : ω = 0 on ΓN},

Qf : = L2
0(Ωf ) :=

{
q ∈ L2(Ωf ) :

∫
Ωf

qdx = 0

}
,

Qp : = L2
0(Ωp) :=

{
ψ ∈ L2(Ωp) :

∫
Ωp

ψdx = 0

}
.

Define a product space

WT = Tf × Tp,(3.1)

and

WI : = {(ϕ, ω) ∈ (Tf × Tp) : ϕ|I = ω|I} ⊂WT .

We also define the solenoidal spaces

Vf := {�vf ∈ Yf : ∇ · �vf = 0} and Vp := {�vp ∈ Yp : ∇ · �vp = 0}.

The trilinear form is defined as follows:

ctri(�uf , �vf , �w)Ωf
= ((�uf · ∇)�vf , �w)Ωf

+
1

2
((div�uf )�vf , �w)Ωf

=
1

2
((�uf · ∇)�vf , �w)Ωf

− 1

2
((�uf · ∇)�w,�vf )Ωf

∀�uf , �vf , �w ∈ Yf .(3.2)

In a similar manner, we define another two trilinear forms for any (ϕ, ω) ∈ WI and
(θf , θp) ∈WT :

ttrif (�uf , θf , ϕ)Ωf
=

1

2
((�uf · ∇)θf , ϕ)Ωf

− 1

2
((�uf · ∇)ϕ, θf )Ωf

∀�uf ∈ Yf ,

ttrip (�up, θp, ω)Ωp =
1

2
((�up · ∇)θp, ω)Ωp − 1

2
((�up · ∇)ω, θp)Ωp ∀�up ∈ Yp.(3.3)

Moreover, if �uf ∈ Vf and �up ∈ Vp, then for any (�vf , �w) ∈ Yf , (θf , θp) ∈ WT , and
(ϕ, ω) ∈ WI, we have [36]

ctri(�uf , �vf , �w)Ωf
= ((�uf · ∇)�vf , �w)Ωf

, ttrif (�uf , θf , ϕ)Ωf
= ((�uf · ∇)θf , ϕ)Ωf

,

ttrip (�up, θp, ω)Ωp = ((�up · ∇)θp, ω)Ωp .

The weak formulations of the coupled system (2.1)–(2.23) are to find (�uf , �up; pf , φp;
θf , θp) ∈ (Yf × Yp ×Qf ×Qp ×WT ) such that for any (�vf , �vp; q, ψ;ϕ, ω) ∈ (Yf × Yp ×
Qf ×Qp ×WI),(

∂�uf
∂t

, �vf

)
Ωf

+ CaDa

(
∂�up
∂t

, �vp

)
Ωp

− (pf ,∇ · �vf )Ωf
+ Pr(∇�uf ,∇�vf )Ωf
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+ ctri(�uf , �uf , �vf )Ωf
+ Pr(�up, �vp)Ωp −Da(φp,∇ · �vp)Ωp

= PrRa(�ξθf , �vf )Ωf
+ PrDaRa(�ξθp, �vp)Ωp + (�ff , �vf )Ωf

,(3.4)

(q,∇ · �uf )Ωf
= 0,(3.5)

Da(ψ,∇ · �up)Ωp = 0,(3.6) (
∂θf
∂t

, ϕ

)
Ωf

+

(
∂θp
∂t

, ω

)
Ωp

+ kf (∇θf ,∇ϕ)Ωf
+ kp(∇θp,∇ω)Ωp

+ ttrif (�uf , θf , ϕ)Ωf
+ ttrip (�up, θp, ω)Ωp − kf

∫
I

n̂f · ∇θf (ϕ− ω)dl

+
kfγ

h

∫
I

(θf − θp)(ϕ− ω)dl = (Υf , ϕ)Ωf
+ (Υp, ω)Ωp .(3.7)

Based on the divergence-free space [12, 26, 25, 8, 101, 55], we construct the equivalent
formulation of the weak form (3.4)–(3.7) for the analysis below. To find (�uf , �up; θf , θp)
∈ (Vf × Vp ×WT ) such that for any (�vf , �vp;ϕ, ω) ∈ (Vf × Vp ×WI), we can obtain

(
∂�uf
∂t

, �vf

)
Ωf

+ CaDa

(
∂�up
∂t

, �vp

)
Ωp

+ Pr(∇�uf ,∇�vf )Ωf
(3.8)

+ ((�uf · ∇)�uf , �vf )Ωf
+ Pr(�up, �vp)Ωp

= PrRa(�ξθf , �vf )Ωf
+ PrDaRa(�ξθp, �vp)Ωp + (�ff , �vf )Ωf

,

(
∂θf
∂t

, ϕ

)
Ωf

+

(
∂θp
∂t

, ω

)
Ωp

+ kf (∇θf ,∇ϕ)Ωf
+ kp(∇θp,∇ω)Ωp

+ ((�uf · ∇)θf , ϕ)Ωf
+ ((�up · ∇)θp, ω)Ωp − kf

∫
I

n̂f · ∇θf (ϕ− ω)dl

+
kfγ

h

∫
I

(θf − θp)(ϕ − ω)dl = (Υf , ϕ)Ωf
+ (Υp, ω)Ωp .(3.9)

Remark 3.1. The interface conditions utilized in the proposed model belong to the
range of Nitsche’s interface, which is well-known for the possibility to cause numerical
instability [91, 61]. The artificial energy transfers induced by the interface decoupling
are believed to be the main reason for the numerical instability [48, 18]. Particularly,
in the variational formulation (3.7), −kf

∫
I
n̂f ·∇θf (ϕ−ω)dl arises from the interface

condition (2.21) and its approximation causes the instability due to the difficulty in
controlling the interface terms ‖∇θf‖L2(I) and ‖ϕ−ω‖L2(I). To overcome this difficulty,

we introduce a stabilization term
kfγ
h

∫
I
(θf − θp)(ϕ− ω)dl, which does not affect the

consistency of the formulation due to the interface condition (2.20) but ensures the
stability of the finite element schemes. The penalty parameter γ is dimensionless and
should be chosen to be positive to ensure the coercivity. Besides, we assume h is
constant in the variational formulation while it represents the mesh size in the finite
element schemes. The importance of the stabilization term and the penalty parameter
will be also numerically illustrated in section 5.1.

Remark 3.2. The interface term kf
∫
I
n̂f ·∇θf (ϕ−ω)dl and the stabilization term

kfγ
h

∫
I
(θf − θp)(ϕ−ω)dl of the weak formulation (3.7) vanish when the coupled space

WI is applied. Hence, the well-posedness of the system is classic. Moreover, we will
propose the finite element schemes by splitting the tensor spaces WI and WT .
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Lemma 3.1 (see [50]). If �uf ∈ Yf , then there exists a positive constant C > 0
such that

‖�uf‖L4(Ωf ) ≤ C‖�uf‖1/2L2(Ωf )
‖∇�uf‖1/2L2(Ωf )

.(3.10)

Theorem 3.2 (well-posedness). The weak formulation of the closed-loop geother-
mal system (3.4)–(3.7) has a unique weak solution (�uf , �up; pf , φp; θf , θp) ∈ (Yf × Yp ×
Qf ×Qp ×WT ) satisfying

�uf ∈ L∞(0, T ;L2(Ωf )) ∩ L2(0, T ;Yf), �up ∈ L∞(0, T ;L2(Ωp)) ∩ L2(0, T ;L2(Ωp)),

pf ∈ L2(0, T ;Qf), φp ∈ L2(0, T ;Qp), θf ∈ L∞(0, T ;L2(Ωf )) ∩ L2(0, T ;Tf),

θp ∈ L∞(0, T ;L2(Ωp)) ∩ L2(0, T ;Tp).

Proof. The interface term kf
∫
I
n̂f · ∇θf (ϕ − ω)dl and the stabilization term

kfγ
h

∫
I
(θf − θp)(ϕ−ω)dl of the weak formulation (3.7) vanish when the coupled space

WI is applied. Since the other parts of the weak formulation (3.4)–(3.7) are the regu-
lar components in the traditional Boussinesq equation, Darcy’s law coupled with heat
equation, and interface heat transfer problem, the existence of the weak formulation
(3.4)–(3.7) can be obtained by following and combining the classic procedures for the
well-posedness of similar problems [26, 25, 37, 36, 8, 101, 78, 39, 11]. We omit the
details here due to page limitation.

To prove the uniqueness of the weak formulation (3.4)–(3.7), we assume there
exist two solutions:

(�u1f , �u
1
p; p

1
f , φ

1
p; θ

1
f , θ

1
p) and (�u2f , �u

2
p; p

2
f , φ

2
p; θ

2
f , θ

2
p).

We define the differences between them as follows:

�u1f − �u2f = e	uf
, p1f − p2f = epf

, θ1f − θ2f = eθf ,

�u1p − �u2p = e	up
, φ1p − φ2p = eφp , θ1p − θ2p = eθp .

