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Abstract Let λ denote the Liouville function. We show that as X → ∞,

∫ 2X

X
sup
α

∣∣∣∣∣∣
∑

x<n≤x+H

λ(n)e(−αn)

∣∣∣∣∣∣ dx = o(X H)

for all H ≥ X θ with θ > 0 fixed but arbitrarily small. Previously, this was
only known for θ > 5/8. For smaller values of θ this is the first “non-trivial”
case of local Fourier uniformity on average at this scale. We also obtain the
analogous statement for (non-pretentious) 1-boundedmultiplicative functions.
We illustrate the strength of the result by obtaining cancellations in the sum
of λ(n)�(n + h)�(n + 2h) over the ranges h < X θ and n < X , and where �

is the von Mangoldt function.
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2 K. Matomäki et al.

1 Introduction

Let λ denote1 the Liouville function, that is, a completely multiplicative func-
tionwithλ(p) = −1 at all primes p. Among boundedmultiplicative functions,
λ plays a distinguished role since the prime number theorem is equivalent to2

∑
n≤x

λ(n) = o(x) (1)

as x → ∞, and the Riemann Hypothesis is equivalent to

∑
n≤x

λ(n) = Oε(x1/2+ε) for all ε > 0.

A far reaching generalization of (1) is Chowla’s conjecture [4], according to
which, for any sequence of distinct integers h1, h2, . . . , hk , one has

∑
n≤x

λ(n + h1) · · · λ(n + hk) = o(x) (2)

as x → ∞, where we adopt the convention that λ(n) = 0 for n ≤ 0. Because
of the equivalence of (1) and the prime number theorem, Chowla’s conjecture
is frequently viewed as a “higher order” generalization of the prime number
theorem.

In recent years there has been a substantial amount of progress on Chowla’s
conjecture. Following the work of the first two authors [22] the authors estab-
lished in [23] an averaged form3 of this conjecture in the case k = 2, namely,

∑
|h|≤H

∣∣∣ ∑
n≤x

λ(n)λ(n + h)

∣∣∣ = o(H x) (3)

provided that H → ∞ as x → ∞; see also [1,7,12,18,19,24,25] for some
other averaged forms of Chowla’s conjecture (as well as the closely related
Elliott and Hardy-Littlewood conjectures). An equivalent form of (3) (for
related discussion, see [31]) states that

sup
α

∫ 2X

X

∣∣∣ ∑
x<n≤x+H

λ(n)e(−αn)

∣∣∣dx = o(H X) (4)

1 All the results for λ discussed here are also applicable to the Möbius function μ with only
minor changes to the arguments; we leave the details to the interested reader.
2 Our conventions for asymptotic notation are given at the end of this introduction.
3 By applying Hölder’s inequality to (3), it is also possible to obtain an averaged version of (2)
over all shifts h1, . . . , hk ; see [23] for details.
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Fourier uniformity of bounded multiplicative functions 3

provided that H → ∞ as X → ∞. The estimate (4) along with the entropy
decrement argument was used by the third author [30] to establish a logarith-
mically averaged version of Chowla’s conjecture, that is,

∑
n≤x

λ(n)λ(n + h)

n
= o(log x)

as x → ∞, for any fixed integer h �= 0. Subsequently for odd k, the third
author and Teräväinen [33] used the entropy decrement argument and the
Gowers uniformity of the (W -tricked) von Mangoldt function [but avoiding
the use of (4)], to show that

∑
n≤x

λ(n + h1) . . . λ(n + hk)

n
= o(log x) (5)

as x → ∞, for any distinct integers h1, . . . , hk and k odd. Their argument
only partially generalizes to arbitrary multiplicative functions (see [32]); in
the case of the Liouville function, it relies crucially on the assumption that k
is odd.

In order to establish (5) for all k it is necessary to establish (the logarith-
mically averaged version of) what we call the local (higher order) Fourier
uniformity conjecture (see [31]).

Conjecture 1.1 (Local higher order Fourier Uniformity) Let s ≥ 0. Let G\�
be an s-step nilmanifold. Let F : G\� → C be Lipschitz continuous and let
x0 ∈ G\�. Then

∫ 2X

X
sup
g∈G

∣∣∣∣∣∣
∑

x<n≤x+H

λ(n)F(gn−�x	x0)

∣∣∣∣∣∣ dx = o(H X)

as soon as H → ∞ with X → ∞.

We refer to [14] for the definition of the terms above, however we will
not need these notions in this paper. Informally, the conjecture asserts that
on most short intervals, λ does not exhibit significant correlation with any
s-step nilsequence (of bounded complexity). The estimate (4) proven in [23]
essentially corresponds to the case s = 0 of Conjecture 1.1; this is currently
the only case of the conjecture that is completely settled.

In this paper we make a first step in going beyond the case of s = 0 and
establish the case s = 1 of Conjecture 1.1 when H = X θ with θ > 0 fixed but
otherwise arbitrarily small. Let us first re-state our main result for the Liouville
function in a more elementary fashion.
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4 K. Matomäki et al.

Theorem 1.2 (Local Fourier Uniformity for s = 1 at scale X θ ) Let θ ∈ (0, 1)
be given and set H = X θ . Then

∫ 2X

X
sup
α

∣∣∣ ∑
x<n≤x+H

λ(n)e(−αn)

∣∣∣dx = o(X H).

as X → ∞.

We restrict attention here to the regime θ ∈ (0, 1), since the case θ ≥ 1
follows from the classical work of Davenport [5] (and see [11], [13] for the s =
2 and s > 2 cases respectively ofConjecture 1.1 for this range of θ ). Informally,
Theorem 1.2 asserts that onmost intervals of the form [x, x +xθ ], the Liouville
function λ(n) does not exhibit singificant correlation with linear phases e(αn);
it can easily be shown to imply the s = 1 case of Conjecture 1.1 in the range
H ≥ X θ by approximating the 1-step nilsequence n 
→ F(gn−�x	x0) by a
Fourier series.

Previously, Theorem 1.2 was known unconditionally only for θ > 5/8
from the work of Zhan [35,36], who showed that as X → ∞ the bound∑

x<n≤x+H λ(n)e(−αn) = o(X H) holds pointwise in x ∈ [X, 2X ] for
H > X5/8+ε. It is likely that our method can be pushed to reach H =
exp((log x)1−δ) for some δ > 0. It may be possible to extend the methods
to this paper to also cover the s > 1 case (again with H = X θ for any fixed
θ > 0); we plan to investigate this direction in future work.

Theorem 1.2 allows us to obtain cancellations in rather general triple cor-
relations such as those of the form λ(n)a(n + h)b(n + 2h), for sequences a(·)
and b(·) for which sharp sieve majorants can be constructed. We illustrate the
flavor of these results in the corollary below.

Corollary 1.3 Let θ ∈ (0, 1) be given. Let H = X θ . Then

∑
|h|≤H

(
1 − |h|

H

) ∑
n≤X

λ(n)�(n + h)�(n + 2h) = o(H X)

as X → ∞.

Interestingly we are unable to obtain an asymptotic for

∑
|h|≤H

(
1 − |h|

H

) ∑
n≤X

�(n + h)�(n + 2h)

for this range of H , since this latter problem is essentially equivalent to eval-
uating asymptotically

∑
x≤n<x+H �(n) for almost all x ≤ X . The best result
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Fourier uniformity of bounded multiplicative functions 5

in this direction allows one to take H > X1/6−ε(X) with ε(X) tending to zero
arbitrarily slowly as X → ∞. This is due to Zaccagnini [34], building on ideas
of Heath-Brown [15] and Huxley [16]. Thus, Corollary 1.3 gives a rare exam-
ple of a sum involving the Liouville function that becomes harder to control
when the Liouville function is removed!

In a subsequent paper we will obtain variants of Theorem 1.2 and Corol-
lary 1.3 for unbounded multiplicative functions such as the divisor function or
coefficients of automorphic forms. This will improve (in the H aspect) earlier
results of Blomer [3] that allowed one to take H = X1/3+ε in the triple cor-
relations of the divisor function; however, in contrast to the results of [3], we
will not obtain power-savings in the error terms.

Theorem 1.2 can in fact be generalized to almost all multiplicative functions
f : N → C with | f | ≤ 1 (we call such multiplicative functions 1-bounded).
There is however one obstruction: if f (n) = nitχ(n) with |t | ≤ εX2/H2

for a small absolute constant ε > 0 and χ a Dirichlet character of bounded
conductor q, then one can check (using a Taylor expansion) that

∫ 2X

X
sup
α

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)e(−αn)

∣∣∣∣∣∣ dx � X H. (6)

In fact for each x ∈ [X, 2X ] one can set α equal to t
x + a

q for some integer a

coprime to q, and then f (n)e(−αn) ≈ χ(n)e(−an/q)xit will typically have
a mean of magnitude 
 1/

√
q if χ is primitive.

Therefore the proper analogue of Theorem 1.2 can only hold for multiplica-
tive functions f that “do not pretend” to be any multiplicative function of the
form n 
→ nitχ(n) with |t | ≤ X2/H2 and χ of bounded conductor. To quan-
tify this notion of “pretentiousness”, we follow Granville and Soundararajan
[9] and introduce the distance function

D( f ; X; Q):= inf
χ mod q

q≤Q
|t |≤X

( ∑
p≤X

1 − Re( f (p)pitχ(p))

p

)1/2
.

