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ABSTRACT: We combine molecular dynamics simulations, imaging
and data analysis, and the Green−Kubo summation formula for the
relaxation modulus G(t) to elicit the structure and rheology of
unentangled polymer−nanoparticle composites distinguished by small
NPs and strong NP−monomer attraction, εNPM ≫ kBT. A reptation-like
plateau emerges in G(t) beyond a terminal relaxation time scale as the
volume fraction, cNP, of NPs increases, coincident with a structure
transition. A condensed phase of NP-aggregates forms, tightly interlaced
with thin sheets of polymer chains, the remaining phase consisting of free
chains void of NPs. Rouse mode analyses are applied to the two
individual phases, revealing that long-wavelength Rouse modes in the
aggregate phase are the source of reptation-like relaxation. Imaging
reveals chain motion confined within the thin sheets between NPs and
exhibits a 2D analogue of classical reptation. In the NP-free phase, Rouse
modes relax indistinguishable from a neat polymer melt. The Fourier transform of G(t) reveals a sol−gel transition across a
broad frequency spectrum, tuned by cNP and εNPM above critical thresholds, below which all structure and rheological transitions
vanish.

The loading of nanoparticles (NPs) into polymeric
matrices generally yields a mechanical reinforcement of

the polymer nanocomposites (PNCs) relative to the neat
polymer host, even at low NP loadings.1−3 The growing
availability of NPs with controllable affinities and the
development of instrumentation to probe small length scales
have spurred renewed studies in mechanical reinforcement as
well as viscoelasticity of PNCs.4−9 A detailed study of the
mutual interplay between NPs and host polymer chains,
linking structural properties, modified relaxation dynamics of
polymer chains and NPs, and dynamic mechanical and
rheological properties of PNCs, is imperative for quantitative
and predictive engineering of function-specific PNCs.10−15

The distribution of NPs in polymers depends strongly on
the enthalpic interaction between NPs and polymers. When
there is no favorable polymer−NP attraction, an athermal
system with its morphology being determined by conforma-
tional entropic effects,16 the polymer is depleted at NP
surfaces, leading to bare NP aggregation and reduced surface
contacts between NPs and monomers.17−19 Such situations
degrade the intended boosts in mechanical and rheological
PNC properties. As a result of counteracting the entropy-
favored direct surface contact of NPs, a favorable NP−polymer

attraction or grafting of polymers onto NPs is pursued to
achieve good dispersions of NPs.20,21 As the polymer−NP
attraction gets stronger, a re-entrant aggregation structure of
polymer-bound NPs emerges in PNCs in which there is a
polymer layer surrounding the surface of individual NPs, which
then induces an effective attraction between the polymer-
dressed NPs.22−24 In the presence of strong NP−polymer
attraction, the morphology of polymer chains and the
distribution of NPs are dominated by the enthalpic NP−
polymer attraction. Dynamic neutron scattering and dielectric
experiments show that the polymer chains at the surface of
NPs are still mobile with no glassy nature, while their center-
of-mass diffusion and certain Rouse relaxation modes are
suppressed due to adsorption.25−27 In a recent study using X-
ray photon correlation spectroscopy to observe the motion of
silica NPs diffusing in an attractive poly(ethylene oxide) melt,
Senses et al. found that the NPs unexpectedly remain mobile at
a high volume fraction (cNP) of NPs, even though the elastic
modulus of the silica−PEO composites increases by 3 orders of
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magnitude.28 These results confirm the mobilities of polymer
chains and NPs even though they are strongly constrained at
high loadings of NPs and in the presence of strong polymer−
NP attraction. The present study provides physical explanation
and mechanistic understanding of how highly attractive, NP−
polymer interactions in an unentangled polymer host can
induce tunable mechanical reinforcement and a sol−gel
transition over broad frequencies.
Molecular dynamics (MD) simulations of bead−spring