To prove the uniqueness of (3.4)–(3.7), we choose the test functions �vf = e	uf
, �vp =

e	up
, ϕ = eθf , and ω = eθp in (3.8)–(3.9). Again, the interface term kf

∫
I
n̂f · ∇θf (ϕ−

ω)dl and the stabilization term
kfγ
h

∫
I
(θf − θp)(ϕ−ω)dl of the weak formulation (3.9)

vanish when the coupled space WI is applied. Since both of the two solutions satisfy
(3.8) and (3.9), then by taking the subtraction between the two sets of equations of
the two solutions, we can obtain

(3.11)

1

2

d

dt
‖e	uf

‖2L2(Ωf )
+
CaDa

2

d

dt
‖e	up

‖2L2(Ωp)
+ Pr‖∇e	uf

‖2L2(Ωf )

+ Pr‖e	up
‖2L2(Ωp)

+ (e	uf
· ∇�u1f , e	uf

)Ωf

+ (�u2f · ∇e	uf
, e	uf

)Ωf
= PrRa(�ξeθf , e	uf

)Ωf
+ PrDaRa(�ξeθp , e	up

)Ωp ,

(3.12)

1

2

d

dt
‖eθf ‖2L2(Ωf )

+
1

2

d

dt
‖eθp‖2L2(Ωp)

+ kf‖∇eθf‖2L2(Ωf )

+ kp‖∇eθp‖2L2(Ωp)
+ (e	uf

· ∇θ1f , eθf )Ωf

+ (�u2f · ∇eθf , eθf )Ωf
+ (e	up

· ∇θ1p, eθp)Ωp + (�u2p · ∇eθp , eθp)Ωp = 0.
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Since (�u2f · ∇e	uf
, e	uf

)Ωf
, (�u2f · ∇eθf , eθf )Ωf

, and (�u2p · ∇eθp , eθp)Ωp are equal to zero,
then we can obtain

(3.13)

d

dt

(
‖e	uf

‖2L2(Ωf )
+ CaDa‖e	up

‖2L2(Ωp)
+ ‖eθf ‖2L2(Ωf )

+ ‖eθp‖2L2(Ωp)

)

+ 2
(
Pr‖∇e	uf

‖2L2(Ωf )
+ Pr‖e	up

‖2L2(Ωp)
+ kf‖∇eθf‖2L2(Ωf )

+ kp‖∇eθp‖2L2(Ωp)

)

≤
∣∣2PrRa(�ξeθf , e	uf

)Ωf

∣∣+ ∣∣2PrDaRa(�ξeθp , e	up
)Ωp

∣∣ + ∣∣2(e	uf
· ∇�u1f , e	uf

)Ωf

∣∣
+
∣∣2(e	uf

· ∇θ1f , eθf )Ωf

∣∣+ ∣∣2(e	up
· ∇θ1p, eθp)Ωp

∣∣.
In the following, we will estimate the terms on the right-hand side of (3.13) one by
one as follows. First, we have

∣∣2PrRa(�ξeθf , e	uf
)Ωf

∣∣ ≤ C(Pr,Ra)

(
‖eθf ‖2L2(Ωf )

+ ‖e	uf
‖2L2(Ωf )

)
,(3.14)

∣∣2PrDaRa(�ξeθp , e	up
)Ωp

∣∣ ≤ C(Pr,Da,Ra)‖eθp‖2L2(Ωp)
+ Pr‖e	up

‖2L2(Ωp)
.(3.15)

Then we estimate the nonlinear convective terms∣∣∣2(e	uf
· ∇�u1f , e	uf

)Ωf

∣∣∣ ≤ 2‖e	uf
‖2L4(Ωf )

‖∇�u1f‖L2(Ωf )

≤ 2C‖e	uf
‖L2(Ωf )‖∇e	uf

‖L2(Ωf )‖∇�u1f‖L2(Ωf )

≤ CPr‖e	uf
‖2L2(Ωf )

‖∇�u1f‖2L2(Ωf )
+
Pr

2
‖∇e	uf

‖2L2(Ωf )
.(3.16)

Similarly, we can obtain
∣∣∣2(e	uf

· ∇θ1f , eθf )Ωf

∣∣∣
≤ 2‖e	uf

‖L4(Ωf )‖∇θ1f‖L2(Ωf )‖eθf‖L4(Ωf )

≤ 2C‖e	uf
‖1/2L2(Ωf )

‖∇e	uf
‖1/2L2(Ωf )

‖∇θ1f‖
1/2
L2(Ωf )

‖∇θ1f‖
1/2
L2(Ωf )

‖eθf‖
1/2
L2(Ωf )

‖∇eθf ‖
1/2
L2(Ωf )

=
2C

(kfPr)1/4
‖e	uf

‖1/2L2(Ωf )
‖∇θ1f‖

1/2
L2(Ωf )

‖eθf‖
1/2
L2(Ωf )

‖∇θ1f‖
1/2
L2(Ωf )

(kfPr)
1/4

· ‖∇e	uf
‖1/2L2(Ωf )

‖∇eθf‖
1/2
L2(Ωf )

≤ C2

(kfPr)1/2
‖e	uf

‖L2(Ωf )‖∇θ1f‖L2(Ωf )‖eθf‖L2(Ωf )‖∇θ1f‖L2(Ωf )

+ (kfPr)
1/2‖∇e	uf

‖L2(Ωf )‖∇eθf ‖L2(Ωf )

≤ C(kf ,Pr)

(
‖e	uf

‖2L2(Ωf )
‖∇θ1f‖2L2(Ωf )

+ ‖eθf‖2L2(Ωf )
‖∇θ1f‖2L2(Ωf )

)

+
(kf
2
‖∇eθf ‖2L2(Ωf )

+
Pr

2
‖∇e	uf

‖2L2(Ωf )

)(3.17)

and ∣∣∣2(e	up
· ∇θ1p, eθp)Ωp

∣∣∣ =
∣∣∣2(e	up

· ∇eθp , θ1p)Ωp

∣∣∣
≤ 2C‖e	up

‖L2(Ωp)‖θ1p‖L∞(Ωp)‖∇eθp‖L2(Ωp)
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≤ Ckp‖e	up
‖2L2(Ωp)

‖θ1p‖2L∞(Ωp)
+
kp
2
‖∇eθp‖2L2(Ωp)

.(3.18)

Here θ1p ∈ L∞(Ωp) [8].
Plugging the above estimates into (3.13), we can obtain

d

dt

(
‖e	uf

‖2L2(Ωf )
+ CaDa‖e	up

‖2L2(Ωp)
+ ‖eθf‖2L2(Ωf )

+ ‖eθp‖2L2(Ωp)

)

+
(
Pr‖∇e	uf

‖2L2(Ωf )
+ Pr‖e	up

‖2L2(Ωp)

+
3kf
2

‖∇eθf ‖2L2(Ωf )
+

3kp
2

‖∇eθp‖2L2(Ωp)

)

≤M(t)
{
‖e	uf

‖2L2(Ωf )
+ ‖eθf ‖2L2(Ωf )

+ ‖eθp‖2L2(Ωp)

}
,(3.19)

where M(t) = C(Pr,Ra,Da,kf ,kp)

{
1 + ‖∇�u1f‖2L2(Ωf )

+ ‖∇θ1f‖2L2(Ωf )
+ ‖θ1p‖2L∞(Ωp)

}
. In-

tegrating (3.19) in time and using the Gronwall inequality can lead to{
‖e	uf

(t)‖2L2(Ωf )
+ CaDa‖e	up

(t)‖2L2(Ωp)
+ ‖eθf (t)‖2L2(Ωf )

+ ‖eθp(t)‖2L2(Ωp)

}

+

∫ t

0

(
Pr‖∇e	uf

(s)‖2L2(Ωf )
+ Pr‖e	up

(s)‖2L2(Ωp)
+

3kf
2

‖∇eθf (s)‖2L2(Ωf )

+
3kp
2

‖∇eθp(s)‖2L2(Ωp)

)
ds ≤ exp

(∫ t

0

M(s)ds

){
‖e	uf

(0)‖2L2(Ωf )

+ CaDa‖e	up
(0)‖2L2(Ωp)

+ ‖eθf (0)‖2L2(Ωf )
+ ‖eθp(0)‖2L2(Ωp)

}
.(3.20)

Since the four solutions satisfy the initial conditions, then e	uf
(0) = 0, e	up

(0) = 0,
eθf (0) = 0, and eθp(0) = 0. Hence{

‖e	uf
(t)‖2L2(Ωf )

+ CaDa‖e	up
(t)‖2L2(Ωp)

+ ‖eθf (t)‖2L2(Ωf )
+ ‖eθp(t)‖2L2(Ωp)

}

+

∫ t

0

(
Pr‖∇e	uf

(s)‖2L2(Ωf )
+ Pr‖e	up

(s)‖2L2(Ωp)
+

3kf
2

‖∇eθf (s)‖2L2(Ωf )

+
3kp
2

‖∇eθp(s)‖2L2(Ωp)

)
ds ≤ 0,(3.21)

which shows that e	uf
(t) = 0, e	up

(t) = 0, eθf (t) = 0, and eθp(t) = 0 for t ∈ [0, T ].
Plugging these results back into the weak formulation, we obtain

(epf
,∇ · �vf )Ωf

= 0,(3.22)

Da(eφp ,∇ · �vp)Ωp = 0.(3.23)

Hence, the uniqueness of the weak formulation (3.4)–(3.7) of the geothermal system
can be proved.

Lemma 3.3 (discrete Gronwall’s lemma). Let C and ak, bk, ck, dk for integer k ≥ 0
be nonnegative numbers such that [71, 98]

an +Δt

n∑
k=0

bk ≤ Δt

n∑
k=0

dkak +Δt

n∑
k=0

ck + C ∀ n ≥ 1.

Suppose that Δtdk ≤ 1 for all k; then we have

an +Δt

n∑
k=0

bk ≤ exp

(
Δt

n∑
k=0

dk

)(
Δt

n∑
k=0

ck + C

)
∀ n ≥ 1.(3.24)
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From the trace inequality, there exists a positive constant CT depending on the
domain Ωf such that for all ϕ ∈ Tf [102, 1],

‖ϕ‖L2(I) ≤ CT ‖ϕ‖1/2L2(Ωf )
‖∇ϕ‖1/2L2(Ωf )

.(3.25)

From now on, we assume the shapes of Ωf , Ωp, and Ω are polygons or polyhedrons.
Let T h

f and T h
p denote the uniformly regular triangulations of Ωf and Ωp, respectively,

where h > 0 is the mesh size. We consider that the two meshes coincide on the
interface I such that T h := T h

f ∪ T h
p is the triangulations of Ω = Ωf ∪ Ωp ∪ I.

