Tabellion: Secure Legal Contracts on Mobile Devices

Saeed Mirzamohammadi Yuxin (Myles) Liu Tianmei Ann Huang
CS, UC Irvine CS, UC Irvine Law, UC Irvine
saeed@uci.edu yuxilll@uci.edu tianmeah@lawnet.uci.edu

Ardalan Amiri Sani Sharad Agarwal Sung Eun (Summer) Kim

CS, UC Irvine
ardalan@uci.edu

ABSTRACT

A legal contract is an agreement between two or more parties as
to something that is to be done in the future. Forming contracts
electronically is desirable since it is convenient. However, existing
electronic contract platforms have a critical shortcoming. They
do not provide strong evidence that a contract has been legally
and validly created. More specifically, they do not provide strong
evidence that an electronic signature is authentic, that there was
mutual assent, and that the parties had an opportunity to read the
contract. We present Tabellion, a system for forming legal con-
tracts on mobile devices, such as smartphones and tablets, that
addresses the above shortcoming. We define four secure primitives
and use them in Tabellion to introduce self-evident contracts, the
validity of which can be verified by independent inspectors. We
show how these primitives can be implemented securely in the
Trusted Execution Environment (TEE) of mobile devices as well as
a secure enclave in a centralized server, all with a small Trusted
Computing Base (TCB). Moreover, we demonstrate that it is fea-
sible to build a fully functional contract platform on top of these
primitives. We develop ~15,000 lines of code (LoC) for our proto-
type, only ~1,000 of which need to be trusted. Through analysis,
prototype measurements, and a 30-person user study, we show that
Tabellion is secure, achieves acceptable performance, and provides
slightly better usability than the state-of-the-art electronic contract
platform, DocuSign, for viewing and signing contracts.

CCS CONCEPTS

« Security and privacy — Mobile platform security; Trusted
computing; Virtualization and security; Operating systems
security; Authentication; Biometrics; « Applied computing
— Law; « Networks — Time synchronization protocols.

KEYWORDS

legal contract, electronic contract, electronic signature, mobile de-
vice, trusted computing, Trusted Execution Environment (TEE)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7954-0/20/06...$15.00
https://doi.org/10.1145/3386901.3389027

Microsoft Research
Sharad.Agarwal@microsoft.com

220

Law, UC Irvine
skim@law.uci.edu

ACM Reference Format:

Saeed Mirzamohammadi, Yuxin (Myles) Liu, Tianmei Ann Huang, Ardalan
Amiri Sani, Sharad Agarwal, and Sung Eun (Summer) Kim. 2020. Tabellion:
Secure Legal Contracts on Mobile Devices. In The 18th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys °20), June
15-19, 2020, Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3386901.3389027

1 INTRODUCTION

Forming contracts electronically is desirable in many transactions,
including real estate sales and leases, venture capital investments,
and work for hire, due to its significant convenience compared to
traditional methods. Not surprisingly, the global market for elec-
tronic signatures and contracts is predicted to grow significantly in
the next couple of years. One report estimates the market to grow
to $4.01 billion by 2023 from $844.7 million in 2017 [9]. Another
report estimates the market to grow to $3.44 billion by 2022 from
$517 million in 2015 [22]. The unfortunate COVID-19 outbreak
in 2020 and the resulting social distancing approach deployed to
combat it has further accelerated the use of electronic signatures
and contracts [77].

As a result of this growth, many electronic contract platforms
have emerged [11, 18, 20, 23, 28, 32, 33]. While these platforms are
convenient to use, unfortunately, they have an important shortcom-
ing: they do not provide strong evidence that a contract has been
legally and validly created (as defined by the law of contracts). More
specifically, they do not provide strong evidence that the signatures
are authentic, that there was mutual assent, and that the parties
had an opportunity to read the contract. As an example, in a recent
US court case [6], the court was unconvinced that an electronic
signature performed with DocuSign [18] was adequate as it could
be manipulated or forged with ease.

In this paper, we present a system solution to provide strong evi-
dence (i.e., hard-to-fabricate and hard-to-refute evidence) for the legal
and valid formation of a contract on mobile devices. Our system,
called Tabellion!, leverages the Trusted Execution Environment
(TEE) on mobile devices and an SGX enclave in a centralized server.
Doing so, however, raises four research questions that we answer
in this paper.

Q1. How can the contract platform provide strong evidence for all
the requirements of a legal contract? We answer this question in
three steps. First, we introduce four secure primitives, three for

!Merriam-Webster dictionary defines tabellion as (1) “a scrivener under the Roman
Empire with some notarial powers,” and (2) “an official scribe or notary public especially
in England and New England in the 17th and 18th centuries”


https://doi.org/10.1145/3386901.3389027
https://doi.org/10.1145/3386901.3389027

MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

client devices (secure photo, secure timestamp, and secure screen-
shot) and one for the centralized server (secure notarization). These
primitives can be used to generate strong evidence for a legal and
valid contract. Second, we introduce a secure contract protocol
to use these primitives to form a contract. Finally, we introduce
self-evident contracts, which contain all the required evidence for
the legal and valid formation of the contract. That is, each user, and
if needed, the court or an adjudicator, can independently verify the
contract compliance with applicable law requirements.

Q2. Can the aforementioned primitives be realized securely, i.e.,
with a small Trusted Computing Base (TCB)? Having a small TCB
for the secure primitives is important as it makes them less prone
to software bugs (which can get exploited by attackers), and hence
makes the evidence they help generate stronger. Moreover, a smaller
code base can be easily inspected for safety and even certified. We
show that these seemingly complex primitives can be implemented
with ~1,000 LoC (out of ~15,000 LoC that we developed in our
prototype). To achieve this, we introduce several novel solutions
including a solution to secure the camera photo buffer, a delay-
resistant Network Time Protocol (NTP), and a solution to secure
the framebuffer.

Q3. Given that a contract platform provides complex functional-
ities, e.g., contract viewing, contract submission, and negotiations,
can a fully functional platform be realized using the aforementioned
primitives and protocol? We answer this question positively and
build a fully functional contract platform on top of these primitives
and protocol. We discuss how we address several challenges in re-
alizing the required functionality without adding any more trusted
code. Indeed, we show that Tabellion’s design enables us to add
a capability, called negotiation integrity tracking, that no existing
platform supports.

Q4. Does Tabellion provide strong protection against attacks on
a legal contract? We answer this question positively in two parts.
First, we define the set of possible attacks on a contract platform
including repudiation attacks, impersonation attacks, and confu-
sion attacks. Second, we evaluate the security of Tabellion using
a detailed security analysis and show that Tabellion can provide a
strong defense against these attacks.

We design and build Tabellion for a mobile-first world where
contracts are executed on smartphones and tablets. It is becoming
more common to use mobile devices to sign contracts such as mort-
gages, vehicle leases, and bank loans [46, 67, 75, 76]. Indeed, signing
contracts on mobile devices is believed to be the “the future of loans
and mortgages” according to a recent study [67]. We leverage the
latest mobile research technologies, including the use of TEE and
secure biometric sensors now available on modern devices.

We implement Tabellion on a HiKey development board as it
allows us to program the TEE (based on TrustZone and virtualiza-
tion hardware). While necessary for performance measurements
and security analysis, we cannot effectively use this board for a
user study and energy measurements. Therefore, we build a second
prototype of Tabellion on real mobile devices for that part of the
evaluation. Since the TEE on these devices is not yet programmable
by non-vendors, we emulate the secure primitives in Tabellion’s
application.

221

Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

We extensively evaluate Tabellion. We measure the time it takes
to carry out various steps of the contract. We show that the ex-
ecution time of these operations in Tabellion is in the order of
several seconds (20 to 35 seconds for very large contracts), which is
small enough for a good user experience. We also show that using
Tabellion does not consume a noticeable amount of energy. Finally,
we evaluate the usability of Tabellion with a 30-person user study.
We show that, compared to DocuSign (the state-of-the-art elec-
tronic contract platform today), Tabellion provides slightly better
convenience (for contract viewing and signing), readability, and
understanding of the contract. It also enables the users to read and
sign the contracts slightly faster. This demonstrates that improved
security in Tabellion does not come at the cost of usability.

2 BACKGROUND

The law of contracts enumerates several requirements for the cor-
rect formation of a contract between an offeror and an offeree [45].
Some requirements are beyond the scope of Tabellion as they are
concerned with the content of the contract or with the circum-
stances of the parties involved. For example, the law of contracts
requires consideration, which states that the contract must repre-
sent “bargained for” exchange by both sides of a contract [45]. As
another example, the law requires that the parties have not signed
the contract under duress and that the parties have legal capacity
(e.g., they are of legal age at the time of assent) [45].

There are, however, key requirements that are related to the
contract platform. One key requirement in the case of contracts
that are required to be in writing and signed is signature attribution,
i.e., that a signature is an authentic signature of the party being
charged. Another key requirement is mutual assent, which requires
that the two parties agree to the same contract. Mutual assent has
clear conditions in the law: (i) there is an offer from the offeror, (ii)
there is an acceptance by the offeree, (iii) there is no revocation of
the offer from the offeror before the acceptance by the offeree,
and (iv) there is no rejection or counter-offer from the offeree
before acceptance [45]. In case of a counter-offer by the offeree, this
counter-offer is considered a fresh offer, which may be accepted or
rejected by the other party.

Another requirement is that a party has had an opportunity to
read a contract. However, it is not a requirement that a party has ac-
tually read the contract. In the case of O’Connor v. Uber Technologies,
Inc. [5], the plaintiffs asserted that there was no valid agreement
because it was displayed on “a tiny iPhone screen when most drivers
are about to go on-duty and start work.” The court rejected that argu-
ment because “for the purposes of contract formation, it is essentially
irrelevant whether a party actually reads the contract or not, so long
as the individual had a legitimate opportunity to review it.”
Electronic contracts. The Uniform Electronic Transactions Act
(UETA) and the Electronic Signatures in Global and National Com-
merce (ESIGN) Act permit the use of electronic signatures and
contracts. ESIGN states that: “a signature, contract, or other record
relating to such transaction [any transaction in or affecting interstate
or foreign commerce] may not be denied legal effect, validity, or en-
forceability solely because it is in electronic form” [1]. This means the
courts would not reject a contract simply on the basis of it being
signed electronically. However, it is up to the contract platform



Tabellion: Secure Legal Contracts on Mobile Devices

designer to provide a secure solution—one that can be effectively
defended in courts. For example, simply printing a contract, signing
it using a wet signature, and scanning it does not provide strong
evidence for attribution as it is easy to copy/paste (or even forge)
the scanned signature. While no platform can guarantee that its
contracts will be legally valid with certainty, a platform can increase
the odds of success by providing strong and secure evidence for the
correctness of its contracts.