In particular D( f ; X; Q) is small whenever f is close to n 
→ nitχ(n) with4

|t | ≤ X and χ of conductor ≤ Q.

4 The role of the parameter X here is mostly to control the size of t . It is not important that
the sum over p runs up to X ; it could run up to X B for any B > 0, since primes in (Xα, Xβ ]
contribute only Oα,β(1) to the distance.
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6 K. Matomäki et al.

Our main theorem, stated below, confirms that n 
→ nitχ(n) with |t | ≤
X2/H2−o(1) and χ of bounded conductor are essentially the only examples of
1-bounded multiplicative functions for which (6) can happen.

Theorem 1.4 (Main theorem) Let θ ∈ (0, 1) and η > 0. Let f : N → C be a
multiplicative function with | f | ≤ 1. Suppose that, for H = X θ , we have

∫ 2X

X
sup
α

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)e(−αn)

∣∣∣∣∣∣ dx ≥ ηH X.

Then, for any ρ ∈ (0, 1
8),

D( f ; X2/H2−ρ; Q) �η,θ,ρ 1

for some Q �η,θ,ρ 1.

Theorem 1.4 yields an analogous result to Corollary 1.3 for general mul-
tiplicative functions. Without going into full generality we highlight that the
result holds for correlations f (n)a(n + h)b(n +2h) and sequences a(n), b(n)

that admit sharp sieve majorants. We illustrate this principle in the corollary
below.

Corollary 1.5 Let θ ∈ (0, 1). Let f : N → C be a 1-bounded multiplicative
function. Suppose that a(n), b(n) are sequences such that a(n), b(n) � 1 +
�(n) for all n ≥ 1.

If

∣∣∣∣∣∣
∑

|h|≤H

(
1 − |h|

H

) ∑
n≤X

f (n)a(n + h)b(n + 2h)

∣∣∣∣∣∣ > ηX H

with H = X θ , then for any ρ ∈ (0, 1
8),

D( f ; X2/H2−ρ; Q) �η,θ,ρ 1

for some Q �η,θ,ρ 1.
The claim holds also when f (n)a(n+h)b(n+2h) is replaced by a(n) f (n+

h)b(n + 2h) or by a(n)b(n + h) f (n + 2h).

We give the short derivation of Corollary 1.5 from Theorem 1.4 in Sect. 6.
It is possible to extend Corollary 1.5 to sequences b(n) or a(n) equal to a
multiplicative function h : N → C such that |h(n)| ≤ dk(n) for all n ≥ 1 and
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Fourier uniformity of bounded multiplicative functions 7

k ≥ 1 a fixed integer. Since we will obtain a stronger result along these lines
in a follow-up paper we do not include the details here.

It is immediate fromCorollary 1.5 that given 1-boundedmultiplicative func-
tions f1, f2, f3, the correlations

∑
|h|≤H

(
1 − |h|

H

) ∑
n≤X

f1(n) f2(n + h) f3(n + 2h)

vanish asymptotically whenever at least one of the fi is non-pretentious in the
sense that D( fi ; X, Q) → ∞ as X → ∞ for each Q. In the remaining case
that all of the fi are pretentious, an asymptotic for the correlations, without
an average over h, can be obtained using the method of [20] (see also the
references therein).

1.1 An overview of the proof

Wenowdescribe in somedetail themain ideas behind the proof ofTheorem1.4.
Our presentation here is somewhat oversimplified to avoid technical issues;
the actual rigorous argument will not quite follow the outline given here, but
uses essentially the same ideas, despite being arranged slightly differently to
resolve these technicalities.

First we notice that, by the “analytic” large sieve inequality (or more pre-
cisely, a maximal version of this inequality due to Montgomery [27]), given
an interval I = (x, x + H ], there are at most � η−2 values αI (modulo 1 and
up to perturbations by O(1/H)) for which

∣∣∣∣∣
∑
n∈I ′

f (n)e(−αI n)

∣∣∣∣∣ > ηH (7)

for some I ′ ⊂ I ; see Lemma 2.2. For sake of this informal presentation,
one can pretend that in fact there is only one such value αI (modulo 1 and
perturbations by O(1/H)). Thus, if there are two subintervals I ′

1, I ′
2 of I (or

of a slight dilate of I ) and two frequencies αI,1, αI,2 obeying (7), one can
pretend that

αI,1 = αI,2 + O

(
1

H

)
(mod 1). (8)

Informally, the estimate (7) asserts that f exhibits significant oscillation
at frequency αI on the interval I (or a large subinterval of this interval). We
depict this situation schematically in Fig. 1. In the schematic depictions we
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8 K. Matomäki et al.

Fig. 1 A schematic
depiction of an interval I in
which f oscillates with
frequency αI

are pretending that if two such intervals I1, I2 overlap (or are very near to
each other), then their associated frequencies αI1, αI2 are close modulo 1 in
the sense of (8).

At this point we point out a key example: if f (n) = nit for some
t = o(X2/H2), some Taylor expansion of the phase n 
→ t log n of f in I
reveals that one has the above inequality for some η � 1 and αI = t

xI
, where

xI denotes the starting point of I . Thus, under the hypotheses of Theorem 1.4,
we expect αI to vary in I in a manner which is “inversely proportional” to the
location of I in some sense. The bulk of our argument is devoted to rigorously
verifying some version of this expectation; the main obstacle to overcome
arises from the fact that αI is only determined up modulo 1 and up to pertur-
bations by O(1/H).

Next, we recall an observation of Elliott [6] that by an application of the
arithmetic large sieve inequality for a big set of primes P = PI ⊂ [2, H1/2],
we have, for all p ∈ P ,

1

p

∣∣∣∣∣
∑
n∈I

f (n)e(−αI n)

∣∣∣∣∣ ≈
∣∣∣∣∣∣

∑
n∈I/p

f (n)e(−αI np)

∣∣∣∣∣∣ ; (9)

see Proposition 2.5. To make things simpler we proceed in this outline as if
the approximation (9) held for all primes p 
 P with P:=H ε and some small
absolute constant ε > 0. Informally, (9) asserts that if f (n) behaves like a
constant multiple of e(αI n) for n ∈ I , then f (m) behaves like a constant
multiple of e(αI mp) for m ∈ I/p. Heuristically, this follows from the rela-
tionship f (mp) = f (p) f (m) (at least when m is coprime to p). We describe
the estimate (9) schematically by the diagram in Fig. 2. Note that this is con-
sistent with the previous heuristic that αI should be inversely proportional to
the location of I .

By the hypotheses of Theorem 1.4, we have some frequencies α(x,x+H ] for
which

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)e(−α(x,x+H ]n)

∣∣∣∣∣∣ dx ≥ ηX H,

and hence by a pigeonhole principle argument, we can find a large (
 X/H )
set of disjoint intervals I of length H in [X, 2X ] for which (7) holds (after
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Fourier uniformity of bounded multiplicative functions 9

Fig. 2 If f oscillates at
frequency αI on a long
interval I , then one expects
f to oscillate at frequency
pαI on the shorter interval
I/p. (The intervals are not
drawn to scale.) The dotted
arrow indicates the fact that
if one dilates I/p by p one
returns to the interval I

Fig. 3 If f oscillates at
frequencies αI , αJ on I , J
respectively, and I/p
overlaps J/q , then one
expects pαI and qαJ to
often be close to each other
(modulo integers)

modifying η slightly). From this, (9), and the Cauchy–Schwarz inequality, we
will be able to locate a large set of quadruples (I, J, p, q)with I and J disjoint
intervals of length H = Xε for which

∣∣∣∣∣
∑
n∈I

f (n)e(−αI n)

∣∣∣∣∣ � H and

∣∣∣∣∣
∑
n∈J

f (n)e(−αJ n)

∣∣∣∣∣ � H (10)

and p, q 
 P = H ε are primes for which (9) holds and such that I/p∩ J/q �=
∅; see Fig. 3.

Since the intervals I/p and J/q are nearby and the frequencies pαI , qαJ
lead to very large values of the short trigonometric polynomial supported
respectively on I/p and J/q, we conclude from (8) that these frequencies
lie (modulo 1 and up to perturbations by O(P/H)) in a bounded set of � 1
frequencies. In particular by the pigeonhole principle it follows that, for a
positive proportion of disjoint intervals I, J of length H and primes p, q of
size P = H ε with I/p ∩ J/q �= ∅, we have the fundamental approximate
equation
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10 K. Matomäki et al.

pαI ≡ qαJ + O(P/H) (mod 1) (11)

relating the frequencies αI , αJ associated to these intervals. The number of
such quadruples (I, J, p, q) is 
 (X/H) · (P/ log P)2, since once I, p, q are
chosen, J is essentially determined by I/p ∩ J/q �= ∅.

