
Tabellion: Secure Legal Contracts on Mobile Devices
Saeed Mirzamohammadi

CS, UC Irvine

saeed@uci.edu

Yuxin (Myles) Liu

CS, UC Irvine

yuxil11@uci.edu

Tianmei Ann Huang

Law, UC Irvine

tianmeah@lawnet.uci.edu

Ardalan Amiri Sani

CS, UC Irvine

ardalan@uci.edu

Sharad Agarwal

Microsoft Research

Sharad.Agarwal@microsoft.com

Sung Eun (Summer) Kim

Law, UC Irvine

skim@law.uci.edu

ABSTRACT
A legal contract is an agreement between two or more parties as

to something that is to be done in the future. Forming contracts

electronically is desirable since it is convenient. However, existing

electronic contract platforms have a critical shortcoming. They

do not provide strong evidence that a contract has been legally

and validly created. More specifically, they do not provide strong

evidence that an electronic signature is authentic, that there was

mutual assent, and that the parties had an opportunity to read the

contract. We present Tabellion, a system for forming legal con-

tracts on mobile devices, such as smartphones and tablets, that

addresses the above shortcoming. We define four secure primitives

and use them in Tabellion to introduce self-evident contracts, the

validity of which can be verified by independent inspectors. We

show how these primitives can be implemented securely in the

Trusted Execution Environment (TEE) of mobile devices as well as

a secure enclave in a centralized server, all with a small Trusted

Computing Base (TCB). Moreover, we demonstrate that it is fea-

sible to build a fully functional contract platform on top of these

primitives. We develop ∼15,000 lines of code (LoC) for our proto-

type, only ∼1,000 of which need to be trusted. Through analysis,

prototype measurements, and a 30-person user study, we show that

Tabellion is secure, achieves acceptable performance, and provides

slightly better usability than the state-of-the-art electronic contract

platform, DocuSign, for viewing and signing contracts.

CCS CONCEPTS
• Security and privacy→Mobile platform security; Trusted
computing; Virtualization and security; Operating systems
security; Authentication; Biometrics; • Applied computing
→ Law; • Networks→ Time synchronization protocols.

KEYWORDS
legal contract, electronic contract, electronic signature, mobile de-

vice, trusted computing, Trusted Execution Environment (TEE)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7954-0/20/06. . . $15.00

https://doi.org/10.1145/3386901.3389027

ACM Reference Format:
Saeed Mirzamohammadi, Yuxin (Myles) Liu, Tianmei Ann Huang, Ardalan

Amiri Sani, Sharad Agarwal, and Sung Eun (Summer) Kim. 2020. Tabellion:

Secure Legal Contracts on Mobile Devices. In The 18th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’20), June
15–19, 2020, Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3386901.3389027

1 INTRODUCTION
Forming contracts electronically is desirable in many transactions,

including real estate sales and leases, venture capital investments,

and work for hire, due to its significant convenience compared to

traditional methods. Not surprisingly, the global market for elec-

tronic signatures and contracts is predicted to grow significantly in

the next couple of years. One report estimates the market to grow

to $4.01 billion by 2023 from $844.7 million in 2017 [9]. Another

report estimates the market to grow to $3.44 billion by 2022 from

$517 million in 2015 [22]. The unfortunate COVID-19 outbreak

in 2020 and the resulting social distancing approach deployed to

combat it has further accelerated the use of electronic signatures

and contracts [77].

As a result of this growth, many electronic contract platforms

have emerged [11, 18, 20, 23, 28, 32, 33]. While these platforms are

convenient to use, unfortunately, they have an important shortcom-

ing: they do not provide strong evidence that a contract has been

legally and validly created (as defined by the law of contracts). More

specifically, they do not provide strong evidence that the signatures

are authentic, that there was mutual assent, and that the parties

had an opportunity to read the contract. As an example, in a recent

US court case [6], the court was unconvinced that an electronic

signature performed with DocuSign [18] was adequate as it could

be manipulated or forged with ease.

In this paper, we present a system solution to provide strong evi-
dence (i.e., hard-to-fabricate and hard-to-refute evidence) for the legal
and valid formation of a contract on mobile devices. Our system,

called Tabellion
1
, leverages the Trusted Execution Environment

(TEE) on mobile devices and an SGX enclave in a centralized server.

Doing so, however, raises four research questions that we answer

in this paper.

Q1. How can the contract platform provide strong evidence for all
the requirements of a legal contract? We answer this question in

three steps. First, we introduce four secure primitives, three for

1
Merriam-Webster dictionary defines tabellion as (1) “a scrivener under the Roman

Empire with some notarial powers,” and (2) “an official scribe or notary public especially

in England and New England in the 17th and 18th centuries.”

220

https://doi.org/10.1145/3386901.3389027
https://doi.org/10.1145/3386901.3389027

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

client devices (secure photo, secure timestamp, and secure screen-

shot) and one for the centralized server (secure notarization). These

primitives can be used to generate strong evidence for a legal and

valid contract. Second, we introduce a secure contract protocol

to use these primitives to form a contract. Finally, we introduce

self-evident contracts, which contain all the required evidence for

the legal and valid formation of the contract. That is, each user, and

if needed, the court or an adjudicator, can independently verify the

contract compliance with applicable law requirements.

Q2. Can the aforementioned primitives be realized securely, i.e.,
with a small Trusted Computing Base (TCB)? Having a small TCB

for the secure primitives is important as it makes them less prone

to software bugs (which can get exploited by attackers), and hence

makes the evidence they help generate stronger. Moreover, a smaller

code base can be easily inspected for safety and even certified. We

show that these seemingly complex primitives can be implemented

with ∼1,000 LoC (out of ∼15,000 LoC that we developed in our

prototype). To achieve this, we introduce several novel solutions

including a solution to secure the camera photo buffer, a delay-

resistant Network Time Protocol (NTP), and a solution to secure

the framebuffer.

Q3. Given that a contract platform provides complex functional-
ities, e.g., contract viewing, contract submission, and negotiations,
can a fully functional platform be realized using the aforementioned
primitives and protocol? We answer this question positively and

build a fully functional contract platform on top of these primitives

and protocol. We discuss how we address several challenges in re-

alizing the required functionality without adding any more trusted

code. Indeed, we show that Tabellion’s design enables us to add

a capability, called negotiation integrity tracking, that no existing

platform supports.

Q4. Does Tabellion provide strong protection against attacks on
a legal contract? We answer this question positively in two parts.

First, we define the set of possible attacks on a contract platform

including repudiation attacks, impersonation attacks, and confu-

sion attacks. Second, we evaluate the security of Tabellion using

a detailed security analysis and show that Tabellion can provide a

strong defense against these attacks.

We design and build Tabellion for a mobile-first world where

contracts are executed on smartphones and tablets. It is becoming

more common to use mobile devices to sign contracts such as mort-

gages, vehicle leases, and bank loans [46, 67, 75, 76]. Indeed, signing

contracts on mobile devices is believed to be the “the future of loans

and mortgages” according to a recent study [67]. We leverage the

latest mobile research technologies, including the use of TEE and

secure biometric sensors now available on modern devices.

We implement Tabellion on a HiKey development board as it

allows us to program the TEE (based on TrustZone and virtualiza-

tion hardware). While necessary for performance measurements

and security analysis, we cannot effectively use this board for a

user study and energy measurements. Therefore, we build a second

prototype of Tabellion on real mobile devices for that part of the

evaluation. Since the TEE on these devices is not yet programmable

by non-vendors, we emulate the secure primitives in Tabellion’s

application.

We extensively evaluate Tabellion. We measure the time it takes

to carry out various steps of the contract. We show that the ex-

ecution time of these operations in Tabellion is in the order of

several seconds (20 to 35 seconds for very large contracts), which is

small enough for a good user experience. We also show that using

Tabellion does not consume a noticeable amount of energy. Finally,

we evaluate the usability of Tabellion with a 30-person user study.

We show that, compared to DocuSign (the state-of-the-art elec-

tronic contract platform today), Tabellion provides slightly better

convenience (for contract viewing and signing), readability, and

understanding of the contract. It also enables the users to read and

sign the contracts slightly faster. This demonstrates that improved

security in Tabellion does not come at the cost of usability.

2 BACKGROUND
The law of contracts enumerates several requirements for the cor-

rect formation of a contract between an offeror and an offeree [45].

Some requirements are beyond the scope of Tabellion as they are

concerned with the content of the contract or with the circum-

stances of the parties involved. For example, the law of contracts

requires consideration, which states that the contract must repre-

sent “bargained for” exchange by both sides of a contract [45]. As

another example, the law requires that the parties have not signed

the contract under duress and that the parties have legal capacity

(e.g., they are of legal age at the time of assent) [45].

There are, however, key requirements that are related to the

contract platform. One key requirement in the case of contracts

that are required to be in writing and signed is signature attribution,
i.e., that a signature is an authentic signature of the party being

charged. Another key requirement is mutual assent, which requires

that the two parties agree to the same contract. Mutual assent has

clear conditions in the law: (i) there is an offer from the offeror, (ii)
there is an acceptance by the offeree, (iii) there is no revocation of

the offer from the offeror before the acceptance by the offeree,

and (iv) there is no rejection or counter-offer from the offeree

before acceptance [45]. In case of a counter-offer by the offeree, this

counter-offer is considered a fresh offer, which may be accepted or

rejected by the other party.

Another requirement is that a party has had an opportunity to

read a contract. However, it is not a requirement that a party has ac-

tually read the contract. In the case of O’Connor v. Uber Technologies,
Inc. [5], the plaintiffs asserted that there was no valid agreement

because it was displayed on “a tiny iPhone screen when most drivers
are about to go on-duty and start work.” The court rejected that argu-
ment because “for the purposes of contract formation, it is essentially
irrelevant whether a party actually reads the contract or not, so long
as the individual had a legitimate opportunity to review it.”
Electronic contracts. The Uniform Electronic Transactions Act

(UETA) and the Electronic Signatures in Global and National Com-

merce (ESIGN) Act permit the use of electronic signatures and

contracts. ESIGN states that: “a signature, contract, or other record
relating to such transaction [any transaction in or affecting interstate
or foreign commerce] may not be denied legal effect, validity, or en-
forceability solely because it is in electronic form” [1]. This means the

courts would not reject a contract simply on the basis of it being

signed electronically. However, it is up to the contract platform

221

Tabellion: Secure Legal Contracts on Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

designer to provide a secure solution—one that can be effectively

defended in courts. For example, simply printing a contract, signing

it using a wet signature, and scanning it does not provide strong

evidence for attribution as it is easy to copy/paste (or even forge)

the scanned signature. While no platform can guarantee that its

contracts will be legally valid with certainty, a platform can increase

the odds of success by providing strong and secure evidence for the

correctness of its contracts.

