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Abstract Let A denote the Liouville function. We show that as X — oo,

2X
/ sup| Y~ A(me(—an)|dx = o(XH)

X o x<n<x+H

for all H > X? with # > 0 fixed but arbitrarily small. Previously, this was
only known for 6 > 5/8. For smaller values of 6 this is the first “non-trivial”
case of local Fourier uniformity on average at this scale. We also obtain the
analogous statement for (non-pretentious) 1-bounded multiplicative functions.
We illustrate the strength of the result by obtaining cancellations in the sum
of A(n) A(n + h)A(n + 2h) over the ranges h < X% andn < X, and where A
is the von Mangoldt function.
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2 K. Matomiki et al.

1 Introduction

Let A denote' the Liouville function, that is, a completely multiplicative func-
tion with A(p) = —1 atall primes p. Among bounded multiplicative functions,
A plays a distinguished role since the prime number theorem is equivalent to’

Y am) =o(x) ()

n<x

as x — oo, and the Riemann Hypothesis is equivalent to

D an) = 0,(x"/*%) foralle > 0.

n=<x

A far reaching generalization of (1) is Chowla’s conjecture [4], according to

which, for any sequence of distinct integers h1, ha, ..., hi, one has
D a4 hy) - M+ ) = o(x) 2)
n<x

as x — oo, where we adopt the convention that A(n) = 0 for n < 0. Because
of the equivalence of (1) and the prime number theorem, Chowla’s conjecture
is frequently viewed as a “higher order” generalization of the prime number
theorem.

In recent years there has been a substantial amount of progress on Chowla’s
conjecture. Following the work of the first two authors [22] the authors estab-
lished in [23] an averaged form> of this conjecture in the case k = 2, namely,

3 ‘ > A+ h)| = o(Hx) 3)

|h|<H n=x

provided that H — oo as x — oo; see also [1,7,12,18,19,24,25] for some
other averaged forms of Chowla’s conjecture (as well as the closely related
Elliott and Hardy-Littlewood conjectures). An equivalent form of (3) (for
related discussion, see [31]) states that

2X
sup / ‘ Y ame(—an)|dx = o(HX) @)

o X x<n<x+H

L All the results for A discussed here are also applicable to the Mdobius function o with only
minor changes to the arguments; we leave the details to the interested reader.

2 Our conventions for asymptotic notation are given at the end of this introduction.

3 By applying Holder’s inequality to (3), it is also possible to obtain an averaged version of (2)
over all shifts &1, ..., hy; see [23] for details.
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Fourier uniformity of bounded multiplicative functions 3

provided that H — oo as X — o0. The estimate (4) along with the entropy
decrement argument was used by the third author [30] to establish a logarith-
mically averaged version of Chowla’s conjecture, that is,

Mmr(n+h)
> —— —— =ollogx)

n<x

as x — oo, for any fixed integer 1 # 0. Subsequently for odd k, the third
author and Terdvidinen [33] used the entropy decrement argument and the
Gowers uniformity of the (W-tricked) von Mangoldt function [but avoiding
the use of (4)], to show that

A hi)... X h
Z (n+hy) (n + hy) — o(logx) 5)
n<x n
as x — oo, for any distinct integers Ay, ..., hy and k odd. Their argument

only partially generalizes to arbitrary multiplicative functions (see [32]); in
the case of the Liouville function, it relies crucially on the assumption that &
is odd.

In order to establish (5) for all k it is necessary to establish (the logarith-
mically averaged version of) what we call the local (higher order) Fourier
uniformity conjecture (see [31]).

Conjecture 1.1 (Local higher order Fourier Uniformity) Lets > 0. Let G\T"
be an s-step nilmanifold. Let F : G\I' — C be Lipschitz continuous and let
xo € G\I'. Then

2X
/ sup Z A F(g" Wxp)ldx = o(HX)

X geG x<n<x+H
as soon as H — oo with X — oo.

We refer to [14] for the definition of the terms above, however we will
not need these notions in this paper. Informally, the conjecture asserts that
on most short intervals, A does not exhibit significant correlation with any
s-step nilsequence (of bounded complexity). The estimate (4) proven in [23]
essentially corresponds to the case s = 0 of Conjecture 1.1; this is currently
the only case of the conjecture that is completely settled.

In this paper we make a first step in going beyond the case of s = 0 and
establish the case s = 1 of Conjecture 1.1 when H = X? with & > 0 fixed but
otherwise arbitrarily small. Let us first re-state our main result for the Liouville
function in a more elementary fashion.
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4 K. Matomiki et al.

Theorem 1.2 (Local Fourier Uniformity for s = 1 at scale X?) Let6 € (0, 1)
be given and set H = X°. Then

2X
/ sup| Y A(me(—an)|dx = o(XH).

X o x<n<x+H
as X — oo.

We restrict attention here to the regime 6 € (0, 1), since the case 6 > 1
follows from the classical work of Davenport [5] (and see [11], [13] for the s =
2ands > 2 casesrespectively of Conjecture 1.1 for this range of ). Informally,
Theorem 1.2 asserts that on most intervals of the form [x, x +x?], the Liouville
function A (n) does not exhibit singificant correlation with linear phases e(an);
it can easily be shown to imply the s = 1 case of Conjecture 1.1 in the range
H > X? by approximating the 1-step nilsequence n — F(g" *lxo) by a
Fourier series.

Previously, Theorem 1.2 was known unconditionally only for 8 > 5/8
from the work of Zhan [35,36], who showed that as X — oo the bound
Zx<n<x+H A(n)e(—an) = o(XH) holds pointwise in x € [X,2X] for
H > X3¢ Tt is likely that our method can be pushed to reach H =
exp((log x)'=?%) for some § > 0. It may be possible to extend the methods
to this paper to also cover the s > 1 case (again with H = X? for any fixed
6 > 0); we plan to investigate this direction in future work.

Theorem 1.2 allows us to obtain cancellations in rather general triple cor-
relations such as those of the form A(n)a(n + h)b(n 4 2h), for sequences a(-)
and b(-) for which sharp sieve majorants can be constructed. We illustrate the
flavor of these results in the corollary below.

Corollary 1.3 Let 6 € (0, 1) be given. Let H = X?. Then
h
> <1 —~ U) D AMA @+ WA + 2h) = o(HX)
H
|h|l<H n<X
as X — oo.
Interestingly we are unable to obtain an asymptotic for
Z (1 — 'h—l) Z A+ h)A(n + 2h)
H
|h|l<H n<X

for this range of H, since this latter problem is essentially equivalent to eval-
uating asymptotically ) <n<x+p A (n) for almost all x < X. The best result
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Fourier uniformity of bounded multiplicative functions 5

in this direction allows one to take H > X1/0=¢(X) with ¢(X) tending to zero
arbitrarily slowly as X — o0. This is due to Zaccagnini [34], building on ideas
of Heath-Brown [15] and Huxley [16]. Thus, Corollary 1.3 gives a rare exam-
ple of a sum involving the Liouville function that becomes harder to control
when the Liouville function is removed!

In a subsequent paper we will obtain variants of Theorem 1.2 and Corol-
lary 1.3 for unbounded multiplicative functions such as the divisor function or
coefficients of automorphic forms. This will improve (in the H aspect) earlier
results of Blomer [3] that allowed one to take H = X!/3*¢ in the triple cor-
relations of the divisor function; however, in contrast to the results of [3], we
will not obtain power-savings in the error terms.

Theorem 1.2 can in fact be generalized to almost all multiplicative functions
f N — Cwith | f| < 1 (we call such multiplicative functions 1-bounded).
There is however one obstruction: if f(n) = n' x(n) with |t] < eX 2 /H 2
for a small absolute constant ¢ > 0 and x a Dirichlet character of bounded
conductor ¢, then one can check (using a Taylor expansion) that

2X
f sup| > f(me(—an)|dx > XH. (6)

X o x<n<x+H

In fact for each x € [X, 2X] one can set o equal to )’—C + ;—l for some integer a

coprime to ¢, and then f(n)e(—an) ~ x (n)e(—an/q)x” will typically have
a mean of magnitude < 1/,/q if x is primitive.

Therefore the proper analogue of Theorem 1.2 can only hold for multiplica-
tive functions f that “do not pretend” to be any multiplicative function of the
form n +— n'’ y (n) with || < X?/H? and x of bounded conductor. To quan-
tify this notion of “pretentiousness”, we follow Granville and Soundararajan
[9] and introduce the distance function

1 —Re(f(P)p" x(p)\!/2
)3 )

D(f; X; Q= inf
x mod g p
g<Q  P=X

ltl=X

In particular D( f; X; Q) is small whenever f is close to n +— n'tx (n) with?
[t] < X and y of conductor < Q.

4 The role of the parameter X here is mostly to control the size of ¢. It is not important that
the sum over p runs up to X; it could run up to X8 for any B > 0, since primes in (X%, XxP
contribute only Oy g (1) to the distance.
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6 K. Matomiki et al.

Our main theorem, stated below, confirms that n — n'’ x(n) with |¢| <
X2/H?7°M and x of bounded conductor are essentially the only examples of
1-bounded multiplicative functions for which (6) can happen.

Theorem 1.4 (Main theorem) Let 6 € (0, 1) andn > 0. Let f : N — Cbea
multiplicative function with | f| < 1. Suppose that, for H = X%, we have

2X
/ sup Z f(mye(—an)|dx > nHX.

X o x<n<x+H
Then, for any p € (0, %),

D(f; X2/H*™; Q) <po.p |

for some Q K9 1.

Theorem 1.4 yields an analogous result to Corollary 1.3 for general mul-
tiplicative functions. Without going into full generality we highlight that the
result holds for correlations f(n)a(n + h)b(n +2h) and sequences a(n), b(n)
that admit sharp sieve majorants. We illustrate this principle in the corollary
below.

Corollary 1.5 Let 6 € (0, 1). Let f : N — C be a 1-bounded multiplicative
function. Suppose that a(n), b(n) are sequences such that a(n), b(n) < 1 +
A(n) foralln > 1.

If

> (1 - %') > fma( + hyb(n +2h)| > nXH

|h|<H n<X
with H = X, then for any p € (0, %),

D(f; X2/H*™; Q) po.p |

for some Q <9, 1.
The claim holds also when f (n)a(n+h)b(n+2h) is replaced by a(n) f (n+
h)b(n + 2h) or by an)b(n + h) f (n + 2h).

We give the short derivation of Corollary 1.5 from Theorem 1.4 in Sect. 6.
It is possible to extend Corollary 1.5 to sequences b(n) or a(n) equal to a
multiplicative function 4 : N — C such that |h(n)| < dr(n) foralln > 1 and
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Fourier uniformity of bounded multiplicative functions 7

k > 1 a fixed integer. Since we will obtain a stronger result along these lines
in a follow-up paper we do not include the details here.

Itis immediate from Corollary 1.5 that given 1-bounded multiplicative func-
tions f1, f2, f3, the correlations

Z <1 - @) Z f1(n) fo(n + h) f3(n + 2h)

H
|h|l<H n<X

vanish asymptotically whenever at least one of the f; is non-pretentious in the
sense that D(f;; X, Q) — oo as X — oo for each Q. In the remaining case
that all of the f; are pretentious, an asymptotic for the correlations, without
an average over h, can be obtained using the method of [20] (see also the
references therein).