polymer chains were performed for PNCs over a two-
parameter range of attraction strengths εNPM and NP
concentrations cNP. Experiments have shown that a reduction
in NP size, with attractive NP−polymer interactions, results in
increased mechanical reinforcement.5 Therefore, a lower cNP is
sufficient with smaller NPs to achieve a desired increase in the
elastic modulus of PNCs. In light of this result, we are led to
explore PNCs where the monomer size (bead diameter), σM,
and NP diameter, σNP, are of comparable size, σNP = 3σM. In
the model, interchain chemical bonds are enforced by a finitely
extensible nonlinear elastic (FENE) potential.29 Monomer−
monomer and NP−NP interactions are modeled as approx-
imate hard-sphere potentials to avoid enthalpic energy gain
when they come into close proximity. There is an excess
enthalpic energy gain εNPM for monomer−NP contact
interactions. The equation of motion for the displacement of
a particle (monomer or NP) is given by the Langevin
equation.30,31 The volume fractions of monomers cM =

( )N
VM

4
3 2

3 1Mπ σ and NPs cNP = ( )N
VNP

4
3 2

3 1NPπ σ are adopted to

quantify the bulk concentrations of polymers and NPs, where
V, NM, and NNP are the system volume and total number of
monomers and NPs, respectively. Simulations were carried out
using the open-source LAMMPS MD package. Further
modeling details are available in the Supporting Information.
Simulations were first performed to generate sufficient data

to compute the stress relaxation modulus, G(t), of PNCs
versus cNP.

32−34 As revealed in Figure 1a, free chains in the neat
polymer melt are unentangled, with the corresponding G(t)
being well described by the stress relaxation modulus function
for unentangled polymers35
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in which nm = 0.68N
V
M = gives the number density of

monomers, and the fitting parameters are estimated numeri-
cally, with γ ≈ −0.56, the monomeric relaxation time τm =
0.30τ0, and the terminal relaxation time of polymer chains τter
= 2.2 × 103τ0, with τ0 being the time scale unit. Upon adding
NPs, G(t) for the baseline NP volume fraction cNP = c0 = 2.6%
is well-fitted by a rescaled form of eq 1
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in which ashift ≈ 6.5 gives the horizontal rescaling factor of
GPNC(t) relative to GPM(t). The rescaled G(t) indicates that at
low c0 = 2.6% the effect of NPs is to damp or retard the
polymer relaxation dynamics almost identically on all length
scales from one monomer to the entire polymer chain.
Maintaining strong NP−monomer attraction energy, a

plateau in G(t) begins to emerge when the NP volume
fraction is doubled, cNP = 2c0, and further strengthens at three
times the unit NP loading, Figure 1a. A plateau in G(t) is the
classic signature of reptation of entangled polymer melts. A
modified scaling formula including a smooth crossover
between the Rouse and reptation relaxation regimes was
adopted to fit the direct simulation data of the stress relaxation
modulus of the corresponding PNCs
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where these scaling parameters for cNP = 2c0 and 3c0 are given
by plateau modulus Ge = 4.1 × 10−2 and 9.1 × 10−2, the
monomeric shift factor ashift

Mon = 40 and 82, and the terminal shift
factor ashift

Ter = 66 and 1.1 × 102, respectively. These results
indicate that the macroscopic linear rheology of PNCs for cNP
= 2c0 and 3c0 resembles that of an entangled neat polymer melt

with entanglement length N k T
Gent
B

e
= and the monomeric and

terminal relaxation time ashift
MonτM and ashift

Ter τter, respectively. The
modified relaxation spectrum of polymer chains and the
resulting sol−gel transition are induced above sufficiently high
NP loadings and sufficiently strong NP−monomer attraction
strength. The complex modulus, G*(ω), is the Fourier
transform of G(t), with the storage (elastic) moduli G′(ω)
and loss (viscous) moduli G″(ω) given by the real and
imaginary parts: G*(ω) = G′(ω) + iG″(ω), where ω = 2π/t is
the angular frequency. Figure 1b gives the results of G′(ω) =

G t t t( ) sin( ) d
0

∫ω ω·
∞

, G″(ω) = G t t t( ) cos( ) d
0

∫ω ω·
∞

, and

the loss tangent, tan ( ) G
G

( )
( )