Legal cases on electronic contracts. We next discuss a few le-

gal cases to demonstrate the shortcomings of existing electronic

contract platforms. First, existing platforms do not provide strong

evidence for signature attribution. For example, in In re Mayfield, a
recent California bankruptcy case [6], the court was unconvinced

that an electronic signature created using DocuSign was adequate

as it could be manipulated or forged with ease, stating: “This brings
the court to another important problem with Counsel’s arguments:
they do not address the ease with which a DocuSign affixation can
be manipulated or forged. The UST [United States Trustee] asks what
happens when a debtor denies signing a document and claims his
spouse, child, or roommate had access to his computer and could have
clicked on the ‘Sign Here’ button.”2

Second, existing platforms have failed to provide evidence that

the parties agreed to the same contract. For example, in the case of

Adams v. Quicksilver, Inc. [4, 10], the plaintiff challenged the validity

of an arbitration agreement: “The system provided no audit trail for
the signing process, though, so it couldn’t be determined when the
agreement was signed.”

Third, existing platforms do not provide evidence that the parties

had an opportunity to read the contract. This is evident in the case

of Labajo v. Best Buy Stores [3, 62]: “When Christina [the plaintiff]
accepted the free subscription, she signed an electronic signature pad
at Best Buy [the defendant]. Christina claimed that there was no
disclosure telling her she would be charged for the magazine. But
whether or not there was disclosure doesn’t matter. What matters is
the fact that Best Buy couldn’t prove that she saw and approved the
disclosure.”

3 ATTACKS ON LEGAL CONTRACTS
We define potential attacks on a legal contract system by either a

malicious offeror or a malicious offeree.

Repudiation attack3. In this attack, either the offeror or offeree

denies having agreed to the contract (when in fact they did). This

attack can come in three different forms. First, one party may deny

having legally signed
4
the contract. Second, an attacker may deny

mutual assent. That is, the parties might disagree on the terms

of the contract or on the version of the contract they signed as a

result of negotiations (i.e., counter-offers followed by revisions).

2
We note that in this case, the court was unwilling to accept software-generated

electronic signatures as substitutes for wet signatures due to the California bankruptcy

court’s local rules of practice. As mentioned, the ESIGN Act provides that a signature

cannot be rejected solely because it is in electronic form. However, that provision of

the ESIGN Act does not apply to “court orders or notices, or official court documents.” [1]
3
This is different from the concept of repudiation in the law of contracts, which refers

to actions demonstrating that one party to a contract refuses to perform a duty or

obligation owed to the other party.

4
There are two types of signatures in our context.We use “legal signature” or “electronic

signature” to refer to a user’s assent to a contract, and “cryptographic signature” or

“digital signature” to refer to a computer-generated hash that is signed by a private

key.

Tabellion’s client Tabellion’s server

Prim. I: secure photo

Tabellion app

Prim. II: secure timestamp

Prim. III: secure screenshot
Trusted Exec. Environ. (TEE)

Operating system

User registration

Intel SGX enclave

Contract rendering

Negotiation helper

Contract verification

Prim. IV: secure notarization

Secure
time

server

TCB

Figure 1: The client and server in Tabellion.

Moreover, the offeror may claim to have revoked the offer before

acceptance by the offeree or the offeree may claim to have rejected

or countered it before acceptance. Third, the offeree may claim that

they were not given an opportunity to read the contract.

Impersonation attack. In this attack, one party attempts to im-

personate someone else and sign a contract on their behalf. There

are two forms of this attack. First, the attacker spoofs the victim’s

authentication on the victim’s device. Second, attacker spoofs the

victim’s identity.

Confusion attack. In this attack, the offeror attempts to fool the

offeree into legally signing a contract different fromwhat the offeree

thinks they are legally signing. To perform this attack, an attacker

needs to target and/or compromise the contract viewer on the

offeree’s device in order to misrepresent the contract to the offeree.

In one special form of this attack, called the Dalì attack [40, 41,

70], the attacker submits a file for the contract in an interpreted

document format (e.g., PDF) with dynamic content, which shows

different content on the offeror’s and offeree’s devices.

4 TABELLION: PRINCIPLES AND DESIGN
We present Tabellion, a legal contract platform that provides strong

evidence for the legal formation of a contract. Note that while we

focus on two-party contracts for clarity, Tabellion can similarly

handle multi-party contracts. Tabellion comprises two components:

a client that runs on the mobile devices of the offeror and the of-

feree, and a centralized server that mediates the contract formation.

Figure 1 illustrates these two components. Each incorporates some

code in their TCB to implement the required secure primitives.

Each also incorporates a large amount of untrusted code to imple-

ment the functionality needed to form a contract. In this section,

we introduce the primitives (§4.1), discuss the contract formation

protocol (§4.2), the resulting self-evident contract (§4.3), and the

contract verification process (§4.4).

4.1 Secure Primitives
Based on the requirements of a valid and legal contract, we define a

set of secure primitives to generate strong evidence for the contract.

Primitive I. Tamper-proof camera-captured photo (i.e., se-
cure photo). Signature attribution in written agreements requires

222

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

evidence of the identity of the signatory. Photos taken of the user

can provide such evidence. Indeed, several existing identity-based

systems, such as Voatz [34], capture photos and videos of the user

and use them for identification. We define photos as the main prim-

itive since videos are simply a collection of photos.

The key property of this primitive is that the photo must be

captured by the camera hardware as opposed to being fabricated by

software. The other property of this photo is that the photo must

be tamper-proof after capture. We achieve these by reading the

photo directly from the camera in the TEE and by cryptographically

signing the photo. For the latter, we use a per-user per-device

private key, which is generated in the TEE once the user registers

with Tabellion on a mobile device (discussed in §4.2).

Primitive II. Tamper-proof global timestamp (i.e., secure ti-
mestamp). The mutual assent requirement of the law of contracts

requires evidence of both an offer and an acceptance of that offer.

Moreover, one needs to show that there was no revocation of the

offer from the offeror before the acceptance by the offeree and that

there was no rejection or counter-offer from the offeree before

acceptance. To achieve this, we require the client devices to be

able to attach a global timestamp, e.g., a timestamp with respect

to a global clock, to each action (i.e., offer, acceptance, revocation,

rejection, and counter-offer). The timestamps must be tamper-proof.

That is, an attacker should not be able to spoof or modify them.

We achieve this using a novel clock synchronization protocol that

allows the TEE on the device to securely synchronize its clock with

a trusted time server.

Primitive III. Tamper-proof user-confirmed screenshot (i.e.,
secure screenshot). The requirement of having the opportunity

to read a contract in the law of contracts requires evidence of the

contract having been presented to the offeree. We use screenshots

of the contents displayed on the client device to achieve this goal.

However, not all content displayed on the device is seen by the

user. Therefore, we ensure that the user confirms seeing the content
captured in the screenshot. We also ensure that the screenshots are

tamper-proof.

To achieve these, we ask the user to authenticate with the system

in order to confirm seeing the displayed content. Upon successful

authentication, we use the aforementioned per-user per-device

private key to cryptographically sign the screenshot. Note that it

is critical that the acts of seeing the content on the display and

providing authentication are atomic. If not, an attacker can show

some content to the user but have the user unknowingly confirm

seeing a different content.

Different authentication solutions can be used. We use biometric

authentication, e.g., fingerprint authentication, as it is easy to use, is

available on most modern mobile devices, and has high accuracy [2,

29].

Primitive IV. Secure notarization of the contract. This primi-

tive securely connects all the evidence in a contract together so that

the evidence cannot be maliciously deleted or reused for another

contract, and so that new evidence cannot be added to a contract

after it is finalized. We achieve these goals with a secure enclave in

Tabellion’s server, which acts as a notary by binding all the evidence

together and cryptographically signing them.

Register

Submit contract

Register

Send contract

Send cypto. signed screenshots Send contract

Offeror Offeree

Contract rendering

Notify & release contract

Tabellion’s Server

Notify & release contract

Sync clock
(Primitive II),
view, &
legally sign
(Primitive III)Send crypto. signed screenshots

Notarize (Prim. IV) & verify

Tabellion’s
Client

Tabellion’s
Client

Secure
photo
(Primitive I)

Secure
photo

(Primitive I)

NegotiationsNegotiations

Sync clock
(Primitive II),
view, &
legally sign
(Primitive III)

Step
I

Step
III

Step
IV

Mutual identification Mutual identification Step
II

Figure 2: Tabellion’s contract formation protocol.

4.2 Contract Formation Protocol
Figure 2 illustrates the four steps of the protocol.

Step I: Registration. Both the offeror and offeree first register

with Tabellion. In this step, Tabellion’s client uses Primitive I to

take a photo of the user. It then sends the cryptographically signed

photo to the server. The client also sends some additional informa-

tion to the server, which is needed for self-evident contracts (§4.3)

including the device TEE certificate and the measurement of the

TEE code (which is the certified hash of the TCB code).

The user needs to register with Tabellion once upon installation

on a new device. During registration, the client TEE creates a per-
user per-device key pair. It uses the private key of this pair to sign

the user’s photo (Primitive I) and uses the same key later to sign the

screenshots captured of the content of the contract (Primitive III).

It also sends the public key to Tabellion’s server for verification.

The TEE code uses biometric-based authentication for the use of

the key. That is, the user has to use their biometric (e.g., fingerprint)

to confirm the securely captured photo and/or screenshot so that

they are signed by the TEE. This strongly binds the user’s photo

and the confirmed screenshots to each other. That is, if a screenshot

and a photo are signed with the same per-user per-device private

key, one can conclude that the person in the photo confirmed and

signed the contract in the screenshots (see §8.2 for a discussion of

impersonation attacks and Tabellion’s solutions).

Note that, instead of using a separate registration phase, it is

possible to securely capture the user’s photo for each contract or

even for each page in the contract that the user confirms. However,

this approach would impose a usability burden.

Step II: mutual identification. When the offeror requests Tabel-

lion to initiate the process of forming a contract with the offeree,

Tabellion asks the two parties to confirm each other’s identities. To

initiate a contract, the offeror names the offeree using a unique iden-

tifier, e.g., an email address registered with Tabellion. At this point,

Tabellion asks the offeree whether they are expecting a contract

from a named offeror (e.g., using an email address as the identifier).

Once approved by the offeree, Tabellion uses the aforementioned

securely-captured photos of the two parties to show to them. To

ensure privacy, Tabellion does not exchange the photos before both

223

Tabellion: Secure Legal Contracts on Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

parties approve having the intention of forming a contract with

each other.