1.1 An overview of the proof

We now describe in some detail the main ideas behind the proof of Theorem 1.4.
Our presentation here is somewhat oversimplified to avoid technical issues;
the actual rigorous argument will not quite follow the outline given here, but
uses essentially the same ideas, despite being arranged slightly differently to
resolve these technicalities.

First we notice that, by the “analytic” large sieve inequality (or more pre-
cisely, a maximal version of this inequality due to Montgomery [27]), given
an interval I = (x, x + HJ, there are at most < 1~ values «; (modulo 1 and
up to perturbations by O(1/H)) for which

> fme(—amn)

nel’

>nH @)

for some I’ C I; see Lemma 2.2. For sake of this informal presentation,
one can pretend that in fact there is only one such value «; (modulo 1 and
perturbations by O(1/H)). Thus, if there are two subintervals I{, I} of I (or
of a slight dilate of /) and two frequencies «y 1, @72 obeying (7), one can
pretend that

a1 =2+ 0 <%) (mod 1). (8)

Informally, the estimate (7) asserts that f exhibits significant oscillation
at frequency «; on the interval [ (or a large subinterval of this interval). We
depict this situation schematically in Fig. 1. In the schematic depictions we
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8 K. Matomiki et al.

Fig.1 A schematic or
depiction of an interval / in
which f oscillates with I

frequency oy

are pretending that if two such intervals Iy, I overlap (or are very near to
each other), then their associated frequencies oy, , ory, are close modulo 1 in
the sense of (8).

At this point we point out a key example: if f(n) = n'’ for some
t = o(X?/H?), some Taylor expansion of the phase n — tlogn of f in I
reveals that one has the above inequality for some n > 1 and o; = XL, where
x1 denotes the starting point of /. Thus, under the hypotheses of Theorem 1.4,
we expect a7 to vary in I in a manner which is “inversely proportional” to the
location of I in some sense. The bulk of our argument is devoted to rigorously
verifying some version of this expectation; the main obstacle to overcome
arises from the fact that oy is only determined up modulo 1 and up to pertur-
bations by O(1/H).

Next, we recall an observation of Elliott [6] that by an application of the
arithmetic large sieve inequality for a big set of primes P = P; C [2, H'/?],
we have, for all p € P,

1
— 1> fme(—am)

nel

~| Y fme(—amp)|; )

nel/p

see Proposition 2.5. To make things simpler we proceed in this outline as if
the approximation (9) held for all primes p =< P with P:=H?¢ and some small
absolute constant ¢ > 0. Informally, (9) asserts that if f(n) behaves like a
constant multiple of e(ayn) for n € I, then f(m) behaves like a constant
multiple of e(aymp) for m € I/p. Heuristically, this follows from the rela-
tionship f(mp) = f(p) f(m) (at least when m is coprime to p). We describe
the estimate (9) schematically by the diagram in Fig. 2. Note that this is con-
sistent with the previous heuristic that o; should be inversely proportional to
the location of 1.

By the hypotheses of Theorem 1.4, we have some frequencies oy 4 for
which

2X
/ Y fe(—aqxpmm)|dx = X H,

X x<n<x+H

and hence by a pigeonhole principle argument, we can find a large (< X/H)
set of disjoint intervals / of length H in [X, 2X] for which (7) holds (after
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Fourier uniformity of bounded multiplicative functions 9

Fig. 2 If f oscillates at o I
frequency o7 on a long
interval /, then one expects I

f to oscillate at frequency
poy on the shorter interval
1/p. (The intervals are not
drawn to scale.) The dotted p
arrow indicates the fact that
if one dilates //p by p one
returns to the interval /

Fig. 3 If f oscillates at or
frequencies oy, ¢y on I, J _—
respectively, and I/p I

overlaps J /g, then one

expects poy and ga g to

often be close to each other
(modulo integers) p q

2?041 qo;

——

1/p 7

modifying 7 slightly). From this, (9), and the Cauchy—Schwarz inequality, we
will be able to locate a large set of quadruples (/, J, p, g) with I and J disjoint
intervals of length H = X? for which

Y f(me(—am)| > H and

nel

> fmye(—ayn)

neJ

> H (10)

and p, g < P = H? are primes for which (9) holds and such that I /pNJ/q #
#; see Fig. 3.

Since the intervals //p and J /g are nearby and the frequencies pay, goy
lead to very large values of the short trigonometric polynomial supported
respectively on //p and J/q, we conclude from (8) that these frequencies
lie (modulo 1 and up to perturbations by O (P /H)) in a bounded set of < 1
frequencies. In particular by the pigeonhole principle it follows that, for a
positive proportion of disjoint intervals /, J of length H and primes p, g of
size P = H® with I/p N J/q # ¥, we have the fundamental approximate
equation
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10 K. Matomiki et al.

pay =qay+ O(P/H) (mod 1) (11)

relating the frequencies «y, oy associated to these intervals. The number of
such quadruples (1, J, p,q) is < (X/H) - (P/log P)2, since once 1, p,q are
chosen, J is essentially determined by I/p N J/q # @.

It would be nice if the congruence (11) held (mod p) rather than just
(mod 1), as one could then profitably divide by p. Fortunately, by the Chinese
remainder theorem there exists a (potentially very large!) integer k depending
on J and g such that if we redefine oy by shifting it by &, then we do indeed
have

P
pay =qay+ O <E) (mod p)

or equivalently

1
a152~0{1+0<—) (mod 1)
p H

for all p < P, with p # ¢q. Importantly, shifting «; by k € Z maintains
the property (10), no matter how large k is. The dependence of the integer
k on g is a bit problematic; however let us suppose for sake of discussion
that k£ is independent of g (we essentially end up achieving this through a
different argument that involves two consecutive applications of the arithmetic
large sieve). Then applying Cauchy—Schwarz we conclude that, for a positive
proportion of intervals Ji, J» and primes g1, g2 =< P with’ ;—: N ;—; # 0, we
have

|
By =Ly, v 0 (—) (mod 1) (12)
P P H

for many primes p =< P. This is essentially the outcome of Sect. 3, though
the argument there proceeds using a somewhat different arrangement of the
above ingredients, most notably in that the prime p ends up being at a different
scale to the primes ¢, g2, and the intervals J, J, have length a bit less than H
(and are located at spatial scales a bit less than X). For sake of this discussion
we assume that for the data Jy, J2, g1, g2 as above, the relation (12) holds
for all p < P, not just for many such primes. We depict this relationship in
graph theoretic language by connecting J; to J, by an edge which we label
by the ratio Z—? of the primes needed to get from J; to (the vicinity of) J> by

5 More precisely, ;—} and ;—; will both intersect a third interval £, but this is almost the same as
requiring that these intervals intersect each other, as they are all of comparable size; see Fig. 4.
For sake of this discussion, we ignore this technical distinction.

@ Springer



Fourier uniformity of bounded multiplicative functions 11

92
S
o ;T a J 1
P /q

QQan pO{I Q1OZJ1
Ja /g~ ]/ ——h/n

Fig. 4 A pair of intervals Jy, J> and primes g1, ¢ such that J;/q; and J> /g both meet //p
for many pairs (I, p), and are thus close to each other. The frequencies «j,, oy, have been
adjusted by suitable integers so that %‘a Jis %a J, are both close (modulo integers) to o, and
thus also close to each other (again modulo integers). When one has the above diagram for all
(or most) p =< P, we draw a dashed line from Jq to J; as indicated. Note that if one dilates Jq
by then one will end up with an interval close to Jp

multiplication; see the dashed line in Fig. 4. The resulting graph G is essentially
undirected (except that if one wanted to get from J> to J; one would use the
label Z—; rather than Z—f) and multiplicity-free (the ratios % for g1 # g7 are all

well separated from each other, so each pair Ji, J> of distinct intervals may
be connected by at most one such ratio).

Notice that the number of intervals Ji, J> and primes g1, g» < P constructed
aboveis < (X/H)-(P/log P)?;thus the graph G described above has < X/H
vertices and average degree =< (P/log P)>. We begin Sect. 4 by applying
Holder’s inequality on G in a way that is motivated by Sidorenko’s conjecture
(see [29]). We choose & to be the first even integer for which

p \2%—2 X\ 2
>\ = .
(rer) = (3)
Because of our hypotheses H = X? and P = H®, we can take k to be
independent of X. Roughly speaking, k is the first integer at which we expect
to see a very large number of non-trivial cycles of length k in the graph G.
After many applications of Holder’s ineqality, we can conclude that, for a

positive proportion of disjoint intervals /1, J1 C [X, 2X] of length H and
primes pp, g1 < P with I1/p; N J1/q1 # 0, there exist

—(— 1
> 23 <1og P) >
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12 K. Matomiki et al.

“chains” of intervals I» ..., I, Jo ..., Jy C[X,2X] of length H and primes

Pl1s 5 Pk,1s P1,25 -« 5 P25 91,15 - -5 Gk, 1: 91,25 -+ k2 X P
such that, forall ¢ =1, 2, ...,k,

1 1 J J
_eme_ﬂ#@’ _Kme_“?g@ (13)
Pe1r Pe2 qe1 g2

and furthermore the approximate identities

H
qe1 qe 1
—_ = = o\ — mod 1 14
p =T e T <H) (1
1 1 1
%0‘11 = q—Oljl +0 <ﬁ) mod 1

hold for all p < P, where we adopt the cyclic conventions Iy4+1 = I1, Jr4+1 =
J1. The above set of relationships corresponds to two cycles of length k in
G connected by a further edge in G; see Fig. 5. The choice of k is just large
enough to ensure that the configuration in this figure will usually be non-
degenerate in the sense that the primes py 1, ..., qk.2, P1, q1 that arise are all
distinct for most of the configurations. Since the primes p in our case are of
size P = H® = X*Y, it suffices to take k bounded in terms of ¢, 6 to guarantee
the existence of a large number of such chains.
Notice that we can interpret each of the relationships in (14) as holding

(mod p) instead of (mod 1) by multiplying by p, thus obtaining the system
of equations

P
pey, = pe2dy,,, + 0 (E) mod p
P
qe1ay, = qeaayg,,, + 0 T mod p (15)
P
pian =qiag + O T mod p

for all p < P. We can then use the Chinese remainder theorem to replace
the (mod p) congruences in (15) with (mod Q) where Q:= ]_[px}D p. A key
point for later analysis is that Q is going to be extremely large (of size about
exp(P) = exp(X £9Y), so much so that we will eventually be able to drop the
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Fourier uniformity of bounded multiplicative functions 13

P32 .~ 13‘ S D22
]73,1 p271 .
L5 pas w7l
P41 P11
14
q1
P1
Y
W2 : 71 ~~~~ " 1,2
——————— 1 i
J4 32 2,2 J. 2
q3,1 Q2.1

Fig. 5 Two cycles of length k = 4 connected by an edge. Each dashed line corresponds to
a situation of the form described in Fig. 4 (for all p =< P). The frequencies «,, @, are not
depicted here to reduce clutter; however, they will obey the approximate identities (14)

congruence (mod Q) altogether, once we obtain some more control on the
location of the «;.