Legal cases on electronic contracts. We next discuss a few le-
gal cases to demonstrate the shortcomings of existing electronic
contract platforms. First, existing platforms do not provide strong
evidence for signature attribution. For example, in In re Mayfield, a
recent California bankruptcy case [6], the court was unconvinced
that an electronic signature created using DocuSign was adequate
as it could be manipulated or forged with ease, stating: “This brings
the court to another important problem with Counsel’s arguments:
they do not address the ease with which a DocuSign affixation can
be manipulated or forged. The UST [United States Trustee] asks what
happens when a debtor denies signing a document and claims his
spouse, child, or roommate had access to his computer and could have
clicked on the ‘Sign Here’ button.”

Second, existing platforms have failed to provide evidence that
the parties agreed to the same contract. For example, in the case of
Adams v. Quicksilver, Inc. [4, 10], the plaintiff challenged the validity
of an arbitration agreement: “The system provided no audit trail for
the signing process, though, so it couldn’t be determined when the
agreement was signed.”

Third, existing platforms do not provide evidence that the parties
had an opportunity to read the contract. This is evident in the case
of Labajo v. Best Buy Stores [3, 62]: “When Christina [the plaintiff]
accepted the free subscription, she signed an electronic signature pad
at Best Buy [the defendant]. Christina claimed that there was no
disclosure telling her she would be charged for the magazine. But
whether or not there was disclosure doesn’t matter. What matters is
the fact that Best Buy couldn’t prove that she saw and approved the
disclosure.”

3 ATTACKS ON LEGAL CONTRACTS

We define potential attacks on a legal contract system by either a
malicious offeror or a malicious offeree.

Repudiation attack®. In this attack, either the offeror or offeree
denies having agreed to the contract (when in fact they did). This
attack can come in three different forms. First, one party may deny
having legally signed* the contract. Second, an attacker may deny
mutual assent. That is, the parties might disagree on the terms
of the contract or on the version of the contract they signed as a
result of negotiations (i.e., counter-offers followed by revisions).

2We note that in this case, the court was unwilling to accept software-generated
electronic signatures as substitutes for wet signatures due to the California bankruptcy
court’s local rules of practice. As mentioned, the ESIGN Act provides that a signature
cannot be rejected solely because it is in electronic form. However, that provision of
the ESIGN Act does not apply to “court orders or notices, or official court documents.” [1]
3This is different from the concept of repudiation in the law of contracts, which refers
to actions demonstrating that one party to a contract refuses to perform a duty or
obligation owed to the other party.

4There are two types of signatures in our context. We use “legal signature” or “electronic
signature” to refer to a user’s assent to a contract, and “cryptographic signature” or
“digital signature” to refer to a computer-generated hash that is signed by a private
key.

222

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

TCB

N\ f—_C AN
Tabellion’s client == Tabellion’s server
=
(=]
Secure Tabellion app User registration
time
server

Contract rendering

Operating system

Negotiation helper

Prim. |: secure photo | Contract verification

Prim. II: secure timestamp

I Prim. 1V: secure notarization
Intel SGX enclave

Prim. lll: secure screenshot
Trusted Exec. Environ. (TEE)

Figure 1: The client and server in Tabellion.

Moreover, the offeror may claim to have revoked the offer before
acceptance by the offeree or the offeree may claim to have rejected
or countered it before acceptance. Third, the offeree may claim that
they were not given an opportunity to read the contract.
Impersonation attack. In this attack, one party attempts to im-
personate someone else and sign a contract on their behalf. There
are two forms of this attack. First, the attacker spoofs the victim’s
authentication on the victim’s device. Second, attacker spoofs the
victim’s identity.

Confusion attack. In this attack, the offeror attempts to fool the
offeree into legally signing a contract different from what the offeree
thinks they are legally signing. To perform this attack, an attacker
needs to target and/or compromise the contract viewer on the
offeree’s device in order to misrepresent the contract to the offeree.
In one special form of this attack, called the Dali attack [40, 41,
70], the attacker submits a file for the contract in an interpreted
document format (e.g., PDF) with dynamic content, which shows
different content on the offeror’s and offeree’s devices.

4 TABELLION: PRINCIPLES AND DESIGN

We present Tabellion, a legal contract platform that provides strong
evidence for the legal formation of a contract. Note that while we
focus on two-party contracts for clarity, Tabellion can similarly
handle multi-party contracts. Tabellion comprises two components:
a client that runs on the mobile devices of the offeror and the of-
feree, and a centralized server that mediates the contract formation.
Figure 1 illustrates these two components. Each incorporates some
code in their TCB to implement the required secure primitives.
Each also incorporates a large amount of untrusted code to imple-
ment the functionality needed to form a contract. In this section,
we introduce the primitives (§4.1), discuss the contract formation
protocol (§4.2), the resulting self-evident contract (§4.3), and the
contract verification process (§4.4).

4.1 Secure Primitives

Based on the requirements of a valid and legal contract, we define a
set of secure primitives to generate strong evidence for the contract.
Primitive I. Tamper-proof camera-captured photo (i.e., se-
cure photo). Signature attribution in written agreements requires



MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

evidence of the identity of the signatory. Photos taken of the user
can provide such evidence. Indeed, several existing identity-based
systems, such as Voatz [34], capture photos and videos of the user
and use them for identification. We define photos as the main prim-
itive since videos are simply a collection of photos.

The key property of this primitive is that the photo must be
captured by the camera hardware as opposed to being fabricated by
software. The other property of this photo is that the photo must
be tamper-proof after capture. We achieve these by reading the
photo directly from the camera in the TEE and by cryptographically
signing the photo. For the latter, we use a per-user per-device
private key, which is generated in the TEE once the user registers
with Tabellion on a mobile device (discussed in §4.2).

Primitive II. Tamper-proof global timestamp (i.e., secure ti-
mestamp). The mutual assent requirement of the law of contracts
requires evidence of both an offer and an acceptance of that offer.
Moreover, one needs to show that there was no revocation of the
offer from the offeror before the acceptance by the offeree and that
there was no rejection or counter-offer from the offeree before
acceptance. To achieve this, we require the client devices to be
able to attach a global timestamp, e.g., a timestamp with respect
to a global clock, to each action (i.e., offer, acceptance, revocation,
rejection, and counter-offer). The timestamps must be tamper-proof.
That is, an attacker should not be able to spoof or modify them.
We achieve this using a novel clock synchronization protocol that
allows the TEE on the device to securely synchronize its clock with
a trusted time server.

Primitive III. Tamper-proof user-confirmed screenshot (i.e.,
secure screenshot). The requirement of having the opportunity
to read a contract in the law of contracts requires evidence of the
contract having been presented to the offeree. We use screenshots
of the contents displayed on the client device to achieve this goal.
However, not all content displayed on the device is seen by the
user. Therefore, we ensure that the user confirms seeing the content
captured in the screenshot. We also ensure that the screenshots are
tamper-proof.

To achieve these, we ask the user to authenticate with the system
in order to confirm seeing the displayed content. Upon successful
authentication, we use the aforementioned per-user per-device
private key to cryptographically sign the screenshot. Note that it
is critical that the acts of seeing the content on the display and
providing authentication are atomic. If not, an attacker can show
some content to the user but have the user unknowingly confirm
seeing a different content.

Different authentication solutions can be used. We use biometric

authentication, e.g., fingerprint authentication, as it is easy to use, is
available on most modern mobile devices, and has high accuracy [2,
29].
Primitive IV. Secure notarization of the contract. This primi-
tive securely connects all the evidence in a contract together so that
the evidence cannot be maliciously deleted or reused for another
contract, and so that new evidence cannot be added to a contract
after it is finalized. We achieve these goals with a secure enclave in
Tabellion’s server, which acts as a notary by binding all the evidence
together and cryptographically signing them.

223

Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

Tabellion’s  Tabellion’s Server  Tabellion’s
Offeror Client s Client =, Offeree
- lE -
Secure Secure St
photo Register Register } photo ep
(Primitive 1) (Primitive 1) !
Mutual identification Mutual identification Step
n
Submit contract
Sync clock Contract rendering
(Primitive 1), Send contract
view, &
legally sign | [Send cypto. signed screenshots|
(Primitive Ill) Send contract Syncclock  Step
(Primitive Il), = gy
_____ Negotiations _ _ _ _ |, ____Negotiations _ _ ___||view. &
legally sign
Send crypto. signed screenshotg | (Primitive I1f)
}Notarize (Prim. IV) & verify Step
v
Notify & release contract Notify & release contract

Figure 2: Tabellion’s contract formation protocol.

4.2 Contract Formation Protocol

Figure 2 illustrates the four steps of the protocol.

Step I: Registration. Both the offeror and offeree first register
with Tabellion. In this step, Tabellion’s client uses Primitive I to
take a photo of the user. It then sends the cryptographically signed
photo to the server. The client also sends some additional informa-
tion to the server, which is needed for self-evident contracts (§4.3)
including the device TEE certificate and the measurement of the
TEE code (which is the certified hash of the TCB code).

The user needs to register with Tabellion once upon installation
on a new device. During registration, the client TEE creates a per-
user per-device key pair. It uses the private key of this pair to sign
the user’s photo (Primitive I) and uses the same key later to sign the
screenshots captured of the content of the contract (Primitive III).
It also sends the public key to Tabellion’s server for verification.

The TEE code uses biometric-based authentication for the use of
the key. That is, the user has to use their biometric (e.g., fingerprint)
to confirm the securely captured photo and/or screenshot so that
they are signed by the TEE. This strongly binds the user’s photo
and the confirmed screenshots to each other. That is, if a screenshot
and a photo are signed with the same per-user per-device private
key, one can conclude that the person in the photo confirmed and
signed the contract in the screenshots (see §8.2 for a discussion of
impersonation attacks and Tabellion’s solutions).

Note that, instead of using a separate registration phase, it is
possible to securely capture the user’s photo for each contract or
even for each page in the contract that the user confirms. However,
this approach would impose a usability burden.