We choose the finite element spaces Y h
f ⊂ Yf , Q

h
f ⊂ Qf ; Y

h
p ⊂ Yp, Q

h
p ⊂ Qp; and

T h
f ⊂ Tf , T

h
p ⊂ Tp.

In the free flow region, we select finite element spaces (Y h
f , Q

h
f) for velocity and

pressure of the Navier–Stokes equation such that (Y h
f , Q

h
f) satisfy the inf-sup condi-

tion, i.e., there exists a strictly positive constant χf > 0 independent of mesh size h
such that

inf
0�=qh∈Qh

f

sup
0�=	vh

f ∈Y h
f

(qh,∇ · �vhf )Ωf

||∇�vhf ||L2(Ωf )||qh||L2(Ωf )

≥ χf .

Define the space of discretely divergence-free velocities:

�V h
f = {�vf ∈ Y h

f : (q,∇ · �vf )Ωf
= 0 ∀ q ∈ Qh

f}.

In the porous region, we select finite element spaces (Y h
p , Q

h
p) that also satisfy the

inf-sup conditions for velocity and pressure. That is, there exists a strictly positive
constant χp, such that for all ψh ∈ Qh

p we have

χp‖ψh‖L2(Ωp) ≤ sup
0�=	vh

p∈Y h
p

(ψh,∇ · �vhp )Ωp

||�vhp ||div
,

where ‖�vhp ||div =
(
‖�vhp‖2L2(Ωp)

+ ‖∇ · �vhp‖2L2(Ωp)

)1/2
.

We assume that there is a constant Cinv which depends on the minimum angle in
the finite element mesh used in the subdomain Ωf , such that we have discrete local
inverse inequality [60, 102, 86, 48, 18]

‖∇θhf ‖L2(I) ≤ C
1/2
invh

−1/2||∇θhf ||L2(Ωf ) ∀ θhf ∈ T h
f .(3.26)

Now we present the regular coupled finite element method based on the stabilized
variational formulation (3.4)–(3.7). Set Δt = T

N for a positive integer N and tn = nΔt

(n = 0, 1, 2, 3, . . . , N). Then ∀(�vhf , �vhp ; qh, ψh;ϕh, ωh) ∈ (Y h
f , Y

h
p ;Qh

f , Q
h
p ;T

h
f , T

h
p ), find

(�uh,n+1
f , �uh,n+1

p ; ph,n+1
f , φh,n+1

p ; θh,n+1
f , θh,n+1

p ) ∈ (Y h
f , Y

h
p ;Qh

f , Q
h
p ;T

h
f , T

h
p ) such that
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(3.27)(
�uh,n+1
f − �uh,nf

Δt
, �vhf

)
Ωf

+ CaDa

(
�uh,n+1
p − �uh,np

Δt
, �vhp

)
Ωp

− (ph,n+1
f ,∇ · �vhf )Ωf

+ Pr(∇�uh,n+1
f ,∇�vhf )Ωf

+ ctri(�uh,n+1
f , �uh,n+1

f , �vhf )Ωf
+ Pr(�uh,n+1

p , �vhp )Ωp

−Da(φh,n+1
p ,∇ · �vhp )Ωp = PrRa(�ξθh,n+1

f , �vhf )Ωf

+ PrDaRa(�ξθh,n+1
p , �vhp )Ωp + (�ff (tn+1), �v

h
f )Ωf

,

(3.28)

(qh,∇ · �uh,n+1
f )Ωf

= 0,

(3.29)

Da(ψh,∇ · �uh,n+1
p )Ωp = 0,

(3.30)(
θh,n+1
f − θh,nf

Δt
, ϕh

)
Ωf

+

(
θh,n+1
p − θh,np

Δt
, ωh

)
Ωp

+ kf (∇θh,n+1
f ,∇ϕh)Ωf

+kp(∇θh,n+1
p ,∇ωh)Ωp + ttrif (�uh,n+1

f , θh,n+1
f , ϕh)Ωf

+ttrip (�uh,n+1
p , θh,n+1

p , ωh)Ωp − kf

∫
I

n̂f · ∇θh,n+1
f · (ϕh − ωh)dl

+
kfγ

h

∫
I

(θh,n+1
f − θh,n+1

p )(ϕh − ωh)dl = (Υf(tn+1), ϕ
h)Ωf

+ (Υp(tn+1), ω
h)Ωp .

4. The decoupled stabilized finite element method. Based on the above
traditional coupled finite element method, in this section we propose and analyze the
following decoupled stabilized finite element method, which is more efficient in prac-
tice. The key idea for the decoupled algorithm construction is to make the scheme
as parallel as possible while good enough stability can be theoretically guaranteed:
∀(�vhf , qh, ϕh) ∈ (Y h

f , Q
h
f , T

h
f ) and (�vhp , ψ

h, ωh) ∈ (Y h
p , Q

h
p , T

h
p ), find (�uh,n+1

f , ph,n+1
f ,

θh,n+1
f ) ∈ (Y h

f , Q
h
f , T

h
f ) and (�uh,n+1

p , φh,n+1
p , θh,n+1

p ) ∈ (Y h
p , Q

h
p , T

h
p ) such that

• Step 1:

(
�uh,n+1
f − �uh,nf

Δt
, �vhf

)
Ωf

− (ph,n+1
f ,∇ · �vhf )Ωf

+ Pr(∇�uh,n+1
f ,∇�vhf )Ωf

+ ctri(�uh,nf , �uh,n+1
f , �vhf )Ωf

= PrRa(�ξθh,nf , �vhf )Ωf
+ (�ff (tn+1), �v

h
f )Ωf

,(4.1)

(qh,∇ · �uh,n+1
f )Ωf

= 0;(4.2)

• Step 2:

(4.3)(
θh,n+1
f − θh,nf

Δt
, ϕh

)
Ωf

+ kf (∇θh,n+1
f ,∇ϕh)Ωf

+ ttrif (�uh,nf , θh,n+1
f , ϕh)Ωf

−kf
∫
I

n̂f · ∇θh,nf ϕhdl +
kfγ

h

∫
I

(θh,n+1
f − θh,np )ϕhdl = (Υf (tn+1), ϕ

h)Ωf
;

• Step 3:

(4.4)
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CaDa

(
�uh,n+1
p − �uh,np

Δt
, �vhp

)
Ωp

+ Pr(�uh,n+1
p , �vhp )Ωp −Da(φh,n+1

p ,∇ · �vhp )Ωp

= PrDaRa(�ξθh,np , �vhp )Ωp ,

(4.5)

Da(ψh,∇ · �uh,n+1
p )Ωp = 0;

• Step 4:

(4.6)(
θh,n+1
p − θh,np

Δt
, ωh

)
Ωp

+ kp(∇θh,n+1
p ,∇ωh)Ωp + ttrip (�uh,np , θh,n+1

p , ωh)Ωp

+kf

∫
I

n̂f · ∇θh,nf ωhdl − kfγ

h

∫
I

(θh,n+1
f − θh,n+1

p )ωhdl = (Υp(tn+1), ω
h)Ωp .

Now we analyze the stability of the above decoupled stabilized finite element method.

Theorem 4.1. Assume that �ff ∈ L2(0, T ;H−1(Ωf )), Υf ∈ L2(0, T ;H−1(Ωf )),
Υp ∈ L2(0, T ;H−1(Ωp)). The stabilized decoupled scheme (4.1)–(4.6) is stable if the
penalty parameter satisfies the condition γ > 2Cinv, where Cinv > 0.

Proof. Choose �vhf = 2Δt�uh,n+1
f , qh = 2Δtph,n+1

f , ϕh = 2Δtθh,n+1
f , �vhp = 2Δt�uh,n+1

p ,

ψh = 2Δtφh,n+1
p , ωh = 2Δtθh,n+1

p in (4.1), (4.2), (4.3), (4.4), (4.5), and (4.6), respec-
tively. Adding these equations together and applying the condition 2(a − b, a) =
(‖a‖2 − ‖b‖2 + ‖a− b‖2), we obtain

(4.7)[
‖�uh,n+1

f ‖2L2(Ωf )
+ ‖�uh,n+1

f − �uh,nf ‖2L2(Ωf )
− ‖�uh,nf ‖2L2(Ωf )

]
+

[
‖θh,n+1

f ‖2L2(Ωf )

+‖θh,n+1
f − θh,nf ‖2L2(Ωf )

− ‖θh,nf ‖2L2(Ωf )

]
+ CaDa

[
‖�uh,n+1

p ‖2L2(Ωp)
+ ‖�uh,n+1

p

−�uh,np ‖2L2(Ωp)
− ‖�uh,np ‖2L2(Ωp)

]
+
[
‖θh,n+1

p ‖2L2(Ωp)

+‖θh,n+1
p − θh,np ‖2L2(Ωp)

− ‖θh,np ‖2L2(Ωp)

]
+ 2PrΔt‖∇�uh,n+1

f ‖2L2(Ωf )

+2ΔtPr‖�uh,n+1
p ‖2L2(Ωp)

+ 2Δtkf‖∇θh,n+1
f ‖2L2(Ωf )

+ 2Δtkp‖∇θh,n+1
p ‖2L2(Ωp)

= 2PrRaΔt(�ξθh,nf , �uh,n+1
f )Ωf

+ 2Δt(�ff (tn+1), �u
h,n+1
f )Ωf

+ 2Δt(Υf(tn+1), θ
h,n+1
f )Ωf

+ 2PrDaRaΔt(�ξθh,np , �uh,n+1
p )Ωp

+ 2Δt(Υp(tn+1), θ
h,n+1
p )Ωp + 2kfΔt

∫
I

n̂f · ∇θh,nf (θh,n+1
f − θh,n+1

p )dl

− 2kfγΔt

h

∫
I

(θh,n+1
f − θh,np )θh,n+1

f dl +
2kfγΔt

h

∫
I

(θh,n+1
f − θh,n+1

p )θh,n+1
p dl.