After applying some algebra to (15) to eliminate all frequencies except
ay,, oy, we eventually conclude the estimates

/ Pk
g, =0 (F) (mod Q) (16)
/ Pk
gy, =0 (ﬁ) (mod Q) 17
P
oy, = qiog, + 0 (ﬁ) (mod Q) (18)

k k k k
where ¢1:= |[[,— et — [Ti—) pg’z‘ and g}:= ‘]_[Z:l ge,1 — [ o= qe.2|- The
integers ¢}, g5 are small; in fact the condition (13) will give the bound
91,95 < H O(¢) We can also assume that these integers are non-zero, because

the number of intervals Iy, Jy and primes p; ;, g;, j for which q;. could be zero
is negligible. It follows then from (16), (17) that
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14 K. Matomiki et al.

ai T11

ap=—0+— (mod Q)
Q] X
az T,

oy = —/Q+—1 (mod Q)
q; XJp

for some ay, a; € Z,0 < ¢, ¢, K HO® and Ty, Tj, < X?/H?*”, where
Xy, Xy, the starting points of the intervals I, Jj, respectively.
Suppose now for simplicity that g; = ¢5 = 1, so that

ap = & (mod Q) (19)
xr
T

oy, = x—jl (mod Q) (20)

Notice that since I} N £LJ; # @ we have x;, ~ %x 7,- Combining (19), (20)
with (18) we obtain the key relationship

T[1 = TJl + O(PX/H) (mod Q);

since T},, Ty, are much smaller in magnitude than Q, we may now drop the
congruence and conclude in fact that

Ty, =T), +OPX/H);

informally speaking, this means that the map I +— 77 is approximately locally
constant on the graph G. Obtaining these quadruples (/1, I2, p1, p») with all
the described properties is essentially the content of Sect. 4.

A Taylor expansion shows that if «;, is as in (19), then e(—ayn) =~
¢ n® T with 67, € R depending only on I;. Similarly for (20). Thus
there exists a positive proportion set of disjoint intervals /, J connected by an
edge in G such that

Z f(n)an'T,

nel

> H and > H.

Z f(l’l)l’lzniTJ

nelJ

for some T;, Ty <« X?/H? with Ty = T; + O(PX/H). To proceed further,
we claim that the graph G is essentially an “expander graph” and in particular
that it has one very large and highly connected component. This is the content
of Sect. 5.

To see this claim, notice that taking a O (P X/ H)-spaced set of values V in
the range {T : T = 0(X2/H2_p)}, we can group the intervals / into subsets
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Fourier uniformity of bounded multiplicative functions 15

A(V) of those intervals I for which 7; = V + O(PX/H). Then, because
many pairs of intervals /, J connected by an edge in G belong to the same
A(V), we obtain a large lower bound of the form

X P ’ 1 21
E‘(logp> <<2Vj ,,Xx: 3 1)

q=P I[€A(V)
JeA(V)
I ~J
Eﬂ;;ﬁ(b

where P:=H?. That is we obtain a lower bound that corresponds to a positive
proportion of disjoint intervals 7, J C [X, 2X] of length H and primes p, g <
P such that £ N £ £ 7. Now, since the exponential sum p=H¢ p'! exhibits
cancellations, we can (using a bit of harmonic analysis) essentially bound the
above by

, H [ P \?
<<ZV:<#A(V) 'Y'(logp>)

Noticing that ), #.A(V) <« X/H, we see that the above expression is in turn

P \2
< (sup#A(V)) : (—) , (22)
v log P

and therefore, combining (21) and (22), there exists a value V for which
#A(V) > X/H. That is, there exists a universal T <« X 2 /H 2 (up to non-
essential perturbations by O(PX/H) that we can ignore) such that for a
positive proportion of disjoint intervals I of length H we have,

> fmn'”

nel

> H

Averaging over such intervals it follows that, there exists 7 € R such that
|T| < X*/H? and

2X .
/ Y fon'T|dx > XH.
X

x<n<x+H

By the main theorem of [22] (or rather more precisely its extension to complex
valued functions as in [23, Theorem A.1]) this implies that f has to behave
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16 K. Matomiki et al.

essentially as n 7 x (n) with x a Dirichlet character of bounded conductor

and |T| <« X?/H?, thus finishing the proof.

1.2 Some final remarks

It is very likely that it is possible, at the expense of additional technical diffi-
culties, to push our argument down to H = exp((log X)'~?) for some § > 0.
However we start running into difficulties when H hits exp((log X )2/3+€) and
our argument appears to hit a hard limit when H enters the neighborhood of
powers of log X.

The obstruction which prevents H from going below exp((log X)*/3)
is related to the Vinogradov—Korobov zero-free region: we know that
| 2 e p''| is non-trivially small only under the assumption that H >

exp((log X)%/3+¢) for any ¢ > 0 fixed. This obstruction can be circumvented
(in the case of the Liouville function, at least) by assuming the Riemann
Hypothesis. In that case | ) P HE p'’| will be non-trivially small provided

that H is a large power of the logarithm (specifically H > (log X)3/¢).

The latter obstruction which prevents H from going below log X occurs
because we require the set of primes P C [1, H] to be sufficiently dense so
that at the very least [ | pep P > X2, This implies that H needs to be larger
than log X.

These are not the only obstructions. It appears that for H < exp(y/log X) the
dependence of the various implied constants on the parameter k (introduced in
the proof of Proposition 4.1) becomes problematic and requires a re-working
of the argument. We plan to address these issues elsewhere.

It also appears likely that the method of proof will allow one to replace
the linear phases e(—an) in Theorem 1.4 with polynomial phases e(—agn¢ —
--- —aqn) for fixed degree d (and then take suprema over all ag, ..., 1), or
even with nilsequences; again, we plan to address these issues elsewhere.

Notational conventions

Asusual f < g, g > f or f = O(g) means that there is an absolute
constant C > O such that | f| < Cg. If C needs to depend on some parameters
then we indicate this by subscripts, for instance f <, g denotes the estimate
| f| < Cyg for some C), depending on g. If we write f = o(g) as X — o0
this means that | f| < c(X)g where c(X) is a quantity that goes to zero as X
tends to infinity (which may make other quantities dependent on X, such as
H, go to infinity also). We also write f < g for f K g K f.

We set e(x):=e”™* . The symbol p always denotes a prime, and sodo p’, p”.
Given an interval I = [a, b] we define I/ p:=[a/p, b/ p]. Whenever we write
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Fourier uniformity of bounded multiplicative functions 17

o = B+ O(n) (mod 1) we mean that there exists an absolute constant C
such that, ||@ — B|| < C|n| where || x| denotes the distance of x from the
nearest integer. Similarly whenever we write « = 8 + O(n) (mod g) we
mean o/q = B/q + O(n/q) (mod 1). Given two intervals I = [a, b] and
J = [c,d] with b < ¢, whenever we write dist(/, J) < n, we mean that
|c —b| <n.If I =la,b]and ¢ > 0, we write cI:=[ca, cb], thus for instance

I/p=1la/p,b/pl

2 Auxiliary results

We collect here some standard results that will be used (mostly) in Sect. 3.

In order to use some tools from graph theory, it is convenient® to replace
the continuous integral | ;X dx in Theorem 1.4 by something more discrete.
Given X, H, define a (X, H)-family of intervals to be a finite collection Z
of intervals I = [x;, x; + H] of length H contained in [X/10, 10X], such
that any pair of intervals in Z are separated by a distance at least S00H ; in
particular, the intervals in Z are disjoint, and thus the cardinality of Z cannot
exceed X/H.

We then have

Lemma 2.1 (Discretizing) Let a(n) be a sequence of complex numbers with
la(n)| <1 forallintegersn > 1. Let n > 0 and X > H > 1. Suppose that

2X
f sup Z a(n)e(—an)|dx > nHX. (23)

X acR x<n<x+H

. . . . . X
Then there exist an (X, H)-family of intervals T of cardinality > IO'Z)W and
real numbers oy associated to each I € I such that, forall I € T,

nH
> ame(—amn)| = - (24)
nel

Proof It follows from (23) and the pigeonhole principle that there exists y €
[0, H) such that

6 It should also be possible to work in a purely continuous setting, replacing various summations
in our arguments with appropriately normalized integrals, using Fubini’s theorem in place of
double counting arguments, allowing the intervals under consideration to overlap each other,
and with various graph-theoretic inequalities replaced by their continuous counterparts. We
leave the details of this alternate arrangement of the argument to the interested reader.
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18 K. Matomiki et al.

sup Z a(n)e(—an) >nX (25)
0<t<X/H \*RtH1y<n<(+1)H+y

Given 0 < v < 500, let Z,, be the sub-collection of intervals I = ((500£ +
v)H +y, (500¢ + v + DH + y] with 5= < £ < 525 for which

sup Z a(n)e(—an)| > %

@€R | (500¢-+v) H+y<n=<(500¢+v+1)H+y

Let T = (Jy<y <500 Zv- It follows from (25) and the trivial bound |a(n)| < 1,
that

X
iz H =Y > 1

1eZ

Za(n)e(—om)

nel

Thus there exists an 0 < v < 500 for which Z, is an (X, H)-family of intervals
of cardinality > %. Setting 7 = 7,,, we obtain the claim. |

The frequency «; in the above proposition is not unique: one can shift it
by any integer, and one can also perturb it by up to a small multiple of n/H
without significantly affecting (24). However, it turns out that modulo these
freedoms, there are only a bounded number of choices for « (if one views n
as being fixed). More precisely, one has

Lemma 2.2 (Maximal large sieve) Let H > 1 and let I be an interval of
length 10H. Let n > 0 be given. Let |a(n)| < 1 be a sequence of complex
numbers. Suppose that there exist J > 1, frequencies a1, aa, ..., o5 € Rand
sub-intervals Iy, I, ..., 1; C I of length at most H such that

> amye(—an)| = nH

ne]_,-

forall j =1,...,J. Assume H sufficiently large depending on 1. Then there
exist anatural number K < Cn~2 with C an absolute constant and frequencies

Bi, ..., Bk depending only on n > 0, the sequence {a(-)} and the interval I,
such that, foreach 1 < j < J, there exists k € {1, ..., K} with
| Brell = 1
a  — —
J kIl = H

where we recall that ||x || = dist(x, 7).
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Fourier uniformity of bounded multiplicative functions 19

Proof Let y; be the frequency y that maximizes the quantity

sup
Lcl

> ame(—yn)|. (26)

nelL

with the supremum taken over all sub-intervals L of /. For i > 2 we
define y; inductively as the frequency that maximizes (26) in the region
[0, 1]\ U;;ll[yj — %, Vi + %]. We thus obtain frequencies y1, ..., yr with
R a parameter to be chosen later, and moreover ||y; — ;| > % fori # j.

Using the Carleson—Hunt theorem, it was proven by Montgomery [27, The-
orem 2] that one has the maximal large sieve inequality

2
<CR+H)Y lam]

nel

Za(n)e(—)/rn)

with C an absolute constant. The right-hand side is O (H (R + H)). Choosing
R to be a large multiple of 772, it follows that there are at most K < 12
frequencies y; for which

sup | Y " a(m)e(—yyn)| = nH.

Lct nelj

Therefore for any o lying outside of

O R
et yl H ’ yl H
1=

we have

sup
Lcli

Z a(n)e(—an)| < nH.

nelL

Our assumption is that for each o; with 1 < j < J there exists an interval /;
with /; C I for which

7 At the cost of worsening the dependence on 7 slightly, one could also use the standard large
sieve inequality [26] here, combined with Lemma 2.4 below.
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20 K. Matomiki et al.

Z a(m)e(—a;n)| > nH
nEIj
Therefore a1, ..., ay € U,-Kzl[)/i — %, Vi + %] and the claim follows. |

We record also the following variant of the large sieve that we will need in
Sect. 5.