Step II: mutual identification. When the offeror requests Tabel-
lion to initiate the process of forming a contract with the offeree,
Tabellion asks the two parties to confirm each other’s identities. To
initiate a contract, the offeror names the offeree using a unique iden-
tifier, e.g., an email address registered with Tabellion. At this point,
Tabellion asks the offeree whether they are expecting a contract
from a named offeror (e.g., using an email address as the identifier).
Once approved by the offeree, Tabellion uses the aforementioned
securely-captured photos of the two parties to show to them. To
ensure privacy, Tabellion does not exchange the photos before both



Tabellion: Secure Legal Contracts on Mobile Devices

parties approve having the intention of forming a contract with
each other.

Step III: Legally signing a contract. In this step, the offeror first
submits a contract to the server, which sends it to both parties to
collect their legal signatures. Tabellion’s server renders the contract
into its own customized format, as described in §6.1, before sending
it to the parties. The server also sends the certificate of the notary
enclave to both parties so that they can include it in their signed
screenshots (needed to prevent reuse of the screenshots). To legally
sign the contract, Tabellion’s mobile application first asks the TEE
to use Primitive II to synchronize its clock (which will be needed
to generate secure timestamps). It then uses Primitive III to display
the contract to the user page by page and capture screenshots
of content seen on the display. Note that this step may involve
negotiations between the parties as discussed in §6.3. Finally, the
application shows a special last page to each of the users that
explicitly asks them to assent to (and hence sign) the contract
(again using Primitive III).

Step IV: Notarizing the contract. Tabellion’s server uses secure
Primitive IV to cryptographically sign the contract as well as all
the collected evidence. It then verifies the contract and releases it
to both parties.

4.3 Self-Evident Contracts

Contracts in Tabellion are self-evident. That is, each user, and if
needed, the court or an adjudicator, can independently verify the
contract compliance with applicable law requirements.

A contract in Tabellion is formulated as

{ U ({Photoy}™™, (Puy}P ™, CertDy, MeasureDy,

U€users

U ({Screenshoti,u,tsi’U,CertN}PrU)),
iepages
Certy,Measurey, tsy}™™
where {A}P" indicates that A is cryptographically signed by private

key Pr,and J (...)and (J (...) represent union of users
Ueusers iepages

and contract pages, respectively.

The formula shows the components of a contract. {Photoy}
is the photo captured using Primitive I, where U denotes either the
offeror or the offeree. The photos are signed by the corresponding
party’s per-user per-device private key (Pry). To verify this key,
the contract also includes the corresponding public key ({Puy}™™),
which itself is certified by a device-specific private key in the party’s
corresponding device TEE (PrDy), and hence the contract also in-
cludes the certificates of the device TEEs of the two parties (CertDy).
The device TEE certificate is simply the public key of the device
certified by the device vendor. More specifically, this is the device-
specific ARM TrustZone certificate [30]. The contract also includes
the measurements of the TEE code in the devices of the two parties
(MeasureDy). These measurements let the verifier know what soft-
ware was running in the TEEs and are signed by the aforementioned
device-specific keys.

The next components are the screenshots collected from the
parties. The number of screenshots from each user can be different
as the contract may be formatted differently for each user (§6.1). A

Pry

224

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

signed screenshot also includes a timestamp captured with Prim-
itive II (ts;,y), highlighting when the screenshot was confirmed
by the user (as we discuss in §5.2, the timestamp comes with a
confidence interval). It also includes the certificate of the notary
(Certy). The latter is to ensure that each signed screenshot can
be used for one contract only. Without it, an attacker may take a
screenshot from a contract signed by a victim and try to include
that in a different contract by the same victim.

The last couple of components are related to the notary. This
includes the certificate of the notary, which is the certificate of the
Intel SGX enclave [24]. It also includes the measurement of the code
in the enclave code (Measurey) and the time of notarization (tsy).
Finally, the contract is signed by the notary’s private key (Pry).

4.4 Contract Verification Process

In Tabellion, one can verify the contract compliance with applica-
ble law requirements as follows. To verify signature attribution,
one needs to check that the same per-user per-device private key
(Pry) is used to sign the photo ({Photoy}P™) and the screenshots
({Screenshot; y, ...JPT0). Moreover, as described in §8.2, in Tabel-
lion, we require a certain gesture to be performed in the photo to
detect awareness. Therefore, one needs to check the presence of
this gesture too.

To verify mutual assent, one needs to (i) check the content of
the contract screenshots (Screenshot; y) of the two users to make
sure they both have the same content and (ii) check the timestamps
of the screenshots (ts; y), which include negotiations details (§6.3),
to verify the order of the actions.

To verify that parties had an opportunity to read the contract,
one needs to check that all contract pages are signed with the
per-user per-device private key ({Screenshot; y, ...}"™).

In addition, one needs to perform several more correctness
checks. More specifically, one needs to check the public key of
each user (Puy), to make sure all the cryptographic signatures by
the clients are valid; check the certificate of the devices (CertDy), to
make sure that the users used a device verified by its vendor; check
the certificate of the notary (Certy), to make sure a real enclave
was used for notarization; check the software measurements of the
device TEEs and the notary (MeasureDy and Measurey), to make
sure they used the expected code; check the inclusion of the notary
certificate in the signed screenshots ({..., Certy}Pv), to make sure
the screenshots were not reused from another contract; check the
notarization timestamp (tsy), to make sure it is larger than the
timestamps of all screenshots; and check the notary signature on
the contract (Pry), to make sure the contract is correctly sealed.

5 SECURE REALIZATION OF PRIMITIVES

Tabellion’s self-evident contract assumes secure and untampered
execution of the primitives. Therefore, it is critical to implement
these primitives with a small amount of code so that their TCB
remains small. A small TCB makes the primitives less prone to
software bugs (which can get exploited by attackers). Moreover,
a smaller code base can be easily inspected for safety and even
certified. Table 1 shows that, while Tabellion needs a large amount
of code (~15,000 LoC) to implement all of its functionality, the size
of trusted code is small (~1,000 LoC). In this section, we discuss



MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

Tabellion’s Trusted Code Untrusted Code

Component | Component | Size | Component | Size
Primitive I 166

. Primitive II 104 .

Client Primitive Il | 80 Mobile App | 9919
Shared 291

Server Primitive IV | 185 | Rest 4180

Combined 826 14099

Table 1: Tabellion’s trusted and untrusted code size. The
sizes are reported in LoC. We count the lines of the code we
added, but not the existing code, e.g., TEE OS or Android li-
braries.

Tabellion’s client Tabellion’s client

Operating system Operating system

Camera device driver Display device driver

[ [

1 I
Primitive |: secure photo I I Primitive I1l: secure screenshot

TEE TEE
? No write access until TEE R
signs oS Copy: Secure !
| Photo buffer | Lframebuffer | framebuffer
T DMA write DMA read

| |

Figure 3: (Left) Secure realization of Primitive I. (Right) Secure
realization of Primitive IIL

l Camera hardware Display hardware I

some of the important challenges we faced and solved to achieve
this goal.

5.1 Primitive I: Secure Photo

Challenge. One straightforward way to implement this primitive
is to exclusively control the camera in the TEE (a feature supported
by ARM TrustZone). In this case, the TEE can directly take the
photo and sign it. Unfortunately, this approach significantly bloats
the TCB as it requires moving the camera device driver to the TEE.
For example, in the Nexus 5X smartphone, the size of the camera
driver is 65,000 LoC.

Solution. Our key idea to solve this problem is for the TEE to
protect the camera photo buffer (rather than the whole camera
driver) in memory from the time that the camera is about to capture
the photo until when it is cryptographically signed. To protect
the camera photo buffer, Tabellion write-protects the buffer pages
before the camera device populates them with the photo data using
Direct Memory Access (DMA). Moreover, to prevent the untrusted
OS from storing a fake image in the camera photo buffer before
protection, Tabellion zeroes out the buffer right after protection.
Figure 3 (Left) illustrates this solution.

We implement two APIs in the TEE for this purpose. The applica-
tion calls the normal OS photo capture API and the OS kernel uses
the TEE API to capture a secure photo and returns it to the appli-
cation. The kernel calls the first API, prepare_photo_buffer, to
register a memory buffer to be used for secure photo capture. This
API takes one argument, photo_buf_paddr, which is the physical
address of the photo buffer in the OS physical address space. This

225

Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

API write-protects the buffer and zeroes out its contents. The kernel
then waits for the camera hardware to populate this buffer through
DMA. Next, the kernel calls the second API, show_photo_buffer,
which displays the photo on the screen. Finally, the kernel calls
the third API, sign_photo_buffer, which waits for the user to
confirm the photo on the screen, and then cryptographically signs
the photo and returns it using shared memory.

Note that to protect against the attacker using another DMA-
enabled device to write to the photo buffer, Tabellion can use IOM-
MUs available in ARM SoCs, similar to SchrodinText [36].

5.2 Primitive II: Secure Timestamp

The TEE needs to be able to use a secure clock synchronized with
a global clock. Network Time Protocol (NTP) is a popular protocol
that can be used for clock synchronization. For security, we assume
and use an integrity-protected channel (i.e., signed messages) to
communicate with a secure NTP server, such as [14], to prevent a
man-in-the-middle attack, which may tamper with the messages.
This makes sure that the OS (or an attacker in the network) cannot
change the content of the messages.

Challenge. Unfortunately, this security provision is not enough
and an attacker can still mount an asymmetric delay attack. That
is, the OS (or an attacker in the network) can delay the outgoing
and incoming messages (from the TEE to the secure NTP server)
in order to tamper with NTP calculations. We next describe this
attack in more detail and then provide our solution.

In NTP, the client calculates its clock offset from the NTP server’s

clock as w where t1 and t4 are timestamps captured
by the client when it first sends a message to the NTP server and
when it receives a response, and t, and t3 are the timestamps
captured by the NTP server when it first receives a message from
the client and when it sends a response (which sends t; and t3 to the
client). This offset can then be used to synchronize the client clock.
The NTP protocol assumes that the time to send a message from the
client to the NTP server is the same as the time to send a message
from the server to the client (hence the divide by two). An attacker
can inject an asymmetric delay into one of these messages, e.g.,
using a compromised OS on the client or a compromised network
link, in order to tamper with the calculated offset.
Solution. To address this challenge, Tabellion uses a novel secure
clock synchronization strategy, built on top of NTP, which we call
delay-resistant NTP. Our solution defeats the asymmetric delay
attack by calculating a confidence interval, which represents the
maximum and minimum possible offsets assuming arbitrary delay
in any of the messages. Tabellion tags each action with its times-
tamp and confidence interval. For mutual assent, in addition to
ordering the timestamps, Tabellion’s contract verification requires
that confidence intervals be non-overlapping.