It would be nice if the congruence (11) held (mod p) rather than just
(mod 1), as one could then profitably divide by p. Fortunately, by the Chinese
remainder theorem there exists a (potentially very large!) integer k depending
on J and q such that if we redefine αJ by shifting it by k, then we do indeed
have

pαI ≡ qαJ + O

(
P

H

)
(mod p)

or equivalently

αI ≡ q

p
· αJ + O

(
1

H

)
(mod 1)

for all p 
 P , with p �= q. Importantly, shifting αJ by k ∈ Z maintains
the property (10), no matter how large k is. The dependence of the integer
k on q is a bit problematic; however let us suppose for sake of discussion
that k is independent of q (we essentially end up achieving this through a
different argument that involves two consecutive applications of the arithmetic
large sieve). Then applying Cauchy–Schwarz we conclude that, for a positive
proportion of intervals J1, J2 and primes q1, q2 
 P with5 J1

q1
∩ J2

q2
�= ∅, we

have

q1
p

αJ1 ≡ q2
p

αJ2 + O

(
1

H

)
(mod 1) (12)

for many primes p 
 P . This is essentially the outcome of Sect. 3, though
the argument there proceeds using a somewhat different arrangement of the
above ingredients, most notably in that the prime p ends up being at a different
scale to the primes q1, q2, and the intervals J1, J2 have length a bit less than H
(and are located at spatial scales a bit less than X ). For sake of this discussion
we assume that for the data J1, J2, q1, q2 as above, the relation (12) holds
for all p 
 P , not just for many such primes. We depict this relationship in
graph theoretic language by connecting J1 to J2 by an edge which we label
by the ratio q2

q1
of the primes needed to get from J1 to (the vicinity of) J2 by

5 More precisely, J1
q1

and J2
q2

will both intersect a third interval I
p , but this is almost the same as

requiring that these intervals intersect each other, as they are all of comparable size; see Fig. 4.
For sake of this discussion, we ignore this technical distinction.
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Fourier uniformity of bounded multiplicative functions 11

Fig. 4 A pair of intervals J1, J2 and primes q1, q2 such that J1/q1 and J2/q2 both meet I/p
for many pairs (I, p), and are thus close to each other. The frequencies αJ1 , αJ2 have been
adjusted by suitable integers so that q1

p αJ1 ,
q2
p αJ2 are both close (modulo integers) to αI , and

thus also close to each other (again modulo integers). When one has the above diagram for all
(or most) p 
 P , we draw a dashed line from J1 to J2 as indicated. Note that if one dilates J1
by q2

q1
then one will end up with an interval close to J2

multiplication; see the dashed line in Fig. 4. The resulting graphG is essentially
undirected (except that if one wanted to get from J2 to J1 one would use the
label q1

q2
rather than q2

q1
) and multiplicity-free (the ratios q2

q1
for q1 �= q2 are all

well separated from each other, so each pair J1, J2 of distinct intervals may
be connected by at most one such ratio).

Notice that the number of intervals J1, J2 andprimesq1, q2 
 P constructed
above is
 (X/H)·(P/ log P)2; thus the graphG described above has
 X/H
vertices and average degree 
 (P/ log P)2. We begin Sect. 4 by applying
Hölder’s inequality on G in a way that is motivated by Sidorenko’s conjecture
(see [29]). We choose k to be the first even integer for which

(
P

log P

)2k−2

≥
(

X

H

)2

.

Because of our hypotheses H = X θ and P = H ε, we can take k to be
independent of X . Roughly speaking, k is the first integer at which we expect
to see a very large number of non-trivial cycles of length k in the graph G.
After many applications of Hölder’s ineqality, we can conclude that, for a
positive proportion of disjoint intervals I1, J1 ⊂ [X, 2X ] of length H and
primes p1, q1 
 P with I1/p1 ∩ J1/q1 �= ∅, there exist

� H2

X2

(
P

log P

)4k

� 1

123



12 K. Matomäki et al.

“chains” of intervals I2 . . . , Ik, J2 . . . , Jk ⊂ [X, 2X ] of length H and primes

p1,1, . . . , pk,1, p1,2, . . . , pk,2, q1,1, . . . , qk,1, q1,2, . . . , qk,2 
 P

such that, for all 
 = 1, 2, . . . , k,

I

p
,1

∩ I
+1

p
,2
�= ∅,

J


q
,1
∩ J
+1

q
,2
�= ∅ (13)

and furthermore the approximate identities

p
,1

p
αI
 ≡ p
,2

p
αI
+1 + O

(
1

H

)
mod 1

q
,1

p
αJ


≡ q
,2

p
αJ
+1 + O

(
1

H

)
mod 1

p1
p

αI1 ≡ q1
p

αJ1 + O

(
1

H

)
mod 1

(14)

hold for all p 
 P , where we adopt the cyclic conventions Ik+1 = I1, Jk+1 =
J1. The above set of relationships corresponds to two cycles of length k in
G connected by a further edge in G; see Fig. 5. The choice of k is just large
enough to ensure that the configuration in this figure will usually be non-
degenerate in the sense that the primes p1,1, . . . , qk,2, p1, q1 that arise are all
distinct for most of the configurations. Since the primes p in our case are of
size P = H ε = Xεθ , it suffices to take k bounded in terms of ε, θ to guarantee
the existence of a large number of such chains.

Notice that we can interpret each of the relationships in (14) as holding
(mod p) instead of (mod 1) by multiplying by p, thus obtaining the system
of equations

p
,1αI
 ≡ p
,2αI
+1 + O

(
P

H

)
mod p

q
,1αJ

≡ q
,2αJ
+1 + O

(
P

H

)
mod p

p1αI1 ≡ q1αJ1 + O

(
P

H

)
mod p

(15)

for all p 
 P . We can then use the Chinese remainder theorem to replace
the (mod p) congruences in (15) with (mod Q)where Q:=∏

p
P p. A key
point for later analysis is that Q is going to be extremely large (of size about
exp(P) = exp(Xεθ )), so much so that we will eventually be able to drop the
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Fourier uniformity of bounded multiplicative functions 13

Fig. 5 Two cycles of length k = 4 connected by an edge. Each dashed line corresponds to
a situation of the form described in Fig. 4 (for all p 
 P). The frequencies αI
 , αJ


are not
depicted here to reduce clutter; however, they will obey the approximate identities (14)

congruence (mod Q) altogether, once we obtain some more control on the
location of the αI .

After applying some algebra to (15) to eliminate all frequencies except
αI1, αJ1 , we eventually conclude the estimates

q ′
1αI1 ≡ O

(
Pk

H

)
(mod Q) (16)

q ′
2αJ1 ≡ O

(
Pk

H

)
(mod Q) (17)

p1αI1 ≡ q1αJ1 + O

(
P

H

)
(mod Q) (18)

where q ′
1:=

∣∣∣∏k

=1 p
,1 − ∏k


=1 p
,2

∣∣∣ and q ′
2:=

∣∣∣∏k

=1 q
,1 − ∏k


=1 q
,2

∣∣∣. The
integers q ′

1, q ′
2 are small; in fact the condition (13) will give the bound

q ′
1, q ′

2 � H O(ε). We can also assume that these integers are non-zero, because
the number of intervals I
, J
 and primes pi, j , qi, j for which q ′

j could be zero
is negligible. It follows then from (16), (17) that
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14 K. Matomäki et al.

αI1 ≡ a1
q ′
1

Q + TI1

xI1
(mod Q)

αJ1 ≡ a2
q ′
2

Q + TJ1

xJ1
(mod Q)

for some a1, a2 ∈ Z, 0 < q ′
1, q ′

2 � H O(ε), and TI1, TJ1 � X2/H2−ρ , where
xI1, xJ1 the starting points of the intervals I1, J1, respectively.

Suppose now for simplicity that q ′
1 = q ′

2 = 1, so that

αI1 ≡ TI1

xI1
(mod Q) (19)

αJ1 ≡ TJ1

xJ1
. (mod Q) (20)

Notice that since I1 ∩ p1
q1

J1 �= ∅ we have xI1 ≈ p1
q1

xJ1 . Combining (19), (20)
with (18) we obtain the key relationship

TI1 = TJ1 + O(P X/H) (mod Q);

since TI1, TJ1 are much smaller in magnitude than Q, we may now drop the
congruence and conclude in fact that

TI1 = TJ1 + O(P X/H);

informally speaking, this means that the map I 
→ TI is approximately locally
constant on the graph G. Obtaining these quadruples (I1, I2, p1, p2) with all
the described properties is essentially the content of Sect. 4.

A Taylor expansion shows that if αI1 is as in (19), then e(−αI1n) ≈
eiθI1n2π iTI1 with θI1 ∈ R depending only on I1. Similarly for (20). Thus
there exists a positive proportion set of disjoint intervals I, J connected by an
edge in G such that

∣∣∣∣∣
∑
n∈I

f (n)n2π iTI

∣∣∣∣∣ � H and

∣∣∣∣∣
∑
n∈J

f (n)n2π iTJ

∣∣∣∣∣ � H.

for some TI , TJ � X2/H2 with TI = TJ + O(P X/H). To proceed further,
we claim that the graph G is essentially an “expander graph” and in particular
that it has one very large and highly connected component. This is the content
of Sect. 5.