Using the Cauchy–Schwarz inequality and Young’s inequality, the terms on the right-

D
ow

nl
oa

de
d 

07
/2

8/
20

 to
 1

31
.1

51
.3

1.
51

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B964 MAHBUB, HE, NASU, QIU, WANG, AND ZHENG

hand side of (4.7) can be estimated as follows:

2PrRaΔt(�ξθh,nf , �uh,n+1
f )Ωf

≤ PrRa2Δt‖θh,nf ‖2L2(Ωf )
+ PrΔt‖�uh,n+1

f ‖2L2(Ωf )
,(4.8)

where �ξ = [0, 1]T ,

2Δt(�ff (tn+1), �u
h,n+1
f )Ωf

≤ Δt

Pr
‖�ff(tn+1)‖2H−1(Ωf )

+ PrΔt‖∇�uh,n+1
f ‖2L2(Ωf )

,(4.9)

2Δt(Υf (tn+1), θ
h,n+1
f )Ωf

≤ Δt

kf
‖Υf(tn+1)‖2H−1(Ωf )

+ kfΔt‖∇θh,n+1
f ‖2L2(Ωf )

,(4.10)

2PrDaRaΔt(�ξθh,np , �uh,n+1
p )Ωp ≤ PrDa2Ra2Δt‖θh,np ‖2L2(Ωp)

+ PrΔt‖�uh,n+1
p ‖2L2(Ωp)

,

(4.11)

2Δt(Υp(tn+1), θ
h,n+1
p )Ωp ≤ Δt

kp
‖Υp(tn+1)‖2H−1(Ωp)

+ kpΔt‖∇θh,n+1
p ‖2L2(Ωp)

.(4.12)

Applying discrete local inverse inequality, we obtain

2kfΔt

∫
I

n̂f · ∇θh,nf (θh,n+1
f − θh,n+1

p )dl

≤ 2kfΔt‖n̂f · ∇θh,nf ‖L2(I)‖θh,n+1
f − θh,n+1

p ‖L2(I)

≤ 2kfC
1/2
invh

−1/2Δt‖∇θh,nf ‖L2(Ωf )‖θ
h,n+1
f − θh,n+1

p ‖L2(I)

≤ 2kfCinvΔt

γ
‖∇θh,nf ‖2L2(Ωf )

+
kfγΔt

2h
‖θh,n+1

f − θh,n+1
p ‖2L2(I).(4.13)

Applying the equality condition (a− b, a) = 1
2 (‖a‖2 − ‖b‖2 + ‖a− b‖2), the Cauchy–

Schwarz inequality, and Young’s inequality, we can achieve

−2kfγΔt

h

∫
I

(θh,n+1
f − θh,np )θh,n+1

f dl +
2kfγΔt

h

∫
I

(θh,n+1
f − θh,n+1

p )θh,n+1
p dl

= −2kfγΔt

h
‖θh,n+1

f − θh,n+1
p ‖2L2(I) −

2kfγΔt

h

[∫
I

(θh,n+1
p − θh,np )θh,n+1

p dl

−
∫
I

(θh,n+1
p − θh,np )(θh,n+1

p − θh,n+1
f )dl

]

≤ −2kfγΔt

h
‖θh,n+1

f − θh,n+1
p ‖2L2(I) −

kfγΔt

h

[
‖θh,n+1

p ‖2L2(I)

− ‖θh,np ‖2L2(I) − ‖θh,n+1
f − θh,n+1

p ‖2L2(I)

]
.(4.14)

Inserting (4.8)–(4.14) into (4.7) and taking the sum from n = 0 to l − 1, we obtain

(4.15)

‖�uh,lf ‖2L2(Ωf )
+

l−1∑
n=0

‖�uh,n+1
f − �uh,nf ‖2L2(Ωf )

+ ‖θh,lf ‖2L2(Ωf )
+

l−1∑
n=0

‖θh,n+1
f − θh,nf ‖2L2(Ωf )
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+CaDa‖�uh,lp ‖2L2(Ωp)
+ CaDa

l−1∑
n=0

‖�uh,n+1
p − �uh,np ‖2L2(Ωp)

+ ‖θh,lp ‖2L2(Ωp)

+
l−1∑
n=0

‖θh,n+1
p − θh,np ‖2L2(Ωp)

+ 2PrΔt
l−1∑
n=0

‖∇�uh,n+1
f ‖2L2(Ωf )

+2PrΔt

l−1∑
n=0

‖�uh,n+1
p ‖2L2(Ωp)

+ 2kfΔt

l−1∑
n=0

‖∇θh,n+1
f ‖2L2(Ωf )

+ 2kpΔt

l−1∑
n=0

‖∇θh,n+1
p ‖2L2(Ωp)

≤ PrRa2Δt

l−1∑
n=0

‖θh,nf ‖2L2(Ωf )
+ PrΔt

l−1∑
n=0

‖�uh,n+1
f ‖2L2(Ωf )

+
Δt

Pr

l−1∑
n=0

‖�ff(tn+1)‖2H−1(Ωf )

+PrΔt

l−1∑
n=0

‖∇�uh,n+1
f ‖2L2(Ωf )

+
Δt

kf

l−1∑
n=0

‖Υf(tn+1)‖2H−1(Ωf )

+kfΔt

l−1∑
n=0

‖∇θh,n+1
f ‖2L2(Ωf )

+
Δt

kp

l−1∑
n=0

‖Υp(tn+1)‖2H−1(Ωp)

+kpΔt

l−1∑
n=0

‖∇θh,n+1
p ‖2L2(Ωp)

+ PrDa2Ra2Δt

l−1∑
n=0

‖θh,np ‖2L2(Ωp)

+PrΔt

l−1∑
n=0

‖�uh,n+1
p ‖2L2(Ωp)

+
2kfCinvΔt

γ

l−1∑
n=0

‖∇θh,nf ‖2L2(Ωf )

+
kfγΔt

2h

l−1∑
n=0

‖θh,n+1
f − θh,n+1

p ‖2L2(I)

−kfγΔt
h

l−1∑
n=0

‖θh,n+1
f − θh,n+1

p ‖2L2(I) −
kfγΔt

h
‖θh,lp ‖2L2(I) +

kfγΔt

h
‖θh,0p ‖2L2(I)

+‖�uh,0f ‖2L2(Ωf )
+ CaDa‖�uh,0p ‖2L2(Ωp)

+ ‖θh,0f ‖2L2(Ωf )
+ ‖θh,0p ‖2L2(Ωp)

.

Rearranging (4.15) and using Gronwall’s lemma, we have the following stability result:

(4.16)

‖�uh,lf ‖2L2(Ωf )
+

l−1∑
n=0

‖�uh,n+1
f − �uh,nf ‖2L2(Ωf )

+ ‖θh,lf ‖2L2(Ωf )
+

l−1∑
n=0

‖θh,n+1
f − θh,nf ‖2L2(Ωf )

+CaDa‖�uh,lp ‖2L2(Ωp)
+ CaDa

l−1∑
n=0

‖�uh,n+1
p − �uh,np ‖2L2(Ωp)

+ ‖θh,lp ‖2L2(Ωp)

+

l−1∑
n=0

‖θh,n+1
p − θh,np ‖2L2(Ωp)

+ PrΔt

l−1∑
n=0

‖∇�uh,n+1
f ‖2L2(Ωf )

+ PrΔt

l−1∑
n=0

‖�uh,n+1
p ‖2L2(Ωp)

+kf

(
1− 2Cinv

γ

)
Δt

l−1∑
n=0

‖∇θh,n+1
f ‖2L2(Ωf )

+ kpΔt

l−1∑
n=0

‖∇θh,n+1
p ‖2L2(Ωp)
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+
kfγΔt

2h

l−1∑
n=0

‖θh,n+1
f − θh,n+1

p ‖2L2(I) +
kfγΔt

h
‖θh,lp ‖2L2(I)

≤ C

(
Δt

Pr

l−1∑
n=0

‖�ff(tn+1)‖2H−1(Ωf )
+

Δt

kf

l−1∑
n=0

‖Υf(tn+1)‖2H−1(Ωf )

+
Δt

kp

l−1∑
n=0

‖Υp(tn+1)‖2H−1(Ωp)
+ ‖�uh,0f ‖2L2(Ωf )

+ CaDa‖�uh,0p ‖2L2(Ωp)

+‖θh,0f ‖2L2(Ωf )
+ ‖θh,0p ‖2L2(Ωp)

+
2CinvkfΔt

γ
‖∇θh,0f ‖2L2(Ωf )

+
kfγΔt

h
‖θh,0p ‖2L2(I)

)
.

The penalty parameter satisfies the condition γ > 2Cinv, where Cinv > 0, which
completes the proof of the stability of the decoupled scheme.

Remark 4.1. The stability of the coupled scheme can be similarly derived for the
following conclusion.

Theorem 4.2. Assume that �ff ∈ L2(0, T ;H−1(Ωf )), Υf ∈ L2(0, T ;H−1(Ωf )),
Υp ∈ L2(0, T ;H−1(Ωp)). The stabilized coupled scheme (3.27)–(3.30) is stable if the
penalty parameter satisfies the condition γ > 2Cinv, where Cinv > 0.