δ ω = ω
ω

″
′ . A viscoelastic material is

gel-like at frequency ω if tan δ(ω) < 1 and sol-like if tan δ(ω) >
1. Figure 1b clearly reveals a sol−gel transition over a broad
intermediate-frequency range when the volume fraction of NPs
is cNP = 2c0 and 3c0.
In the presence of a strong NP−monomer attraction with

εNPM ≫ kBT, a stable adsorption layer of polymer chains self-
assembles from an initial homogeneous NP dispersion, with
single chains intertwining tightly packed, small NPs; cascading

Figure 1. Linear rheology of the baseline neat polymer melt and
PNCs at different NP volume fractions. (a) Stress relaxation modulus,
with simulation data shown in open symbols and the corresponding
fits shown in solid curves. (b) Storage (solid) and loss (dashed)
moduli and loss tangent (lower panel). The polymer chain length is N
= 64, the NP−monomer attraction strength is εNPM = 8.0kBT, the
monomer volume fraction is cM = 36%, and the baseline NP volume
fraction is c0 = 2.6%.
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out in scale, one finds phase-separated aggregates of NPs
woven together by thin, wavy sheets of polymer chains,
segregated from NP-void domains of free chains.22−24 This
phase separation structure is shown in Figure 2: (1) inside

polymer refers to polymer chains inside of the NP-rich
aggregate phase, and (2) outside polymer refers to polymer
chains without contact with NPs. For inside polymer chains,
there are combined effects arising from the strong polymer−
NP attraction and jamming within NP aggregates,36,37 both
suppressing the mobility of polymer segments. Simultaneously,
the relaxation dynamics of outside polymer chains are
minimally affected because NP−polymer attraction and
jamming are both absent. As a result, we anticipate a
significant difference in the relaxation dynamics between the
inside polymer and outside polymer chains, as experimentally
reported by Senses et al.38

To quantify this intuition, a Rouse mode analysis is now
presented separately for the relaxation spectra of inside
polymer NP−aggregate chains and outside polymer NP-free
chains and thereby show their relative contributions to the full
PNC relaxation spectrum, reptation-like plateau, and sol−gel
transition at sufficiently high NP loading and NP−monomer
attraction strength εNPM ≫ kBT. It was theoretically predicted
and verified in simulations that the averaged autocorrelation
function of the pth Rouse mode, representing the relaxation
dynamics of a polymer subchain including N

p
1− beads, can be

well described by a stretched exponential: Xp(t) · Xp(0) =
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,39,40 in which τp and βp are the relaxation

times of the pth mode and the corresponding stretching factor,
respectively. βp characterizes the distribution of relaxation
times of the pth mode, which indicates a simple exponential
decay if βp = 1 or a decay with broader relaxation distributions
if βp < 1. The effective monomeric relaxation rate was
computed as Weff =

( )
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. Note that

neither Weff nor βp have any dependence on the mode number
for ideal Rouse chains. The simulation results of ⟨Xp(t) ·
Xp(0)⟩, Weff, and βp for the inside polymer and outside
polymer chains are given in Figure 3. The values of both Weff

and βp for outside polymer chains are the counterparts for
chains in the neat polymer melt. The decline is almost the
same for both the monomeric relaxation rate and the stretching
factor versus mode number p, corresponding to length scale
N
p
1− . The unchanged relaxation spectrum of outside polymer

chains indicates that outside polymer chains behave like a
renormalized polymer melt in which the rescaling factor ashift

Out =
WPM

eff (p)/WOut
eff (p) is p-invariant. Therefore, we find GOut(t) =

GPM(t/ashift
Out) for the stress relaxation modulus of outside

polymer chains.
The relaxation of inside polymer chains is considerably

slower for all modes, i.e., on all length scales, compared to the
relaxation of outside polymer chains. With increasing N