To see this claim, notice that taking a O(P X/H)-spaced set of values V in
the range {T : T = O(X2/H2−ρ)}, we can group the intervals I into subsets
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Fourier uniformity of bounded multiplicative functions 15

A(V ) of those intervals I for which TI = V + O(P X/H). Then, because
many pairs of intervals I, J connected by an edge in G belong to the same
A(V ), we obtain a large lower bound of the form

X

H
·
(

P

log P

)2

�
∑

V

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
p,q
P

∑
I∈A(V )
J∈A(V )
I
p ∩ J

q �=∅

1

⎞
⎟⎟⎟⎟⎟⎟⎠

(21)

where P:=H ε. That is we obtain a lower bound that corresponds to a positive
proportion of disjoint intervals I, J ⊂ [X, 2X ] of length H and primes p, q 

P such that I

p ∩ J
q �= ∅. Now, since the exponential sum ∑

p
H ε pit exhibits
cancellations, we can (using a bit of harmonic analysis) essentially bound the
above by

�
∑

V

(
#A(V )2 · H

X
·
(

P

log P

)2
)

Noticing that
∑

V #A(V) � X/H , we see that the above expression is in turn

�
(
sup

V
#A(V )

)
·
(

P

log P

)2

, (22)

and therefore, combining (21) and (22), there exists a value V for which
#A(V ) � X/H . That is, there exists a universal T � X2/H2 (up to non-
essential perturbations by O(P X/H) that we can ignore) such that for a
positive proportion of disjoint intervals I of length H we have,

∣∣∣∣∣
∑
n∈I

f (n)niT

∣∣∣∣∣ � H

Averaging over such intervals it follows that, there exists T ∈ R such that
|T | � X2/H2 and

∫ 2X

X

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)niT

∣∣∣∣∣∣ dx � X H.

By the main theorem of [22] (or rather more precisely its extension to complex
valued functions as in [23, Theorem A.1]) this implies that f has to behave
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16 K. Matomäki et al.

essentially as n−iT χ(n) with χ a Dirichlet character of bounded conductor
and |T | � X2/H2, thus finishing the proof.

1.2 Some final remarks

It is very likely that it is possible, at the expense of additional technical diffi-
culties, to push our argument down to H = exp((log X)1−δ) for some δ > 0.
However we start running into difficulties when H hits exp((log X)2/3+ε) and
our argument appears to hit a hard limit when H enters the neighborhood of
powers of log X .

The obstruction which prevents H from going below exp((log X)2/3)

is related to the Vinogradov–Korobov zero-free region: we know that
|∑p
H ε pit | is non-trivially small only under the assumption that H >

exp((log X)2/3+ε) for any ε > 0 fixed. This obstruction can be circumvented
(in the case of the Liouville function, at least) by assuming the Riemann
Hypothesis. In that case | ∑p
H ε pit | will be non-trivially small provided

that H is a large power of the logarithm (specifically H > (log X)3/ε).
The latter obstruction which prevents H from going below log X occurs

because we require the set of primes P ⊂ [1, H ] to be sufficiently dense so
that at the very least

∏
p∈P p > X2. This implies that H needs to be larger

than log X .
These are not the only obstructions. It appears that for H < exp(

√
log X) the

dependence of the various implied constants on the parameter k (introduced in
the proof of Proposition 4.1) becomes problematic and requires a re-working
of the argument. We plan to address these issues elsewhere.

It also appears likely that the method of proof will allow one to replace
the linear phases e(−αn) in Theorem 1.4 with polynomial phases e(−αdnd −
· · · − α1n) for fixed degree d (and then take suprema over all αd , . . . , α1), or
even with nilsequences; again, we plan to address these issues elsewhere.

Notational conventions

As usual f � g, g � f or f = O(g) means that there is an absolute
constant C > 0 such that | f | ≤ Cg. If C needs to depend on some parameters
then we indicate this by subscripts, for instance f �η g denotes the estimate
| f | ≤ Cηg for some Cη depending on g. If we write f = o(g) as X → ∞
this means that | f | ≤ c(X)g where c(X) is a quantity that goes to zero as X
tends to infinity (which may make other quantities dependent on X , such as
H , go to infinity also). We also write f 
 g for f � g � f .
We set e(x):=e2π i x . The symbol p always denotes a prime, and so do p′, p′′.

Given an interval I = [a, b] we define I/p:=[a/p, b/p]. Whenever we write
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Fourier uniformity of bounded multiplicative functions 17

α ≡ β + O(η) (mod 1) we mean that there exists an absolute constant C
such that, ‖α − β‖ ≤ C |η| where ‖x‖ denotes the distance of x from the
nearest integer. Similarly whenever we write α ≡ β + O(η) (mod q) we
mean α/q ≡ β/q + O(η/q) (mod 1). Given two intervals I = [a, b] and
J = [c, d] with b < c, whenever we write dist(I, J ) ≤ η, we mean that
|c − b| ≤ η. If I = [a, b] and c > 0, we write cI :=[ca, cb], thus for instance
I/p = [a/p, b/p].

2 Auxiliary results

We collect here some standard results that will be used (mostly) in Sect. 3.
In order to use some tools from graph theory, it is convenient6 to replace

the continuous integral
∫ 2X

X dx in Theorem 1.4 by something more discrete.
Given X, H , define a (X, H)-family of intervals to be a finite collection I
of intervals I = [xI , xI + H ] of length H contained in [X/10, 10X ], such
that any pair of intervals in I are separated by a distance at least 500H ; in
particular, the intervals in I are disjoint, and thus the cardinality of I cannot
exceed X/H .

We then have

Lemma 2.1 (Discretizing) Let a(n) be a sequence of complex numbers with
|a(n)| ≤ 1 for all integers n ≥ 1. Let η > 0 and X ≥ H ≥ 1. Suppose that

∫ 2X

X
sup
α∈R

∣∣∣∣∣∣
∑

x<n≤x+H

a(n)e(−αn)

∣∣∣∣∣∣ dx ≥ ηH X. (23)

Then there exist an (X, H)-family of intervals I of cardinality ≥ ηX
1000H and

real numbers αI associated to each I ∈ I such that, for all I ∈ I,

∣∣∣∣∣
∑
n∈I

a(n)e(−αI n)

∣∣∣∣∣ ≥ ηH

2
. (24)

Proof It follows from (23) and the pigeonhole principle that there exists y ∈
[0, H) such that

6 It should also be possible towork in a purely continuous setting, replacing various summations
in our arguments with appropriately normalized integrals, using Fubini’s theorem in place of
double counting arguments, allowing the intervals under consideration to overlap each other,
and with various graph-theoretic inequalities replaced by their continuous counterparts. We
leave the details of this alternate arrangement of the argument to the interested reader.
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18 K. Matomäki et al.

∑
0≤
<X/H

⎛
⎝sup

α∈R

∣∣∣∣∣∣
∑


H+y<n≤(
+1)H+y

a(n)e(−αn)

∣∣∣∣∣∣

⎞
⎠ ≥ ηX (25)

Given 0 ≤ v < 500, let Iv be the sub-collection of intervals I = ((500
 +
v)H + y, (500
 + v + 1)H + y] with X

500H ≤ 
 ≤ X
250H for which

sup
α∈R

∣∣∣∣∣∣
∑

(500
+v)H+y<n≤(500
+v+1)H+y

a(n)e(−αn)

∣∣∣∣∣∣ ≥ ηH

2
.

Let I = ⋃
0≤v<500 Iv . It follows from (25) and the trivial bound |a(n)| ≤ 1,

that

|I| · H ≥
∑
I∈I

∣∣∣∣∣
∑
n∈I

a(n)e(−αn)

∣∣∣∣∣ ≥ ηX

2
.

Thus there exists an 0 ≤ v < 500 for which Iv is an (X, H)-family of intervals
of cardinality ≥ ηX

1000H . Setting I = Iv , we obtain the claim. ��
The frequency αI in the above proposition is not unique: one can shift it

by any integer, and one can also perturb it by up to a small multiple of η/H
without significantly affecting (24). However, it turns out that modulo these
freedoms, there are only a bounded number of choices for αI (if one views η

as being fixed). More precisely, one has

Lemma 2.2 (Maximal large sieve) Let H ≥ 1 and let I be an interval of
length 10H. Let η > 0 be given. Let |a(n)| ≤ 1 be a sequence of complex
numbers. Suppose that there exist J ≥ 1, frequencies α1, α2, . . . , αJ ∈ R and
sub-intervals I1, I2, . . . , IJ ⊂ I of length at most H such that

∣∣∣∣∣∣
∑
n∈I j

a(n)e(−α j n)

∣∣∣∣∣∣ ≥ ηH

for all j = 1, . . . , J . Assume H sufficiently large depending on η. Then there
exist a natural number K ≤ Cη−2 with C an absolute constant and frequencies
β1, . . . , βK depending only on η > 0, the sequence {a(·)} and the interval I ,
such that, for each 1 ≤ j ≤ J , there exists k ∈ {1, . . . , K } with

‖α j − βk‖ ≤ 1

H

where we recall that ‖x‖ = dist(x,Z).
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Fourier uniformity of bounded multiplicative functions 19

Proof Let γ1 be the frequency γ that maximizes the quantity

sup
L⊂I

∣∣∣∣∣
∑
n∈L

a(n)e(−γ n)

∣∣∣∣∣ . (26)

with the supremum taken over all sub-intervals L of I . For i ≥ 2 we
define γi inductively as the frequency that maximizes (26) in the region
[0, 1]\ ⋃i−1

j=1[γ j − 1
H , γ j + 1

H ]. We thus obtain frequencies γ1, . . . , γR with

R a parameter to be chosen later, and moreover ‖γi − γ j‖ > 1
H for i �= j .