To calculate the interval, we assume two extreme cases, one
where only the request from the client to the NTP server forms the
full round trip time (and the response takes no time) and one vice
versa. It is possible to show that of fsetpax =max(ts — tg,to — tq)
and of fsetpin = min (t3 — t4, to— t1). Therefore, the confidence
interval (ci) is calculated as ci = |(t3 — t4) —(t2 — t7)].

We add two APIs to the TEE for this primitive. They allow the
application to initiate the protocol and to communicate with the



Tabellion: Secure Legal Contracts on Mobile Devices

NTP server. The application calls the first API, sync_clock_init,
to initiate the protocol. This API returns a nonce from the TEE
(used to protect against replay attacks). The application then for-
wards the nonce to the NTP server and forwards the response
from the NTP server to the TEE with a call to the second API,
sync_clock_complete. This API takes one argument, server_ts,
which is a shared buffer for passing the two server timestamps in
NTP protocol and the server’s signature (RSA with a 1024 bit key).

Note that in addition to a secure synchronization mechanism,
the TEE needs a secure hardware timer to keep track of time after
synchronization. For that, we use a secure hardware timer available
in TrustZone.

5.3 Primitive III: Secure Screenshot

Challenge. The TEE needs to securely capture the content on the
display. A straightforward approach to achieve this is to give ex-
clusive control of the display subsystem to the TEE. Unfortunately,
doing so requires moving the display subsystem driver to the TEE,
which on the HiKey board, encompasses at least 8,000 LoC. This
bloats the TCB.

Solution. Our key idea in Tabellion is to secure the buffer used
for displaying content (i.e., framebuffer) in the TEE rather than
the whole display software stack. At a high-level, the primitive is
realized as follows. When invoked, the TEE freezes the framebuffer,
not allowing any more updates. It then waits for the user’s authen-
tication using biometrics. Once the user confirms, the TEE signs a
copy of the framebuffer and unfreezes it. This process guarantees
that the displayed content and the authentication are atomic.

Disallowing updates to the framebuffer can break the display
stack in the OS. Therefore, the TEE copies the contents of the
framebuffer to a newly generated framebuffer (i.e, secure frame-
buffer), which is only accessible in the TEE. It then shows the secure
framebuffer on the display by programming its address into the
memory-mapped display controller register that holds the address
of the framebuffer. Furthermore, to prevent a compromised OS from
overwriting this register (in order to use a different framebuffer),
Tabellion also removes write permission from the corresponding
register page of the display controller. With this solution, the OS
is allowed to update its own framebuffer but doing so does not
change the content shown on the display. Upon unfreezing the dis-
play, Tabellion points the display controller back to the untrusted
framebuffer and enables writes to the aforementioned display con-
troller register. Figure 3 (Right) illustrates this approach.

Note that when the TEE removes the permission of the above
register page, any write to this register page of the display controller
would fault. Indeed, there are other registers on the page as well,
all of which will be write-protected. To avoid these faults, we made
minimal changes to the display controller driver in the OS to skip
the writes while the display is frozen.

To provide this primitive, the TEE exposes three APIs. It expects
the application (through the OS) to call these APIs. First, to show
a contract page, the application displays the page and then makes
a call to TEE’s freeze_framebuffer, which freezes the framebuffer
showing the contract page. The TEE waits for the user’s confir-
mation using biometrics. Note that in commodity mobile devices,

226

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

biometric devices are controlled in the TEE [16], therefore, we as-
sume so in our design. Once the user confirms, the application
makes a call to the second AP, sign_framebuffer, which captures a
screenshot in the TEE and cryptographically signs it, appending
the secure timestamps and the notary certificate passed with the
APL This API takes the notary certificate as input and returns the
signed framebuffer using shared memory. Finally, the application
makes a call to the third API, unfreeze_framebuffer, which unfreezes
the framebuffer.

As one last provision, we require each page shown through this
primitive to stay on the display for a minimum of 2 seconds. This
prevents a user from confirming a page by mistake without having
enough time to read it.

5.4 Primitive IV: Secure Notarization

Challenge. Collecting one piece of evidence poses a challenge
for the notary. Specifically, at the time of notarizing the contract,
the notary enclave does not know for certain whether the offeror
has revoked the offer or not. The law of contracts recognizes the
offeror’s right to revoke the offer as long as it is not signed by the
offeree and this revocation is otherwise permitted under the terms
of the offeror’s offer. For example, the offeror might have revoked
the offer 5 minutes prior to the offeree legally signing the contract
(hence not satisfying the requirement of mutual assent), but the
revocation evidence might not reach the notary in time.
Solution. To address this problem, the enclave requires a confir-
mation from the offeror that there have been no revocations, and
if there has been one, it requires the secure screenshot confirming
that. The enclave, through the rest of the server code, inquires about
any pending revocations in the offeror and waits until it receives
the response.

Note that this solution, while secure, might cause a practical
problem. That is, no response from the offeror’s device can stall
the notarization of the contract indefinitely. To prevent indefinite
blocking, a possible approach is to wait for no longer than a config-
urable period of time, e.g., 24 hours. This allows the offeror’s device
to send the response in most practical cases.

6 FULLY FUNCTIONAL PLATFORM

The secure primitives that we design and build for Tabellion, while
effective in providing strong evidence for the contract, pose chal-
lenges for building a fully functional contract platform. We discuss
all the challenges we faced and solved by developing ~14,000 un-
trusted lines of code in our client and server.

6.1 Readable Contracts

Challenge. Contracts are often in PDF or Word formats, with each
page containing a large amount of text. When viewed on the display
of a mobile device, users need to continuously pinch and zoom to
fully view the content. Doing so creates challenges for the use of
Primitive III (secure screenshot) to capture all the content seen by
the user.

Solution. We solve this problem by providing a service in Tabel-
lion’s server that renders the contract into a readable one when
viewed fullscreen on the mobile device of each user. This service
accepts a contract in an intermediate format (Markdown language



MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

in our prototype). It generates the contract pages specifically for
the screen sizes of the mobile devices used by the offeror and the
offeree. Moreover, the service follows some formatting guidelines
for the rendered document to make sure the content is easily read-
able. These guidelines include adequate line spacing, margins, clear
background color, and font colors. Indeed, it is possible to add a
feature to the service so that it can apply user-specific requests,
e.g., a font size larger than the default one. In addition, the server
clearly marks every page with a page number, which helps verify
the presence of all required screenshots in the contract.

We note that contract rendering in the server is not part of the
TCB of the system. This is because Tabellion asks the user to read
through and sign the generated contract.

6.2 Contract Submission

Challenge. As mentioned, Tabellion’s contract generator receives
the contract in an intermediate format, such as Markdown. This
creates a burden for the offeror, who may prefer another format to
prepare the contract in.
Solution. To address this problem, we provide a mostly-automatic
converter. More specifically, we allow the offeror to submit the
contract in PDF format. Our converter then extracts the content
from the PDF file and converts it to a mobile app UI page with
explicit headers and text sections. The offeror is then allowed to
review the extracted content and edit it, if needed. Once finalized,
the converter produces a Markdown file and sends it to the server.
Figure 4 shows this solution with an example.

We do, however, note that our prototype cannot currently handle
complex PDF pages (i.e., those with images and tables). We leave
addressing this limitation to our future work.

6.3 Contract Negotiations

Challenge. When parties negotiate and vary the terms of a con-
tract, the parties will need to mutually assent to the new terms if
they are materially different from the terms of the original con-
tract. In order to demonstrate mutual assent, one needs to provide
evidence of these negotiations. Unfortunately, creating an out-of-
bound channel to allow the parties to perform negotiations, e.g.,
messaging apps or email, require other primitives to securely cap-
ture the negotiations.

Solution. We have implemented a fully-functional negotiation in-
terface in Tabellion using the existing primitives. To achieve this,
our Tabellion application allows the offeree to enter a comment on
the offer. The application then shows the comment on a new UI
page to the offeree and asks them to confirm the comment, similar
to how they confirm seeing a contract page. Tabellion then uses
Primitive I to capture a confirmed screenshot of the revision re-
quest and includes it in the contract. Finally, this revision request is
shown to the offeror, who can revise the contract and submit again,
using the Android UI page described earlier and seen in Figure 4
(Middle). Note that the details of negotiations can be easily verified
in a Tabellion contract by inspecting the confirmed screenshots
of the contract pages and the revision requests along with their
timestamps.

Opportunity. The combination of the previous three solutions
has enabled us to add an important capability to Tabellion that

227

Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

427 ® vio Page 1/3

PERSONAL
PROPERTY
RENTAL
AGREEMENT

1. Starting 2019-03-01, John Smith
(*Owner") is renting to Peggy
Jones (*Renter") the following (the
"Property"): A non-furnished room
with a seperate bathroom.

2. Renter must return the Property to
Owner by 2020-03-12.

3. Renter must use the Property only
for the following purpose: For

€ Tabellion

PERSONAL PROPERTY RENTAL AGREEMENT

PERSONAL PROPERTY RENTAL AGREEMENT

ting 2019-03-01, John Smith (‘Owner’) is
i (Renter') the following
oom with a

1 the Property to Owner by

st use the Property only for the

3. Ren
following purpose:

For residence.

4.The rental rate is $1100 Per month. Of the
total, $1000 is due at signing and the restis
due on the Property's return date written

residence.

4. The rental rate is $1100 Per
month. Of the total, $1000 is due
at signing and the rest is due on
the Property's return date written

5. Renter shalk (a) return the Property in the

same condition as provided, except for normal

wear and tear f applicable; (b) owe Owner fo
the Pr rty du the

period; (c) owe Owner for the full value of the
Property if itis lost or stolen during the rental
period. The Property’s estimated value is

st » the Property

NexT SAVE & BACK

Pt you

Figure 4: (Left) A contract sample in PDF. (Middle) Extracted
contract in Tabellion presented in an Android UI activity,
which allows edits. (Right) Contract rendered by Tabellion
and viewed on the device. The original contract is a single page
with small fonts, which is barely readable on a smartphone
screen in fullscreen mode. The converted contract has 3 pages
and is easily readable.

no existing platform supports: negotiation integrity tracking. More
specifically, after the offeror edits the original offer and submits it,
Tabellion’s server compares the edited contract with the old version
and identifies the contract pages that are affected by changes. It
then asks the offeree to only view and modify these edited pages.
This capability provides important usability benefits, especially
when dealing with long contracts. In today’s platforms, this is left
to the offeree. That is, the offeree can decide to view the parts of
the revised contract that they think have been updated. However,
they bear the risk of not seeing other changes added (possibly
maliciously) to the contract. Alternatively, they can re-read the
whole revised contract again, which is time-consuming, especially
if there are multiple rounds of negotiations.