5. Numerical experiments. In this section, we present four numerical exper-
iments to validate the proposed model and numerical methods. The first example
with an analytic solution is provided to show the optimal convergence of the finite
element solutions and the impact of the penalty parameter on the convergence. The
second numerical test is conducted to investigate a benchmark problem for thermal
convection in a squared cavity. The third example is to illustrate the applicability
of the proposed model and numerical method to the closed-loop geothermal system
by using a simplified set-up. In the fourth example, we demonstrate the effect of the
curve interface on the temperature distribution for a closed-loop geothermal system.

The well-known MINI elements (P1b− P1) are used for the Navier–Stokes equa-
tion in the conduit domain Ωf [77, 5]. Piecewise constant elements P0 are used for
Darcy pressure φp, and Brezzi–Douglas–Marini (BDM1) finite elements are used for
Darcy velocity �up [15]. In both subdomains for temperature θf and θp, we use linear
Lagrangian elements P1.

5.1. Convergence and stability tests. Assume the computational domain Ω
consists of two subdomains. One is the free fluid flow region Ωf = [0, 1]× [1, 2], and
the other one is the porous media region Ωp = [0, 1] × [0, 1]. The interface between
the free flow region and porous media is taken as I = (0, 1)×{1}. Uniform triangular
meshes are created by first partitioning the rectangular domain Ωf , and Ωp into
identical square elements with the mesh size h, and then dividing each square into
two triangles.

The selected exact solution for the model is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�uf :=

(
10x2(x− 1)2y(y − 1)(2y − 1)cos(t)
−10x(x− 1)(2x− 1)y2(y − 1)2cos(t)

)
,

pf := 10(2x− 1)(2y − 1)cos(t),

�up :=

(
[2πsin2(πx)sin(πy)cos(πy)]cos(t)
[−2πsin(πx)sin2(πy)cos(πx)]cos(t)

)
,

φp := cos(πx)cos(πy)cos(t),
θf := ax(1− x)(1 − y)e−t,
θp := ax(1− x)(y − y2)e−t.

(5.1)
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The initial condition, boundary condition, and forcing term of the model problem
(2.1)–(2.16) are chosen such that above functions are the exact solutions of the model
problem. Choose the parameter values a = 1.0, Pr = 1.0, Ra = 1.0, kf = kp = 1.0,
Ca = 1.0, Da = 1.0, γ = 105, T = 0.5, and Δt = 0.001. In the tables below, we
denote the errors by using eh,nΦΛ

= Φh,n
Λ − ΦΛ(t

n), where Φ = �u or θ and Λ = f or p.

Table 5.1

The errors in the L2- and the H1-norm for the decoupled stabilized scheme with different h and
fixed Δt = 0.001 at the final time T = 0.5.

h ||eh,n
�uf

||0 Order ||eh,nθf
||0 Order ||eh,nθp

||0 Order ||eh,n
�up

||0 Order

1/4 0.40846000 0.00468918 0.00341420 0.24790300
1/8 0.10494300 1.9605 0.00116964 2.0032 0.00090792 1.9109 0.06573370 1.9150
1/16 0.02626210 1.9985 0.00029335 1.9953 0.00023107 1.9742 0.01671560 1.9754
1/32 0.00654013 2.0055 7.46087e-05 1.9752 5.86945e-05 1.9770 0.00423175 1.9818
1/64 0.00163015 2.0043 1.99111e-05 1.9057 1.54964e-05 1.9212 0.00118770 1.8330

h ||eh,n
�uf

||1 Order ||eh,nθf
||1 Order ||eh,nθp

||1 Order

1/4 6.004770 0.0707448 0.03565450
1/8 2.754750 1.1241 0.0356499 0.9887 0.01829400 0.9627
1/16 1.275050 1.1113 0.0178589 0.9972 0.00920755 0.9904
1/32 0.614009 1.0542 0.0089336 0.9993 0.00461145 0.9975
1/64 0.302294 1.0223 0.0044673 0.9998 0.00230670 0.9993

Table 5.2

The errors in the L2-norm by using Δt = h2 and in the H1-norm by setting Δt = h for the
decoupled stabilized scheme at the final time T = 0.5.

h Δt ||eh,n
�uf

||0 Order ||eh,nθf
||0 Order ||eh,nθp

||0 Order ||eh,n
�up

||0 Order

1/4 1/16 0.40845800 0.0046804 0.00341434 0.2483770
1/8 1/64 0.10494300 1.9605 0.0011609 2.0113 0.00090560 1.9146 0.0658987 1.9142
1/16 1/256 0.02626190 1.9985 0.0002912 1.9951 0.00023077 1.9723 0.0167671 1.9746
1/32 1/1024 0.00654014 2.0055 7.46291e-5 1.9642 5.86923e-05 1.9752 0.0042310 1.9865
1/64 1/4096 0.00163029 2.0041 2.08525e-5 1.8395 1.51408e-05 1.9547 0.0011338 1.8997

h Δt ||eh,n�uf
||1 Order ||eh,nθf

||1 Order ||eh,nθp
||1 Order

1/4 1/4 6.004900 0.07110420 0.03578750
1/8 1/8 2.754800 1.1241 0.03568050 0.9947 0.01831080 0.9667
1/16 1/16 1.275060 1.1113 0.01785970 0.9984 0.00920847 0.9916
1/32 1/32 0.614016 1.0542 0.00893396 0.9993 0.00461148 0.9977
1/64 1/64 0.302297 1.0223 0.00446765 0.9997 0.00230671 0.9993

Fixing the time step size Δt = 0.001, the errors with the varying spatial mesh size
h for the decoupled stabilized finite element method are listed in Table 5.1. The data
in this table illustrates that the decoupled method achieves optimal convergence rates
in both the L2-norm and the H1-norm. It is well-known that the expected accuracy
order is O(h2 + Δt) for the L2-norm and O(h + Δt) for the H1-norm. In order to
illustrate the second order accuracy in space, we set Δt = h2 for the L2-norm in Table
5.2. On the other hand, Δt = h is used to illustrate the first order accuracy for the
H1-norm. From Table 5.2, we can observe that decoupled algorithm achieves optimal
convergence order O(h2) in the L2-norm and O(h) in the H1-norm.
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Table 5.3

The effect of the penalty parameter on the convergence of the decoupled stabilized scheme.

h γ = 100000 γ = 1000 γ = 1 γ = 0.001 γ = 0

||eh,n
�uf

||0
1/8 0.10494300 0.10494300 0.10494300 0.10494300 0.10494300
1/16 0.02626210 0.02626210 0.02626210 0.02626150 0.02626140
1/32 0.00654013 0.00654014 0.00654013 0.00653956 0.00653949
1/64 0.00163015 0.00163015 0.00163016 0.00162972 0.00162953

||eh,nθf
||0

1/8 0.00116964 0.00122413 0.00111323 0.00549877 0.00561255
1/16 0.00029335 0.00033928 0.00028941 0.00423029 0.00459165
1/32 7.46087e-05 0.00010939 8.82900e-05 0.00304907 0.00411020
1/64 1.99111e-05 4.35675e-05 4.96786e-05 0.00162527 0.00382343

||eh,n
�up

||0
1/8 0.06573370 0.06573370 0.06573330 0.06573710 0.06573730
1/16 0.01671560 0.01671540 0.01671450 0.01671480 0.01671540
1/32 0.00423175 0.00423137 0.00422762 0.00422308 0.00422843
1/64 0.00118770 0.00118701 0.00117328 0.00114516 0.00117924

||eh,nθp
||0

1/8 0.00090792 0.00081944 0.00093210 0.00510302 0.00521338
1/16 0.00023107 0.00018811 0.00023835 0.00421036 0.00456259
1/32 5.86945e-05 5.52669e-05 4.86616e-05 0.00312289 0.00416500
1/64 1.54964e-05 2.68732e-05 2.69064e-05 0.00170941 0.00389860

The stability analysis results of the stabilized coupled and decoupled schemes are
provided in Theorems 4.1 and 4.2, which require the condition γ > 2Cinv, where Cinv

is strictly positive. In the following, we investigate the impact of the penalty param-
eter γ on the convergence. In Table 5.3, we list the errors ||eh,n	uf

||0, ||eh,nθf
||0, ||eh,n	up

||0,
and ||eh,nθp

||0 with respect to different values of the penalty parameter. The table veri-
fies that a large enough penalty parameter is necessary to guarantee the stability and
hence the convergence. Furthermore, one can observe that a larger penalty parameter
provides better convergence performance for θf and θp, which is expected based on
the explanations in Remark 3.1.

5.2. Convection in a squared cavity. We construct this model problem in-
spired by the natural convection in a cavity called Rayleigh–Bénard convection which
is often considered as a benchmark problem [108, 39, 105, 109]. This experiment is ex-
tended by adding another subdomain for the porous media region and then simulating
for the proposed coupled multiphysics model.
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Fig. 5.1. A sketch of the computational domain with boundary conditions (left) and the illus-
tration of mesh (right).
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Fig. 5.2. The streamlines and magnitudes of velocity for different values of Rayleigh number.
Left: Ra = 103. Middle: Ra = 104. Right: Ra = 105.