Step III: Legally signing a contract. In this step, the offeror first

submits a contract to the server, which sends it to both parties to

collect their legal signatures. Tabellion’s server renders the contract

into its own customized format, as described in §6.1, before sending

it to the parties. The server also sends the certificate of the notary

enclave to both parties so that they can include it in their signed

screenshots (needed to prevent reuse of the screenshots). To legally

sign the contract, Tabellion’s mobile application first asks the TEE

to use Primitive II to synchronize its clock (which will be needed

to generate secure timestamps). It then uses Primitive III to display

the contract to the user page by page and capture screenshots

of content seen on the display. Note that this step may involve

negotiations between the parties as discussed in §6.3. Finally, the

application shows a special last page to each of the users that

explicitly asks them to assent to (and hence sign) the contract

(again using Primitive III).

Step IV: Notarizing the contract. Tabellion’s server uses secure
Primitive IV to cryptographically sign the contract as well as all

the collected evidence. It then verifies the contract and releases it

to both parties.

4.3 Self-Evident Contracts
Contracts in Tabellion are self-evident. That is, each user, and if

needed, the court or an adjudicator, can independently verify the

contract compliance with applicable law requirements.

A contract in Tabellion is formulated as

{
⋃

U∈users

({PhotoU}
PrU , {PuU}

PrDU , CertDU, MeasureDU,⋃
i∈pages

({Screenshoti,U, tsi,U, CertN}
PrU)),

CertN, MeasureN, tsN}
PrN

where {A}Pr indicates that A is cryptographically signed by private

key Pr, and
⋃

U∈users
(...) and

⋃
i∈pages

(...) represent union of users

and contract pages, respectively.

The formula shows the components of a contract. {PhotoU}
PrU

is the photo captured using Primitive I, where U denotes either the

offeror or the offeree. The photos are signed by the corresponding

party’s per-user per-device private key (PrU). To verify this key,

the contract also includes the corresponding public key ({PuU}
PrDU

),

which itself is certified by a device-specific private key in the party’s

corresponding device TEE (PrDU), and hence the contract also in-

cludes the certificates of the device TEEs of the two parties (CertDU).
The device TEE certificate is simply the public key of the device

certified by the device vendor. More specifically, this is the device-

specific ARM TrustZone certificate [30]. The contract also includes

the measurements of the TEE code in the devices of the two parties

(MeasureDU). These measurements let the verifier know what soft-

ware was running in the TEEs and are signed by the aforementioned

device-specific keys.

The next components are the screenshots collected from the

parties. The number of screenshots from each user can be different

as the contract may be formatted differently for each user (§6.1). A

signed screenshot also includes a timestamp captured with Prim-

itive II (tsi,U), highlighting when the screenshot was confirmed

by the user (as we discuss in §5.2, the timestamp comes with a

confidence interval). It also includes the certificate of the notary

(CertN). The latter is to ensure that each signed screenshot can

be used for one contract only. Without it, an attacker may take a

screenshot from a contract signed by a victim and try to include

that in a different contract by the same victim.

The last couple of components are related to the notary. This

includes the certificate of the notary, which is the certificate of the

Intel SGX enclave [24]. It also includes the measurement of the code

in the enclave code (MeasureN) and the time of notarization (tsN).
Finally, the contract is signed by the notary’s private key (PrN).

4.4 Contract Verification Process
In Tabellion, one can verify the contract compliance with applica-

ble law requirements as follows. To verify signature attribution,

one needs to check that the same per-user per-device private key

(PrU) is used to sign the photo ({PhotoU}
PrU

) and the screenshots

({Screenshoti,U, ...}
PrU

). Moreover, as described in §8.2, in Tabel-

lion, we require a certain gesture to be performed in the photo to

detect awareness. Therefore, one needs to check the presence of

this gesture too.

To verify mutual assent, one needs to (i) check the content of

the contract screenshots (Screenshoti,U) of the two users to make

sure they both have the same content and (ii) check the timestamps

of the screenshots (tsi,U), which include negotiations details (§6.3),

to verify the order of the actions.

To verify that parties had an opportunity to read the contract,

one needs to check that all contract pages are signed with the

per-user per-device private key ({Screenshoti,U, ...}
PrU

).

In addition, one needs to perform several more correctness

checks. More specifically, one needs to check the public key of

each user (PuU), to make sure all the cryptographic signatures by

the clients are valid; check the certificate of the devices (CertDU), to
make sure that the users used a device verified by its vendor; check

the certificate of the notary (CertN), to make sure a real enclave

was used for notarization; check the software measurements of the

device TEEs and the notary (MeasureDU and MeasureN), to make

sure they used the expected code; check the inclusion of the notary

certificate in the signed screenshots ({..., CertN}
PrU

), to make sure

the screenshots were not reused from another contract; check the

notarization timestamp (tsN), to make sure it is larger than the

timestamps of all screenshots; and check the notary signature on

the contract (PrN), to make sure the contract is correctly sealed.

5 SECURE REALIZATION OF PRIMITIVES
Tabellion’s self-evident contract assumes secure and untampered

execution of the primitives. Therefore, it is critical to implement

these primitives with a small amount of code so that their TCB

remains small. A small TCB makes the primitives less prone to

software bugs (which can get exploited by attackers). Moreover,

a smaller code base can be easily inspected for safety and even

certified. Table 1 shows that, while Tabellion needs a large amount

of code (∼15,000 LoC) to implement all of its functionality, the size

of trusted code is small (∼1,000 LoC). In this section, we discuss

224

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

Tabellion’s Trusted Code Untrusted Code
Component Component Size Component Size

Client

Primitive I 166

Mobile App 9919

Primitive II 104

Primitive III 80

Shared 291

Server Primitive IV 185 Rest 4180

Combined 826 14099
Table 1: Tabellion’s trusted and untrusted code size. The
sizes are reported in LoC. We count the lines of the code we
added, but not the existing code, e.g., TEE OS or Android li-
braries.

Operating system

Photo buffer

TEE

Primitive I: secure photo

Camera hardware
DMA write

Tabellion’s client

Camera device driver

No write access until TEE
signs

Operating system

OS
framebuffer

Secure
framebuffer

TEE

Primitive III: secure screenshot

Display hardware

Copy

DMA read

Display device driver

Tabellion’s client

Figure 3: (Left) Secure realization of Primitive I. (Right) Secure
realization of Primitive III.

some of the important challenges we faced and solved to achieve

this goal.

5.1 Primitive I: Secure Photo
Challenge. One straightforward way to implement this primitive

is to exclusively control the camera in the TEE (a feature supported

by ARM TrustZone). In this case, the TEE can directly take the

photo and sign it. Unfortunately, this approach significantly bloats

the TCB as it requires moving the camera device driver to the TEE.

For example, in the Nexus 5X smartphone, the size of the camera

driver is 65,000 LoC.

Solution. Our key idea to solve this problem is for the TEE to

protect the camera photo buffer (rather than the whole camera

driver) in memory from the time that the camera is about to capture

the photo until when it is cryptographically signed. To protect

the camera photo buffer, Tabellion write-protects the buffer pages

before the camera device populates them with the photo data using

Direct Memory Access (DMA). Moreover, to prevent the untrusted

OS from storing a fake image in the camera photo buffer before

protection, Tabellion zeroes out the buffer right after protection.

Figure 3 (Left) illustrates this solution.

We implement two APIs in the TEE for this purpose. The applica-

tion calls the normal OS photo capture API and the OS kernel uses

the TEE API to capture a secure photo and returns it to the appli-

cation. The kernel calls the first API, prepare_photo_buffer, to
register a memory buffer to be used for secure photo capture. This

API takes one argument, photo_buf_paddr, which is the physical

address of the photo buffer in the OS physical address space. This

API write-protects the buffer and zeroes out its contents. The kernel

then waits for the camera hardware to populate this buffer through

DMA. Next, the kernel calls the second API, show_photo_buffer,
which displays the photo on the screen. Finally, the kernel calls

the third API, sign_photo_buffer, which waits for the user to

confirm the photo on the screen, and then cryptographically signs

the photo and returns it using shared memory.

Note that to protect against the attacker using another DMA-

enabled device to write to the photo buffer, Tabellion can use IOM-

MUs available in ARM SoCs, similar to SchrodinText [36].

5.2 Primitive II: Secure Timestamp
The TEE needs to be able to use a secure clock synchronized with

a global clock. Network Time Protocol (NTP) is a popular protocol

that can be used for clock synchronization. For security, we assume

and use an integrity-protected channel (i.e., signed messages) to

communicate with a secure NTP server, such as [14], to prevent a

man-in-the-middle attack, which may tamper with the messages.

This makes sure that the OS (or an attacker in the network) cannot

change the content of the messages.

Challenge. Unfortunately, this security provision is not enough

and an attacker can still mount an asymmetric delay attack. That
is, the OS (or an attacker in the network) can delay the outgoing

and incoming messages (from the TEE to the secure NTP server)

in order to tamper with NTP calculations. We next describe this

attack in more detail and then provide our solution.

In NTP, the client calculates its clock offset from the NTP server’s

clock as
(t2−t1)+(t3−t4)

2 , where t1 and t4 are timestamps captured

by the client when it first sends a message to the NTP server and

when it receives a response, and t2 and t3 are the timestamps

captured by the NTP server when it first receives a message from

the client andwhen it sends a response (which sends t2 and t3 to the
client). This offset can then be used to synchronize the client clock.

The NTP protocol assumes that the time to send a message from the

client to the NTP server is the same as the time to send a message

from the server to the client (hence the divide by two). An attacker

can inject an asymmetric delay into one of these messages, e.g.,

using a compromised OS on the client or a compromised network

link, in order to tamper with the calculated offset.

Solution. To address this challenge, Tabellion uses a novel secure

clock synchronization strategy, built on top of NTP, which we call

delay-resistant NTP. Our solution defeats the asymmetric delay

attack by calculating a confidence interval, which represents the

maximum and minimum possible offsets assuming arbitrary delay

in any of the messages. Tabellion tags each action with its times-

tamp and confidence interval. For mutual assent, in addition to

ordering the timestamps, Tabellion’s contract verification requires

that confidence intervals be non-overlapping.

To calculate the interval, we assume two extreme cases, one

where only the request from the client to the NTP server forms the

full round trip time (and the response takes no time) and one vice

versa. It is possible to show that offsetmax = max(t3 − t4, t2 − t1)
and offsetmin = min (t3 − t4, t2− t1). Therefore, the confidence
interval (ci) is calculated as ci = |(t3 − t4) −(t2 − t1) |.