Using the Carleson–Hunt theorem, it was proven byMontgomery [27, The-
orem 2] that one has the maximal large sieve inequality7

R∑
r=1

sup
L⊂I

∣∣∣∣∣
∑
n∈L

a(n)e(−γr n)

∣∣∣∣∣
2

≤ C(R + H)
∑
n∈I

|a(n)|2

with C an absolute constant. The right-hand side is O(H(R + H)). Choosing
R to be a large multiple of η−2, it follows that there are at most K � η−2

frequencies γi for which

sup
L⊂I

∣∣∣∣∣∣
∑
n∈I j

a(n)e(−γr n)

∣∣∣∣∣∣ ≥ ηH.

Therefore for any α lying outside of

K⋃
i=1

[
γi − 1

H
, γi + 1

H

]

we have

sup
L⊂I

∣∣∣∣∣
∑
n∈L

a(n)e(−αn)

∣∣∣∣∣ < ηH.

Our assumption is that for each α j with 1 ≤ j ≤ J there exists an interval I j
with I j ⊂ I for which

7 At the cost of worsening the dependence on η slightly, one could also use the standard large
sieve inequality [26] here, combined with Lemma 2.4 below.
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20 K. Matomäki et al.

∣∣∣∣∣∣
∑
n∈I j

a(n)e(−α j n)

∣∣∣∣∣∣ ≥ ηH

Therefore α1, . . . , αJ ∈ ⋃K
i=1[γi − 1

H , γi + 1
H ] and the claim follows. ��

We record also the following variant of the large sieve that we will need in
Sect. 5.

Lemma 2.3 (Variant of large sieve) Let 1 ≤ H ≤ X and R ∈ N. Let
x1, . . . , xR ∈ [1, X ] be H-separated (thus |xi − x j | ≥ H for all 1 ≤ i <

j ≤ R). Then

∫
|t |≤X/H

∣∣∣∣∣
R∑

n=1

e(i t log xn)

∣∣∣∣∣
2

dt � R · X

H
. (27)

Proof Let �(t) be a smooth function such that �(t) ≥ 1 for |t | ≤ 1 and with
supp �̂ ⊂ (−1, 1). Then the left-hand side of (27) is

�
∫
R

∣∣∣∣∣∣
R∑

n=1

e(i t log xn)

∣∣∣∣∣∣
2

· �

(
t H

X

)
dt = X

H

∑
1≤m,n≤R

�̂

(
X

H
log

xn

xm

)
� R · X

H

as claimed. ��
We will also need the following tool from harmonic analysis.

Lemma 2.4 (Completion of sums) There exists an absolute constant η0 > 0
such that the following holds. Let J be an interval of length H and a(n) complex
coefficients with |a(n)| ≤ 1 for all integers n ≥ 1. Let I be an interval with
I ⊂ J . Suppose that η ∈ (0, η0) and α ∈ R are such that

∣∣∣∣∣
∑
n∈I

a(n)e(−αn)

∣∣∣∣∣ > ηH.

Then there exists θ ∈ R such that |θ | ≤ 1
η2H

and

∣∣∣∣∣
∑
n∈J

a(n)e(−(α + θ)n)

∣∣∣∣∣ > η4H.

Proof Let y, z ∈ R be chosen so that I = [y, z]. Let f be a smooth function
with f (n) = 1 for n ∈ I , | f (n)| ≤ 1 for all integers n, and compactly
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Fourier uniformity of bounded multiplicative functions 21

supported in [y − η
100 · H, z + η

100 · H ]. Moreover we can ensure that f is
a Schwartz function with | f ( j)(x)| � j (ηH)− j for all x ∈ R and therefore
with | f̂ (x)| = | ∫

R
f (u)e(−xu)du| �A H(1+ ηH |x |)−A for all A ∈ N. Let

g(β):=
∑

n

f (n)e(nβ).

Applying Poisson summation to g(β) and using the above bound on f̂ we see
that

∫
1− 1

η2H
>|β|> 1

η2H

|g(β)|2dβ =
∫
1− 1

η2H
>|β|> 1

η2H

∣∣∣∣∣
∑

m

f̂ (m + β)

∣∣∣∣∣
2

dβ � Hη4.

(28)

Moreover by construction of g,

ηH ≤
∣∣∣∣∣∣
∑
n∈I

a(n)e(−αn)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

⎛
⎝∑

n∈J

a(n)e(−(α + β)n)

⎞
⎠ g(β)dβ

∣∣∣∣∣∣ + η

100
· H.

We split the integral on the right-hand side into two parts, namely |β| ≤ 1
η2H

and the complement. We estimate the part over |β| < 1
η2H

trivially only using
the bound |g(β)| < 2H . On the second part we apply Cauchy–Schwarz,
Plancherel and (28) to see that it is bounded by � η2H . Collecting these
estimates we conclude that

ηH < 4H
∫

|β|< 1
η2H

∣∣∣∣∣
∑
n∈J

a(n)e(−(α + β)n)

∣∣∣∣∣ dβ

Therefore there exists β ∈ R such that |β| < 1
η2H

and

∣∣∣∣∣
∑
n∈J

a(n)e(−(α + β)n)

∣∣∣∣∣ > η4H

as needed. ��
In Sect. 3 we will frequently relate the Fourier behavior of f on an interval

I with the behavior on dilated intervals I/p for various primes p. The key tool
here is

Proposition 2.5 (Mean scales down) Let x ≥ H ≥ 1, and let f : (x, x +
H ] → C obey the bound
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22 K. Matomäki et al.

∑
n∈(x,x+H ]

| f (n)|2 � H

(thus f = O(1) on average on (x, x + H ] in an L2 sense). Then

∑
p≤H

p ·

∣∣∣∣∣∣∣
∑

m∈( x
p , x+H

p ]
f (pm) − 1

p

∑
n∈(x,x+H ]

f (n)

∣∣∣∣∣∣∣

2

� H2. (29)

In particular, by Markov’s inequality, for any δ > 0 we have

∑
m∈( x

p , x+H
p ]

f (pm) = 1

p

∑
n∈(x,x+H ]

f (n) + O

(
δ

H

p

)

for all primes p ≤ H outside of an exceptional set P of primes with∑
p∈P 1

p � δ−2.

Proof See [6, Lemma 4.7]. ��
We will also need the following number-theoretic estimate, in particular to

dispose of some degenerate cases.

Lemma 2.6 (Counting nearby products of primes) Let k ∈ N and P ′, N ≥ 3
be such that (P ′)k−1 � N. Write d = P ′2/(log P ′)2. Then the number of
2k-tuples (p′

1,1, . . . , p′
1,k, p′

2,1, . . . , p′
2,k) of primes in [P ′, 2P ′] obeying the

condition
∣∣∣∣∣∣

k∏
j=1

p′
2, j −

k∏
j=1

p′
1, j

∣∣∣∣∣∣ ≤ C · (P ′)k

N
(30)

with C > 0 a constant, is at most Ok,C (
(P ′)2k

N log2k P ′ ) = Ok,C (dk

N ).

If we also impose the additional condition

k∏
j=1

p′
2, j =

k∏
j=1

p′
1, j mod q (31)

for some modulus q ∈ N, then the number of tuples is bounded by

Ok,C

(
dk

N

(
1

ϕ(q)
+ 1

log N

))
.

123



Fourier uniformity of bounded multiplicative functions 23

Proof Since the first claim follows from the second by specializing to q = 1
it is enough to prove the second claim.

First notice that without loss of generalitywe can assume that q ≤ (log N )3k

since otherwise the claim is trivial by replacing products of primes by integers
(i.e., using the crude bound that every integer has atmost Ok(1) representations
as a product of k primes) and counting trivially.

Let w be a smooth function such that w(x) = 1 for |x | ≤ 100C . Then, the
number of primes p′

1, j , p′
2,
 for which (30) and (31) hold is

�
∑

p′
1,1,...,p′

1,k∈[P ′,2P ′]
p′
2,1,...,p′

2,k∈[P ′,2P ′]
p′
1,1...p

′
1,k≡p′

2,1...p
′
2,k mod q

w

(
N log

p′
1,1 . . . p′

1,k

p′
2,1 . . . p′

2,k

)
(32)

Since q < P ′ and all of the p′
1, j , p′

2,
 are primes, we can express the congru-
ence condition using Dirichlet characters, thus

1p′
1,1...p

′
1,k≡p′

2,1...p
′
2,k mod q = 1

ϕ(q)

∑
χ (mod q)

χ(p′
1,1) . . . χ(p′

1,k)χ(p′
2,1) . . . χ(p′

2,k)

where the sum is over all Dirichlet characters of period q. Using this identity
and the Fourier inversion formula w(x) = ∫

R
ŵ(t)e2π i xt dt , we see that the

expression (32) is equal to

1

ϕ(q)N

∑
χ (mod q)

∫
R

ŵ

(
t

N

)
·
∣∣∣∣∣∣

∑
p∈[P ′,2P ′]

pitχ(p)

∣∣∣∣∣∣
2k

dt,

Since q ≤ (log N )3k �k (log P ′)3k , using the zero-free region for L(s, χ)

stated in [28, Chapter 9, Notes] and the contour integration argument of [21,
Lemma 2] gives