Assume the computational domain is Ωf = [0, 1] × [1, 2] and Ωp = [0, 1] × [0, 1]
with a common interface I = (0, 1) × {1}. The boundary conditions are illustrated
in Figure 5.1. The no-slip boundary condition for the conduit region and the no-flow
boundary condition on the porous media region are imposed on all of the boundaries:

�uf = 0 on ∂Ωf \ I and �up · n̂p = 0 on ∂Ωp \ I.(5.2)

The left boundary is considered as a heated wall with θf = θp = 1, and the right
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boundary is a cold wall with θf = θp = 0. On the top and bottom boundaries,
we consider an insulated situation by applying n̂f · kf∇θf = 0 and n̂p · kp∇θp = 0,
respectively. On the interface between the two regions, the interface conditions (2.20)–
(2.23), which are proposed for the model, are utilized.

The parameters are chosen as kf = kp = 1.0, Ca = 1.0, Pr = 0.71, 103 ≤ Ra ≤
105, and Da = 1.0 × 10−2 [108, 39, 105]. We also choose γ = 1.0, T = 3.0, and
Δt = 0.01. The initial values for velocity and temperature in both subdomains are
chosen to be 0 and 1, respectively. The external body forces �ff , Υf , and Υp are
simply taken as zero. The mesh is constructed in the same way as in example (5.1)
with h = 1/32.
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Fig. 5.3. The streamlines and magnitudes of heat flux for different values of Rayleigh number.
Left: Ra = 103. Middle: Ra = 104. Right: Ra = 105.
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Fig. 5.4. The temperature distribution for different values of Rayleigh number. Left: Ra = 103.
Middle: Ra = 104. Right: Ra = 105.
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Fig. 5.5. The U-shape domain consists of closed-loop heat exchanging pipelines Ωf and geother-
mal reservoir Ωp, separated by a common interface I (left) and illustration of mesh (right).

In Figures 5.2, 5.3, and 5.4, we demonstrate the velocity field, heat flux, and
temperature distribution with respect to different Rayleigh numbers. From Figure
5.2, it is clear that the streamlines are more circular when the Rayleigh numbers are
103 and 104. When the Rayleigh number is increased to 105, the circular vortex in
Ωf tends to be deformed into an ellipse and then break up, which coincides with the
studies in [108, 39, 105, 109], while the whole field is also affected by the heat transfer
through the interface from the porous media part. From the streamlines of velocity,
we can also see that the no-fluid-communication interface condition is enforced. Based
on Figures 5.3 and 5.4, the thermal convection increases rapidly when the Rayleigh
number is increased. These physically valid simulation results validate the proposed
model and numerical method.

5.3. Simulation for a closed-loop geothermal system. In this example, we
simulate the flow behavior, heat flux, and thermal convection in a simplified closed-
loop geothermal system. As shown in Figure 5.5, the conduit domain consists of a U-
shape closed-loop heat exchange pipeline where the cold fluid can be injected through
the vertical injection well on the left and the heated outflow can be pumped out from
the vertical production well on the right [92, 95, 35]. In the porous medium, we
consider a geothermal reservoir as the source of heat energy and thermal convection.

Based on the simulation of a fundamental case, for which we will show all of the
velocity field, heat flux, and temperature distribution, we will investigate the effect
of several different sets of the parameters, including the length of simulation time,
Darcy number, thermal conductivity, the length of the horizontal well, and injection
temperature. The results will be illustrated only by the temperature distribution due
to its importance and the page limitation.

The inflow boundary condition is imposed on the top boundary ∂Ωf in = {(x, y) :
y = 6, 0 � x � 0.25} with Ux = 0 and Uy = −2048.0x(0.25−x) of the vertical injection
well on the left. The boundary condition for temperature is assumed as θf = 20 for
the same boundary. The initial condition for the velocity and temperature of the
closed-loop pipe is assumed as �uf (0, x) = (0, 0) and θf (0, x) = 20, respectively. On
the top boundary ∂Ωf out = {(x, y) : y = 6, 4.75 � x � 5} of the vertical production
well on the right, the free outflow boundary conditions are imposed:

(−pfI+ Pr∇�uf ) · n̂f = 0, n̂f · kf∇θf = 0 on ∂Ωf out.(5.3)

On the other boundaries of the closed-loop pipe {(x, y) : x = 0, 1 � y � 6} ⊂ ∂Ωf ,
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{(x, y) : x = 0.25, 1.25 � y � 6} ⊂ ∂Ωf , {(x, y) : y = 1.25, 0.25 � x � 4.75} ⊂ ∂Ωf ,
{(x, y) : x = 4.75, 1.25 � y � 6} ⊂ ∂Ωf , and {(x, y) : x = 5, 1 � y � 6} ⊂ ∂Ωf ,
we impose the no-slip boundary condition for velocity and the insulated boundary
condition for temperature:

�uf = 0, n̂f · kf∇θf = 0 on ∂Ωf \ I.(5.4)

On the interface I = {(x, y) : y = 1, 0 � x � 5}, the interface conditions (2.20)–(2.23),
which are proposed for the model, are utilized.

The geothermal reservoir domain is Ωp = [0, 5] × [0, 1]. We impose the no-flow
boundary condition �up · n̂p = 0 on ∂Ωp \ I. The homogeneous Neumann boundary
condition is considered for the temperature on the left and right walls of Ωp. In
the bottom of the reservoir, we consider a hot wall by imposing θp = 100. The
initial condition for the velocity and temperature of the reservoir region is assumed
as �up(0, x) = (0, 0), and θp(0, x) = 100, respectively.

For the fundamental simulation, the parameters are chosen as kf = 0.6, kp = 1.0,
Pr = 3.0, Ra = 104, Ca = 1.0, Da = 1.0 × 10−6, and γ = 1.0. The external body
forces �ff , Υf , and Υp are simply taken as zero. We construct the mesh with the mesh
size hmax = 0.05, and use the time step size Δt = 0.01 with final time T = 3.0. The
velocity field, heat flux, and temperature distribution of this case are shown in Figure
5.6. As expected, the heat fluxes move from the geothermal reservoir to the pipelines
across the interface, while the velocity streamlines clearly indicate that the no-fluid-
communication interface conditions are enforced. In the left part of the horizontal
well, which is close to the injection well, the continuously injected cold water starts
to get in contact with the geothermal reservoir of high temperature, which leads to a
faster heat flux transmission. Moreover, the faster and slower flows can be observed
in the pipe region and geothermal reservoir, respectively, which is physically valid.
The effect of the no-slip boundary condition can also be observed in the pipe region
where the speed is higher in the middle of the pipe. In the porous media domain, we
can see a fluid circulation formed by the relatively hotter fluid in the lower part of
the reservoir and the relatively colder fluid near the horizontal well, which is due to
the natural convection. From the reasonable temperature distribution, one can see
that the cold water is injected down from the left vertical well to the horizontal well,
heated by the geothermal reservoir, and then pumped out from the right vertical well
with much higher production temperature.
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Fig. 5.6. Numerical results for Ra = 104, Pr = 3.0, kf = 0.6, kp = 1.0, Da = 1.0× 10−6, and
T = 3.0. Left: streamlines and magnitudes of velocity. Middle: streamlines and magnitudes of heat
flux. Right: temperature distribution.
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Figure 5.7 shows the temperature distribution at different times to illustrate the
effect of the geothermal energy with respect to the time. The pictures show that with
the increase of the time, the thermal convection and the temperature of the outflow
gradually increase to the maximum. During this procedure, the transmission area
from cold water to hot water becomes smaller and closer to the corner between the
injection well and the horizontal well, while the production temperature is higher and
higher as expected.
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Fig. 5.7. Temperature distribution at different times with Ra = 104, Pr = 3.0, kf = 0.6,
kp = 1.0, and Da = 1.0× 10−6. Left: T = 1.0. Middle: T = 3.0. Right: T = 10.0.

Figure 5.8 shows temperature distribution for the different values of the Darcy
number. The results clearly illustrate the effect of the porous media flow in the
geothermal reservoir on the production temperature. When the Darcy number is
decreased, the porous media flow becomes slower, hence leading to a slower heat
transfer from the bottom of Ωp to the area around the interface. This causes the less
heat communication on the interface and eventually lower production temperature.

X

Y

0 1 2 3 4 5
0

1

2

3

4

5

6

95
90
85
80
75
70
65
60
55
50
45
40
35
30
25

X

Y

0 1 2 3 4 5
0

1

2

3

4

5

6

95
90
85
80
75
70
65
60
55
50
45
40
35
30
25

X

Y

0 1 2 3 4 5
0

1

2

3

4

5

6

95
90
85
80
75
70
65
60
55
50
45
40
35
30
25

Fig. 5.8. Temperature distribution with different values of Darcy number Da, Ra = 104,
Pr = 3.0, kf = 0.6, kp = 1.0, and T = 3. Left: Da = 1.0× 10−3. Middle: Da = 1.0× 10−4. Right:
Da = 1.0× 10−5.

Figure 5.9 shows the effect of different values of thermal conductivity. One can
obviously observe that the larger heat conductivity in the reservoir leads to a faster
heat convection, hence a faster change of the working fluid temperature to the maxi-
mum. With the large heat conductivity kp = 1.5, some fluid in the left vertical well
is even heated up before it gets close to the horizontal well, which does not happen
much when kp is 0.6 or 1.0.
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Fig. 5.9. Temperature distribution with different values of thermal conductivity kp, Ra = 104,
Pr = 3.0, kf = 0.6, Da = 1.0 × 10−6, and T = 3.0. Left: kp = 0.6. Middle: kp = 1.0. Right:
kp = 1.5.