We add two APIs to the TEE for this primitive. They allow the

application to initiate the protocol and to communicate with the

225

Tabellion: Secure Legal Contracts on Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

NTP server. The application calls the first API, sync_clock_init,
to initiate the protocol. This API returns a nonce from the TEE

(used to protect against replay attacks). The application then for-

wards the nonce to the NTP server and forwards the response

from the NTP server to the TEE with a call to the second API,

sync_clock_complete. This API takes one argument, server_ts,
which is a shared buffer for passing the two server timestamps in

NTP protocol and the server’s signature (RSA with a 1024 bit key).

Note that in addition to a secure synchronization mechanism,

the TEE needs a secure hardware timer to keep track of time after

synchronization. For that, we use a secure hardware timer available

in TrustZone.

5.3 Primitive III: Secure Screenshot
Challenge. The TEE needs to securely capture the content on the

display. A straightforward approach to achieve this is to give ex-

clusive control of the display subsystem to the TEE. Unfortunately,

doing so requires moving the display subsystem driver to the TEE,

which on the HiKey board, encompasses at least 8,000 LoC. This

bloats the TCB.

Solution. Our key idea in Tabellion is to secure the buffer used

for displaying content (i.e., framebuffer) in the TEE rather than

the whole display software stack. At a high-level, the primitive is

realized as follows. When invoked, the TEE freezes the framebuffer,

not allowing any more updates. It then waits for the user’s authen-

tication using biometrics. Once the user confirms, the TEE signs a

copy of the framebuffer and unfreezes it. This process guarantees
that the displayed content and the authentication are atomic.

Disallowing updates to the framebuffer can break the display

stack in the OS. Therefore, the TEE copies the contents of the

framebuffer to a newly generated framebuffer (i.e, secure frame-

buffer), which is only accessible in the TEE. It then shows the secure

framebuffer on the display by programming its address into the

memory-mapped display controller register that holds the address

of the framebuffer. Furthermore, to prevent a compromised OS from

overwriting this register (in order to use a different framebuffer),

Tabellion also removes write permission from the corresponding

register page of the display controller. With this solution, the OS

is allowed to update its own framebuffer but doing so does not

change the content shown on the display. Upon unfreezing the dis-

play, Tabellion points the display controller back to the untrusted

framebuffer and enables writes to the aforementioned display con-

troller register. Figure 3 (Right) illustrates this approach.

Note that when the TEE removes the permission of the above

register page, any write to this register page of the display controller

would fault. Indeed, there are other registers on the page as well,

all of which will be write-protected. To avoid these faults, we made

minimal changes to the display controller driver in the OS to skip

the writes while the display is frozen.

To provide this primitive, the TEE exposes three APIs. It expects

the application (through the OS) to call these APIs. First, to show

a contract page, the application displays the page and then makes

a call to TEE’s freeze_framebuffer, which freezes the framebuffer

showing the contract page. The TEE waits for the user’s confir-

mation using biometrics. Note that in commodity mobile devices,

biometric devices are controlled in the TEE [16], therefore, we as-

sume so in our design. Once the user confirms, the application

makes a call to the second API, sign_framebuffer, which captures a

screenshot in the TEE and cryptographically signs it, appending

the secure timestamps and the notary certificate passed with the

API. This API takes the notary certificate as input and returns the

signed framebuffer using shared memory. Finally, the application

makes a call to the third API, unfreeze_framebuffer, which unfreezes
the framebuffer.

As one last provision, we require each page shown through this

primitive to stay on the display for a minimum of 2 seconds. This

prevents a user from confirming a page by mistake without having

enough time to read it.

5.4 Primitive IV: Secure Notarization
Challenge. Collecting one piece of evidence poses a challenge

for the notary. Specifically, at the time of notarizing the contract,

the notary enclave does not know for certain whether the offeror

has revoked the offer or not. The law of contracts recognizes the

offeror’s right to revoke the offer as long as it is not signed by the

offeree and this revocation is otherwise permitted under the terms

of the offeror’s offer. For example, the offeror might have revoked

the offer 5 minutes prior to the offeree legally signing the contract

(hence not satisfying the requirement of mutual assent), but the

revocation evidence might not reach the notary in time.

Solution. To address this problem, the enclave requires a confir-

mation from the offeror that there have been no revocations, and

if there has been one, it requires the secure screenshot confirming

that. The enclave, through the rest of the server code, inquires about

any pending revocations in the offeror and waits until it receives

the response.

Note that this solution, while secure, might cause a practical

problem. That is, no response from the offeror’s device can stall

the notarization of the contract indefinitely. To prevent indefinite

blocking, a possible approach is to wait for no longer than a config-

urable period of time, e.g., 24 hours. This allows the offeror’s device

to send the response in most practical cases.

6 FULLY FUNCTIONAL PLATFORM
The secure primitives that we design and build for Tabellion, while

effective in providing strong evidence for the contract, pose chal-

lenges for building a fully functional contract platform. We discuss

all the challenges we faced and solved by developing ∼14,000 un-

trusted lines of code in our client and server.

6.1 Readable Contracts
Challenge. Contracts are often in PDF or Word formats, with each

page containing a large amount of text. When viewed on the display

of a mobile device, users need to continuously pinch and zoom to

fully view the content. Doing so creates challenges for the use of

Primitive III (secure screenshot) to capture all the content seen by

the user.

Solution.We solve this problem by providing a service in Tabel-

lion’s server that renders the contract into a readable one when

viewed fullscreen on the mobile device of each user. This service

accepts a contract in an intermediate format (Markdown language

226

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

in our prototype). It generates the contract pages specifically for

the screen sizes of the mobile devices used by the offeror and the

offeree. Moreover, the service follows some formatting guidelines

for the rendered document to make sure the content is easily read-

able. These guidelines include adequate line spacing, margins, clear

background color, and font colors. Indeed, it is possible to add a

feature to the service so that it can apply user-specific requests,

e.g., a font size larger than the default one. In addition, the server

clearly marks every page with a page number, which helps verify

the presence of all required screenshots in the contract.

We note that contract rendering in the server is not part of the

TCB of the system. This is because Tabellion asks the user to read

through and sign the generated contract.

6.2 Contract Submission
Challenge. As mentioned, Tabellion’s contract generator receives

the contract in an intermediate format, such as Markdown. This

creates a burden for the offeror, who may prefer another format to

prepare the contract in.

Solution. To address this problem, we provide a mostly-automatic

converter. More specifically, we allow the offeror to submit the

contract in PDF format. Our converter then extracts the content

from the PDF file and converts it to a mobile app UI page with

explicit headers and text sections. The offeror is then allowed to

review the extracted content and edit it, if needed. Once finalized,

the converter produces a Markdown file and sends it to the server.

Figure 4 shows this solution with an example.

We do, however, note that our prototype cannot currently handle

complex PDF pages (i.e., those with images and tables). We leave

addressing this limitation to our future work.

6.3 Contract Negotiations
Challenge. When parties negotiate and vary the terms of a con-

tract, the parties will need to mutually assent to the new terms if

they are materially different from the terms of the original con-

tract. In order to demonstrate mutual assent, one needs to provide

evidence of these negotiations. Unfortunately, creating an out-of-

bound channel to allow the parties to perform negotiations, e.g.,

messaging apps or email, require other primitives to securely cap-

ture the negotiations.

Solution.We have implemented a fully-functional negotiation in-

terface in Tabellion using the existing primitives. To achieve this,

our Tabellion application allows the offeree to enter a comment on

the offer. The application then shows the comment on a new UI

page to the offeree and asks them to confirm the comment, similar

to how they confirm seeing a contract page. Tabellion then uses

Primitive III to capture a confirmed screenshot of the revision re-

quest and includes it in the contract. Finally, this revision request is

shown to the offeror, who can revise the contract and submit again,

using the Android UI page described earlier and seen in Figure 4

(Middle). Note that the details of negotiations can be easily verified

in a Tabellion contract by inspecting the confirmed screenshots

of the contract pages and the revision requests along with their

timestamps.

Opportunity. The combination of the previous three solutions

has enabled us to add an important capability to Tabellion that

PERSONAL PROPERTY RENTAL AGREEMENT

1. Starting 2019-03-01, John Smith ("Owner") is renting to Peggy Jones ("Renter") the following
(the "Property"): A non-furnished room with a seperate bathroom.

2. Renter must return the Property to Owner by 2020-03-12.
3. Renter must use the Property only for the following purpose:

For residence.

4. The rental rate is $1100 Per month. Of the total, $1000 is due at signing and the rest is due on
the Property's return date written above.

5. Renter shall:
(a) return the Property in the same condition as provided, except for normal wear and tear

if applicable;
(b) owe Owner for any damage to the Property during the rental period;
(c) owe Owner for the full value of the Property if it is lost or stolen during the rental

period. The Property's estimated value is None.
(d) not let anyone else use the Property without Owner's written permission.

6. Renter hereby releases Owner from any liability, loss or harm connected to Renter's use of the
Property.

7. Renter promises to have taken reasonable steps (such as buying adequate insurance) to cover
liabilities that could foreseeably arise from Renter's use of the Property.

8. This is the parties' entire agreement on this matter, superseding all previous negotiations or
agreements. It can only be changed by mutual written consent.

9. The laws of the state of Washington govern this agreement and any disputes arising from it will
be handled exclusively in courts in that state.

10. Signing a copy of this agreement, physical or electronic, will have the same effect as signing an
original.

Figure 4: (Left) A contract sample in PDF. (Middle) Extracted
contract in Tabellion presented in an Android UI activity,
which allows edits. (Right) Contract rendered by Tabellion
and viewed on the device. The original contract is a single page
with small fonts, which is barely readable on a smartphone
screen in fullscreen mode. The converted contract has 3 pages
and is easily readable.

no existing platform supports: negotiation integrity tracking. More

specifically, after the offeror edits the original offer and submits it,

Tabellion’s server compares the edited contract with the old version

and identifies the contract pages that are affected by changes. It

then asks the offeree to only view and modify these edited pages.

This capability provides important usability benefits, especially

when dealing with long contracts. In today’s platforms, this is left

to the offeree. That is, the offeree can decide to view the parts of

the revised contract that they think have been updated. However,

they bear the risk of not seeing other changes added (possibly

maliciously) to the contract. Alternatively, they can re-read the

whole revised contract again, which is time-consuming, especially

if there are multiple rounds of negotiations.

6.4 Automatic Contract Verification
Tabellion’s contracts are self-evident. Yet, the verification process

is not easy and requires several checks. Therefore, to enhance the

usability of Tabellion, we provide an automatic contract verifier.