6.4 Automatic Contract Verification

Tabellion’s contracts are self-evident. Yet, the verification process
is not easy and requires several checks. Therefore, to enhance the
usability of Tabellion, we provide an automatic contract verifier.
We use this verifier in our own server to verify the contract once
it is formed and before notifying the users. We note that contract
verification in the server is not part of the TCB of the system. This
is because each user can independently verify the contract as well.
Challenge. The rendering of the contract specifically for each user
creates a challenge for automatic verification. That is because the
contract pages (but not the content) might be different for each
user (e.g., different number of pages, different page dimensions,
and different font sizes). To check that both parties assent to the
same contract terms, we cannot trivially compare the two sets of
screenshots pixel by pixel.

Solution. To enable automatic verification, Tabellion’s server re-
leases some metadata alongside the notarized contract. This meta-
data includes information about the code used to render to the
contract from the intermediate language (e.g., Markdown), the con-
tract source in that intermediate language, and the format used for
each mobile device (i.e., screens size, font size, etc.). The verifier
uses the same generator code to render the contract pages from the
source to the final pages for each mobile devices (which are PNG



Tabellion: Secure Legal Contracts on Mobile Devices

images as described in §7). It then compares these rendered images,
pixel by pixel, with the contract screenshots signed by the users’
devices. If the images fully match, verification is successful.

7 IMPLEMENTATION

Tabellion’s client. We build Tabellion’s client on a HiKey LeMaker
development board. The TEE in this board is the Xen hypervisor
(version 4.7) and the OPTEE OS (version 3.3) running in ARM’s
TrustZone secure world. We implement Primitives I and III (other
than the cryptographic signatures) in the Xen hypervisor. We im-
plement cryptographic signing operations as well as Primitive II in
OPTEE. We use RSA with 2048 bit keys for digital signatures in the
client.

We note that virtualization hardware extension is available in
most of the ARM mobile SoCs that are used in current mobile
platforms and, hence, adding a hypervisor is feasible. Indeed, some
mobile manufacturers have already added a hypervisor layer for
security purposes. For example, Samsung uses a hypervisor for
real-time kernel protection as part of Samsung Knox [30].

We use a USB camera and a USB fingerprint scanner with the
board and program them in the normal world. We use Android
Open Source Project (AOSP) Nougat for the untrusted OS. The TCB
size in this prototype is the trusted code that we added (Table 1) and
the existing trusted code in TrustZone secure world and hypervisor
(which can be as low as a few tens of thousands of lines [64]).

We also provide a secondary prototype of Tabellion for commod-

ity mobile devices. We use this prototype for our user study and
for energy measurements (§9). The main difference is the imple-
mentation of secure primitives. On commodity mobile devices, we
cannot program the TEE, therefore, we emulate these primitives in
the mobile app itself. In this prototype, we use the smartphone’s
camera and fingerprint scanner.
Tabellion’s server. We process the contract in Markdown format
and generate the contract pages as images in PNG format. We also
attach instructions and page numbers to contract page (Figure 4
(Right)).

We implement the notary enclave in an Azure Confidential Com-
pute Standard DC4s VM. This VM runs on top of the 3.7GHz Intel
XEON E-2176G processor, which supports Intel SGX. We program
the enclave using the open source Confidential Consortium Frame-
work (CCF). For the measurement of the TCB and the enclave
certificate, we use the Intel SGX Data Center Attestation Primitives
(DCAP) libraries, which leverage Elliptic Curve Digital Signature
Algorithm (ECDSA). We use RSA with 4096 bit keys for digital
signatures by the notary in the enclave.

8 SECURITY EVALUATION
8.1 Threat Model

We assume that the Tabellion client’s TEE is uncompromised. We
assume that the attacker can access the victim’s device (e.g., by
stealing it) but cannot compromise its TEE. We do not trust Tabel-
lion’s application running in the user’s device. We assume that the
enclave in Tabellion’s server is uncompromised. However, we do
not trust the rest of the server components. We also assume that
the attacker cannot leverage side channels to perform side-channel
attacks on our TCB in the client TEE [59] and SGX enclave [43, 79].

228

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

We assume a secure NTP server, such as [14], with which clients
can synchronize their clocks (§5.2). We trust the hardware of mobile
devices, e.g., the camera, and the SGX feature of processors in the
server. A self-evident contract includes certificates from the mobile
device vendor (e.g., Samsung) and the enclave vendor (e.g., Intel).
We trust these vendors.

Tabellion’s prototype does not currently provide availability
or confidentiality guarantees. Lack of the availability guarantee
means that Tabellion’s services, e.g., the registration service, may
not to be available to users or that a contract signed with Tabellion
may be lost. Lack of the confidentiality guarantee means that an
attacker can access the content of a contract. These guarantees can
be provided using existing solutions, e.g., encryption.

8.2 Security Analysis

We next analyze various attacks introduced in §3 and discuss whether
they would succeed or fail against Tabellion.

Repudiation attack. We introduced three forms of this attack. In

the first form, the attacker denies the signature. This would fail

against Tabellion as the contract provides the photo of the user,

signed with a key, which is authenticated with the user’s biometrics

and which also is used to confirm the contract pages. Moreover,

the validity of the key can be verified by inspecting its certificate

and the certificate of the mobile device. In the second form, the

attacker denies mutual assent. This would fail as the screenshots

confirmed by the user clearly show the contract and negotiation

terms. Moreover, all screenshots are securely timestamped, which

provides strong evidence of the order of actions. In the third form,

the attacker denies that there was an opportunity to read the con-
tract. This would fail as the contract includes signed screenshots of

all the content viewed and confirmed by the user.

In addition, in either of these attack forms, the attacker may deny

the strong evidence by Tabellion and claim their device or Tabel-
lion’s server was compromised. Tabellion’s small TCB in its client
and server provides strong protection against such claims. More-
over, the self-evident contract provides strong evidence that the
expected code executed in the device TEE and enclave by providing
their code measurements and certificates.
Impersonation attack. We introduced two forms of this attack. In
the first form, the attacker must spoof the victim’s authentication
on the victim’s device. This is challenging in Tabellion as it requires
defeating TEE-protected biometric sensors with sophisticated anti-
spoofing (e.g., Apple’s Touch ID [35]).

An attacker in close proximity to the victim may attempt to
defeat a fingerprint-based authentication by pressing the victim’s
fingers against the fingerprint scanner. While this is a difficult
attack already, we note that it is feasible only if fingerprint is used
as the sole biometric signal. Tabellion’s design is conducive to using
different or multiple biometric signals, e.g., Apple’s Face ID [35].
Note that these modern biometric sensors are accessible in the
mobile device TEE [25, 30] and hence using them does not require
adding more trusted code.

For the second form (where the attacker tries to spoof the victim’s
identity), we see five attack variants on Tabellion. We first briefly
introduce these variants and then describe how Tabellion protects
against them. The first variant is using an existing or deep-faked



MobiSys *20, June 15-19, 2020, Toronto,

ON, Canada

Figure 5: Custom gesture (V sign) required in Tabellion’s pho-
tos. (Left) The user performs an incorrect gesture. (Right) The
user performs the correct gesture. In both cases, the user is no-
tified accordingly. In (Left), the notification says “Gesture not
verified, please try again!” In (Right), it says “Gesture verified,
confirm your photo!”

photo of the victim. The second one is taking a photo of an unaware
victim. The third one is taking a photo of a 3D-printed object looking
like the victim. The fourth one is taking a photo of an existing or
deep-faked photo of the victim shown on a display. The fifth one is
taking a photo of a doppelganger.

Tabellion defeats the first attack variant by its use of a secure
photo, which guarantees that the photo is captured by the camera
hardware. The second variant is challenging for the attacker as it
requires physical proximity to the victim. Yet, Tabellion further
defeats this attack by mandating a requirement for the photos used
for registration: specialized photo. More specifically, Tabellion re-
quires the user to perform a custom gesture while taking the secure
photo in order to demonstrate awareness. The contract is not valid
if the requirement is not satisfied and Tabellion’s server automati-
cally checks the requirement using an open source framework [21].
Figure 5 shows this solution in practice.

The third and fourth variants are also difficult for the attacker.
Yet, Tabellion can make these attacks even harder by detecting
liveness, using one of the several existing solutions [12, 35, 57, 58,
78]. For example, it can require the user to take multiple photos
from different angles of their face, which can be used to detect
liveness [12]. Alternatively, it can use an iris scanner or secure face
recognition on modern phones, e.g., Apple’s Face ID, which projects
a grid of 30,000 infrared dots on a user’s face and takes an infrared
picture [35].

The fifth variant is also challenging for the attacker since it
requires a doppelganger. Yet, Tabellion can defend against this
attack by asking the user to show an official ID in the photo, which
can be automatically checked using services such as Checkr [13].
Confusion attack. In this attack, a malicious offeror leverages
vulnerabilities in the contract viewer in the offeree’s device to
mislead the offeree. Tabellion’s rendering of the contract in its
server neutralizes the Dali attack (which is a specialized form of the
confusion attack, discussed in §3) since the attacker cannot directly
send a file to the offeree’s device. Moreover, Tabellion’s use of TEE
to securely display contract pages defeats a powerful attacker who
may be able to take control of the contract viewer on the victim’s
device (e.g., by compromising Tabellion’s app or the OS) and try to
change the contract content shown to and confirmed by the victim.

229

Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

Submission mm
Rendering =8
Downloading ™1

Submission =
Rendering =8
Downloading ™1

Small Medium Large VLarge Small Medium Large VLarge
Figure 6: Tabellion’s execution time of offer (as defined) for
(Left) HiKey and (Right) Nexus 5X.

8.3 Case Analysis

In §2, we discussed a few legal cases where existing electronic
contract platforms have failed to provide strong evidence. While
it is difficult, if not impossible, to predict the legal validity of a
contract with certainty, we believe Tabellion, if used for forming
those contracts, would have provided stronger evidence. First, in
In re Mayfield [6], the court discussed the ease with which the
signature on DocuSign could be forged. It mentioned that “what
happens when a debtor denies signing a document and claims his
spouse, child, or roommate had access to his computer and could have
clicked on the ‘Sign Here’ button.” In contrast, Tabellion provides a
secure photo of the signatory and protects against impersonation
attempts, as discussed.

Second, in Adams v. Quicksilver, Inc. [4, 10], the problem was
that “it couldn’t be determined when the agreement was signed.”
Tabellion’s use of secure timestamps for every action in the signing
process provides strong evidence for when each party signed the
contract.