Figures 5.10 and 5.11 show the effect of different lengths of the horizontal well-
bore and different injection temperatures, respectively. While the temperature dis-
tributions are in a similar pattern for different lengths of the horizontal wellbore, the
production temperature is lower with respect to the shorter horizontal well due to
the less heat flux communication on the interface. As expected, the higher injection
temperature causes a faster procedure for the working fluid to reach its maximum
temperature and provides higher production temperature.
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Fig. 5.10. Temperature distribution with different lengths of the horizontal well, Ra = 104,
Pr = 3.0, kf = 0.6, kp = 1.0, Da = 1.0 × 10−6, and T = 3.0. Left: length = 5.0. Middle: length
= 3.0. Right: length = 1.0.
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Fig. 5.11. Temperature distribution with different inflow temperatures, Ra = 104, Pr = 3.0,
kf = 0.6, kp = 1.0, Da = 1.0 × 10−6, and T = 3.0. Left: injection temperature = 5. Middle:
injection temperature = 20. Right: injection temperature = 45.

5.4. Simulation for a closed-loop geothermal system with curved inter-
face. In this example, we simulate the thermal convection in a simplified closed-loop
geothermal system with curved interface. One difference between this example and the
previous one is that the curved heat exchange pipeline is immersed in the geothermal
reservoir.

The computational domain is illustrated in Figure 5.12. We assume a hot wall
situation by imposing θp = 120 on the boundaries {(x, y) : y = 0, 0 � x � 6} ⊂ ∂Ωp

and {(x, y) : y = 3, 0.25 � x � 5.75} ⊂ ∂Ωp, which are the bottom and top sides of
the geothermal reservoir. The no-flow boundary condition �up · n̂p = 0 is imposed on
the other boundaries of the reservoir ∂Ωp \ I. We assume the homogeneous Neumann
boundary condition for the temperature on the left and right walls of Ωp. The initial
condition for the velocity and temperature in the geothermal reservoir is considered
as �up(0, x) = (0, 0) and θp(0, x) = 120.

On the top boundary ∂Ωf in = {(x, y) : y = 7, 0 � x � 0.25} of the vertical
injection well, we consider the inflow boundary condition by assuming Ux = 0 and
Uy = −2048.0x(0.25 − x). The boundary condition for temperature is assumed as
θf = 20 on the same boundary. The initial condition for the velocity and temperature
of the closed-loop pipe is assumed as �uf(0, x) = (0, 0) and θf (0, x) = 20, respectively.
On the top boundary ∂Ωf out = {(x, y) : y = 7, 5.75 � x � 6} of the vertical
production well on the right, the free outflow boundary condition is imposed:

(−pfI+ Pr∇�uf ) · n̂f = 0, n̂f · kf∇θf = 0 on ∂Ωf out.(5.5)

On the other boundaries belonging to ∂Ωf \ I, the no-slip boundary condition for
velocity and the insulated boundary condition for temperature are considered:

�uf = 0, n̂f · kf∇θf = 0 on ∂Ωf \ I.(5.6)

The proposed interface conditions (2.20)–(2.23) are used on the interface I between the
geothermal reservoir and pipe. For the fundamental simulation, the parameter values
are chosen as kf = 0.6, kp = 1.0, Pr = 3.0, Ra = 104, Ca = 1.0, Da = 1.0 × 10−7,
and γ = 1.0. The mesh size hmax = 0.05, temporal step size Δt = 0.05, and final
time T = 5.0 are considered for the current computation. The external body forces
�ff , Υf , and Υp are simply taken as zero.

In Figure 5.13, we present the influence of the different values of thermal con-
ductivity on the temperature distribution. As expected, the larger heat conductivity
in the reservoir leads to faster heat convection, which provides the faster change of
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the fluid in the pipe to the maximum temperature. Furthermore, Figure 5.14 demon-
strates the effects of the different shapes of the interface on the heat transfer. Figure
5.15 shows the temperature distribution for different boundary values of θp on the
top and bottom boundaries of the geothermal reservoir, which represent the reservoir
temperature. As expected, the hotter reservoir produces more energy, which can be
seen by the temperature in the vertical production wellbore.

Fig. 5.12. The U-shape domain consists of closed-loop heat exchanging pipelines Ωf and
geothermal reservoir Ωp, separated by the curved interface I (left) and illustration of mesh (right).
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Fig. 5.13. Temperature distribution with different values of thermal conductivity kp, Ra = 104,
Pr = 3.0, kf = 0.6, Da = 1.0 × 10−7, and T = 3.0. Left: kp = 0.6. Middle: kp = 1.0. Right:
kp = 1.5.
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Fig. 5.14. Temperature distribution with different shapes of the interface I, Ra = 104, Pr = 3.0,
kf = 0.6, kp = 1.0, Da = 1.0 × 10−7, and T = 3.0. Left: flat interface. Middle: concave to convex
shape interface. Right: convex to concave shape interface.
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Fig. 5.15. Temperature distribution with different θp, Ra = 104, Pr = 3.0, kf = 0.6, kp = 1.0,
Da = 1.0× 10−7, and T = 3.0. Left: θp = 100.0. Middle: θp = 120.0. Right: θp = 150.0.

6. Conclusion. In this paper, a coupled multiphysics model is proposed for the
closed-loop type geothermal system. In a network of a underground heat exchanging
pipelines, the free flow is governed by a Boussinesq equation which combines the
Navier–Stokes equation coupled with the heat equation. In the geothermal reservoir,
the porous media flow is governed by Darcy’s law coupled with the heat equation.
Since there is no-direct flow interaction but just heat transfer between the geothermal
reservoir and the pipelines, four physically valid interface conditions are imposed to
describe the no-communication feature of the fluid flow and continuous heat transfer
of the heat flow. To solve the proposed model accurately and efficiently, we developed
a decoupled stabilized finite element approach based on the traditional coupled finite
element method. The stability of the coupled and decoupled schemes is reported.
Four numerical experiments are provided to validate and illustrate the features of the
proposed model and numerical method.
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[27] A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent
coupled surface and subsurface flow, J. Sci. Comput., 40 (2009), pp. 115–140.

[28] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover, Mineola, NY, 1961.
[29] J. Chen, S. Sun, and X. Wang, A numerical method for a model of two-phase flow in a

coupled free flow and porous media system, J. Comput. Phys., 268 (2014), pp. 1–16.

D
ow

nl
oa

de
d 

07
/2

8/
20

 to
 1

31
.1

51
.3

1.
51

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/080721868
https://doi.org/10.1137/080721868
https://doi.org/10.1137/080731542


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING AND FEM FOR CLOSED-LOOP GEOTHERMAL SYSTEM B979

[30] W. Chen, M. Gunzburger, F. Hua, and X. Wang, A parallel Robin-Robin domain de-
composition method for the Stokes-Darcy system, SIAM. J. Numer. Anal., 49 (2011),
pp. 1064–1084, https://doi.org/10.1137/080740556.

[31] W. Chen, D. Han, and X. Wang, Uniquely solvable and energy stable decoupled numer-
ical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic
geometry, Numer. Math., 137 (2017), pp. 229–255.

[32] Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic
interface problems, Numer. Math., 79 (1998), pp. 175–202.

[33] P. Chidyagwai and B. Rivière, On the solution of the coupled Navier-Stokes and Darcy
equations, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3806–3820.

[34] J. C. Choi, J. Park, and S. R. Lee, Numerical evaluation of the effects of groundwater flow
on borehole heat exchanger arrays, Renewable Energy, 52 (2013), pp. 230–240.

[35] W. Choi and R. Ooka, Effect of natural convection on thermal response test conducted in
saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole
heat exchangers, Renewable Energy, 96 (2016), pp. 891–903.

[36] J. M. Connors and B. Ganis, Stability of algorithms for a two domain natural convection
problem and observed model uncertainty, Comput. Geosci., 15 (2011), pp. 509–527.

[37] J. M. Connors, J. S. Howell, and W. J. Layton, Decoupled time stepping methods for
fluid-fluid interaction, SIAM J. Numer. Anal., 50 (2012), pp. 1297–1319, https://doi.org/
10.1137/090773362.

[38] R. Curtis, J. Lund, B. Sanner, L. Rybach, and G. Hellström, Ground source heat pumps-
geothermal energy for anyone, anywhere: Current worldwide activity, in Proceedings of
the World Geothermal Congress, Antalya, Turkey, 2005.

[39] J. Deteix, A. Jendoubi, and D. Yakoubi, A coupled prediction scheme for solving the
Navier-Stokes and convection-diffusion equations, SIAM J. Numer. Anal., 52 (2014),
pp. 2415–2439, https://doi.org/10.1137/130942516.

[40] A. E. Diegel, X. Feng, and S. M. Wise, Analysis of a mixed finite element method for
a Cahn-Hilliard-Darcy-Stokes system, SIAM J. Numer. Anal., 53 (2015), pp. 127–152,
https://doi.org/10.1137/130950628.

[41] M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwa-
ter Flows, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzer-
land, 2004.

[42] M. Discacciati, E. Miglio, and A. Quarteroni, Mathematical and numerical models for
coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57–74.

[43] M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and
numerical approximation, Rev. Mat. Comput., 22 (2009), pp. 315–426.

[44] M. Discacciati, A. Quarteroni, and A. Valli, Robin-Robin domain decomposition methods
for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), pp. 1246–1268, https://
doi.org/10.1137/06065091X.

[45] S. Erol and B. Francois, Multilayer analytical model for vertical ground heat exchanger
with groundwater flow, Geothermics, 71 (2018), pp. 294–305.

[46] R. E. Ewing, O. Iliev, and R. D. Lazarov, A modified finite volume approximation of
second-order elliptic equations with discontinuous coefficients, SIAM J. Sci. Comput., 23
(2001), pp. 1335–1351, https://doi.org/10.1137/S1064827599353877.

[47] W. Feng, X.-M. He, Z. Wang, and X. Zhang, Non-iterative domain decomposition methods
for a non-stationary Stokes-Darcy model with Beavers-Joseph interface condition, Appl.
Math. Comput., 219 (2012), pp. 453–463.