We use this verifier in our own server to verify the contract once

it is formed and before notifying the users. We note that contract

verification in the server is not part of the TCB of the system. This

is because each user can independently verify the contract as well.

Challenge. The rendering of the contract specifically for each user

creates a challenge for automatic verification. That is because the

contract pages (but not the content) might be different for each

user (e.g., different number of pages, different page dimensions,

and different font sizes). To check that both parties assent to the

same contract terms, we cannot trivially compare the two sets of

screenshots pixel by pixel.

Solution. To enable automatic verification, Tabellion’s server re-

leases some metadata alongside the notarized contract. This meta-

data includes information about the code used to render to the

contract from the intermediate language (e.g., Markdown), the con-

tract source in that intermediate language, and the format used for

each mobile device (i.e., screens size, font size, etc.). The verifier

uses the same generator code to render the contract pages from the

source to the final pages for each mobile devices (which are PNG

227

Tabellion: Secure Legal Contracts on Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

images as described in §7). It then compares these rendered images,

pixel by pixel, with the contract screenshots signed by the users’

devices. If the images fully match, verification is successful.

7 IMPLEMENTATION
Tabellion’s client.We build Tabellion’s client on a HiKey LeMaker

development board. The TEE in this board is the Xen hypervisor

(version 4.7) and the OPTEE OS (version 3.3) running in ARM’s

TrustZone secure world. We implement Primitives I and III (other

than the cryptographic signatures) in the Xen hypervisor. We im-

plement cryptographic signing operations as well as Primitive II in

OPTEE. We use RSA with 2048 bit keys for digital signatures in the

client.

We note that virtualization hardware extension is available in

most of the ARM mobile SoCs that are used in current mobile

platforms and, hence, adding a hypervisor is feasible. Indeed, some

mobile manufacturers have already added a hypervisor layer for

security purposes. For example, Samsung uses a hypervisor for

real-time kernel protection as part of Samsung Knox [30].

We use a USB camera and a USB fingerprint scanner with the

board and program them in the normal world. We use Android

Open Source Project (AOSP) Nougat for the untrusted OS. The TCB

size in this prototype is the trusted code that we added (Table 1) and

the existing trusted code in TrustZone secure world and hypervisor

(which can be as low as a few tens of thousands of lines [64]).

We also provide a secondary prototype of Tabellion for commod-

ity mobile devices. We use this prototype for our user study and

for energy measurements (§9). The main difference is the imple-

mentation of secure primitives. On commodity mobile devices, we

cannot program the TEE, therefore, we emulate these primitives in

the mobile app itself. In this prototype, we use the smartphone’s

camera and fingerprint scanner.

Tabellion’s server. We process the contract in Markdown format

and generate the contract pages as images in PNG format. We also

attach instructions and page numbers to contract page (Figure 4

(Right)).

We implement the notary enclave in an Azure Confidential Com-

pute Standard DC4s VM. This VM runs on top of the 3.7GHz Intel

XEON E-2176G processor, which supports Intel SGX. We program

the enclave using the open source Confidential Consortium Frame-

work (CCF). For the measurement of the TCB and the enclave

certificate, we use the Intel SGX Data Center Attestation Primitives

(DCAP) libraries, which leverage Elliptic Curve Digital Signature

Algorithm (ECDSA). We use RSA with 4096 bit keys for digital

signatures by the notary in the enclave.

8 SECURITY EVALUATION
8.1 Threat Model
We assume that the Tabellion client’s TEE is uncompromised. We

assume that the attacker can access the victim’s device (e.g., by

stealing it) but cannot compromise its TEE. We do not trust Tabel-

lion’s application running in the user’s device. We assume that the

enclave in Tabellion’s server is uncompromised. However, we do

not trust the rest of the server components. We also assume that

the attacker cannot leverage side channels to perform side-channel

attacks on our TCB in the client TEE [59] and SGX enclave [43, 79].

We assume a secure NTP server, such as [14], with which clients

can synchronize their clocks (§5.2). We trust the hardware of mobile

devices, e.g., the camera, and the SGX feature of processors in the

server. A self-evident contract includes certificates from the mobile

device vendor (e.g., Samsung) and the enclave vendor (e.g., Intel).

We trust these vendors.

Tabellion’s prototype does not currently provide availability

or confidentiality guarantees. Lack of the availability guarantee

means that Tabellion’s services, e.g., the registration service, may

not to be available to users or that a contract signed with Tabellion

may be lost. Lack of the confidentiality guarantee means that an

attacker can access the content of a contract. These guarantees can

be provided using existing solutions, e.g., encryption.

8.2 Security Analysis
Wenext analyze various attacks introduced in §3 and discusswhether

they would succeed or fail against Tabellion.

Repudiation attack. We introduced three forms of this attack. In

the first form, the attacker denies the signature. This would fail

against Tabellion as the contract provides the photo of the user,

signed with a key, which is authenticated with the user’s biometrics

and which also is used to confirm the contract pages. Moreover,

the validity of the key can be verified by inspecting its certificate

and the certificate of the mobile device. In the second form, the

attacker denies mutual assent. This would fail as the screenshots

confirmed by the user clearly show the contract and negotiation

terms. Moreover, all screenshots are securely timestamped, which

provides strong evidence of the order of actions. In the third form,

the attacker denies that there was an opportunity to read the con-

tract. This would fail as the contract includes signed screenshots of

all the content viewed and confirmed by the user.

In addition, in either of these attack forms, the attacker may deny

the strong evidence by Tabellion and claim their device or Tabel-

lion’s server was compromised. Tabellion’s small TCB in its client

and server provides strong protection against such claims. More-

over, the self-evident contract provides strong evidence that the

expected code executed in the device TEE and enclave by providing

their code measurements and certificates.

Impersonation attack.We introduced two forms of this attack. In

the first form, the attacker must spoof the victim’s authentication

on the victim’s device. This is challenging in Tabellion as it requires

defeating TEE-protected biometric sensors with sophisticated anti-

spoofing (e.g., Apple’s Touch ID [35]).

An attacker in close proximity to the victim may attempt to

defeat a fingerprint-based authentication by pressing the victim’s

fingers against the fingerprint scanner. While this is a difficult

attack already, we note that it is feasible only if fingerprint is used

as the sole biometric signal. Tabellion’s design is conducive to using

different or multiple biometric signals, e.g., Apple’s Face ID [35].

Note that these modern biometric sensors are accessible in the

mobile device TEE [25, 30] and hence using them does not require

adding more trusted code.

For the second form (where the attacker tries to spoof the victim’s

identity), we see five attack variants on Tabellion. We first briefly

introduce these variants and then describe how Tabellion protects

against them. The first variant is using an existing or deep-faked

228

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

Figure 5: Custom gesture (V sign) required in Tabellion’s pho-
tos. (Left) The user performs an incorrect gesture. (Right) The
user performs the correct gesture. In both cases, the user is no-
tified accordingly. In (Left), the notification says “Gesture not
verified, please try again!” In (Right), it says “Gesture verified,
confirm your photo!”

photo of the victim. The second one is taking a photo of an unaware
victim. The third one is taking a photo of a 3D-printed object looking
like the victim. The fourth one is taking a photo of an existing or
deep-faked photo of the victim shown on a display. The fifth one is

taking a photo of a doppelganger.
Tabellion defeats the first attack variant by its use of a secure

photo, which guarantees that the photo is captured by the camera

hardware. The second variant is challenging for the attacker as it

requires physical proximity to the victim. Yet, Tabellion further

defeats this attack by mandating a requirement for the photos used

for registration: specialized photo. More specifically, Tabellion re-

quires the user to perform a custom gesture while taking the secure

photo in order to demonstrate awareness. The contract is not valid
if the requirement is not satisfied and Tabellion’s server automati-

cally checks the requirement using an open source framework [21].

Figure 5 shows this solution in practice.

The third and fourth variants are also difficult for the attacker.

Yet, Tabellion can make these attacks even harder by detecting

liveness, using one of the several existing solutions [12, 35, 57, 58,
78]. For example, it can require the user to take multiple photos

from different angles of their face, which can be used to detect

liveness [12]. Alternatively, it can use an iris scanner or secure face

recognition on modern phones, e.g., Apple’s Face ID, which projects

a grid of 30,000 infrared dots on a user’s face and takes an infrared

picture [35].

The fifth variant is also challenging for the attacker since it

requires a doppelganger. Yet, Tabellion can defend against this

attack by asking the user to show an official ID in the photo, which

can be automatically checked using services such as Checkr [13].

Confusion attack. In this attack, a malicious offeror leverages

vulnerabilities in the contract viewer in the offeree’s device to

mislead the offeree. Tabellion’s rendering of the contract in its

server neutralizes the Dalì attack (which is a specialized form of the

confusion attack, discussed in §3) since the attacker cannot directly

send a file to the offeree’s device. Moreover, Tabellion’s use of TEE

to securely display contract pages defeats a powerful attacker who

may be able to take control of the contract viewer on the victim’s

device (e.g., by compromising Tabellion’s app or the OS) and try to

change the contract content shown to and confirmed by the victim.

 0

 5

 10

 15

 20

 25

 30

Small Medium Large VLarge

E
x

e
c
u

ti
o

n
 T

im
e
 (

S
e
c
.) Submission

Rendering
Downloading

 0

 5

 10

 15

 20

 25

 30

Small Medium Large VLarge

E
x

e
c
u

ti
o

n
 T

im
e
 (

S
e
c
.) Submission

Rendering
Downloading

Figure 6: Tabellion’s execution time of offer (as defined) for
(Left) HiKey and (Right) Nexus 5X.

8.3 Case Analysis
In §2, we discussed a few legal cases where existing electronic

contract platforms have failed to provide strong evidence. While

it is difficult, if not impossible, to predict the legal validity of a

contract with certainty, we believe Tabellion, if used for forming

those contracts, would have provided stronger evidence. First, in

In re Mayfield [6], the court discussed the ease with which the

signature on DocuSign could be forged. It mentioned that “what
happens when a debtor denies signing a document and claims his
spouse, child, or roommate had access to his computer and could have
clicked on the ‘Sign Here’ button.” In contrast, Tabellion provides a

secure photo of the signatory and protects against impersonation

attempts, as discussed.

Second, in Adams v. Quicksilver, Inc. [4, 10], the problem was

that “it couldn’t be determined when the agreement was signed.”
Tabellion’s use of secure timestamps for every action in the signing

process provides strong evidence for when each party signed the

contract.

Finally, in Labajo v. Best Buy Stores [3, 62], the problem was

that “Best Buy couldn’t prove that she [Christina] saw and approved
the disclosure.” Tabellion’s use of secure screenshots to capture

all the content seen by a user provides strong evidence for this

requirement.