Lemma 2.3 (Variant of large sieve) Let 1| < H < X and R € N. Let
X1,...,xXg € [1, X] be H-separated (thus |x; — xj| > H forall1 <i <

Jj < R). Then
/tISX/H

ProofALet ® () be a smooth function such that ®(¢) > 1 for |¢| < 1 and with
supp ® C (—1, 1). Then the left-hand side of (27) is

R 2

Ze(itlogxn)

n=1

dt < R X 27)
0

R
. tH X —~ Xn
<</R Ze(ztlogxn) @(Y)dtz T Z ¢<Eloga> <<R,E
n=1 1<m,n<R
as claimed. O

We will also need the following tool from harmonic analysis.

Lemma 2.4 (Completion of sums) There exists an absolute constant ng > 0
such that the following holds. Let J be an interval of length H and a(n) complex
coefficients with |a(n)| < 1 for all integers n > 1. Let I be an interval with
I C J. Suppose that n € (0, ng) and « € R are such that

Za(n)e(—om) > nH.
nel
Then there exists 0 € R such that |0] < nZLH and

> ame(—(a +0)m)| > n*H.

nelJ

Proof Let y, z € R be chosen so that I = [y, z]. Let f be a smooth function
with f(n) = 1 forn € [, |f(n)] < 1 for all integers n, and compactly
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Fourier uniformity of bounded multiplicative functions 21

supported in [y — 100 -H,z + 100 - H]. Moreover we can ensure that f is
a Schwartz function with | f D) < i (nH)™ J for all x € R and therefore
with If(x)l = If]R fwe(—xu)du| <4 H(1+nH|x|)~ Aforall A € N. Let

g(B)=>_ f(menp).

Applying Poisson summation to g(8) and using the above bound on fwe see
that

2

[ eeras- | dp < Hi'

== 1Bl> I > B>y

(28)
Moreover by construction of g,
nH < | ame(—an)| < (Z ame(—(x + ﬁ)n)) g(B)dp| + ﬁ H.
nel T neJ
We split the integral on the right-hand side into two parts namely || < H

and the complement. We estimate the part over || < trivially only usmg

2H
the bound |g(B)] < 2H. On the second part we apply Cauchy—Schwarz,
Plancherel and (28) to see that it is bounded by <« n”>H. Collecting these

estimates we conclude that

nH < 4H > ame(—(a + Bin)|dp
1Bl< 21—1 nelJ
Therefore there exists 8 € R such that |8] < 2—H and
Y amye(—(+ pn)| > n*H
nelJ
as needed. O

In Sect. 3 we will frequently relate the Fourier behavior of f on an interval
I with the behavior on dilated intervals / / p for various primes p. The key tool
here is

Proposition 2.5 (Mean scales down) Let x > H > 1, and let f : (x,x +
H] — C obey the bound
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22 K. Matomiki et al.

Y IfmP < H

ne(x,x+H]

(thus f = O(1) on average on (x,x + H] in an L? sense). Then

2

Yol X sem-o ¥ fw| <HL 09

<H X x+H ne(x,x+H
r me (5, ] ( ]

In particular, by Markov’s inequality, for any 6 > 0 we have

S fem=1 ¥ f(n)+0<8%)

me(3, 221 ne(x,x+H]

for all primes p < H outside of an exceptional set P of primes with
Ypepy K72

p
Proof See [6, Lemma 4.7]. O

We will also need the following number-theoretic estimate, in particular to
dispose of some degenerate cases.

Lemma 2.6 (Counting nearby products of primes) Let k € Nand P', N > 3
be such that (P')*=' > N. Write d = P’*/(log P’)?. Then the number of

2k-tuples (P ys -+ P\ g Ph1s -+ Pyy) of primes in [P', 2P'] obeying the
condition
k k k
(P')
/ /
]_[lpz,j—l_[lpl,,. <C — (30)
Jj= j=

: , (Py* dt
with C > 0 a constant, is at most Ok’C(Nlong P/) = Ok.c(5)-
If we also impose the additional condition

k

J

k
ph; =[] pi, modq 31)
1 j=1

for some modulus q € N, then the number of tuples is bounded by

oue (5 (i * aw)
CEAN \o@) "10gN )
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Proof Since the first claim follows from the second by specializing to g = 1
it is enough to prove the second claim.

First notice that without loss of generality we can assume thatg < (log N
since otherwise the claim is trivial by replacing products of primes by integers
(i.e., using the crude bound that every integer has at most O (1) representations
as a product of k primes) and counting trivially.

Let w be a smooth function such that w(x) = 1 for |x| < 100C. Then, the
number of primes p/l’ I p/27 , for which (30) and (31) hold is

/ /
Pia---Prk
< Z w (N log ——~ (32)
, DPyq---D
Pl e Py g ELP2P] 2.1 2.k
p/z’1 ..... pé_ke[P’,ZP’]
Py 1Pl g=P) Py mod g

)3k

Since ¢ < If’/ and. all Of: the 21 i D5, are primes, we can express the congru-
ence condition using Dirichlet characters, thus

1 — 1 / / / /
PLiPLx=P5 1Py mod g = @ Z X(P1,1)~~~X(I’1,k)X(P2,1)~-~X(P2’k)
x  (mod ¢)

where the sum is over all Dirichlet characters of period ¢g. Using this identity
and the Fourier inversion formula w(x) = fR W(1)e2™ X1 dt, we see that the
expression (32) is equal to

2k

1 /A(I) Z it
Yo [ w(<) P x(p)| dt,
<P((I)NX (mod ) 'R N be

[P".2P"]

Since ¢ < (log N)** «; (log P")**, using the zero-free region for L(s, x)
stated in [28, Chapter 9, Notes] and the contour integration argument of [21,
Lemma 2] gives

P’ 1

g T3 Sroo + P exp(—(og P)I);

Yo pxp <

pelP’,2P']
Using this pointwise estimate it follows that

2k

Y. pixp)| ar

pe[P’,2P’]

1

POV o /lt | <exp((log P/)!/10)

1 P/2k dk
< N2k .
@(g)N (log P) p(g)N
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To bound the part of the integral with large || we notice that for arbitrary
coefficients a(n), we have the L? mean value theorem

2

/R @%) Y awn| < (N+B) Y lamPF (33

A<n<B A<n<B

(see e.g., [17, Theorem 9.1]), while from the pointwise estimate we have

2%k
1 / (%)
Wl —= px(p)| dt
‘P(‘I)NX (I‘DZOd ) |t|>>exp((10gP’)]/]00) N pe[;zp/]
2k—2
< P2 exp(—(log P/)I/IOO) : sup %/ w <i> Z PilX(P) dt
mod R N
X (mod g) pelP’2P']
Since
2k—2 2
Yo x| = > a(mn'"
pe[P’,2P] ne[(PHk=1,2pPHk-1]
where
a(n):=x(n) > 1= 0x(1)

Pls- Pk—1E[P' 2P :n=p1...pk—1

we may thus bound the part of the integral with || > exp((log P’)!/190) using
(33) by

2k

P
~— exp(—(log p)1/100)

1
&x P2 exp(—(log P')1/100) . v (N + Ph=1yprh=1

as required. Combining the two bounds, the claim follows. O

3 Intervals and frequencies

Assume we have the hypotheses of Theorem 1.4, thus there exists an n > 0
such that

2X
/ sup Z f(m)e(—an)|dx > nXH.

X o x<n<x+H
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Informally speaking, the main purpose of this section is to produce a large
set Z” of disjoint intervals I”, each of length comparable to some quantity L
(which will be slightly shorter than H), as well as associated frequencies o,
with

> fme(—afin)

nel”

>, L,

and a scale P’ with the following property: For a positive proportion of quadru-
ples (1", 7", p',q") € T*> x [P’,2P']? with p’, ¢ prime such that I” is close
to %J” we have

/ /

q p

~

?O{IU ~ FO[/J,// (mOd 1)

for a positive proportion of primes p” in some range [P” /2, P”] (compare with
(12)). Moreover the ranges P”, P’, L are all related by log P” =< log P' <
log L and L < H/P’P". This is the content of Proposition 3.2 below. We first
need a preliminary proposition.

Proposition 3.1 (Scaling down) Let 1 < P < Q < H < X andn > 0,
and let f: N — C be a 1-bounded multiplicative function. Assume that P
and %gig are sufficiently large depending on n. Suppose that there exist an
(X, H)-family T of intervals of cardinality >, X/H and a real number a;

associated to each I € T such that

> fme(—ayn)

nel

>, H (34)

forallI € T. Thenthere exist P’ € [P, Q/2], an (%, %)-familyf of intervals
of cardinality >, X/H, and a real number o}, associated to each 1' € T',
such that

, H
> fme(=apm)| >y o

nel’

forall 1" € T'. Furthermore, for each 1' € 1, one can find >, log_/P/ pairs

(I, p'), where I is an interval in T and p’ is a prime in [P’,2P’], such that
I/p’ lies within 3% of I', and such that

P/
plaj=a), + 0, — ) mod1.
I "\ g
The conclusions of Proposition 3.1 are depicted schematically in Fig. 6.
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Fig. 6 A depiction of (07

Proposition 3.1; the —_—
frequencies p’a; and &), I

will be close modulo

integers, and each I’ € 7'

will be associated to many R
pairs (1, p’) in this fashion. p
Compare this with Fig. 2

p’a I oy

I/p I

Proof For each I € I, we apply Proposition 2.5 to the function n +—
f(n)e(—arn) on I, and with § sufficiently small depending on 7, to conclude
that

H
> faphe—amp))| >y (35)
nel/p’

for all primes p’ € [P, Q] outside of an exceptional set P; with

1
> = <o L.

P'EPr

Summing over all / € 7 (recalling that this collection of intervals has cardi-
nality at most X/ H), we conclude

1 , X
Y —#IeI:p eP<, o
P<p'=0

From Mertens’ theorem and the pigeonhole principle, we may thus find P’ €
[P, Q/2] such that

Y #leIl:pePl< X P
- P 1 n log Q ’
p'elP',2P] log Tog P log P

Fix this quantity P’. If igi g is large enough, we conclude from the prime
number theorem that

/

p/G[P/,ZP/]
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and thus we have (35) for >, %log—/P, pairs (I, p’) with I € 7 and p’ €
[P',2P].

As f is multiplicative, we have f(np’) = f(n) f(p’) unless n is a multiple
of p’. The latter contributes at most O (p,ip) to the left-hand side of (35), which

is negligible compared to the right-hand side as P (and hence p’) is large. Thus
we may freely replace f(np’) by f(n)f(p’), and conclude that

H
> fe—amp)| >y - (36)
nel/p’

for >, %%}D/ pairs (I, p’). (Compare with Fig. 2.)

Let S denote the collection of these pairs (I, p’), and let Z; denote the
collection of all intervals of the form I/p’ where (I, p’) € S. These are
intervals in [0, 10X/P’] of length between H/2P’ and H/P'. By a simple
greedy algorithm, we may find a subfamily Z, of these intervals which are
separated by distance at least 2H / P’, with the property that every interval in
T, lies within a distance 3H /P’ of one of the intervals in Z,.