Finally, in Labajo v. Best Buy Stores [3, 62], the problem was
that “Best Buy couldn’t prove that she [Christina] saw and approved
the disclosure.” Tabellion’s use of secure screenshots to capture
all the content seen by a user provides strong evidence for this
requirement.

9 EVALUATION
9.1 Performance Evaluation

We present the execution time of using Tabellion (measured on the
client device). We include results for our main prototype on the
HiKey board and our prototype on a Nexus 5X smartphone.

Figure 6 shows the execution time of offer, defined and measured
from when the offeror submits a contract to Tabellion until when the
contract is ready for them to sign. This includes the time needed to
send a request to the server, render the contract pages in the server,
and download them to the device. The figure shows the results for
four contracts of different lengths. These contracts, labeled as small,
medium, large, and very large, result in 6, 12, 24, and 48 pages for
HiKey and 4, 8, 16, and 32 pages for Nexus 5X (the numbers are
different in the two platforms since they have different screen sizes).
As can be seen, even for very large contracts, the overall time is
less than 20 seconds.

The same figure also shows the breakdown of the execution
time. It shows it is mostly due to transfer of contract pages from
the server to the device and due to rendering of the contract. Our
rendering pipeline can be improved, as it currently renders the
contract in several stages (Markdown to HTML, HTML to PDF, and
finally PDF to PNG).



Tabellion: Secure Legal Contracts on Mobile Devices

550 Uploading mm 550 Uploading mm
3 Verification B0 3 Verification B0
240 ~40
g g
s 30 & 30
£20 820
5 3
310 310
id id
0, 0,

Small Medium Large VLarge Small Medium Large VLarge
Figure 7: Tabellion’s execution time of acceptance (as defined)
for (Left) HiKey and (Right) Nexus 5X.

Figure 7 shows the execution time of acceptance, defined and mea-
sured from the time that the offeree submits their signed contract
to Tabellion until when the contract is notarized and verified (ex-
cluding the last inquiry to the offeror, which might take very little
time or an arbitrarily long time depending on the reachability of the
offeror, as discussed in §5.4). The results show that the execution
time is around 35 seconds for the very large contract. As the results
show, most of the execution time is due to uploading the signed
screenshots to the server.

We next measure the execution time of secure primitives on
the HiKey board (Primitives I-III) and on the server (Primitive IV).
More specifically, we measure the execution time of a single use of
a secure primitive. For each primitive, we measure the execution
time several times and report the average and standard deviation.
Figure 8 shows the results. It shows the execution times of these
primitives are small. Note that Primitive III enforces at least a two
second display freeze (§5.3).

9.2 Energy Measurement

We measure the energy consumption of Tabellion in our secondary
prototype with a Nexus 6P smartphone. We perform this experiment
just to demonstrate that Tabellion does not drain the battery, which
would cause inconvenience to the user. We measure the energy on
Nexus 6P as opposed to Nexus 5X, which we use in other experi-
ments. This is because the fuel gauge in Nexus 6P, unlike Nexus
5X, includes a charge counter [26]. We measure the energy for the
offeror submitting and signing a very large contract (28 images on
Nexus 6P). Our results show that the overall energy consumption
is on average 68.97 (standard deviation of 4.67) milliwatt-hours,
which is 0.5% of the overall battery capacity on this smartphone
assuming a 3.7 V voltage.

9.3 User Study

We perform an IRB-approved user study® to evaluate four usability
aspects of Tabellion: effectiveness of presentation, usage conve-
nience, readability of contracts, and time spent on contracts. Note
that we do not evaluate other usability aspects of the system, such
as registration.

We recruit 30 participants in our study (22 undergraduate and 8
graduate computer science students; 21 male and 9 female). We ask
the participants to read and sign contracts on a Nexus 5X smart-
phone. After each contract, we ask them to answer two multiple-
choice questions about the contract’s details and ask them to rate
the convenience and readability of the contract platform. Exam-
ple questions are true/false questions about a specific statement

SUC Irvine IRB HS# 2019-5017

230

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

—_ (] w

Execution Time (Sec.)

o b B
b= b win s

0.009
PI Pl

0.003|
P.IV

P.III

Figure 8: Execution time of secure primitives.

25

=)

- Correct= Convenience = 350
§ 200 Wrong == 5 Readability == 3300
<150 4

k] S

5 100 a3

S

£ 50 2

b4

=)

ODocuSign Tabellion

Tabellion

Tabellion ! DocuSign

DocuSign

Figure 9: (Left) Correct/wrong answers for questions in the
user study. (Middle) Convenience and readability of plat-
forms rated by participants. (Right) Average time spent on the
contracts in the user study.

in the contract or a question asking about a specific value, e.g.,
the total cost of a service. Each participant uses two different plat-
forms, Tabellion and DocuSign [18], and signs four contracts on
each. We choose the contracts out of a repository of eleven con-
tracts and rotate the contracts among platforms and participants
to avoid any systemic bias (i.e., each contract is signed by several
users on each platform). These contracts include sale, loan, Non-
Disclosure-Agreement (NDA), and rental contracts that we created
using contract samples from Docsketch [15].
Effectiveness of presentation. To measure the effectiveness of
presentation and user understanding, we count correct and wrong
answers to the questions for the contracts. Figure 9 (Left) shows
the results. It shows that the participants fared slightly better in
Tabellion, demonstrating that Tabellion’s rendering of the contract
specifically for a mobile device and the use of good formatting
guidelines (§6.1) are effective.
Convenience and readability. Using a Likert Scale, we ask the
participants to rate the convenience and readability of the platforms.
Figure 9 (Middle) shows that the participants slightly preferred the
convenience and readability of Tabellion over DocuSign for signing
the contracts. More specifically, on average, the participants scored
the convenience and readability of the contracts to be 4.22 and 4.02
for Tabellion and 3.53 and 3.28 for DocuSign.
Time spent on contracts. Figure 9 (Right) shows that participants
spent slightly less time to view and sign the contracts on Tabellion
(166.68 seconds on Tabellion and 197.46 on DocuSign, on average).
All of these results show that the security benefits of Tabellion
do not come at the cost of usability. However, one might wonder
whether Tabellion’s usability decreases for long contracts. We re-
port the results for the longest contract in our study, which was
an NDA contract, consisting of 7 PDF pages for DocuSign and 25
pages for Tabellion. Our results show that participants scored the
convenience and readability of the NDA contract, respectively, to be
4 and 3.6 for Tabellion and 2.6 and 3.1 for DocuSign. Moreover, they
spent 355 seconds for this contract on Tabellion and 490 seconds on
DocuSign. This shows that the usability of Tabellion is good even
for long contracts.



MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

10 RELATED WORK

Attacks on Electronic Signatures. Several papers study different
forms of attacks on electronic signatures [49, 54]. Dali attack [40, 41,
70] is a confusion attack enabled by the same file being interpreted
differently with different file extensions (§3). Other attacks use
malicious fonts [52] and JavaScript code [53] as the source of the
dynamic representation. Tabellion protects against these attacks as
discussed in §8.2.

TEE for Protected UL Several systems take advantage of ARM
TrustZone and virtualization hardware in mobile devices to protect
the UL VButton [56] provides a framework for attesting the user
operations in different apps. TruZ-View [81] provides Ul integrity
and confidentiality protections without porting the Ul renderer to
the TEE. AdAttester [55] provides attestation for the user’s clicks
on ads in Android apps. SchrodinText [36] protects the confiden-
tiality of select textual content on the UL Yu et al. [82] and Zhou et
al. [85] design trusted path solutions for I/O devices, such as display,
GPU, and keyboard, to give an application direct and secure access
to these devices. In contrast to all of these systems, Tabellion is
concerned with legal contracts and hence provides novel secure
primitives to help generate strong evidence for the legal and valid
formation of contracts.

TEE for System Security. Several systems use the TEE for secu-
rity purposes. DELEGATEE [61] uses TrustZone and SGX to provide
delegation of credentials. TruZ-Droid [80] enhances the functional-
ity of TrustZone TEE by providing a binding between an Android
app and a Trusted Application (TA) so that the Android app call-
back functions can be triggered from a TA. TrustFA [83] designed a
remote facial authentication method that, unlike Tabellion, moves
the camera and display driver into the TEE, which increases the
TCB size. Trusted sensors [47, 60] attest sensor data to applications.
Gilbert et al. [47, 48] attest the integrity of sensor data. fTPM [71]
implements the TPM functionality within TrustZone. Samsung
Pay [31] authenticates users via fingerprints in TEE for confirming
a transaction. Android Protected Confirmation [8] provides APIs for
applications, such as a banking app, to get the user’s confirmation
on certain important messages, such as those used for transferring
money. SecTEE [84] and SANCTUARY [39] use TrustZone to pro-
vide enclave for applications running in ARM SoC-based devices.
Several works also use SGX enclave to provide different security
guarantees [38, 51]. None of these systems provide a platform for
legal contracts and hence do not address its challenges.

UI Protection. AdSplit [74] and AdDroid [69] isolate applications
from ad services, while maintaining a uniform Ul LayerCake [72]
enables Ul components to be securely embedded in Android. They
do not, however, protect against attacks on legal contracts.
Untrusted Operating System. Overshadow [44] and InkTag [50]
protect an application from an untrusted operating system using a
hypervisor. Ditio [66] makes the OS untrusted using a hypervisor-
and TrustZone-based TEE when auditing sensor usage in a device.
Viola [63, 65] uses the hypervisor to protect against unauthorized
accesses to memory-mapped sensor pages. Similar to Tabellion,
these systems leverage the TEE to make the OS untrusted. However,
they do not address the challenges of securing legal contracts.
eNotary. There are eNotary [19] services whereby a user can get a
legal signature notarized electronically. These services, however, are

231

Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

not pure electronic solutions because they require a human notary
to be present. Indeed, in the case of DocuSign’s solution [17], the
notary needs to be in the same physical location as the signatory.
We note that requiring a notary can help provide strong evidence
for the contract, but it is expensive and time consuming.

Smart Contracts. Smart contracts are self-executing computer
programs on Blockchains that enforce terms of an agreement be-
tween parties automatically [68]. For example, a smart contract in
a loan agreement can perform automatic payments via the Internet
at pre-specified dates. However, current smart contract solutions
do not provide the strong security guarantees that Tabellion does,
namely providing strong evidence for the legal validity of contracts.
Addressing these issues require carefully designing and securing
the interactions of the user with the contract platform. We believe
that several techniques provided in Tabellion are complementary
to smart contracts.