9 EVALUATION
9.1 Performance Evaluation
We present the execution time of using Tabellion (measured on the

client device). We include results for our main prototype on the

HiKey board and our prototype on a Nexus 5X smartphone.

Figure 6 shows the execution time of offer, defined and measured

fromwhen the offeror submits a contract to Tabellion until when the

contract is ready for them to sign. This includes the time needed to

send a request to the server, render the contract pages in the server,

and download them to the device. The figure shows the results for

four contracts of different lengths. These contracts, labeled as small,

medium, large, and very large, result in 6, 12, 24, and 48 pages for

HiKey and 4, 8, 16, and 32 pages for Nexus 5X (the numbers are

different in the two platforms since they have different screen sizes).

As can be seen, even for very large contracts, the overall time is

less than 20 seconds.

The same figure also shows the breakdown of the execution

time. It shows it is mostly due to transfer of contract pages from

the server to the device and due to rendering of the contract. Our

rendering pipeline can be improved, as it currently renders the

contract in several stages (Markdown to HTML, HTML to PDF, and

finally PDF to PNG).

229

Tabellion: Secure Legal Contracts on Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

 0

 10

 20

 30

 40

 50

Small Medium Large VLarge

E
x

e
c
u

ti
o

n
 T

im
e
 (

S
e
c
.) Uploading

Verification

 0

 10

 20

 30

 40

 50

Small Medium Large VLarge

E
x

e
c
u

ti
o

n
 T

im
e
 (

S
e
c
.) Uploading

Verification

Figure 7: Tabellion’s execution time of acceptance (as defined)
for (Left) HiKey and (Right) Nexus 5X.

Figure 7 shows the execution time of acceptance, defined and mea-

sured from the time that the offeree submits their signed contract

to Tabellion until when the contract is notarized and verified (ex-

cluding the last inquiry to the offeror, which might take very little

time or an arbitrarily long time depending on the reachability of the

offeror, as discussed in §5.4). The results show that the execution

time is around 35 seconds for the very large contract. As the results

show, most of the execution time is due to uploading the signed

screenshots to the server.

We next measure the execution time of secure primitives on

the HiKey board (Primitives I-III) and on the server (Primitive IV).

More specifically, we measure the execution time of a single use of

a secure primitive. For each primitive, we measure the execution

time several times and report the average and standard deviation.

Figure 8 shows the results. It shows the execution times of these

primitives are small. Note that Primitive III enforces at least a two

second display freeze (§5.3).

9.2 Energy Measurement
We measure the energy consumption of Tabellion in our secondary

prototypewith a Nexus 6P smartphone.We perform this experiment

just to demonstrate that Tabellion does not drain the battery, which

would cause inconvenience to the user. We measure the energy on

Nexus 6P as opposed to Nexus 5X, which we use in other experi-

ments. This is because the fuel gauge in Nexus 6P, unlike Nexus

5X, includes a charge counter [26]. We measure the energy for the

offeror submitting and signing a very large contract (28 images on

Nexus 6P). Our results show that the overall energy consumption

is on average 68.97 (standard deviation of 4.67) milliwatt-hours,

which is 0.5% of the overall battery capacity on this smartphone

assuming a 3.7 V voltage.

9.3 User Study
We perform an IRB-approved user study

5
to evaluate four usability

aspects of Tabellion: effectiveness of presentation, usage conve-

nience, readability of contracts, and time spent on contracts. Note

that we do not evaluate other usability aspects of the system, such

as registration.

We recruit 30 participants in our study (22 undergraduate and 8

graduate computer science students; 21 male and 9 female). We ask

the participants to read and sign contracts on a Nexus 5X smart-

phone. After each contract, we ask them to answer two multiple-

choice questions about the contract’s details and ask them to rate

the convenience and readability of the contract platform. Exam-

ple questions are true/false questions about a specific statement

5
UC Irvine IRB HS# 2019-5017

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

P.I P.II P.III P.IV

E
x

e
c
u

ti
o

n
 T

im
e
 (

S
e
c
.)

0.009 0.003

Figure 8: Execution time of secure primitives.

 0

 50

 100

 150

 200

 250

DocuSign Tabellion

N
u

m
b

e
r

o
f

A
n

s
w

e
rs

Correct
Wrong

1

2

3

4

5

DocuSign Tabellion

S
co

re

Convenience
Readability

 0

 50

 100

 150

 200

 250

 300

 350

DocuSign Tabellion

T
im

e
S

p
en

t
(S

ec
.)

Figure 9: (Left) Correct/wrong answers for questions in the
user study. (Middle) Convenience and readability of plat-
forms rated by participants. (Right) Average time spent on the
contracts in the user study.

in the contract or a question asking about a specific value, e.g.,

the total cost of a service. Each participant uses two different plat-

forms, Tabellion and DocuSign [18], and signs four contracts on

each. We choose the contracts out of a repository of eleven con-

tracts and rotate the contracts among platforms and participants

to avoid any systemic bias (i.e., each contract is signed by several

users on each platform). These contracts include sale, loan, Non-

Disclosure-Agreement (NDA), and rental contracts that we created

using contract samples from Docsketch [15].

Effectiveness of presentation. To measure the effectiveness of

presentation and user understanding, we count correct and wrong

answers to the questions for the contracts. Figure 9 (Left) shows

the results. It shows that the participants fared slightly better in

Tabellion, demonstrating that Tabellion’s rendering of the contract

specifically for a mobile device and the use of good formatting

guidelines (§6.1) are effective.

Convenience and readability. Using a Likert Scale, we ask the

participants to rate the convenience and readability of the platforms.

Figure 9 (Middle) shows that the participants slightly preferred the

convenience and readability of Tabellion over DocuSign for signing

the contracts. More specifically, on average, the participants scored

the convenience and readability of the contracts to be 4.22 and 4.02

for Tabellion and 3.53 and 3.28 for DocuSign.

Time spent on contracts. Figure 9 (Right) shows that participants
spent slightly less time to view and sign the contracts on Tabellion

(166.68 seconds on Tabellion and 197.46 on DocuSign, on average).

All of these results show that the security benefits of Tabellion

do not come at the cost of usability. However, one might wonder

whether Tabellion’s usability decreases for long contracts. We re-

port the results for the longest contract in our study, which was

an NDA contract, consisting of 7 PDF pages for DocuSign and 25

pages for Tabellion. Our results show that participants scored the

convenience and readability of the NDA contract, respectively, to be

4 and 3.6 for Tabellion and 2.6 and 3.1 for DocuSign. Moreover, they

spent 355 seconds for this contract on Tabellion and 490 seconds on

DocuSign. This shows that the usability of Tabellion is good even

for long contracts.

230

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

10 RELATED WORK
Attacks on Electronic Signatures. Several papers study different
forms of attacks on electronic signatures [49, 54]. Dalì attack [40, 41,

70] is a confusion attack enabled by the same file being interpreted

differently with different file extensions (§3). Other attacks use

malicious fonts [52] and JavaScript code [53] as the source of the

dynamic representation. Tabellion protects against these attacks as

discussed in §8.2.

TEE for Protected UI. Several systems take advantage of ARM

TrustZone and virtualization hardware in mobile devices to protect

the UI. VButton [56] provides a framework for attesting the user

operations in different apps. TruZ-View [81] provides UI integrity

and confidentiality protections without porting the UI renderer to

the TEE. AdAttester [55] provides attestation for the user’s clicks

on ads in Android apps. SchrodinText [36] protects the confiden-

tiality of select textual content on the UI. Yu et al. [82] and Zhou et

al. [85] design trusted path solutions for I/O devices, such as display,

GPU, and keyboard, to give an application direct and secure access

to these devices. In contrast to all of these systems, Tabellion is

concerned with legal contracts and hence provides novel secure

primitives to help generate strong evidence for the legal and valid

formation of contracts.

TEE for System Security. Several systems use the TEE for secu-

rity purposes. DelegaTEE [61] uses TrustZone and SGX to provide

delegation of credentials. TruZ-Droid [80] enhances the functional-

ity of TrustZone TEE by providing a binding between an Android

app and a Trusted Application (TA) so that the Android app call-

back functions can be triggered from a TA. TrustFA [83] designed a

remote facial authentication method that, unlike Tabellion, moves

the camera and display driver into the TEE, which increases the

TCB size. Trusted sensors [47, 60] attest sensor data to applications.

Gilbert et al. [47, 48] attest the integrity of sensor data. fTPM [71]

implements the TPM functionality within TrustZone. Samsung

Pay [31] authenticates users via fingerprints in TEE for confirming

a transaction. Android Protected Confirmation [8] provides APIs for

applications, such as a banking app, to get the user’s confirmation

on certain important messages, such as those used for transferring

money. SecTEE [84] and SANCTUARY [39] use TrustZone to pro-

vide enclave for applications running in ARM SoC-based devices.

Several works also use SGX enclave to provide different security

guarantees [38, 51]. None of these systems provide a platform for

legal contracts and hence do not address its challenges.

UI Protection. AdSplit [74] and AdDroid [69] isolate applications

from ad services, while maintaining a uniform UI. LayerCake [72]

enables UI components to be securely embedded in Android. They

do not, however, protect against attacks on legal contracts.

Untrusted Operating System. Overshadow [44] and InkTag [50]

protect an application from an untrusted operating system using a

hypervisor. Ditio [66] makes the OS untrusted using a hypervisor-

and TrustZone-based TEE when auditing sensor usage in a device.

Viola [63, 65] uses the hypervisor to protect against unauthorized

accesses to memory-mapped sensor pages. Similar to Tabellion,

these systems leverage the TEE to make the OS untrusted. However,

they do not address the challenges of securing legal contracts.

eNotary. There are eNotary [19] services whereby a user can get a

legal signature notarized electronically. These services, however, are

not pure electronic solutions because they require a human notary

to be present. Indeed, in the case of DocuSign’s solution [17], the

notary needs to be in the same physical location as the signatory.

We note that requiring a notary can help provide strong evidence

for the contract, but it is expensive and time consuming.

Smart Contracts. Smart contracts are self-executing computer

programs on Blockchains that enforce terms of an agreement be-

tween parties automatically [68]. For example, a smart contract in

a loan agreement can perform automatic payments via the Internet

at pre-specified dates. However, current smart contract solutions

do not provide the strong security guarantees that Tabellion does,

namely providing strong evidence for the legal validity of contracts.

Addressing these issues require carefully designing and securing

the interactions of the user with the contract platform. We believe

that several techniques provided in Tabellion are complementary

to smart contracts.