By (36) and Lemma 2.2, we can associate to each interval I’ € Z, some real
numbers B 1, ..., B k) for some K (I') <, 1, with the property that, for
each pair (I, p’) € S with I/p’ within 3H /P’ of I’, one has

P/
plar = Bri+ Oy <E) mod 1

for some 1 < k < K(I'). By adding dummy values of 8 if necessary we may
take K = K (I') independent of I’. By the pigeonhole principle, we may find
1 < kg < K such that one has

P/
p/Oll = /31/,](0 + 0,] (E) mod 1 (37)

for >, g@ triples (Z, p', ') with (1, p') € S and I’ € Ty with I within
distance 3% of I'. If we let 7 be the collection of such triples, then one can
find a subset 73 of 7, of cardinality > % with the property that for each
1’ € I3, there are > log_,P’ pairs (I, p’) e Swith (I, p', I') € T.

For I’ € 73, pick one of the pairs (I (I"), p'(I")) € Swith (I(I"), p'(I"), I")
€ 7, then from (36) we have
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H
Y felaraymp' )| >y 4 (38)
neﬁl(l/)

while from (37) we have
P/
/ / /
poar=pd )Ol[(]/) + 0,7 (E) mod 1

whenever (I, p’) € Swith (I, p’, I') € T.

The interval I (I")/p’(I’) lies in [0, 10X/ P’] with length between H /2P’
and H/P'. Let J(I') be an interval in [0, 10X/ P’] of length exactly H/P’
containing /(1")/p’(I'). By Lemma 2.4 and (38), we have

, H
Z f(n)e(_a](p)n) >0 F

neJ (')

for some real number
P/
Ol/J(I/) = p/(l/)a](p) + 07, <E> .

In particular
P/
/ /
par=ayqy, + Oy (E) mod 1

whenever (I, p’) € Swith (I, p’, I') € T.
Setting 7’ to be a 500 H/ P’-separated collection of 3> X/ H intervals of the
form J(1’) with I’ € 73, we obtain the claim. O

We are now ready to prove the main result of this section.

Proposition 3.2 Let X > 2,0 € (0,1), n > 0, and p € (0,1/8). Let f :
N — C be a multiplicative function with | f| < 1. Suppose that, for H = X9,
we have

2X
/ sup Z f(n)e(—an)|dx > nHX.

X o x<n<x+H

Let ¢ € (0, p/100) be sufficiently small depending on 6 and n, and assume
X is sufficiently large depending on 0, 1, p, and . Then there exist P', P" €
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(X", X?1, an (%, %)—family T" of intervals of cardinality > X /H, and
a real number o, associated to each 1" € I" such that

H
Z f(n)e(—o////n) >0 Ppr

nel”

for all 1" € TI". Furthermore, there exist >, (log_,P’)Z% quadruples
Iy, 17, py, p5) with I’ I distinct intervals in I and p, p5 distinct primes
in [P',2P"), such that I{' lies within 50% ofﬁ—?lé’, and such that

I /i ((P/)ZP//

pzall// - plalé/ = 077 H ) mod p// (39)

for 3>y 25m primes p" € [P"/2, P"].

Proof By Lemma 2.1, one can find (X, H)-family Z of intervals of cardinality
> nX/H and a real number «; associated to each I € 7 such that

> fmye(—arn)

nel

> nH

for all I € Z. Applying Proposition 3.1, one can find P’ € [XSQ, X?], an
(%, %)—family T’ of intervals of cardinality >, X/H, and a real number o},
associated to each I’ € 7, such that

> fme(=apn)

nel’

H
>>n F

for all I’ € 7'. Furthermore, for each I’ € 7', one can find >>, log—/P, pairs

(I, p), where I is an interval in Z and p’ is a prime in [P’, 2P'], such that
I/p’ lies within 3% of I’ and

P/
/ /
par=oaoa,+ 0y (E) mod 1.

By a second application of Proposition 3.1, one can find P” € [(X/P’ )52,
(X/P")f],an (%, %)—family 7" of intervals of cardinality >, X/H, and
a real number a;/,, associated to each I” € Z”, such that
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Pl o,
= T
I / p// ]

Fig. 7 The relationship between the intervals I, I’,1”, primes p’, p”, and frequencies

/! 4
Ay, al/v al//

H
D Fme(=ajm)| >y (40)

nel”

for all I” € Z”. Furthermore, for each I” € Z”, one can find >, 102% pairs

(I, p”), where I’ is an interval in Z’ and p” is a prime in [P”/2, P"], such
that I’/ p” lies within 3% of I”, and such that

! p!
p”a/l,=a}/m+0n( 7 )modl. (41)

Also, since the I are 500 H -separated, we see that each prime p” is associated
to at most one I’ in this fashion (for a fixed choice of I”’). The above situation
is depicted in Fig. 7.

Note that if I” € Z”, then one can add an arbitrary integer to each real
number oy, without affecting any of the above properties. In particular, if one
adds an integer with an appropriate residue class mod p”, one can upgrade
41)to

! p!
pl/ot/l/ = Ol;/// + 0;7 ( H ) mod p// (42)
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for any pair (I’, p”) appearing previously. By the Chinese remainder theorem,
we may thus select ), so that (42) holds for all pairs (I’, p”) appearing
previously.

Combining the above properties, we see that we can find >, log—,P/ bg’% %
quintuplets (1, I', 1", p’, p”"), where [ € Z,I' € T/, I” € T”, p’ is a prime
in [P’,2P'], p” is a prime in [P" /2, P"], %1 lies within 34 of 7', pLI lies

within 3% of I”, and one has the equations

/
plar =a) + 0, L mod 1
H
and

! D/
play =af, + 0y (T) mod p”.

Multiplying the first equation by p” and combining with the second equation,
we conclude in particular that

! p!!

p'pa = O‘/I/” + Oy ( ) mod p”.

The number of possible choices for (I, p”) is (trivially) at most ; P/, X

Applying the Cauchy—Schwarz inequality, we conclude that we can ﬁnd >,
(log P,)zlog 7 X octuplets (1, I/, L, 1, 1, py, py, p”), where
o [T, I eI, I/, I €T,
e p|, phare primes in[P’,2P'], and p” is a prime in [P"/2, P"];
e Fori = 1,2, L1 lies w1th1n3H of I, and L 1! lies w1th1n3P 77 Oof 1.
e We have K

pipar = a}/],, + 0, < / //> mod p” (43)
and

php o = a}/z/, + 0, (%) mod p”. (44)
See Fig. 8.
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1 /
I/py Iy
/!
O/I/// o T ”
[
I {711/[_#/ 12 / 7 I//

Fig. 8 The relationship between the intervals 1, I{, I3, I{', I3/, primes p{, p5, p”, and fre-

quencies a;, o’ Some frequenc:les are omitted from the figure to reduce clutter. If this

I//’ I//
situation occurs for many values of p”, we draw a dashed line from /{ to I/ labeled by p}/p}.
Compare with Fig. 4

Multiplying (43) by p5 and (44) by p} and then subtracting, we see that

(P/)ZP//

dp”. 45
7 )mOP (45

!’ i
o — pio, = 0
p2 I]// pl 12// n (

1

Also, p/ I lies within 6 H of p/ p”I{" and p} I} lies within 6 H of p} p” I}
the triangle inequality p}p”1{

, S0 by
and p p” I} lie at distance at most 24H from

each other. Hence, on dividing by p|p”, I{" and %Ié/ lie at distance at most
1

48% from each other. In particular, if p| = p}, then I’ = I, and similarly
I{ =1, Asa consequence the number of octuplets with this property is at
most O (1557 Og /P, og P” H) Since P’ > X ¢ and X is sufficiently large depending
on ¢, the contribution of this case is thus negligible, so that there are >,
(oep ) oepr 77 octuplets (1, 17, I, I, 1, pi, py, p") with p} # p).
Observe that if 1}, 1)/, p}, p are fixed, then I, I{, I} are completely deter-
mined by p” thanks to the separation properties of Z and Z”; in particular, there
are 0(%) ways to complete the quadruplet (I, 1, p}, p5) to an octuplet.

Similarly, I{" is completely determined by 1}, p|, p2 (since there is at most
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one interval in Z” that lies within 48 5757 P, 57 from p—él /). Thus the number of
eligible quadruplets (1], I/, p}, p5) is O((10g P,)2 ). We conclude that there
exist >, (log—;,,)z% quadruplets (I}, I/, p, p5), each of which can be com-
pleted to an octuplet in >, 102% ways. In particular, for such a quadruplet,

(45) holds for >, lof;% choices of p” (recalling that I, I{, I, are completely
determined by the remaining coefficients of the octuplet). The claim follows.
O

4 Local structure of o’

We now analyse the structure of the function «” appearing in Proposition 3.2.
The main result of this section asserts that &}, locally behaves like % with T

“not too large” (and up to a shift 69] with small denominator), where x;» denotes

the left endpoint of the interval I”. Crucially, T will not vary much with 7",
at least “locally”. It is here that we will rely on the hypothesis H = X? that
H is of polynomial size in X.

Proposition 4.1 Let 0,n,p, X, H, f,e, P', P",7",a" be as in Proposi-

2
tion 3.2. Then, for >, 4 <W) of the pairs (I{', 1) of intervals in ("2,
there exist a natural number

l<g < H”,

integers ay, a», a real number

X2
T <g.p.e.p Hn'

and a set P(I{, 1)) of primes in [P" /2, P"] of cardinality >>¢ y ¢ o mf,%
such that

T aij 1
Vi J 1/ Vi
Q= —+— l_[ P+ 00.n6.p (m) mod l_[ p

J Xy
4 prePU! 1) peP(! 1)

for j = 1,2. Furthermore, for each such pair there exist primes p}, py €
[P’,2P'] such that I’ lies within IOOP P57 of a3 I” and such that

phai = plaz mod q. (46)
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Proof Let 0,n, p, X, H, f,e, P, P”,Z",a"” be as in Proposition 3.2. Thus
for instance we now have P”, P’ < H*/190 Henceforth we allow implied
constants to depend on 6, n, €, p. We abbreviate

N:=#7" < X
' H

for the cardinality of Z” and d for the quantity

P\’
d:= ,
log P’

thus the number of quadruples (I{, I}/, p, p5) in Proposition 3.2 is > dN.
We construct a graph G = (V, E) whose vertices are just the intervals in Z”
(thus V. = Z” has N vertices), and the edges e are those unordered pairs
e = {1{, 1]} for which there exist distinct primes p/, p} in [P, 2P’] such that
p11{ lies within 100% of p4 17, and such that

P’ 2P//

for a set P(e) of primes p” in [P”/2, P"] of cardinality > 102% (note that

these properties are symmetric in /;" and 7). Observe that the primes p|, p} are

uniquely determined by I{’, I}/, for if there was another pair of primes pj, pj

with the same properties, then 2275 and 215 would lie within 200% of
P p

each other, which implies that ’

p_a_p_a_o(g)
/ ;T ’
Py P3 X

but if (p}, py) # (ps, py) then the left-hand side has magnitude at least

—p/lp/ > X _282, which leads to a contradiction if € is small enough and X is
3K
large enough. Thus, by Proposition 3.2, we see that the number of edges in G

is 3> dN. On the other hand, the degree of each vertex in G is O(d), since
for fixed I{’ there are only O(d) choices for p| and p}, and I} is uniquely
determined by these choices. Thus G has < d N edges and the mean degree of
Gisx=<d.