∑
p∈[P ′,2P ′]

pitχ(p) � P ′

log P ′ · 1

1 + |t | · δχ=χ0 + P ′ exp(−(log P ′)1/100);

Using this pointwise estimate it follows that

1

ϕ(q)N

∑
χ (mod q)

∫
|t |�exp((log P ′)1/100)

∣∣∣∣∣∣
∑

p∈[P ′,2P ′]
pitχ(p)

∣∣∣∣∣∣
2k

dt

� 1

ϕ(q)N

P ′2k

(log P ′)2k
= dk

ϕ(q)N
.
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To bound the part of the integral with large |t | we notice that for arbitrary
coefficients a(n), we have the L2 mean value theorem

∫
R

ŵ

(
t

N

)
·
∣∣∣∣∣∣

∑
A≤n≤B

a(n)nit

∣∣∣∣∣∣
2

� (N + B)
∑

A≤n≤B

|a(n)|2 (33)

(see e.g., [17, Theorem 9.1]), while from the pointwise estimate we have

1

ϕ(q)N

∑
χ (mod q)

∫
|t |�exp((log P ′)1/100)

ŵ

(
t

N

) ∣∣∣∣∣∣
∑

p∈[P ′,2P ′]
pitχ(p)

∣∣∣∣∣∣
2k

dt

� P ′2 exp(−(log P ′)1/100) · sup
χ (mod q)

1

N

∫
R

ŵ

(
t

N

) ∣∣∣∣∣∣
∑

p∈[P ′,2P ′]
pitχ(p)

∣∣∣∣∣∣
2k−2

dt

Since

∣∣∣∣∣∣
∑

p∈[P ′,2P ′]
pitχ(p)

∣∣∣∣∣∣
2k−2

=
∣∣∣∣∣∣

∑
n∈[(P ′)k−1,(2P ′)k−1]

a(n)nit

∣∣∣∣∣∣
2

where

a(n):=χ(n)
∑

p1,...,pk−1∈[P ′,2P ′]:n=p1...pk−1

1 = Ok(1)

we may thus bound the part of the integral with |t | > exp((log P ′)1/100) using
(33) by

�k P ′2 exp(−(log P ′)1/100) · 1

N
· (N + P ′k−1)P ′k−1 �k

P ′2k

N
exp(−(log P ′)1/100)

as required. Combining the two bounds, the claim follows. ��

3 Intervals and frequencies

Assume we have the hypotheses of Theorem 1.4, thus there exists an η > 0
such that

∫ 2X

X
sup
α

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)e(−αn)

∣∣∣∣∣∣ dx ≥ ηX H.
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Informally speaking, the main purpose of this section is to produce a large
set I ′′ of disjoint intervals I ′′, each of length comparable to some quantity L
(which will be slightly shorter than H ), as well as associated frequencies α′′

I ′′
with ∣∣∣∣∣

∑
n∈I ′′

f (n)e(−α′′
I ′′n)

∣∣∣∣∣ �η L ,

and a scale P ′ with the following property: For a positive proportion of quadru-
ples (I ′′, J ′′, p′, q ′) ∈ I2 × [P ′, 2P ′]2 with p′, q ′ prime such that I ′′ is close
to p′

q ′ J ′′ we have
q ′

p′′ α
′′
I ′′ ≈ p′

p′′ α
′′
J ′′ (mod 1)

for a positive proportion of primes p′′ in some range [P ′′/2, P ′′] (comparewith
(12)). Moreover the ranges P ′′, P ′, L are all related by log P ′′ 
 log P ′ 

log L and L 
 H/P ′ P ′′. This is the content of Proposition 3.2 below. We first
need a preliminary proposition.

Proposition 3.1 (Scaling down) Let 1 ≤ P ≤ Q ≤ H ≤ X and η > 0,
and let f : N → C be a 1-bounded multiplicative function. Assume that P
and log Q

log P are sufficiently large depending on η. Suppose that there exist an
(X, H)-family I of intervals of cardinality �η X/H and a real number αI
associated to each I ∈ I such that∣∣∣∣∣

∑
n∈I

f (n)e(−αI n)

∣∣∣∣∣ �η H (34)

for all I ∈ I. Then there exist P ′ ∈ [P, Q/2], an ( X
P ′ , H

P ′ )-familyI ′ of intervals
of cardinality �η X/H, and a real number α′

I ′ associated to each I ′ ∈ I ′,
such that ∣∣∣∣∣

∑
n∈I ′

f (n)e(−α′
I ′n)

∣∣∣∣∣ �η

H

P ′

for all I ′ ∈ I ′. Furthermore, for each I ′ ∈ I ′, one can find �η
P ′

log P ′ pairs

(I, p′), where I is an interval in I and p′ is a prime in [P ′, 2P ′], such that
I/p′ lies within 3 H

P ′ of I ′, and such that

p′αI = α′
I ′ + Oη

(
P ′

H

)
mod 1.

The conclusions of Proposition 3.1 are depicted schematically in Fig. 6.
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26 K. Matomäki et al.

Fig. 6 A depiction of
Proposition 3.1; the
frequencies p′αI and α′

I ′
will be close modulo
integers, and each I ′ ∈ I ′
will be associated to many
pairs (I, p′) in this fashion.
Compare this with Fig. 2

Proof For each I ∈ I, we apply Proposition 2.5 to the function n 
→
f (n)e(−αI n) on I , and with δ sufficiently small depending on η, to conclude
that ∣∣∣∣∣∣

∑
n∈I/p′

f (np′)e(−αI np′)

∣∣∣∣∣∣ �η

H

P ′ (35)

for all primes p′ ∈ [P, Q] outside of an exceptional set PI with
∑

p′∈PI

1

p′ �η 1.

Summing over all I ∈ I (recalling that this collection of intervals has cardi-
nality at most X/H ), we conclude

∑
P≤p′≤Q

1

p′ #{I ∈ I : p′ ∈ PI } �η

X

H
.

From Mertens’ theorem and the pigeonhole principle, we may thus find P ′ ∈
[P, Q/2] such that

∑
p′∈[P ′,2P ′]

#{I ∈ I : p′ ∈ PI } �η

X

H log log Q
log P

P ′

log P ′ .

Fix this quantity P ′. If log Q
log P is large enough, we conclude from the prime

number theorem that

∑
p′∈[P ′,2P ′]

#{I ∈ I : p′ /∈ PI } �η

X

H

P ′

log P ′ ,
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Fourier uniformity of bounded multiplicative functions 27

and thus we have (35) for �η
X
H

P ′
log P ′ pairs (I, p′) with I ∈ I and p′ ∈

[P ′, 2P ′].
As f is multiplicative, we have f (np′) = f (n) f (p′) unless n is a multiple

of p′. The latter contributes at most O( H
p′ P ) to the left-hand side of (35), which

is negligible compared to the right-hand side as P (and hence p′) is large. Thus
we may freely replace f (np′) by f (n) f (p′), and conclude that

∣∣∣∣∣∣
∑

n∈I/p′
f (n)e(−αI np′)

∣∣∣∣∣∣ �η

H

P ′ (36)

for �η
X
H

P ′
log P ′ pairs (I, p′). (Compare with Fig. 2.)

Let S denote the collection of these pairs (I, p′), and let I1 denote the
collection of all intervals of the form I/p′ where (I, p′) ∈ S. These are
intervals in [0, 10X/P ′] of length between H/2P ′ and H/P ′. By a simple
greedy algorithm, we may find a subfamily I2 of these intervals which are
separated by distance at least 2H/P ′, with the property that every interval in
I1 lies within a distance 3H/P ′ of one of the intervals in I2.

By (36) and Lemma 2.2, we can associate to each interval I ′ ∈ I2 some real
numbers βI ′,1, . . . , βI ′,K (I ′) for some K (I ′) �η 1, with the property that, for
each pair (I, p′) ∈ S with I/p′ within 3H/P ′ of I ′, one has

p′αI = βI ′,k + Oη

(
P ′

H

)
mod 1

for some 1 ≤ k ≤ K (I ′). By adding dummy values of β if necessary we may
take K = K (I ′) independent of I ′. By the pigeonhole principle, we may find
1 ≤ k0 ≤ K such that one has

p′αI = βI ′,k0 + Oη

(
P ′

H

)
mod 1 (37)

for�η
X
H

P ′
log P ′ triples (I, p′, I ′)with (I, p′) ∈ S and I ′ ∈ I2 with 1

p′ I within

distance 3 H
P ′ of I ′. If we let T be the collection of such triples, then one can

find a subset I3 of I2 of cardinality �η
X
H with the property that for each

I ′ ∈ I3, there are �η
P ′

log P ′ pairs (I, p′) ∈ S with (I, p′, I ′) ∈ T .
For I ′ ∈ I3, pick one of the pairs (I (I ′), p′(I ′)) ∈ S with (I (I ′), p′(I ′), I ′)

∈ T , then from (36) we have
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∣∣∣∣∣∣∣
∑

n∈ 1
p′(I ′) I (I ′)

f (n)e(−αI (I ′)np′(I ′))

∣∣∣∣∣∣∣
�η

H

P ′ (38)

while from (37) we have

p′αI = p′(I ′)αI (I ′) + Oη

(
P ′

H

)
mod 1

whenever (I, p′) ∈ S with (I, p′, I ′) ∈ T .
The interval I (I ′)/p′(I ′) lies in [0, 10X/P ′] with length between H/2P ′

and H/P ′. Let J (I ′) be an interval in [0, 10X/P ′] of length exactly H/P ′
containing I (I ′)/p′(I ′). By Lemma 2.4 and (38), we have

∣∣∣∣∣∣
∑

n∈J (I ′)
f (n)e(−α′

J (I ′)n)

∣∣∣∣∣∣ �η

H

P ′

for some real number

α′
J (I ′) = p′(I ′)αI (I ′) + Oη

(
P ′

H

)
.