Secure NTP. Solutions such as NTS [7] and NTPsec [27] improve

the security of time synchronization by verifying the authenticity

of the time server and protecting the integrity of the of the synchro-

nization packets. NTS suggests multiple approaches for mitigating

the asymmetric delay attack such as using multiple servers, defining

a time threshold on the client device, or using multiple communica-

tion paths. However, these solutions do not fully solve the problem,

need extra hardware, and are difficult to deploy within a TEE. Tabel-

lion, on the other hand, calculates a confidence interval without

requiring extra hardware and is deployable in a TEE.

Delay-resistant Systems. TimeSeal [37] designs a secure timer

for SGX. It uses counting threads to improve the resolution of SGX

timer and addresses the scheduling attacks to the counting threads.

It also addresses the delay attacks between the application enclave

and the Platform Service Enclave (PSE) that provides the trusted

timer in SGX. However, it does not address the NTP asymmetric

delay attack. cTPM [42] provides secure time for TPM. It uses a

trusted cloud server to update the time on the local TPM device. It

addresses the delay attack on NTP by using a global timeout value.

However, this technique needs to re-do synchronization if the delay

is more than the timeout value. Sandha et al. [73] evaluate accuracy

of time synchronization on smartphones using different hardware

solutions but do not discuss attacks on synchronization.

11 CONCLUSIONS
We presented Tabellion, a system solution for secure legal contracts

on mobile devices. Tabellion generates strong evidence for the valid

and legal formation of contracts and provides self-evident contracts.

It uses four secure primitives implemented with only ∼1,000 LoC. It

also provides a fully functional contract platform, built with∼14,000

lines of untrusted code. Through prototype measurements, analysis,

and a user study, we showed that Tabellion is secure, achieves

acceptable performance, and provides slightly better usability than

DocuSign for viewing and signing contracts.

ACKNOWLEDGMENTS
The work was in part supported by NSF Awards #1617513 and

#1718923. The authors thank the paper shepherd, Jeremy Andrus,

and the anonymous reviewers for their insightful comments.

231

Tabellion: Secure Legal Contracts on Mobile Devices MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

REFERENCES
[1] 2000. ELECTRONIC SIGNATURES IN GLOBAL AND NATIONAL COMMERCE

ACT. PUBLIC LAW 106–229.

[2] 2004. NIST Study Shows Computerized Fingerprint Matching Is Highly Ac-

curate. https://www.nist.gov/news-events/news/2004/07/nist-study-shows-

computerized-fingerprint-matching-highly-accurate.

[3] 2007. Labajo v. Best Buy Stores, LP, 478 F. Supp. 2d 523 (S.D.N.Y. 2007).

[4] 2010. Adams v. Quicksilver, Inc. no. G042012 (Cal. App. 4th Div. Feb. 22, 2010).

[5] 2015. O’Connor v. Uber Technologies, Inc., 150 F.Supp.3d 1095 (N.D. Cal. 2015).

[6] 2016. In re Mayfield: No. 16-22134-D-7, 2016 WL 3958982 (E.D. Cal. July 13,

2016). https://www.govinfo.gov/content/pkg/USCOURTS-caeb-2_16-bk-22134/

pdf/USCOURTS-caeb-2_16-bk-22134-0.pdf.

[7] 2017. Network Time Security. https://tools.ietf.org/html/draft-ietf-ntp-network-

time-security-15.

[8] 2018. Android Protected Confirmation. https://android-developers.googleblog.

com/2018/10/android-protected-confirmation.html.

[9] 2018. Global +$4 Billion Digital Signature Market by Deployment,

Component, Industry and Region - Forecast to 2023 - ResearchAndMar-

kets.com. https://www.businesswire.com/news/home/20181001005761/en/

Global-4-Billion-Digital-Signature-Market-Deployment.

[10] 2019. 7 landmark electronic signature legal cases. https://esignrecords.org/7-

landmark-electronic-signature-legal-cases/.

[11] 2019. AdobeSign. https://acrobat.adobe.com/us/en/sign.html.

[12] 2019. BioID Liveness Detection. https://www.bioid.com/liveness-detection/.

[13] 2019. Checkr. https://checkr.com/product/screenings/.

[14] 2019. Cloudfare Secure Time Service. https://developers.cloudflare.com/time-

services/nts/usage/.

[15] 2019. Contract Templates and Agreements. https://www.docsketch.com/

contracts/.

[16] 2019. Device-side Security: Samsung Pay, TrustZone, and the TEE. https://

developer.samsung.com/tech-insights/pay/device-side-security.

[17] 2019. DocuSign eNotary. https://www.docusign.com/products/enotary.

[18] 2019. DocuSign Website. https://www.docusign.com/.

[19] 2019. eNotary. https://en.wikipedia.org/wiki/ENotary.

[20] 2019. eSignLive. https://www.esignlive.com/.

[21] 2019. Gesture Recognition. https://github.com/Gogul09/gesture-recognition.

[22] 2019. Global Digital Signature Market to Reach $3.44 Billion by 2022

at 30.0% CAGR: Says AMR. https://www.globenewswire.com/news-

release/2019/08/13/1901155/0/en/Global-Digital-Signature-Market-to-Reach-

3-44-Billion-by-2022-at-30-0-CAGR-Says-AMR.html.

[23] 2019. HelloSign. https://www.hellosign.com.

[24] 2019. Intel Provisioning Certification Service for ECDSA Attestation. https:

//api.portal.trustedservices.intel.com/provisioning-certification.

[25] 2019. iOS Security – iOS 12.3. https://www.apple.com/business/docs/site/iOS_

Security_Guide.pdf.

[26] 2019. Measuring Device Power. https://source.android.com/devices/tech/power/

device.

[27] 2019. NTPsec. https://ntpsec.org/.

[28] 2019. PandaDoc. https://www.pandadoc.com/.

[29] 2019. Qualcomm’s larger in-screen fingerprint sensor could seriously improve se-

curity. https://www.engadget.com/2019/12/03/qualcomm-3d-sonic-max-worlds-

largest-in-display-fingerprint-sensor-specs-availability/.

[30] 2019. Samsung Knox Security Solution. https://images.samsung.com/is/content/

samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf.

[31] 2019. Samsung Pay. https://www.samsung.com/us/samsung-pay/.

[32] 2019. SignEasy. https://signeasy.com/.

[33] 2019. SignNow. https://www.signnow.com/.

[34] 2019. Votz. https://voatz.com/.

[35] 2020. Apple Platform Security, Spring 2020. https://manuals.info.apple.com/

MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf.

[36] A. Amiri Sani. 2017. SchrodinText: Strong Protection of Sensitive Textual Content

of Mobile Applications. In Proc. ACM MobiSys.
[37] F. M. Anwar. 2019. Quality of Time: A New Perspective in Designing Cyber-Physical

Systems. Ph.D. Dissertation. UCLA.
[38] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D.

Muthukumaran, D. O’Keeffe, M. L. Stillwell, et al. 2016. SCONE: Secure Linux

Containers with Intel SGX. In Proc. USENIX OSDI.
[39] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf. 2019. SANCTUARY:

ARMing TrustZone with User-space Enclaves.. In NDSS.
[40] F. Buccafurri, G. Caminiti, and G. Lax. 2008. The Dalì Attack on Digital Signature.

Journal of Information Assurance and Security (2008).

[41] F. Buccafurri, G. Caminiti, and G. Lax. 2009. Fortifying the Dalì Attack on Digital

Signature. In Proc. ACM Int. Conf. on Security of Information and Networks (SIN).
[42] C. Chen, H. Raj, S. Saroiu, and A. Wolman. 2014. cTPM: A cloud TPM for Cross-

Device Trusted Applications. In Proc. USENIX NSDI.
[43] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. 2019. SgxPectre: Stealing

Intel Secrets from SGX Enclaves Via Speculative Execution. In IEEE European
Symposium on Security and Privacy (EuroS&P).

[44] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D.

Boneh, J. Dwoskin, and D. R. K. Ports. 2008. Overshadow: a Virtualization-Based

Approach to Retrofitting Protection in Commodity Operating Systems. In Proc.
ACM ASPLOS.

[45] M. A. Chirelstein. 2013. Concepts and Case Analysis in the Law of Contracts,
Seventh Edition. Foundation Press.

[46] DocuSign. 2012. Going Mobile with Electronic Signatures. https://www.docusign.

com/sites/default/files/Going_Mobile_with_Electronic_Signatures.pdf.

[47] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall. 2010. Toward Trustworthy Mobile

Sensing. In Proc. ACM Workshop on Mobile Computing Systems & Applications
(HotMobile).

[48] P. Gilbert, J. Jung, K. Lee, H. Qin, D. Sharkey, A. Sheth, and L. P. Cox. 2011.

YouProve: Authenticity and Fidelity in Mobile Sensing. In Proc. ACM SenSys.
[49] Hernandez-Ardieta, J. L. and Gonzalez-Tablas, A. I. and de Fuentes, J. M. and

Ramos, B. 2013. A taxonomy and survey of attacks on digital signatures. Elsevier
Computers & Security (2013).

[50] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. 2013. InkTag:

Secure Applications on an Untrusted Operating System. In Proc. ACM ASPLOS.
[51] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E.Witchel. 2018. Ryoan: A distributed sandbox

for untrusted computation on secret data. ACM Transactions on Computer Systems
(TOCS) (2018).

[52] A. Jøsang, D. Povey, and A. Ho. 2002. What You See is Not Always What You

Sign. In Proc. AUUG.
[53] K. Kain. 2003. Electronic Documents and Digital Signatures. Master of Science

Thesis, Dartmouth Computer Science Department, Technical Report TR2003-457
(2003).

[54] G. Lax, F. Buccafurri, and G. Caminiti. 2015. Digital Document Signing: Vul-

nerabilities and Solutions. Information Security Journal: A Global Perspective
(2015).

[55] W. Li, H. Li, H. Chen, and Y. Xia. 2015. AdAttester: Secure Online Mobile Adver-

tisement Attestation Using TrustZone. In Proc. ACM MobiSys.
[56] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan. 2018. VButton:

Practical Attestation of User-driven Operations in Mobile Apps. In Proc. ACM
MobiSys.

[57] Y. Li, Y. Li, Q. Yan, H. Kong, and R. H. Deng. 2015. Seeing Your Face Is Not

Enough: An Inertial Sensor-Based Liveness Detection for Face Authentication.

In Proc. ACM CCS.
[58] Y. Li, Z. Wang, Y. Li, R. Deng, B. Chen, W. Meng, and H. Li. 2019. A Closer Look

Tells More: A Facial Distortion Based Liveness Detection for Face Authentica-

tion. In Proc. ACM ASIA Conference on Computer and Communications Security
(ASIACCS).