At present, the sets P(e) of primes associated to each edge e are large, but
the intersections P(e1)N- - -NP(ex) could be small. This will cause difficulties
later. To get around this problem we use a random refinement trick of Gowers
[8]. Let p” be a prime in [P”/2, P"] selected uniformly at random, and let
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G = (V, E) be the subgraph of G consisting of the same vertex set V as G,
and with the edge set E consisting of all edges e € E with P(e) containing p.
By the prime number theorem, each edge has probability > 1 of lying in G,
so by linearity of expectation the expected number of edges in G is > dN. In
particular, we see that with probability >> 1, the random graph G has > dN
edges. Of course, G has maximum degree O(d) since it is a subgraph of G.
As we shall see later, the advantage of working with G instead of G is that the
intersections P(e1) N - - - N P(er) have a high probability of being large when
el, ..., e are all constrained to lie in G.

If A is the adjacency matrix of G, then by the preceding discussion we have
1TA1 > dN (where 1 denotes the all-ones column vector) with probability
> 1. By the Blakley—Roy inequality [2], we now see that for any natural
number k, we have 17 A¥1 > d* N with probability >> 1. That is to say, with
probability > 1, the number of (k + 1)-tuples (17, ..., I]') in Vv +1 such that
{17, 17,y €Efor j =0,....k—Lis>> d*N.

Now let k£ be the first even integer for which

d¥ > N? . d.
Then (since P, P < X?) we have k = O(1) and
N%d < d* < N?d>. (48)

In particular, we may allow implied constants to depend® on k. From the
preceding discussion, with probability > 1, the number of (k + 2)-tuples

(C/PRTRRTY (ST (CYRRNY PP RS vkt (49)

such that {I]/./,l, Ij/'/+1,1}’ {I]/./,Z, IJ/'/+1,2}’ {16/’1, 16/’2} eEforj=0,...,k/2—1
is > d*T!N. This situation is depicted in Fig. 9.

The number of possible choices for the quadruplet (1 ,i//z b lo s g0 1 ,2’/2’2)
is O(dN?), since there are N3 choices for I,é’/z,l, Ié”l, I/él/z,z’ and once 1(3/,1 is
fixed there are O (d) choices for Ié/’ »- Thus by the Cauchy—Schwarz inequal-
ity, with probability > 1, we have there are >> (d*T'N)?/(dN?3) = d**t1 /N
pairs of such tuples with a common quadruplet (I ,2//2 o 1o L lé//2,2)' Rela-

8 If one were to extend the arguments here to smaller values of H, one would need to pay more
attention as to the precise dependence of these constants on k.
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Fig. 9 A tuple (49)in G o
with k = 4. Here we discard _[ 4 \\\
any orientation or labeling of 2,1 g
the edges of G \\\
]
1,1
T,
)1
I}'r ~~~~~~~
0,2
i
,,,,,, A7
!/
22

beling, we conclude? that with probability >> 1, the number of 2k-tuples
"= ) jef01, o k—1)i=1.2 € vk (50)

such that {I”l,Ij”_Hl} {I(/)/’],I(/)”z} ceEforj=0,....,k—1,i = 1,21is

> d***1 /N, where we adopt the periodic convention / wi =1y, fori=1,2.
In particular, by definition of G, we have

PPl Iy, andp € PAT; 174 ;)

forall j =0,1,...,k—landi =1, 2. The situation is depicted in Fig. 10.
Call the 2k- tuples 1" of the above form good, thus there are > d%*+1/N

good tuples. Given a good tuple, to each edge {7 J” o J”+ 1.i} we have (uniquely

determined) primes p/l’j’l., p’z,j’i in [P’/,2P'], such that IJ/'/+1,i lies within

H P] i
10052, of 2L

el for j = 0.1,....k = Land i = 1,2; we also have

9 This bound also follows from the work of Sidorenko [29], as the graph consisting of two
k-cycles (with k even) connected by an edge is one of the confirmed cases of Sidorenko’s
conjecture.
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Fig. 10 A tuple (50) in G Pll )1 ) ,
with k = 4, with the — I,T P11
orientation and labels p 2L 2,1 p/21 1
;eisgto;ed. Compare with <
. //\\. S
I 3,1 ™, l 1/1
P/1,3,1 - p/17071
B e T
0,1
v,
P 7‘— ;
},3,2 = // pLO 2
leELZ P 0,2 T p'270 2
P/1 22 ) p/11 2
Pazz o o7 Py
1!
12,2
primes p', py € [P’,2P'] such that /], lies within 100 757 /P,/ pl Iy |- Again,
we refer the reader to Fig. 10 for a depiction of these relatlonshlps Iterating
k
the former claim, we see that / ) ; lies within O (4 P//) from wl ) ; for
j=1 pl Jii
i =1,2, thus
k /
| P i (H) 1
—— =14+0|=)=14+0:4|—|.
k ’ ’
[l j=1P1,j.i X N
Multiplying out, we conclude that
k k k/2 N
(P') d"/=(log P’) 2
/
]_[pz,,—l_[p,j,,-« o <e N L d (51)
j=l1
thanks to (48).
We now eliminate some degenerate cases. Suppose

]_[lj< | DS g1 ]_[I]‘ 1 P j1 = 0. Then, by the fundamental theorem of
arithmetic, the p1 .1 are a permutation of the p2 |- By the prime number
theorem, the total number of possibilities for the pL i p/2’ il is then at most
< (P'/log P")f « d*/?. By Lemma 2.6, there are O(d*/N) choices for
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Pl i 23 j.2» and finally there are O(d) possibilities for P}, p5 and O(N)
possibilities for /g ;. All the other 7 J” ; are uniquely determined by this data,
so the number of tuples with ]_[];:1 Plz,j,1 — ]_[1;:1 p/l,j,l =0is

k
< dk/zdﬁdN _ g3k/2H

which is negligible compared to d?**1/N thanks to (48). Thus there are >>
d**1/N good tuples for which ]_[];:l p’z’jv1 — ]_[1;21 p/l,j,l does not vanish.

Repeating this argument for ]_[];:1 23 i~ ]_[];-:1 P, j.2» We may see that with
probability >> 1, there are > d***!/N good tuples for which ]_[];:1 P/z,j, P =

H];‘=1 py i # 0fori = 1,2. We will call such good tuples non-degenerate.
Another case we would like to exclude is when the set

k
PU"y= (") () PUALLs 1 ) N PG I D)
j=li=12

is unusually small, say

/

#P(I") <6

52
log P’ (52)

for some small § > 0 depending on ¢, 6, p, n) to be chosen later. Deﬁne
a candidate tuple to be a tuple 1" = (I/ Djelon, . k—1}i=1,2 € V2 with

{I(l)/,l’l(/)/,z} € E, {I],/l’lj//-l-ll} € Eforj =0,....,k—1,and i = 1,2

obeying (52) and with ]_[] 1 D), i ]_[]; 1 P} _j.i non-vanishing fori =1, 2.

Observe that a tuple / I" is a non- degenerate good tuple obeying (52) precisely
if it is a candidate tuple with p € P/ [ ). In particular, the probability that a
given candidate tuple is actually good is O(8). On the other hand, from two
applications of Lemma 2.6, the number of candidate tuples is at most

dk\?
s N xd x (ﬁ) = 41N,

and so, by linearity of expectation, the expected number of good tuples obeying
(52) is O@8d***1/N). On the other hand, with probability > 1 we have >
d***1 /N non-degenerate good tuples. With X large enough (which makes P’
large compared with 1, €, p, 8), and setting é sufficiently small depending on
1, €, p, 0, we thus have with positive probability that there are >> A+ N
non-degenerate good tuples I” for which
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/

- P
#PU") > § . (53)
log P’

Let us call such tuples very good, thus we can find a deterministic choice of p
such that there are > d***!/N very good tuples. .

Henceforth p is chosen deterministically as above. Let I” be a very good
tuple, with attendant primes p’l’j’i, Plz,j,i and pi, p5forj €{0,1,...,k—1}
andi = 1, 2. From (47), (53) we see that there is a collection P(f ") of primes
in [P”/2, P"] of cardinality

/

#PI") >

log P’

such that
(P/)ZP//
pé,j,ia/l/]’.fi - pll,j,ia/[/’/ J =0 (T mod p”
and
(P/)ZP//
’on ’ oo /)
pZOZI(g/,1 - plwl(’)/.2 = 017 <T mod p

forall p” € P(i//),j €{0,1,...,k—1},andi = 1, 2. For X large enough, the

N2 p
error term O, (%) is less than 1/2 in magnitude; thus the nearest integer

/ " / Vi s qies . . I .
to p2,j,ialj’/,. — pLJ‘J’O{I}L] i is divisible by all the primes in P(I"), and is hence

divisible by the product Q:=]] jny P" of all the primes. Thus

p”e'P(
P/)ZP//
/ 1 / ! (
o, — o =0(——— ) mod
P2, ji 1}/.,‘ Pi,ji 11//“,. ( H Q

forall j =0,1,...,k—1andi = 1, 2 and similarly
(P/)ZP//
’ " [/
p20‘16f1 plozlo,{z =0 <—H ) mod Q. (54)

We multiply. the fo.rmer eq.uation by ]_[ij/q- pﬂvj/’,- ]_[j<j/<k p/z,j’,i and sum
the telescoping series for j =0, ..., k — 1 to conclude that

k—1 k—1 Nk+1 pr

1_[ / Ol// _ l_[ / O(U -0 (P) P mod Q
Paji | %1, Prji | %y, =Y\~ :

j=0 j=0
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This implies that

,o (P/)k+lp// q s
gy =0 (=) mod 0 (55)

fori = 1, 2, where ¢; is the non-negative integer

k k
e / i /
qi-= Paji P1,ji|-
j=1 j=1

As " is non-degenerate, g; is strictly positive. From (51) we conclude that
l<q <d”.

From (55), we may write
b p’ k+1P//
@), =—0+0 (L) mod Q (56)
0i gi H

for i = 1,2 and some integers b1, b>. Inserting this into (54), we conclude

that
by bz) ((P/)WP”)
/ /
—=p—)]0=0(—F——) mod Q
(qul P1q2 H

or equivalently

b b pytzpr
PQ—I—P1—2=0(—( ) ) mod 1.
q1 q OH

The left-hand side is a rational of denominator at most O (d*). Meanwhile,
since P(I"”) has cardinality > 10§_P/ > X© /log X, we have

0 > exp(cX®) (57)

INk+2 prr
for some ¢ > 0 depending on ¢, p, 6, n. Thus the expression 0(%) is

far smaller than the denominator on the left-hand side, and hence

b b
Py— — p}= =0mod I.
q1 q2
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by

. . ql . . . .
claimed prope?tles, and pj, p5 are distinct, we may in fact assume without
loss of generality that

Since we can modify -1 and Z—; by arbitrary integers without affecting the

by by
/ /
»—— 11— =0,
q1
thus we can write b—’: = 2Li for some integer a, some 1 < g K d?, and for

i=1,2.In particulér, from (56) we have

an’ p’ k+1P//
a;/,,_ = ﬁQ + 0 (L) mod O
0,i q H

fori = 1, 2; from (48) we thus have
/
"o ap; 3 pr X

We can then write

/
a}/// - %Q + L mOd Q
0,1 q x16,1
for some real number
XZ
r—o0 <d3P” . m) , (58)
and we then write
/
/I/// :@Q'i‘ +9m0dQ
q X
for some real number
X
=0 <d3p” : m) . (59)

Inserting these equations back into (54), we obtain

/ / P/ 2P//
T<ﬁ_ﬂ)_p;9:o(%) nod 0.