In particular

p′αI = α′
J (I ′) + Oη

(
P ′

H

)
mod 1

whenever (I, p′) ∈ S with (I, p′, I ′) ∈ T .
Setting I ′ to be a 500H/P ′-separated collection of� X/H intervals of the

form J (I ′) with I ′ ∈ I3, we obtain the claim. ��
We are now ready to prove the main result of this section.

Proposition 3.2 Let X ≥ 2, θ ∈ (0, 1), η > 0, and ρ ∈ (0, 1/8). Let f :
N → C be a multiplicative function with | f | ≤ 1. Suppose that, for H = X θ ,
we have

∫ 2X

X
sup
α

∣∣∣∣∣∣
∑

x<n≤x+H

f (n)e(−αn)

∣∣∣∣∣∣ dx ≥ ηH X.

Let ε ∈ (0, ρ/100) be sufficiently small depending on θ and η, and assume
X is sufficiently large depending on θ, η, ρ, and ε. Then there exist P ′, P ′′ ∈
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[Xε2, Xε], an ( X
P ′ P ′′ , H

P ′ P ′′ )-family I ′′ of intervals of cardinality � X/H, and
a real number α′′

I ′′ associated to each I ′′ ∈ I ′′ such that

∣∣∣∣∣
∑
n∈I ′′

f (n)e(−α′′
I ′′n)

∣∣∣∣∣ �η

H

P ′ P ′′

for all I ′′ ∈ I ′′. Furthermore, there exist �η ( P ′
log P ′ )2 X

H quadruples

(I ′′
1 , I ′′

2 , p′
1, p′

2) with I ′′
1 , I ′′

2 distinct intervals in I ′′ and p′
1, p′

2 distinct primes

in [P ′, 2P ′], such that I ′′
1 lies within 50 H

P ′ P ′′ of
p′
2

p′
1

I ′′
2 , and such that

p′
2α

′′
I ′′
1

− p′
1α

′′
I ′′
2

= Oη

(
(P ′)2P ′′

H

)
mod p′′ (39)

for �η
P ′′

log P ′′ primes p′′ ∈ [P ′′/2, P ′′].
Proof By Lemma 2.1, one can find (X, H)-family I of intervals of cardinality
� ηX/H and a real number αI associated to each I ∈ I such that

∣∣∣∣∣
∑
n∈I

f (n)e(−αI n)

∣∣∣∣∣ � ηH

for all I ∈ I. Applying Proposition 3.1, one can find P ′ ∈ [Xε2, Xε], an
( X

P ′ , H
P ′ )-family I ′ of intervals of cardinality �η X/H , and a real number α′

I ′
associated to each I ′ ∈ I ′, such that

∣∣∣∣∣
∑
n∈I ′

f (n)e(−α′
I ′n)

∣∣∣∣∣ �η

H

P ′

for all I ′ ∈ I ′. Furthermore, for each I ′ ∈ I ′, one can find �η
P ′

log P ′ pairs
(I, p′), where I is an interval in I and p′ is a prime in [P ′, 2P ′], such that
I/p′ lies within 3 H

P ′ of I ′ and

p′αI = α′
I ′ + Oη

(
P ′

H

)
mod 1.

By a second application of Proposition 3.1, one can find P ′′ ∈ [(X/P ′)ε2,
(X/P ′)ε], an ( X

P ′ P ′′ , H
P ′ P ′′ )-family I ′′ of intervals of cardinality�η X/H , and

a real number α′′
I ′′ associated to each I ′′ ∈ I ′′, such that

123



30 K. Matomäki et al.

Fig. 7 The relationship between the intervals I, I ′, I ′′, primes p′, p′′, and frequencies
αI , α

′
I ′ , α′′

I ′′

∣∣∣∣∣
∑
n∈I ′′

f (n)e(−α′′
I ′′n)

∣∣∣∣∣ �η

H

P ′ P ′′ (40)

for all I ′′ ∈ I ′′. Furthermore, for each I ′′ ∈ I ′′, one can find �η
P ′′

log P ′′ pairs
(I ′, p′′), where I ′ is an interval in I ′ and p′′ is a prime in [P ′′/2, P ′′], such
that I ′/p′′ lies within 3 H

P ′ P ′′ of I ′′, and such that

p′′α′
I ′ = α′′

I ′′ + Oη

(
P ′ P ′′

H

)
mod 1. (41)

Also, since the I ′ are 500H -separated, we see that each prime p′′ is associated
to at most one I ′ in this fashion (for a fixed choice of I ′′). The above situation
is depicted in Fig. 7.

Note that if I ′′ ∈ I ′′, then one can add an arbitrary integer to each real
number α′′

I ′′ without affecting any of the above properties. In particular, if one
adds an integer with an appropriate residue class mod p′′, one can upgrade
(41) to

p′′α′
I ′ = α′′

I ′′ + Oη

(
P ′ P ′′

H

)
mod p′′ (42)
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for any pair (I ′, p′′) appearing previously. By the Chinese remainder theorem,
we may thus select α′′

I ′′ so that (42) holds for all pairs (I ′, p′′) appearing
previously.

Combining the above properties, we see that we can find �η
P ′

log P ′ P ′′
log P ′′ X

H
quintuplets (I, I ′, I ′′, p′, p′′), where I ∈ I, I ′ ∈ I ′, I ′′ ∈ I ′′, p′ is a prime
in [P ′, 2P ′], p′′ is a prime in [P ′′/2, P ′′], 1

p′ I lies within 3 H
P ′ of I ′, 1

p′′ I ′ lies
within 3 H

P ′ P ′′ of I ′′, and one has the equations

p′αI = α′
I ′ + Oη

(
P ′

H

)
mod 1

and

p′′α′
I ′ = α′′

I ′′ + Oη

(
P ′ P ′′

H

)
mod p′′.

Multiplying the first equation by p′′ and combining with the second equation,
we conclude in particular that

p′ p′′αI = α′′
I ′′ + Oη

(
P ′ P ′′

H

)
mod p′′.

The number of possible choices for (I, p′′) is (trivially) at most P ′′
log P ′′ X

H .
Applying the Cauchy–Schwarz inequality, we conclude that we can find �η

( P ′
log P ′ )2 P ′′

log P ′′ X
H octuplets (I, I ′

1, I ′
2, I ′′

1 , I ′′
2 , p′

1, p′
2, p′′), where

• I ∈ I, I ′
1, I ′

2 ∈ I ′, I ′′
1 , I ′′

2 ∈ I ′′;
• p′

1, p′
2 are primes in [P ′, 2P ′], and p′′ is a prime in [P ′′/2, P ′′];

• For i = 1, 2, 1
p′

i
I lies within 3 H

P ′ of I ′
i , and

1
p′′ I ′

i lies within 3
H

P ′ P ′′ of I ′′
i .

• We have

p′
1 p′′αI = α′′

I ′′
1

+ Oη

(
P ′ P ′′

H

)
mod p′′ (43)

and

p′
2 p′′αI = α′′

I ′′
2

+ Oη

(
P ′ P ′′

H

)
mod p′′. (44)

See Fig. 8.
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Fig. 8 The relationship between the intervals I, I ′
1, I ′

2, I ′′
1 , I ′′

2 , primes p′
1, p′′

2 , p′′, and fre-
quencies αI , α

′′
I ′′
1
, α′′

I ′′
2
. Some frequencies are omitted from the figure to reduce clutter. If this

situation occurs for many values of p′′, we draw a dashed line from I ′′
1 to I ′′

2 labeled by p′
1/p′

2.
Compare with Fig. 4

Multiplying (43) by p′
2 and (44) by p′

1 and then subtracting, we see that

p′
2α

′′
I ′′
1

− p′
1α

′′
I ′′
2

= Oη

(
(P ′)2P ′′

H

)
mod p′′. (45)

Also, p′
1 I ′

1 lies within 6H of p′
1 p′′ I ′′

1 and p′
2 I ′

2 lies within 6H of p′
2 p′′ I ′′

2 , so by
the triangle inequality p′

1 p′′ I ′′
1 and p′

2 p′′ I ′′
2 lie at distance at most 24H from

each other. Hence, on dividing by p′
1 p′′, I ′′

1 and
p′
2

p′
1

I ′′
2 lie at distance at most

48 H
P ′ P ′′ from each other. In particular, if p′

1 = p′
2, then I ′′

1 = I ′′
2 , and similarly

I ′
1 = I ′

2. As a consequence, the number of octuplets with this property is at

most O( P ′
log P ′ P ′′

log P ′′ X
H ). Since P ′ ≥ Xε2 and X is sufficiently large depending

on ε, the contribution of this case is thus negligible, so that there are �η

( P ′
log P ′ )2 P ′′

log P ′′ X
H octuplets (I, I ′

1, I ′
2, I ′′

1 , I ′′
2 , p′

1, p′
2, p′′) with p′

1 �= p′
2.