[59] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. 2016. ARMageddon:

Cache Attacks on Mobile Devices. In Proc. USENIX Security Symposium.

[60] H. Liu, S. Saroiu, A. Wolman, and H. Raj. 2012. Software Abstractions for Trusted

Sensors. In Proc. ACM MobiSys.
[61] S. Matetic, M. Schneider, A. Miller, A. Juels, and S. Capkun. 2018. DelegaTEE:

Brokered Delegation Using Trusted Execution Environments. In Proc. USENIX
Security.

[62] E. Maxie. 2013. COURT CASE: LAWSUIT FILED OVER POORLY CONCEIVED

ELECTRONIC SIGNATURE. https://www.signix.com/blog/bid/93126/court-case-

lawsuit-filed-over-poorly-conceived-electronic-signature.

[63] S. Mirzamohammadi and A. Amiri Sani. 2016. Viola: Trustworthy Sensor Notifi-

cations for Enhanced Privacy on Mobile Systems. In Proc. ACM MobiSys.
[64] S. Mirzamohammadi and A. Amiri Sani. 2018. The Case for a Virtualization-Based

Trusted Execution Environment in Mobile Devices. In Proc. ACM Asia-Pacific
Workshop on Systems (APSys).

[65] S. Mirzamohammadi and A. Amiri Sani. 2018. Viola: Trustworthy Sensor Notifi-

cations for Enhanced Privacy on Mobile Systems. IEEE Transactions on Mobile
Computing (TMC) (2018).

[66] S. Mirzamohammadi, J. A. Chen, A. Amiri Sani, S. Mehrotra, and G. Tsudik. 2017.

Ditio: Trustworthy Auditing of Sensor Activities in Mobile & IoT Devices. In

Proc. ACM SenSys.
[67] J. Mulliner. 2018. What the Wells Fargo Mobile Research Reveals About

E-Signatures. https://www.onespan.com/blog/what-the-wells-fargo-mobile-

research-reveals-about-e-signatures.

[68] R. O’Shields. 2017. Smart Contracts: Legal Agreements for the Blockchain. NC
Banking Inst. (2017).

[69] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. 2012. AdDroid: Privilege Separa-

tion for Applications and Advertisers in Android. In Proc. ACM Symposium on
Information, Computer and Communications Security (ASIACCS).

[70] D. Popescu. 2012. Hiding Malicious Content in PDF Documents. arXiv preprint
arXiv:1201.0397 (2012).

[71] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshu-

mann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson, R. Spiger, S. Thom, and D.

Wooten. 2016. fTPM: A Software-Only Implementation of a TPM Chip. In 25th
USENIX Security Symposium (USENIX Security 16), Austin, TX.

[72] F. Roesner and T. Kohno. 2013. Securing Embedded User Interfaces: Android and

Beyond. In Proc. USENIX Security Symposium.

232

https://www.nist.gov/news-events/news/2004/07/nist-study-shows-computerized-fingerprint-matching-highly-accurate
https://www.nist.gov/news-events/news/2004/07/nist-study-shows-computerized-fingerprint-matching-highly-accurate
https://www.govinfo.gov/content/pkg/USCOURTS-caeb-2_16-bk-22134/pdf/USCOURTS-caeb-2_16-bk-22134-0.pdf
https://www.govinfo.gov/content/pkg/USCOURTS-caeb-2_16-bk-22134/pdf/USCOURTS-caeb-2_16-bk-22134-0.pdf
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-15
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-15
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://www.businesswire.com/news/home/20181001005761/en/Global-4-Billion-Digital-Signature-Market-Deployment
https://www.businesswire.com/news/home/20181001005761/en/Global-4-Billion-Digital-Signature-Market-Deployment
https://esignrecords.org/7-landmark-electronic-signature-legal-cases/
https://esignrecords.org/7-landmark-electronic-signature-legal-cases/
https://acrobat.adobe.com/us/en/sign.html
https://www.bioid.com/liveness-detection/
https://checkr.com/product/screenings/
https://developers.cloudflare.com/time-services/nts/usage/
https://developers.cloudflare.com/time-services/nts/usage/
https://www.docsketch.com/contracts/
https://www.docsketch.com/contracts/
https://developer.samsung.com/tech-insights/pay/device-side-security
https://developer.samsung.com/tech-insights/pay/device-side-security
https://www.docusign.com/products/enotary
https://www.docusign.com/
https://en.wikipedia.org/wiki/ENotary
https://www.esignlive.com/
https://github.com/Gogul09/gesture-recognition
https://www.globenewswire.com/news-release/2019/08/13/1901155/0/en/Global-Digital-Signature-Market-to-Reach-3-44-Billion-by-2022-at-30-0-CAGR-Says-AMR.html
https://www.globenewswire.com/news-release/2019/08/13/1901155/0/en/Global-Digital-Signature-Market-to-Reach-3-44-Billion-by-2022-at-30-0-CAGR-Says-AMR.html
https://www.globenewswire.com/news-release/2019/08/13/1901155/0/en/Global-Digital-Signature-Market-to-Reach-3-44-Billion-by-2022-at-30-0-CAGR-Says-AMR.html
https://www.hellosign.com
https://api.portal.trustedservices.intel.com/provisioning-certification
https://api.portal.trustedservices.intel.com/provisioning-certification
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/site/iOS_Security_Guide.pdf
https://source.android.com/devices/tech/power/device
https://source.android.com/devices/tech/power/device
https://ntpsec.org/
https://www.pandadoc.com/
https://www.engadget.com/2019/12/03/qualcomm-3d-sonic-max-worlds-largest-in-display-fingerprint-sensor-specs-availability/
https://www.engadget.com/2019/12/03/qualcomm-3d-sonic-max-worlds-largest-in-display-fingerprint-sensor-specs-availability/
https://images.samsung.com/is/content/samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf
https://images.samsung.com/is/content/samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf
https://www.samsung.com/us/samsung-pay/
https://signeasy.com/
https://www.signnow.com/
https://voatz.com/
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-platform-security-guide.pdf
https://www.docusign.com/sites/default/files/Going_Mobile_with_Electronic_Signatures.pdf
https://www.docusign.com/sites/default/files/Going_Mobile_with_Electronic_Signatures.pdf
https://www.signix.com/blog/bid/93126/court-case-lawsuit-filed-over-poorly-conceived-electronic-signature
https://www.signix.com/blog/bid/93126/court-case-lawsuit-filed-over-poorly-conceived-electronic-signature
https://www.onespan.com/blog/what-the-wells-fargo-mobile-research-reveals-about-e-signatures
https://www.onespan.com/blog/what-the-wells-fargo-mobile-research-reveals-about-e-signatures

MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Mirzamohammadi, Liu, Huang, Amiri Sani, Agarwal, Kim

[73] S. S. Sandha, J. Noor, F. M. Anwar, and M. Srivastava. 2019. Exploiting Smart-

phone Peripherals for Precise Time Synchronization. In Proc. IEEE International
Symposium on Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS).

[74] S. Shekhar, M. Dietz, and D. S. Wallach. 2012. AdSplit: Separating Smartphone

Advertising from Applications. In Proc. USENIX Security Symposium.

[75] Dilani Silva. 2019. Demand for E-Signing From Mobile Devices on the Rise in

Financial Institutions. https://www.onespan.com/blog/demand-for-e-signing-

from-mobile-devices-on-the-rise-in-financial-institutions.

[76] M. Simpson. 2018. BDC app offers e-signature for loans, reducing in-person

visits. https://www.itbusiness.ca/news/bdc-app-offers-e-signature-for-loans-

reducing-in-person-visits/104429.

[77] M. H. Stanzione. 2020. ‘Wet’ Ink Signatures Requirements May Fade After

Coronavirus. Bloomberg Law, The United States Law Week.

[78] D. Tang, Z. Zhou, Y. Zhang, and K. Zhang. 2018. Face Flashing: a Secure Liveness

Detection Protocol based on Light Reflections. arXiv preprint arXiv:1801.01949v2
(2018).

[79] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, Baris Kasikci, F. Piessens, M.

Silberstein, T. F.Wenisch, Y. Yarom, and R. Strackx. 2018. Foreshadow: Extracting

the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In

Proc. USENIX Security Symposium.

[80] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, andW. Du. 2018. TruZ-Droid:

Integrating TrustZone with Mobile Operating System. In Proc. ACM MobiSys.
[81] K. Ying, P. Thavai, and W. Du. 2019. TruZ-View: Developing TrustZone User

Interface for Mobile OS Using Delegation Integration Model. In Proc. ACM CO-
DASPY.

[82] M. Yu, V. D. Gligor, and Z. Zhou. 2015. Trusted Display on Untrusted Commodity

Platforms. In Proc. ACM CCS.
[83] Dongli Zhang. 2014. TrustFA: TrustZone-Assisted Facial Authentication on

Smartphone. Technical Report (2014).
[84] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng. 2019. SecTEE: A Software-based

Approach to Secure Enclave Architecture Using TEE. In Proc. ACM CCS.
[85] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. 2012. Building Verifiable

Trusted Path on Commodity x86 Computers. In Proc. IEEE Symposium on Security
and Privacy (S&P).

233

https://www.onespan.com/blog/demand-for-e-signing-from-mobile-devices-on-the-rise-in-financial-institutions
https://www.onespan.com/blog/demand-for-e-signing-from-mobile-devices-on-the-rise-in-financial-institutions
https://www.itbusiness.ca/news/bdc-app-offers-e-signature-for-loans-reducing-in-person-visits/104429
https://www.itbusiness.ca/news/bdc-app-offers-e-signature-for-loans-reducing-in-person-visits/104429

	Abstract
	1 Introduction
	2 Background
	3 Attacks on Legal Contracts
	4 Tabellion: Principles and Design
	4.1 Secure Primitives
	4.2 Contract Formation Protocol
	4.3 Self-Evident Contracts
	4.4 Contract Verification Process

	5 Secure Realization of Primitives
	5.1 Primitive I: Secure Photo
	5.2 Primitive II: Secure Timestamp
	5.3 Primitive III: Secure Screenshot
	5.4 Primitive IV: Secure Notarization

	6 Fully Functional Platform
	6.1 Readable Contracts
	6.2 Contract Submission
	6.3 Contract Negotiations
	6.4 Automatic Contract Verification

	7 Implementation
	8 Security Evaluation
	8.1 Threat Model
	8.2 Security Analysis
	8.3 Case Analysis

	9 Evaluation
	9.1 Performance Evaluation
	9.2 Energy Measurement
	9.3 User Study

	10 Related Work
	11 Conclusions
	Acknowledgments
	References