[48] M. A. Fernández, J. F. Gerbeau, and S. Smaldone, Explicit coupling schemes for a fluid-
fluid interaction problem arising in hemodynamics, SIAM J. Sci. Comput., 36 (2014),
pp. A2557–A2583, https://doi.org/10.1137/130948653.

[49] C. Foias, O. Manley, and R. Temam, Attractors for the Bénard problem: Existence and
physical bounds on their fractal dimension, Nonlinear Anal., 11 (1987), pp. 939–967.

[50] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations,
Vol. 1, Springer Tracts Nat. Philos. 38, Springer, New York, 1994.

[51] J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling
Stokes-Darcy equations, Electron. Trans. Numer. Anal., 26 (2007), pp. 350–384.

[52] Y. Gao, X.-M. He, L. Mei, and X. Yang, Decoupled, linear, and energy stable finite el-
ement method for the Cahn–Hilliard–Navier–Stokes–Darcy phase field model, SIAM J.
Sci. Comput., 40 (2018), pp. B110–B137, https://doi.org/10.1137/16M1100885.

[53] G. N. Gatica, S. Meddahi, and R. Oyarzúa, A conforming mixed finite-element method
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[54] G. N. Gatica, R. Oyarzúa, and F. J. Sayas, A residual-based a posteriori error estimator
for a fully-mixed formulation of the Stokes-Darcy coupled problem, Comput. Methods
Appl. Mech. Engrg., 200 (2011), pp. 1877–1891.

[55] V. Girault and P. A. Raviart, Finite Element Approximations of the Navier-Stokes Equa-
tions, Springer-Verlag, Berlin, 1986.

[56] V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equa-
tions by Beaver–Joseph–Saffman interface condition, SIAM J. Numer. Anal, 47 (2009),
pp. 2052–2089, https://doi.org/10.1137/070686081.

[57] Y. Gong and Z. Li, Immersed interface finite element methods for elasticity interface prob-
lems with non-homogeneous jump conditions, Numer. Math. Theory Methods Appl., 3
(2010), pp. 23–39.

[58] M. Gunzburger, X.-M. He, and B. Li, On Stokes–Ritz projection and multistep backward
differentiation schemes in decoupling the Stokes–Darcy model, SIAM J. Numer. Anal.,
56 (2018), pp. 397–427, https://doi.org/10.1137/16M1099601.

[59] D. Han, P. Wang, X.-M. He, T. Lin, and J. Wang, A 3D immersed finite element method
with non-homogeneous interface flux jump for applications in particle-in-cell simulations
of plasma-lunar surface interactions, J. Comput. Phys., 321 (2016), pp. 965–980.

[60] P. Hansbo, Nitsche’s method for interface problems in computational mechanics, GAMM-
Mitt., 28 (2005), pp. 183–206.

[61] P. Hansbo and J. Hermansson, Nitsche’s method for coupling non-matching meshes in
fluid-structure vibration problems, Comput. Mech., 32 (2003), pp. 134–139.

[62] N. Hanspal, A. Waghode, V. Nassehi, and R. Wakeman, Numerical analysis of coupled
Stokes/Darcy flow in industrial filtrations, Transp. Porous Media, 64 (2006), pp. 73–101.

[63] X.-M. He, Bilinear Immersed Finite Elements for Interface Problems, Ph.D. Dissertation,
Virginia Polytechnic Institute and State University, 2009, Blacksburg, VA.

[64] X.-M. He, N. Jiang, and C. Qiu, An artificial compressibility ensemble algorithm for a sto-
chastic Stokes-Darcy model with random hydraulic conductivity and interface conditions,
Internat. J. Numer. Methods Engrg., 121 (2020), pp. 712–739.

[65] X.-M. He, J. Li, Y. Lin, and J. Ming, A domain decomposition method for the steady-
state Navier–Stokes–Darcy model with Beavers–Joseph interface condition, SIAM J. Sci.
Comput., 37 (2015), pp. S264–S290, https://doi.org/10.1137/140965776.

[66] X.-M. He, T. Lin, and Y. Lin, Approximation capability of a bilinear immersed finite element
space, Numer. Methods Partial Differential Equations, 24 (2008), pp. 1265–1300.

[67] X.-M. He, T. Lin, and Y. Lin, Immersed finite element methods for elliptic interface problems
with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8 (2011), pp. 284–
301.

[68] X.-M. He, T. Lin, and Y. Lin, The convergence of the bilinear and linear immersed finite
element solutions to interface problems, Numer. Methods Partial Differential Equations,
28 (2012), pp. 312–330.

[69] X.-M. He, T. Lin, Y. Lin, and X. Zhang, Immersed finite element methods for para-
bolic equations with moving interface, Numer. Methods Partial Differential Equations,
29 (2013), pp. 619–646.

[70] J. Hecht-Méndez, M. D. Paly, M. Beck, and P. Bayer, Optimization of energy extrac-
tion for vertical closed-loop geothermal systems considering groundwater flow, Energy
Conversion and Management, 66 (2013), pp. 1–10.

[71] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary
Navier–Stokes problem, Part IV: Error analysis for second-order time discretization,
SIAM J. Numer. Anal., 27 (1990), pp. 353–384, https://doi.org/10.1137/0727022.

[72] S. C. Hirata, B. Goyeau, D. Gobin, M. Carr, and R. M. Cotta, Linear stability of natural
convection in superposed fluid and porous layers: Influence of the interfacial modeling,
Int. J. Heat Mass Transfer, 50 (2007), pp. 1356–1367.

[73] R. Hoppe, P. Porta, and Y. Vassilevski, Computational issues related to iterative coupling
of subsurface and channel flows, Calcolo, 44 (2007), pp. 1–20.

[74] J. Hou, M. Qiu, X.-M. He, C. Guo, M. Wei, and B. Bai, A dual-porosity-Stokes model
and finite element method for coupling dual-porosity flow and free flow, SIAM J. Sci.
Comput., 38 (2016), pp. B710–B739, https://doi.org/10.1137/15M1044072.

[75] H. Kaydani and A. Mohebbi, Experimental and numerical study of the onset of transient nat-
ural convection in a fractured porous medium, Transp. Porous Med., 116 (2017), pp. 923–
939.

[76] W. Layton, H. Tran, and C. Trenchea, Analysis of long time stability and errors of two
partitioned methods for uncoupling evolutionary groundwater–surface water flows, SIAM
J. Numer. Anal., 51 (2013), pp. 248–272, https://doi.org/10.1137/110834494.

D
ow

nl
oa

de
d 

07
/2

8/
20

 to
 1

31
.1

51
.3

1.
51

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/070686081
https://doi.org/10.1137/16M1099601
https://doi.org/10.1137/140965776
https://doi.org/10.1137/0727022
https://doi.org/10.1137/15M1044072
https://doi.org/10.1137/110834494


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING AND FEM FOR CLOSED-LOOP GEOTHERMAL SYSTEM B981

[77] W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous me-
dia flow, SIAM J. Numer. Anal., 40 (2002), pp. 2195–2218, https://doi.org/10.1137/
S0036142901392766.

[78] H.-C. Lee, Analysis and computational methods of Dirichlet boundary optimal control prob-
lems for 2D Boussinesq equations, Adv. Comput. Math., 19 (2003), pp. 255–275.

[79] R. J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discon-
tinuous coefficients and singular sources, SIAM J. Numer. Anal., 34 (1994), pp. 1019–
1044, https://doi.org/10.1137/0731054.

[80] M. Lin, T. Lin, and H. Zhang, Error analysis of an immersed finite element method for
Euler-Bernoulli beam interface problems, Int. J. Numer. Anal. Model., 14 (2017), pp. 822–
841.

[81] T. Lin, D. Sheen, and X. Zhang, A locking-free immersed finite element method for planar
elasticity interface problems, J. Comput. Phys., 247 (2013), pp. 228–247.

[82] J. W. Lund and T. L. Boyd, Direct utilization of geothermal energy 2015 worldwide review,
Geothermics, 60 (2016), pp. 66–93.

[83] F. Luo, R.-N. Xu, and P.-X. Jiang, Numerical study of the influence of injection/production
well perforation location on CO2-EGS system, Energy Procedia, 37 (2013), pp. 6636–6643.

[84] M. A. A. Mahbub, X.-M. He, N. J. Nasu, C. Qiu, and H. Zheng, Coupled and decoupled
stabilized mixed finite element methods for non-stationary dual-porosity-Stokes fluid flow
model, Internat. J. Numer. Methods Engrg., 120 (2019), pp. 803–833.

[85] A. Márquez, S. Meddahi, and F. J. Sayas, A decoupled preconditioning technique for a
mixed Stokes-Darcy model, J. Sci. Comput., 57 (2013), pp. 174–192.

[86] A. Massing, M. G. Larson, A. Logg, and M. G. Rognes, A stabilized Nitsche overlapping
mesh method for the Stokes problem, Numer. Math., 128 (2014), pp. 73–101.

[87] M. Mu and J. Xu, A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow
with porous media flow, SIAM J. Numer. Anal., 45 (2007), pp. 1801–1813, https://doi.
org/10.1137/050637820.

[88] S. Münzenmaier and G. Starke, First-order system least squares for coupled Stokes–Darcy
flow, SIAM J. Numer. Anal., 49 (2011), pp. 387–404, https://doi.org/10.1137/100805108.

[89] M. Nabi and R. Al-Khoury, An efficient finite volume model for shallow geothermal systems,
Part I: Model formulation, Comput. Geosci., 49 (2012), pp. 290–296.

[90] D. A. Nield and A. Bejan, Convection in Porous Media, Springer-Verlag, New York, 2006.
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