P
, Weff

for inside polymer chains decreases, accompanied by an
increase of βp. Moreover, the corresponding rescaling factor of
ashift
In (p) = WPM

eff (p)/WIn
eff(p) decreases versus p. Note that the

value of ashift
In should be constant independent of p if the NP

constraints that retard the motion of unentangled Inside
polymer chains are length scale-invariant. Signatures shown in
Weff and βp indicate that the inside polymer chains are exposed
to stronger constraints by the NPs, leading to narrowed
relaxation distributions on longer length scales, i.e., at larger
N
p
1− . On the other hand, the adsorption thickness of inside

polymer chains bound on the surface of NPs, for εNPM ≫ kBT,
is of the same order as the bead size.24,41 Therefore, the inside
polymer chains are constrained to motion within the thin
adsorption sheets between NPs in the NP-aggregate phase,
with strongly suppressed motion normal to NP surfaces. Each
inside polymer chain that adsorbs simultaneously on several
different NPs is restricted to motion along and within these
thin, 2D, wavy sheets, relaxing due to the adsorption
confinement of NPs. Figure 1 in the Supporting Information
shows a sequence of snapshots of the reptation-like configura-
tional mobility of a single inside polymer chain with a very
weak pulling force applied to one end.
We propose that the constraints “felt” by inside polymer

chains on larger length scales arise from a 2D analogue of
reptation within the thin, wavy sheets that intertwine the NP
aggregates. Therefore, the stress relaxation modulus of inside
polymer chains has the following expression

Figure 2. Structure snapshot of a PNC system (with cNP = 2c0 and
εNPM = 8kBT) at equilibrium: NP-rich and NP-void phase separation.
NPs (blue), monomers of a single polymer chain inside of the NP-rich
phase (green), and monomers of a single polymer chain inside of the
NP-void phase (red) are shown. All other polymer chains (gray) are
transparent in the right snapshot and not shown in the right column.

Figure 3. Rouse mode analysis of the relaxation of polymer chains.
(a) Upper and lower panels give the autocorrelation functions of the
Rouse modes of polymer chains inside and outside of the NP-rich
aggregate phase, respectively. (b) Effective monomeric relaxation rates
(upper panel) and stretching parameters (lower panel) for pure
polymer melt chains (shown in black) and polymer chains inside
(green) and outside (red) of the NP-rich aggregate phase. Here, cNP =
2c0 and εNPM = 8kBT.
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with ashift
InMon = WPM

eff (p = N − 1)/WIn
eff(p = N − 1); ashift

InTer is the
shift fator of the terminal relaxation time, and Nent

eff is “an
effective tube diameter” that gives the same free volume as the
confinement sheet. The stress relaxation modulus of the full
PNC system is well fit by the sum of contributions from inside
polymer and outside polymer chains

G t G t G t( ) ( ) ( )PNCs Out Out In Inϕ ϕ= · + · (5)

with ϕOut and ϕIn = 1 − ϕOut being the percentages of outside
polymer and inside polymer chains, respectively. As shown in
Figure 4, the theoretical prediction of eq 5 derived from the

Rouse mode analysis fits well to the direct simulation data of
GPNCs(t). The effective diameter of the confinement tube is
Nent

eff = 63, 7.7, and 4.2 for the cases of cNP = c0, 2c0, and 3c0,
respectively. Nent

eff ≈ N for the case of cNP = c0 indicates that the
confinement constraint of NPs on inside polymer chains is very
weak, and a plateau is therefore absent in GPNCs(t).
Finally, we compare and contrast the above results for strong

NP−polymer attraction with weak attraction, εNPM ≈ O(kBT).
The aggregation of polymer-coated NPs disappears due to the
weakened “effective bridging attraction”.42 The homogeneous
dispersion of NPs is thereby maintained. Equivalently, the
enthalpic energy gain due to NP−polymer attraction is
insufficient to counteract the entropy loss of adsorbing
polymer chains,24,41 and therefore, the bridging interaction
between polymer-coated NPs is not entropically favored. In
addition, for the NP and monomer size scales considered here,
σNP = 3σM, and εNPM = kBT, the adsorption lifetime of polymer
chains around each NP is shorter than the crossover time of
the NP from subdiffusive to normal diffusive scaling.41