X X
10.1 10,2
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Since I(’) , lies within 100 Pf;,,, of n Ié’ |» we have

and hence by (58)

d3 P’ 2P//
p’16’=0(ﬁ+—(1)q )mon.

Combining this with (59), (57) we conclude that

d3 (P/)ZP//
v=o G+
H H

and thus

+ 0 + (PP d Q
— ] Mo
Xpy H H

(X//// = Q +
IO,i

fori =1, 2.
Finally, by two applications of Lemma 2.6, each pair (1 |, I ,) is associated

to at most (O (%))2 very good tuples; since there are > d*+1 /N such tuples,
the number of pairs (I(’)i 15 16/, ,) that arise in this fashion is

d2k+1/ X P’ 2
> i, > dN >> — -] -
( )2 log P

The claim follows. O

5 Global structure of o”’

Proposition 4.1 gives some control on «”, but it is currently “local” because the
parameters 7', g that arise in this control depend on the pair /{, 1}'. Fortunately,
one can use the “mixing” or “ergodicity” properties of the graph of such pairs
to convert this local control to global control. To do this we first need a lemma.

Lemma 5.1 (Mixing lemma) Let 0,1, X, H, f, p,&, P', P, 7", a” be as in
Proposition3.2. We allow implied constants to depend on 6, n, p, . Let Ay, A»
be two subsets of T". Then the number of quadruplets (1], 1}, p, p5) with

@ Springer



Fourier uniformity of bounded multiplicative functions 43

I{ € Ay, I) € Ay, p}, p5 primes in [P',2P'], and 1{ lying within IOO%

ofp—él” is
P2

/ /

2
) log—IOO P/.

(60)

H 2
< (#«41)(#«42)Y( ) +(#A1)1/2(#A2)1/2(

log P’ log P’

Proof Let ¥ : R — R be a non-negative Schwartz function whose Fourier
transform ¢ (§):= f]R Y(x)e(—x&) dx is supported on [—1, 1]. Observe that
if (I{, I/, p}, p}) is a quadruplet of the required form, then

X
W (ﬁ (logxlé/ — logx;y + log ph— logp/l)) > 1.

Thus it will suffice to bound the expression

X
Z Z ’(p <ﬁ (logxlzf/ - logXIl” + logplz - logp/l>)

I e A1, I e Ay p,pyelP'2P']

by (60). Using the Fourier inversion formula i (x) = fR &(E)e(xé) d&, we
can write this expression as

o X
IRGIDS €<E-$Ing1//)
R I"e A,
2

X X
xZe(E.glogxw>- Z e(ﬁ-slogp/> dg,

I"e Ay p'e[P' 2P

which after a change of variable can be bounded by

H 2
< Y/ 1S1E) 1S T )] dé
&<

X
H

where

Si§)= ) e logx;)

I"e A;

fori = 1,2 and
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T@x= Y, p"e

pelP’2P']

From the triangle inequality we have

sup |S; (§)| < #A;
EeR

while from the large sieve inequality (Lemma 2.3) we have
X
[ s©F <#a.
5<%

Furthermore from [21, Lemma 2] we have

P/
T < (

log P’ + log ™10 P’) )

14 [&]

for |£] < % The claim now follows from the triangle inequality and the
Cauchy—Schwarz inequality. O

Using this lemma, we have the following tool for converting local approxi-
mate constancy to global approximate constancy. The corollary will allow us
to show that many of the intervals I” in Proposition 4.1 share essentially same
values of 7" and q.

Corollary 5.2 (Approximate ergodicity) Let 0.n,X,H, f,p,e¢,
P’, P",T",a" be as in Proposition 3.2. We allow implied constants to depend
on6,n,p,e. Let M, K,§ > 0. Let (Z,d) be a metric space, and let r > 0
be a radius with the property that every ball of radius 5r/2 can contain
at most M disjoint balls of radius r/2. For each 1" € I", let F(1") be
a finite subset of Z with cardinality at most K. Let S be a collection of
sextuples (I{', I}, z1, 22, p}, py) with I]', I € I" with z; € F(I{),z2 €
F(1}),d(z1,22) < r, and p', p, distinct primes in [P',2P'] with I’ lying

within 100% of 2—?12” . Suppose that

#S > 8(X/H)(P'/log P")*. 61)

Then either
MK? 100 p/
—8 > log™™ P (62)
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or else there exists zo € Z and a collection T of pairs (1", z) with 1" € T,
z € F"), and d(z, z0) < 2r such that

§ X
#T > ———,
> MK3 H
and  such that there are > M‘S—;%(P’ /log P")?  sextuples

(I, I}, z1, 22, p}, p5) € S such that (I{’, z1), (I}, z2) both lie in T.

Proof For technical reasons we first need to refine the set S. Let 7 be the set
of all pairs (I{’, z1) with I{ € 7" and z; € F(I"). From (61) we have

> NU{.z1) = 8(X/H)(P'/log P')?
Iy .z1)€To

where
N, z0)=#3, z2, P}, py) : UV, 1, 21, 22, P}, py) € S}
We have #7) < 10K X/H. We conclude that there is a subset 7; of 7y with
" s / N2
Ny, z1) > E(P /log P°) (63)

for all (1, z1) € 7y, such that

> NW{.z1) > 8(X/H)(P'/log P')*. (64)

(I}, 21)€T

Let ©2 be a maximal r-separated net in Z, thus every point in Z lies within
distance r of at least one point in 2. From (64) and the triangle inequality we
conclude that

> > 3 1> 8(X/H)(P'/log P').

20682 (I ,22)€To:22€B(z0,2r)  p,prelP’,2P']
(I,z1)€Ti:z1€B(z0,7)

/
dist(1{. 72 1) <100 55
1

(65)
If we define

Ai(zo):={1{ € I” : 3z; € B(zo,r) such that (I{, z1) € T}
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and
Ao (z0):={1; € " : 3z5 € B(zo, 2r) such that (17, z2) € To}

then the left-hand side of (65) is bounded by

2
K 2 2, !
20€R I€Ai(z0)  pl.phelP',2P']

1) €A2(20)

7
. Py H
dlSt([IH, ﬂ 12”)5 IOOW

which by Lemma 5.1 is bounded by

wrt (L) OILZNCHICEHE e
log P’ foper 0 0 X
£ 3 A o) Ao log ™ ),

70€Q

Any pair (1, z2) € 7o can contribute to A3 (zo) only if B(zo, r/2) is contained
in B(z2, 5r/2). As the balls B(zg, r/2) with zg € Q are disjoint, we conclude
that each such pair contributes to at most M sets .4>(zp), and hence

X
Z #A5(20) < MKE

70€Q2

and similarly

X
> #AIG0) < MK —.

70€2

By Cauchy—-Schwarz, we may thus bound the left-hand side of (65) by

X [/ P\’ H
MK3=— sup #A — +1log~ 100 p’
< H (log P/) <ZoeIS)2 1(z0) % + log

and hence

H
sup #A4 — +1og™ 0 p )
zolé% 1(z0) 5 +log T E
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Thus, either (62) holds, or there exists zg € 2 with

#
Aizo) > w54

Suppose the latter claim is true. If we now let 75 denote the collection of those
(I{, z1) € Ty with I' € A1(z0) and z1 € B(zo, ), then we have

s X
#7;
2> VK H
From (63) there exist > M‘}3 i K(P/ /log P))?>  sextuples

(I, 15,21, 22, p}. p5) € S such that (I{,z1) € Tp. Since z; € B(zo,r)
and d(z1,z2) < r, we have zo € B(zg, 2r). Thus, if we take 7 to be the
collection of those (I{, z1) € 7o with I € A»(z0) and z1 € B(zo, 2r), we
obtain the claim. O

Let®,n, X, H, f,e,p, P', P", 7", a" be as in Proposition 3.2. Let § > 0
be a small quantity (depending on 6, 1, ¢) which we will specify in a moment.
Inspired by Proposition 4.1, define a good quadruple to be a quadruple
(I",T,q,a), where I" is an interval in I” € Z”, T is a real number with

1 x?

IT| < SH=» (66)
¢ is a natural number with 1 < g < H”/8,a € {0,...,q — 1} is coprime to
g, and there exists a real number 6 with || < % Hllf >

a}’/,—;—i— 1_[ p"+6 mod l_[ p” (67)
! p”eP p'eP
for a set P of primes in [P”/2, P"] of cardinality at least § ;. Proposi-

10 Tog P7*
tion 4.1 guarantees that once ¢ is chosen sufficiently small in tern%s off,e,n,p
there exist > X/H good quadruples. Throughout we fix § sufficiently small
so that this holds; in particular, implied constants may now depend on § in
addition to 0, ¢, n, p.

We have some limitations on how many good quadruples can be associated
to a single interval 1”:

Proposition 5.3 Let 8, p be as above, and let 1" be an interval in T”. Let
K > %, and let (1", T;,q;j,a;) for j = 1,..., K be a collection of good
quadruples. Then there exist | < j < j' < K with the following properties:

1) gj =qj-
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(i) aj = aj.
(i) T; =Ty —i—O(H1 p>
Proof Without loss of generality we may take K = [%1. Forj=1,...,K,

let P; be the set of primes in [P”/2, P"] associated to the good quadruple
(I//, Tj, qj', a_,-). Then

K P// P//
> | Xtrer ] zK *logP7 = “log P’
prelP72.P") \j=1

and Zle lp; < K <« 1/4. From this and the prime number theorem we
conclude that Zle Ip, > 2 for at least > 105;% primes in [P’, 2P']; this
implies that there exist distinct indices j, j' € {1, ..., K} such that

1

#(P; NPjr) > P log P

If one writes Q:=[],cp,np, " we then have
AR

0 > exp(csP") > exp(cs X)) (68)

for some ¢5 > 0. On the other hand, from (67) one has

1
XI” qj p
and
o= Y0 o) mod 0 (70)
1" x]/, q], Hl_p .

In particular,

. . X2
(-2) =0 (52 mac
q9j 4y H*=r
which when combined with (68) (and noting that the denominator on the left-
hand side is at most O5(H?2)) forces
i R 0 mod 1.
qa; 4;
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Since a;j/q; and aj/q; are in lowest terms and in [0, 1), this implies that
aj = aj and gj = g . Subtracting (69) from (70), we conclude that

—Tj_Tj/—O( ! )mon'
= 7T .

_xl//

. 2
since |T; — Tj| < %%, we conclude from (68) that

T, —Tj _0 1
X Hl-r )’

and hence T; — Tjr <5 % The claim follows. O

From the above proposition and the greedy algorithm, we conclude

Corollary 5.4 For each 1" € I”, there exists a set F(1") of triples (T, q, a)
of cardinality

#F(1") <

SRS

’

such that, for any good quadruple (1", T, q, a), there exists T' € R such that
(T',q,a) € F(I") and

X
T:mo(_).
Hl-r

On the other hand, Proposition 4.1 provides us with a large number of
quadruples:

Proposition 5.5 Let § be as above and X sufficiently large depending on
8 and e. All implied constants may depend on &,1n,0, p. Then, for >
(X/H) - (P'/log P")? of the pairs (I{, 1Y) of intervals (I, there exist
T1, T, q',a}, a) such that (T1,q',a}) € F{) and (T», q', a}) € F(I),
and

X
Hh=T1+0 <W> . (71)

Furthermore, for each such pair, there exist primes p', p, € [P’, 2P'] coprime

to q' such that 1{' lies within 100% ofp—,zlz”, and such that
Py
phay = pras mod q'. (72)
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Proof This is almost immediate from Proposition 4.1; the main difficulty is
that the integers a, g provided by that proposition need not be coprime.