Secure NTP. Solutions such as NTS [7] and NTPsec [27] improve
the security of time synchronization by verifying the authenticity
of the time server and protecting the integrity of the of the synchro-
nization packets. NTS suggests multiple approaches for mitigating
the asymmetric delay attack such as using multiple servers, defining
a time threshold on the client device, or using multiple communica-
tion paths. However, these solutions do not fully solve the problem,
need extra hardware, and are difficult to deploy within a TEE. Tabel-
lion, on the other hand, calculates a confidence interval without
requiring extra hardware and is deployable in a TEE.
Delay-resistant Systems. TimeSeal [37] designs a secure timer
for SGX. It uses counting threads to improve the resolution of SGX
timer and addresses the scheduling attacks to the counting threads.
It also addresses the delay attacks between the application enclave
and the Platform Service Enclave (PSE) that provides the trusted
timer in SGX. However, it does not address the NTP asymmetric
delay attack. cTPM [42] provides secure time for TPM. It uses a
trusted cloud server to update the time on the local TPM device. It
addresses the delay attack on NTP by using a global timeout value.
However, this technique needs to re-do synchronization if the delay
is more than the timeout value. Sandha et al. [73] evaluate accuracy
of time synchronization on smartphones using different hardware
solutions but do not discuss attacks on synchronization.

11 CONCLUSIONS

We presented Tabellion, a system solution for secure legal contracts
on mobile devices. Tabellion generates strong evidence for the valid
and legal formation of contracts and provides self-evident contracts.
It uses four secure primitives implemented with only ~1,000 LoC. It
also provides a fully functional contract platform, built with ~14,000
lines of untrusted code. Through prototype measurements, analysis,
and a user study, we showed that Tabellion is secure, achieves
acceptable performance, and provides slightly better usability than
DocuSign for viewing and signing contracts.

ACKNOWLEDGMENTS

The work was in part supported by NSF Awards #1617513 and
#1718923. The authors thank the paper shepherd, Jeremy Andrus,
and the anonymous reviewers for their insightful comments.



Tabellion: Secure Legal Contracts on Mobile Devices

REFERENCES

[1] 2000. ELECTRONIC SIGNATURES IN GLOBAL AND NATIONAL COMMERCE
ACT. PUBLIC LAW 106-229.

[2] 2004. NIST Study Shows Computerized Fingerprint Matching Is Highly Ac-
curate. https://www.nist.gov/news-events/news/2004/07/nist-study-shows-
computerized-fingerprint-matching-highly-accurate.

[3] 2007. Labajo v. Best Buy Stores, LP, 478 F. Supp. 2d 523 (S.D.NY. 2007).

[4] 2010. Adams v. Quicksilver, Inc. no. G042012 (Cal. App. 4th Div. Feb. 22, 2010).

[5] 2015. O’Connor v. Uber Technologies, Inc., 150 F.Supp.3d 1095 (N.D. Cal. 2015).

[6] 2016. In re Mayfield: No. 16-22134-D-7, 2016 WL 3958982 (E.D. Cal. July 13,
2016). https://www.govinfo.gov/content/pkg/USCOURTS-caeb-2_16-bk-22134/
pdf/USCOURTS-caeb-2_16-bk-22134-0.pdf.

[7] 2017. Network Time Security. https://tools.ietf.org/html/draft-ietf-ntp-network-
time-security-15.

[8] 2018. Android Protected Confirmation. https://android-developers.googleblog.
com/2018/10/android-protected-confirmation.html.

[9] 2018. Global +$4 Billion Digital Signature Market by Deployment,
Component, Industry and Region - Forecast to 2023 - ResearchAndMar-
kets.com. https://www.businesswire.com/news/home/20181001005761/en/
Global-4-Billion-Digital-Signature- Market- Deployment.

[10] 2019. 7 landmark electronic signature legal cases. https://esignrecords.org/7-
landmark-electronic-signature-legal-cases/.

[11] 2019. AdobeSign. https://acrobat.adobe.com/us/en/sign.html.

[12] 2019. BioID Liveness Detection. https://www.bioid.com/liveness-detection/.

[13] 2019. Checkr. https://checkr.com/product/screenings/.

[14] 2019. Cloudfare Secure Time Service. https://developers.cloudflare.com/time-
services/nts/usage/.

[15] 2019. Contract Templates and Agreements. https://www.docsketch.com/
contracts/.

[16] 2019. Device-side Security: Samsung Pay, TrustZone, and the TEE. https://
developer.samsung.com/tech-insights/pay/device-side-security.

[17] 2019. DocuSign eNotary. https://www.docusign.com/products/enotary.

[18] 2019. DocuSign Website. https://www.docusign.com/.

[19] 2019. eNotary. https://en.wikipedia.org/wiki/ENotary.

[20] 2019. eSignLive. https://www.esignlive.com/.

[21] 2019. Gesture Recognition. https://github.com/Gogul09/gesture-recognition.

[22] 2019. Global Digital Signature Market to Reach $3.44 Billion by 2022
at 30.0% CAGR: Says AMR. https://www.globenewswire.com/news-
release/2019/08/13/1901155/0/en/Global-Digital-Signature- Market-to-Reach-
3-44-Billion-by-2022-at-30-0- CAGR-Says- AMR html.

[23] 2019. HelloSign. https://www.hellosign.com.

[24] 2019. Intel Provisioning Certification Service for ECDSA Attestation. https:
//api.portal.trustedservices.intel.com/provisioning-certification.

[25] 2019. iOS Security - iOS 12.3. https://www.apple.com/business/docs/site/iOS_
Security_Guide.pdf.

[26] 2019. Measuring Device Power. https://source.android.com/devices/tech/power/
device.

[27] 2019. NTPsec. https://ntpsec.org/.

[28] 2019. PandaDoc. https://www.pandadoc.com/.

[29] 2019. Qualcomm’s larger in-screen fingerprint sensor could seriously improve se-
curity. https://www.engadget.com/2019/12/03/qualcomm-3d-sonic-max-worlds-
largest-in-display-fingerprint-sensor-specs-availability/.

[30] 2019. Samsung Knox Security Solution. https://images.samsung.com/is/content/
samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf.

[31] 2019. Samsung Pay. https://www.samsung.com/us/samsung-pay/.

[32] 2019. SignEasy. https://signeasy.com/.

[33] 2019. SignNow. https://www.signnow.com/.

[34] 2019. Votz. https://voatz.com/.

[35] 2020. Apple Platform Security, Spring 2020. https://manuals.info.apple.com/
MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf.

[36] A.Amiri Sani. 2017. SchrodinText: Strong Protection of Sensitive Textual Content
of Mobile Applications. In Proc. ACM MobiSys.

[37] F.M. Anwar. 2019. Quality of Time: A New Perspective in Designing Cyber-Physical
Systems. Ph.D. Dissertation. UCLA.

[38] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D.
Muthukumaran, D. O’Keeffe, M. L. Stillwell, et al. 2016. SCONE: Secure Linux
Containers with Intel SGX. In Proc. USENIX OSDL

[39] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf. 2019. SANCTUARY:
ARMing TrustZone with User-space Enclaves.. In NDSS.

[40] F.Buccafurri, G. Caminiti, and G. Lax. 2008. The Dali Attack on Digital Signature.
Journal of Information Assurance and Security (2008).

[41] F.Buccafurri, G. Caminiti, and G. Lax. 2009. Fortifying the Dali Attack on Digital
Signature. In Proc. ACM Int. Conf. on Security of Information and Networks (SIN).

[42] C. Chen, H. Raj, S. Saroiu, and A. Wolman. 2014. ¢cTPM: A cloud TPM for Cross-
Device Trusted Applications. In Proc. USENIX NSDIL

[43] G.Chen,S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. 2019. SgxPectre: Stealing

Intel Secrets from SGX Enclaves Via Speculative Execution. In IEEE European
Symposium on Security and Privacy (EuroS&P).

232

[44]

[45

[46

[47

'S
&

[49

[50

[51

[52

[53

[55]

[56]

[57]

(58]

(60

[61

[62

[63

[65

[66

(72]

MobiSys 20, June 15-19, 2020, Toronto, ON, Canada

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D.
Boneh, J. Dwoskin, and D. R. K. Ports. 2008. Overshadow: a Virtualization-Based
Approach to Retrofitting Protection in Commodity Operating Systems. In Proc.
ACM ASPLOS.

M. A. Chirelstein. 2013. Concepts and Case Analysis in the Law of Contracts,
Seventh Edition. Foundation Press.

DocuSign. 2012. Going Mobile with Electronic Signatures. https://www.docusign.
com/sites/default/files/Going_Mobile_with_Electronic_Signatures.pdf.

P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall. 2010. Toward Trustworthy Mobile
Sensing. In Proc. ACM Workshop on Mobile Computing Systems & Applications
(HotMobile).

P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox. 2011.
YouProve: Authenticity and Fidelity in Mobile Sensing. In Proc. ACM SenSys.
Hernandez-Ardieta, J. L. and Gonzalez-Tablas, A. L. and de Fuentes, J. M. and
Ramos, B. 2013. A taxonomy and survey of attacks on digital signatures. Elsevier
Computers & Security (2013).

O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. 2013. InkTag:
Secure Applications on an Untrusted Operating System. In Proc. ACM ASPLOS.
T.Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. 2018. Ryoan: A distributed sandbox
for untrusted computation on secret data. ACM Transactions on Computer Systems
(TOCS) (2018).

A. Josang, D. Povey, and A. Ho. 2002. What You See is Not Always What You
Sign. In Proc. AUUG.

K. Kain. 2003. Electronic Documents and Digital Signatures. Master of Science
Thesis, Dartmouth Computer Science Department, Technical Report TR2003-457
(2003).

G. Lax, F. Buccafurri, and G. Caminiti. 2015. Digital Document Signing: Vul-
nerabilities and Solutions. Information Security Journal: A Global Perspective
(2015).

W. Li, H. Li, H. Chen, and Y. Xia. 2015. AdAttester: Secure Online Mobile Adver-
tisement Attestation Using TrustZone. In Proc. ACM MobiSys.

W.Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan. 2018. VButton:
Practical Attestation of User-driven Operations in Mobile Apps. In Proc. ACM
MobiSys.

Y. Li, Y. Li, Q. Yan, H. Kong, and R. H. Deng. 2015. Seeing Your Face Is Not
Enough: An Inertial Sensor-Based Liveness Detection for Face Authentication.
In Proc. ACM CCS.