Therefore, the constrained relaxation of adsorbing polymer
chains on NPs is minimal, preventing stable jamming of NPs
and favoring a homogeneous dispersion. In this scenario, one
anticipates a simple rescaling of the PNC relaxation modulus
to the neat polymer melt. Indeed, as shown in Figure 5, the
stress relaxation moduli for εNPM = kBT versus increasing
volume fraction of NPs can be rescaled to match G(t) of the
neat polymer melt, using eq 2. These results indicate that there
is no dramatic volume-fraction-dependent rheological effect on
PNCs with weak NP−polymer attraction. The relaxation
spectrum of polymer chains in PNCs is therefore not modified
with increasing volume fraction when εNPM = kBT; instead, the

primary effect is a concentration-dependent relaxation delay.
The relaxation dynamics of polymer chains on all length scales,
from one monomer to the whole chain, are uniformly slowed
down by the presence of NPs, quite the same as a reduced
temperature effect for neat polymer melts. A Williams−
Landel−Ferry (WLF) model is generally used to quantify the
time−temperature superposition of dynamic relaxation of
polymer systems. We confirmed in the simulations, as shown
in the inset of Figure 5, that the rescaling factor of GPNCs(t) for
weakly attractive PNCs relative to GPM(t) for the neat polymer
melt can be well-fit by a WLF-like formula used to describe the
time−NP concentration superposition

a c
A c

A c
( ) expshift NP

1 NP

2 NP
=

+
i
k
jjjjj

y
{
zzzzz (6)

where A1 = 7.8 (unitless) and A2 = 18 (in units of c0) for εNPM
= 1kBT.
In summary, we employ MD simulations of unentangled

polymer−NP composites, focusing on small NPs at sufficiently
high NP loading and with sufficiently strong NP−monomer
attraction. The simulated data, Rouse mode analyses, and
imaging reveal a structure transition marked by a NP-rich
aggregate phase and a NP-void phase, with very thin sheets of
polymer chains interweaving the dense NP aggregates; a
reptation-like plateau in the stress relaxation modulus,
dominated by the chains confined within the 2D sheets within
NP-rich aggregates; and a sol−gel rheological transition at
sufficiently high loading and NP−monomer attraction energy,
across a spectrum tunable by both loading and attraction
strength. Furthermore, the NP-free chains relax indistinguish-
able from chains in the neat polymer melt. All features of these
PNCs (structure transition into dense NP aggregates and NP-
free domains, a reptation-like plateau in the relaxation
modulus, and a broad frequency sol−gel transition) vanish as
the NP−polymer attraction strength is reduced to εNPM = kBT
or as the NP loading drops. In the weak NP−monomer
attraction regime, the presence of NPs uniformly delays the
relaxation of polymer chains, consistent with a reduction of the
temperature in a neat polymer melt. Of primary interest for
practical applications of PNCs is the ability to control
dynamical mechanical properties. Both the NP volume fraction
and NP−polymer attraction strength are quantities that are
easily tuned in the laboratory. As recently observed, NPs can
facilitate disentanglement in entangled polymer−NP compo-
sites, thus affecting their rheological properties due to the
dilution of entanglements.38,43 The entanglement concen-

Figure 4. Theoretical fitting of eq 5 to the simulation data of the
stress relaxation modulus of PNCs, for the cases shown in Figure 1.
Note that Nent

eff and ashift
InTer are the free fitting parameters. Here, ϕOut =

99, 77, and 69% for the cases of cNP = c0, 2c0, and 3c0, respectively.
The method for computing ϕOut is provided in the Supporting
Information.

Figure 5. Rescaled stress relaxation moduli of PNCs when the
attraction strength is weak, εNPM = kBT, versus the NP volume fraction
cNPM, using eq 2 as the rescaling function and the neat polymer melt
system as the baseline for reference. The inset gives the shift factor as
a function of the NP volume fraction.
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tration regime in the presence of a strong NP−monomer
attraction will be discussed in a future submission.
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