We resolve this as follows. If I” € Z” and (T, g, a) € F(I"), then g has at
most O(IIOOgg—PX,,) = O,(1) prime factors in [P” /2, P"]. Thus, foreach I € 7",
there are at most O (1) primes that divide ¢ for some (T, g, a) € F(I").

;N2
Proposition 4.1 provides us with > % (log—P,> pairs (1], 1) of intervals
(Z")?, together with associated primes p/, p}, obeying the properties of that
proposition. It could happen that p} or p5 divides ¢ for some (T, g, a) in
F(I{) or F(1}), but by the preceding paragraph, the number of times this can
happen is at most 0(% log_,P/)’ which is a negligible portion when X is large

L N2
enough. Thus for 3> % (log_P/) of the above pairs, pj or p5 do not divide
any such g.

From Proposition 4.1, we have
. T aj 1
al{/:——f——Q—i-O m mOdQ

for j = 1,2, where Q:= ]_[p,/ep(llu’léf) p". We write a; /g in lowest terms as
aj/q’. Then (I{', T, q’, a}) is a good quadruple and p}, p5 do not divide ¢'.
From (46) we may thus also write a3 /¢ in lowest terms as @) /¢’ and still have
that (72) holds. Then (1), T, ¢', a}) is a good quadruple, and the claim follows
from Corollary 5.4. O

Let Z be the collection of triples (7', g, a) with T € R, g > 1,and a coprime
to ¢, endowed with the metric'®
I—p

d((Th, q1,a1), (T2, q2, a2)):=c(5) e

1
|T1 — Tof + gy 24, + mlal;ﬁaz-
(73)

and some sufficiently small constant ¢(§) > O depending on § (and thus
ultimately on 0, 1, p, €). Let S be the collection of sextuples

(I, I, (T, q', a1), (T2, 4, a2), p}. Py)

with I, 1)) € 77, (T1,q',a1) € FU]), (T»,q',a2) € F(Iy), and p}, p)

distinct primes in [ P’, 2 P'] with I{’ lying within 100575 of %Ig, with p1, p2
1

10 The ﬁlal;ﬁaz term is present only to keep the metric Z from degenerating, but other-
wise plays no role in the argument; if one prefers, one could drop this term and observe that
Corollary 5.2 also applies to degenerate metric spaces.
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coprime to ¢’ and obeying (72) and (71). In particular (for ¢(8) sufficiently
small) we have

1
d((Tla q,a al)a (T25 q/v a2)) S E

From Proposition 5.5 we have #S > (X/H) - (P'/log P")%. Applying Corol-
lary 5.2 with r = %, M = 100, K = % we conclude that there exists
(To, g0, ap) € Z and a collection 7 of quadruples (I”, T, g, a) with I” € Z,

(T.q.a) € F(I"),and d((T, q, a), (To, qo. a)) < % such that
X
#T > —, 74
> (74)

and there are > %(P// log P")>  sextuples !, 1y, (Th, q1, a),
(T2, q2, a2), p, p5) € S such that (I{', T1, q1, a1), (I}, T», q2, a2) both lie
in7.

If (1", T.q,a) € T,thend((T, q,a), (To. q0, ap)) < %, and hence by (73)
we have g = g and

X
T:T0+O<H1_p). (75)
From (66) we thus have
X2

At present gg obeys the bounds 1 < gg < H”. We can improve the control
on gy significantly.

Proposition 5.6 go < 1.

Proof Consider the graph G whose vertex set V is the set 7 as above, and
whose edge set E consists of pairs (I{', T, qo, a1), (I3, T2, qo, a2) in T with

(I{, I3, (T1, qo, a1), (T2, qo, a2), p, p5) € S
for some pj and pj. Then by the preceding dicussion G has > N vertices and
> dN edges, where N:=X/H and d:=(P’/log P’)?.

Now let k£ be the first even integer for which

dk > N2+8 .
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Using the Blakley—Roy inequality as in Sect. 4, the number of (% + 1)-tuples

(Q0s - .., Qip) € VK1

such that {Q;, Qj+1} € Efor0 < j < k/2is > d*/2N. The number
of possible values for the pair (Qo, Q/2) is O(N?). Thus by the Cauchy—
Schwarz inequality, there are 3> d pairs of k +2 -tuples of the above form with
matching pairs (Qo, Qk/2). Relabeling, we conclude that there the number of
k-tuples

(Q)j=0.1,..k—1 € vk

suchthat{Q;, Qj1} € Eforj =0,1,...,k—1is> d*. On the other hand,
we may upper bound the number of such tuples in a different way, as we will
now do. Writing Q; = (I ;f . Tj, qo, aj), we see from (72) that there are primes

Ps1» Py € [P, 2P'] such that
Pisaj = p’iaj+1 mod go

(with the periodic convention a; = ag) and such that I " lies within 100+ P,,

of p’zlj”_H forall j =0,1, ...,k — 1. From the first claim we have
]1

k k
1_[ P;,z = l_[ P}J mod go,
j=1

j=1

while from the second claim we have

k k k
[175- ]_[p1,<<(P)
j=1 j=1

by repeating the derivation of (51). By Lemma 2.6, the number of tuples
of primes (P} y,..-, Py1> Plas-- -+ Pio) Obeying these constraints is <

%(ﬁ + @)). There are < N choices for I, and this interval and the
£l

tuple of primes determine all the other /;’. Since all the sets F (1 J// ) have cardi-
nality Os(1), we conclude that the number of k-tuples (Q ;) j=o.1,... k—1 under

consideration is
< N i : + :
N 61(;/ 2 logX )/’

.....
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Comparing the upper and lower bounds yields

1 1
— et ——>1
7t ogx

and the claim follows. O
From (67), (75) we see that whenever (I”, T, qo, a) € T, one has

a/’,,=£+£+0 L mod 1 (77)
"k qo Hi=r

for some b € Z/qoZ. Since each I"” is associated to O (1) quadruples in 7,
we conclude from (74) that for 3>, s X/H intervals I” € Z”, one has (77) for
some b € Z/qoZ.

Let I” be one of these intervals, so that (see (40))

Y fme(=apm)| >

nel”

P/P//

Let H*: P, P,/ We may translate I” by any shift of size at most H* without
affecting this estimate. Averaging over such shifts, we conclude that

/ o) fwe(—afm) dx| > St

x<n<x+H*

and thus by the triangle inequality

H
/ > fe(—a),(n —x) = bx/qo)| dx > H*

PP
x<n<x+H*

From (77), (76) and Taylor expansion, we have

Tt
e(—af,(n —x) —bx/qy) = e (—?O(n — x)) e(bn/qo) + O(H™")
= n 20,2 00 (b /g0) + O (H™P).

The contribution of the O (H ~?) is negligible, thus

/ Y fon T en/qo)| dx > = o

Y4
x<n<x+H* P'P
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Recalling (b, go) = 1 and Proposition 5.6, we can apply a Fourier decompo-
sition

1 b
eonfa) = 33 ehylamx (/e chy = s 3 x0e( )
90=4192 x (q1) P\ med gn a1

where ¢, , < 1 and x ranges over Dirichlet characters of modulus g;. From
the triangle inequality, we thus have

oy / Yo fenT T (n/go)| dx > Pi,,H*.

q0=4192 x (q1) x<n<x+H*

Summing over the 3>, X/H intervals I”, we conclude that

10X/ P'P" miT, X
2o ST )| dx > S
x<n<x+H*

Y >

90=4192 x (q1)

X/10P'P"

By the triangle inequality, there thus exist go = g1¢2 and x (g1) such that

10X/P'P" 27Ty X *
> I g (1/g)| dx >
X/10pP"P" x<n<x+H*

Writing n = dm with d|g5° and (m, q2) = 1 we obtain by the triangle inequal-
ity

10x/P'P”
ST sy !
p'pY
dlq5° X/10P"P" x<dn<x+H*
@ld (n.g2)=1

where d|q5° means that all the prime factors of d are also prime factors of g;.
Since ) d1g5° d~! « 1 there exists an natural number d = O (1) such that,

10X/d P’ P" i X
f Z f(n)n Tl Ox(n) d,x >>;755 P/P//H*‘
X/10dP'P" | Sy

(n.g2)=1

@ Springer



Fourier uniformity of bounded multiplicative functions 55

Therefore by [23, Theorem A.1] we have D(f 1y,g0)=17n" " 10 x; T; Q) < 1
for some Q « 1 and |T’| <« X. Therefore D(f; T; Q) < 1 for some |T| «
X%/H?> P and Q « 1 as claimed.

6 Proof of Corollary 1.5 and Corollary 1.3
Now we prove Corollary 1.5 and Corollary 1.3. It is enough to prove the former
corollary since, for any fixed Q > 0 and A > 0, we have D(A; X A, Q) > o
as X — oo by the Vinogradov—Korobov zero-free region [28, §9.5].

We restrict attention to the correlation for f(n)a(n 4+ h)b(n + 2h), as the

other two correlations are handled similarly. The proof proceeds along classical
lines by noticing that

> (1 — 'Z-') fma(n + h)b(n + 2h)

|h|<H

1 X 1
= E/ / Sy, f (@) Sy p(@) Sy o (—2a)dadx + O(H) (78)
1 Jo
where

Sx,g(a):= Z g(n)e(an).

x<n<x+2H

Notice that

1
‘/ Sx, () Sx p(@) Sy o (—2a)do
0

1
< sup [y, r(e)]'/? fo 1Se.5(@)] - 1Sx.a(—2a)] - |y, (@) > da
[0

1 1/3
< sup |Sx, s (@) - ( f |Sx,b(a>|3da)
o 0

1 1/3 1
x(/ |Sx,a<a>|3da) (/ |Sx,f<a>|2da)
0 0

We now claim the bound

1/3

1
f |Sy.q(@)Pda <« H?
0
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If la(n)| < A(n) then this bound follows from [10, Proposition 4.2]. On the
other hand if |a(n)| <« 1 for all integers n > 1, then, by Holder’s inequality,

1 1 1/2 1
/ |Sx,a<a)|3das(/ |Sx,a(a>|2da) (/ |Sx,a<a>|4da)
0 0 0

< H1/2 . H3/2 — HZ.

1/2

The general case a(n) < 1 + A(n) now follows from the triangle inequality.
Similarly for b(n). Therefore,

1
‘f Sx,f(a)Sx,b(a)Sx,a(_2a)da
0

< sup [Sy, ()| H
o

and finally,

X X 1/3
/ sup |Sx,f(oz)|1/3dot < (/ sup |Sx,f(oz)|doz> . x2/3.
1 o 1 o

Thus,

> (1 - 'Z—l) > fma( + hybn +2h)| < HYP . X

|h|<H n<X
1/3

X
. (/ sup |Sx,f(oz)|d0t> (79)
1«

Therefore if the left-hand side of (79) is > nH X, then,
X
cn3HX < / sup | Sy, r(a)|da
1 o

for some absolute constant ¢ > 0. Hence, for some Y € [cn3X /3, X], one
has,

2y cn’
/ sup |Sy, r(@)|da > —Y H.
Y « ’ 2

Now the claim follows from Theorem 1.4.
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