Y. Li, Z. Wang, Y. Li, R. Deng, B. Chen, W. Meng, and H. Li. 2019. A Closer Look
Tells More: A Facial Distortion Based Liveness Detection for Face Authentica-
tion. In Proc. ACM ASIA Conference on Computer and Communications Security
(ASIACCS).

M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. 2016. ARMageddon:
Cache Attacks on Mobile Devices. In Proc. USENIX Security Symposium.

H. Liu, S. Saroiu, A. Wolman, and H. Raj. 2012. Software Abstractions for Trusted
Sensors. In Proc. ACM MobiSys.

S. Matetic, M. Schneider, A. Miller, A. Juels, and S. Capkun. 2018. DELEGATEE:
Brokered Delegation Using Trusted Execution Environments. In Proc. USENIX
Security.

E. Maxie. 2013. COURT CASE: LAWSUIT FILED OVER POORLY CONCEIVED
ELECTRONIC SIGNATURE. https://www.signix.com/blog/bid/93126/court-case-
lawsuit-filed- over-poorly-conceived- electronic- signature.

S. Mirzamohammadi and A. Amiri Sani. 2016. Viola: Trustworthy Sensor Notifi-
cations for Enhanced Privacy on Mobile Systems. In Proc. ACM MobiSys.

S. Mirzamohammadi and A. Amiri Sani. 2018. The Case for a Virtualization-Based
Trusted Execution Environment in Mobile Devices. In Proc. ACM Asia-Pacific
Workshop on Systems (APSys).

S. Mirzamohammadi and A. Amiri Sani. 2018. Viola: Trustworthy Sensor Notifi-
cations for Enhanced Privacy on Mobile Systems. IEEE Transactions on Mobile
Computing (TMC) (2018).

S. Mirzamohammadi, J. A. Chen, A. Amiri Sani, S. Mehrotra, and G. Tsudik. 2017.
Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices. In
Proc. ACM SenSys.

J. Mulliner. 2018. What the Wells Fargo Mobile Research Reveals About
E-Signatures. https://www.onespan.com/blog/what-the-wells-fargo-mobile-
research-reveals-about-e-signatures.

R. O’Shields. 2017. Smart Contracts: Legal Agreements for the Blockchain. NC
Banking Inst. (2017).

P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. 2012. AdDroid: Privilege Separa-
tion for Applications and Advertisers in Android. In Proc. ACM Symposium on
Information, Computer and Communications Security (ASIACCS).

D. Popescu. 2012. Hiding Malicious Content in PDF Documents. arXiv preprint
arXiv:1201.0397 (2012).

H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshu-
mann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson, R. Spiger, S. Thom, and D.
Wooten. 2016. fTPM: A Software-Only Implementation of a TPM Chip. In 25th
USENIX Security Symposium (USENIX Security 16), Austin, TX.

F. Roesner and T. Kohno. 2013. Securing Embedded User Interfaces: Android and
Beyond. In Proc. USENIX Security Symposium.


https://www.nist.gov/news-events/news/2004/07/nist-study-shows-computerized-fingerprint-matching-highly-accurate
https://www.nist.gov/news-events/news/2004/07/nist-study-shows-computerized-fingerprint-matching-highly-accurate
https://www.govinfo.gov/content/pkg/USCOURTS-caeb-2_16-bk-22134/pdf/USCOURTS-caeb-2_16-bk-22134-0.pdf
https://www.govinfo.gov/content/pkg/USCOURTS-caeb-2_16-bk-22134/pdf/USCOURTS-caeb-2_16-bk-22134-0.pdf
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-15
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-15
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://www.businesswire.com/news/home/20181001005761/en/Global-4-Billion-Digital-Signature-Market-Deployment
https://www.businesswire.com/news/home/20181001005761/en/Global-4-Billion-Digital-Signature-Market-Deployment
https://esignrecords.org/7-landmark-electronic-signature-legal-cases/
https://esignrecords.org/7-landmark-electronic-signature-legal-cases/
https://acrobat.adobe.com/us/en/sign.html
https://www.bioid.com/liveness-detection/
https://checkr.com/product/screenings/
https://developers.cloudflare.com/time-services/nts/usage/
https://developers.cloudflare.com/time-services/nts/usage/
https://www.docsketch.com/contracts/
https://www.docsketch.com/contracts/
https://developer.samsung.com/tech-insights/pay/device-side-security
https://developer.samsung.com/tech-insights/pay/device-side-security
https://www.docusign.com/products/enotary
https://www.docusign.com/
https://en.wikipedia.org/wiki/ENotary
https://www.esignlive.com/
https://github.com/Gogul09/gesture-recognition
https://www.globenewswire.com/news-release/2019/08/13/1901155/0/en/Global-Digital-Signature-Market-to-Reach-3-44-Billion-by-2022-at-30-0-CAGR-Says-AMR.html
https://www.globenewswire.com/news-release/2019/08/13/1901155/0/en/Global-Digital-Signature-Market-to-Reach-3-44-Billion-by-2022-at-30-0-CAGR-Says-AMR.html
https://www.globenewswire.com/news-release/2019/08/13/1901155/0/en/Global-Digital-Signature-Market-to-Reach-3-44-Billion-by-2022-at-30-0-CAGR-Says-AMR.html
https://www.hellosign.com
https://api.portal.trustedservices.intel.com/provisioning-certification
https://api.portal.trustedservices.intel.com/provisioning-certification
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://source.android.com/devices/tech/power/device
https://source.android.com/devices/tech/power/device
https://ntpsec.org/
https://www.pandadoc.com/
https://www.engadget.com/2019/12/03/qualcomm-3d-sonic-max-worlds-largest-in-display-fingerprint-sensor-specs-availability/
https://www.engadget.com/2019/12/03/qualcomm-3d-sonic-max-worlds-largest-in-display-fingerprint-sensor-specs-availability/
https://images.samsung.com/is/content/samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf
https://images.samsung.com/is/content/samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf
https://www.samsung.com/us/samsung-pay/
https://signeasy.com/
https://www.signnow.com/
https://voatz.com/
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://www.docusign.com/sites/default/files/Going_Mobile_with_Electronic_Signatures.pdf
https://www.docusign.com/sites/default/files/Going_Mobile_with_Electronic_Signatures.pdf
https://www.signix.com/blog/bid/93126/court-case-lawsuit-filed-over-poorly-conceived-electronic-signature
https://www.signix.com/blog/bid/93126/court-case-lawsuit-filed-over-poorly-conceived-electronic-signature
https://www.onespan.com/blog/what-the-wells-fargo-mobile-research-reveals-about-e-signatures
https://www.onespan.com/blog/what-the-wells-fargo-mobile-research-reveals-about-e-signatures

MobiSys *20, June 15-19, 2020, Toronto, ON, Canada

[73]

[74]

[75]

S. S. Sandha, J. Noor, F. M. Anwar, and M. Srivastava. 2019. Exploiting Smart-
phone Peripherals for Precise Time Synchronization. In Proc. IEEE International
Symposium on Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS).

S. Shekhar, M. Dietz, and D. S. Wallach. 2012. AdSplit: Separating Smartphone
Advertising from Applications. In Proc. USENIX Security Symposium.

Dilani Silva. 2019. Demand for E-Signing From Mobile Devices on the Rise in
Financial Institutions. https://www.onespan.com/blog/demand-for-e-signing-
from-mobile-devices-on-the-rise-in-financial-institutions.

M. Simpson. 2018. BDC app offers e-signature for loans, reducing in-person
visits. https://www.itbusiness.ca/news/bdc-app-offers-e-signature-for-loans-
reducing-in-person-visits/104429.

M. H. Stanzione. 2020. ‘Wet’ Ink Signatures Requirements May Fade After
Coronavirus. Bloomberg Law, The United States Law Week.

D. Tang, Z. Zhou, Y. Zhang, and K. Zhang. 2018. Face Flashing: a Secure Liveness
Detection Protocol based on Light Reflections. arXiv preprint arXiv:1801.01949v2
(2018).

233

[79]

(80

[81

(82]

o0
&

(84

(85]

Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, Baris Kasikci, F. Piessens, M.
Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. 2018. FORESHADOW: Extracting
the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In
Proc. USENIX Security Symposium.

K.Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du. 2018. TruZ-Droid:
Integrating TrustZone with Mobile Operating System. In Proc. ACM MobiSys.
K. Ying, P. Thavai, and W. Du. 2019. TruZ-View: Developing TrustZone User
Interface for Mobile OS Using Delegation Integration Model. In Proc. ACM CO-
DASPY.

M. Yu, V. D. Gligor, and Z. Zhou. 2015. Trusted Display on Untrusted Commodity
Platforms. In Proc. ACM CCS.

Dongli Zhang. 2014. TrustFA: TrustZone-Assisted Facial Authentication on
Smartphone. Technical Report (2014).

S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng. 2019. SecTEE: A Software-based
Approach to Secure Enclave Architecture Using TEE. In Proc. ACM CCS.

Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. 2012. Building Verifiable
Trusted Path on Commodity x86 Computers. In Proc. IEEE Symposium on Security
and Privacy (S&P).


https://www.onespan.com/blog/demand-for-e-signing-from-mobile-devices-on-the-rise-in-financial-institutions
https://www.onespan.com/blog/demand-for-e-signing-from-mobile-devices-on-the-rise-in-financial-institutions
https://www.itbusiness.ca/news/bdc-app-offers-e-signature-for-loans-reducing-in-person-visits/104429
https://www.itbusiness.ca/news/bdc-app-offers-e-signature-for-loans-reducing-in-person-visits/104429

	Abstract
	1 Introduction
	2 Background
	3 Attacks on Legal Contracts
	4 Tabellion: Principles and Design
	4.1 Secure Primitives
	4.2 Contract Formation Protocol
	4.3 Self-Evident Contracts
	4.4 Contract Verification Process

	5 Secure Realization of Primitives
	5.1 Primitive I: Secure Photo
	5.2 Primitive II: Secure Timestamp
	5.3 Primitive III: Secure Screenshot
	5.4 Primitive IV: Secure Notarization

	6 Fully Functional Platform
	6.1 Readable Contracts
	6.2 Contract Submission
	6.3 Contract Negotiations
	6.4 Automatic Contract Verification

	7 Implementation
	8 Security Evaluation
	8.1 Threat Model
	8.2 Security Analysis
	8.3 Case Analysis

	9 Evaluation
	9.1 Performance Evaluation
	9.2 Energy Measurement
	9.3 User Study

	10 Related Work
	11 Conclusions
	Acknowledgments
	References