Observe that if I ′′
1 , I ′′

2 , p′
1, p′

2 are fixed, then I, I ′
1, I ′

2 are completely deter-
mined by p′′ thanks to the separation properties of I and I ′′; in particular, there
are O( P ′′

log P ′′ ) ways to complete the quadruplet (I ′′
1 , I ′′

2 , p′
1, p′

2) to an octuplet.
Similarly, I ′′

1 is completely determined by I ′′
2 , p′

1, p′
2 (since there is at most
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one interval in I ′′ that lies within 48 H
P ′ P ′′ from

p′
2

p′
1

I ′′
2 ). Thus the number of

eligible quadruplets (I ′′
1 , I ′′

2 , p′
1, p′

2) is O(( P ′
log P ′ )2 X

H ). We conclude that there

exist �η ( P ′
log P ′ )2 X

H quadruplets (I ′′
1 , I ′′

2 , p′
1, p′

2), each of which can be com-

pleted to an octuplet in �η
P ′′

log P ′′ ways. In particular, for such a quadruplet,

(45) holds for �η
P ′′

log P ′′ choices of p′′ (recalling that I, I ′
1, I ′

2 are completely
determined by the remaining coefficients of the octuplet). The claim follows.

��

4 Local structure of α′′

We now analyse the structure of the function α′′ appearing in Proposition 3.2.
The main result of this section asserts that α′′

I ′′ locally behaves like T
xI ′′

with T

“not too large” (and up to a shift a
q with small denominator), where xI ′′ denotes

the left endpoint of the interval I ′′. Crucially, T will not vary much with I ′′,
at least “locally”. It is here that we will rely on the hypothesis H = X θ that
H is of polynomial size in X .

Proposition 4.1 Let θ, η, ρ, X, H, f, ε, P ′, P ′′, I ′′, α′′ be as in Proposi-

tion 3.2. Then, for �ε
X
H

(
P ′

log P ′
)2

of the pairs (I ′′
1 , I ′′

2 ) of intervals in (I ′′)2,

there exist a natural number

1 ≤ q � Hρ,

integers a1, a2, a real number

T �θ,η,ε,ρ

X2

H2−ρ
,

and a set P(I ′′
1 , I ′′

2 ) of primes in [P ′′/2, P ′′] of cardinality �θ,η,ε,ρ
P ′′

log P ′′
such that

α′′
I ′′

j
= T

xI ′′
j

+ a j

q

∏
p′′∈P(I ′′

1 ,I ′′
2 )

p′′ + Oθ,η,ε,ρ

(
1

H1−ρ

)
mod

∏
p′′∈P(I ′′

1 ,I ′′
2 )

p′′

for j = 1, 2. Furthermore, for each such pair, there exist primes p′
1, p′

2 ∈
[P ′, 2P ′] such that I ′′

1 lies within 100 H
P ′ P ′′ of

p′
2

p′
1

I ′′
2 , and such that

p′
2a1 = p′

1a2 mod q. (46)
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Proof Let θ, η, ρ, X, H, f, ε, P ′, P ′′, I ′′, α′′ be as in Proposition 3.2. Thus
for instance we now have P ′′, P ′ ≤ Hρ/100. Henceforth we allow implied
constants to depend on θ, η, ε, ρ. We abbreviate

N :=#I ′′ 
 X

H

for the cardinality of I ′′ and d for the quantity

d:=
(

P ′

log P ′

)2

,

thus the number of quadruples (I ′′
1 , I ′′

2 , p′
1, p′

2) in Proposition 3.2 is � d N .
We construct a graph G = (V, E) whose vertices are just the intervals in I ′′
(thus V = I ′′ has N vertices), and the edges e are those unordered pairs
e = {I ′′

1 , I ′′
2 } for which there exist distinct primes p′

1, p′
2 in [P ′, 2P ′] such that

p′
1 I ′′

1 lies within 100 H
P ′′ of p′

2 I ′′
2 , and such that

p′
2α

′′
I ′′
1

− p′
1α

′′
I ′′
2

= Oη

(
(P ′)2P ′′

H

)
mod p′′ (47)

for a set P(e) of primes p′′ in [P ′′/2, P ′′] of cardinality � P ′′
log P ′′ (note that

these properties are symmetric in I ′′
1 and I ′′

2 ).Observe that the primes p′
1, p′

2 are
uniquely determined by I ′′

1 , I ′′
2 , for if there was another pair of primes p′

3, p′
4

with the same properties, then
p′
2

p′
1

I ′′
2 and

p′
4

p′
3

I ′′
2 would lie within 200 H

P ′ P ′′ of

each other, which implies that

p′
2

p′
1

− p′
4

p′
3

= O

(
H

X

)
,

but if (p′
1, p′

2) �= (p′
3, p′

4) then the left-hand side has magnitude at least
1

p′
3 p′

1
� X−2ε2 , which leads to a contradiction if ε is small enough and X is

large enough. Thus, by Proposition 3.2, we see that the number of edges in G
is � d N . On the other hand, the degree of each vertex in G is O(d), since
for fixed I ′′

1 there are only O(d) choices for p′
1 and p′

2, and I ′′
2 is uniquely

determined by these choices. Thus G has 
 d N edges and the mean degree of
G is 
 d.

At present, the sets P(e) of primes associated to each edge e are large, but
the intersectionsP(e1)∩· · ·∩P(ek) could be small. This will cause difficulties
later. To get around this problem we use a random refinement trick of Gowers
[8]. Let p′′ be a prime in [P ′′/2, P ′′] selected uniformly at random, and let
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G = (V, E) be the subgraph of G consisting of the same vertex set V as G,
and with the edge set E consisting of all edges e ∈ E with P(e) containing p.
By the prime number theorem, each edge has probability � 1 of lying in G,
so by linearity of expectation the expected number of edges in G is � d N . In
particular, we see that with probability � 1, the random graph G has � d N
edges. Of course, G has maximum degree O(d) since it is a subgraph of G.
As we shall see later, the advantage of working with G instead of G is that the
intersections P(e1) ∩ · · · ∩P(ek) have a high probability of being large when
e1, . . . , ek are all constrained to lie in G.

If A is the adjacency matrix of G, then by the preceding discussion we have
1T A1 � d N (where 1 denotes the all-ones column vector) with probability
� 1. By the Blakley–Roy inequality [2], we now see that for any natural
number k, we have 1T Ak1 �k dk N with probability � 1. That is to say, with
probability � 1, the number of (k + 1)-tuples (I ′′

0 , . . . , I ′′
k ) in V k+1 such that

{I ′′
j , I ′′

j+1} ∈ E for j = 0, . . . , k − 1 is �k dk N .
Now let k be the first even integer for which

dk ≥ N 2 · d.

Then (since P ′, P ′′ ≤ Xε) we have k = O(1) and

N 2d ≤ dk ≤ N 2d3. (48)

In particular, we may allow implied constants to depend8 on k. From the
preceding discussion, with probability � 1, the number of (k + 2)-tuples

(I ′′
k/2,1, . . . , I ′′

0,1, I ′′
0,2, . . . , I ′′

k/2,2) ∈ V k+2 (49)

such that {I ′′
j,1, I ′′

j+1,1}, {I ′′
j,2, I ′′

j+1,2}, {I ′′
0,1, I ′′

0,2} ∈ E for j = 0, . . . , k/2 − 1

is � dk+1N . This situation is depicted in Fig. 9.
The number of possible choices for the quadruplet (I ′′

k/2,1, I ′′
0,1, I ′′

0,2, I ′′
k/2,2)

is O(d N 3), since there are N 3 choices for I ′′
k/2,1, I ′′

0,1, I ′′
k/2,2, and once I ′′

0,1 is
fixed there are O(d) choices for I ′′

0,2. Thus by the Cauchy–Schwarz inequal-
ity, with probability � 1, we have there are � (dk+1N )2/(d N 3) = d2k+1/N
pairs of such tuples with a common quadruplet (I ′′

k/2,1, I ′′
0,1, I ′′

0,2, I ′′
k/2,2). Rela-

8 If one were to extend the arguments here to smaller values of H , one would need to pay more
attention as to the precise dependence of these constants on k.
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Fig. 9 A tuple (49) in G
with k = 4. Here we discard
any orientation or labeling of
the edges of G

beling, we conclude9 that with probability � 1, the number of 2k-tuples

�I ′′:=(I ′′
j,i ) j∈{0,1,...,k−1};i=1,2 ∈ V 2k (50)

such that {I ′′
j,i , I ′′

j+1,i }, {I ′′
0,1, I ′′

0,2} ∈ E for j = 0, . . . , k − 1, i = 1, 2 is

� d2k+1/N , where we adopt the periodic convention I ′′
k,i = I ′′

0,i for i = 1, 2.
In particular, by definition of G, we have

p ∈ P({I ′′
0,1, I ′′

0,2}) and p ∈ P({I ′′
j,i , I ′′

j+1,i })
for all j = 0, 1, . . . , k − 1 and i = 1, 2. The situation is depicted in Fig. 10.

Call the 2k-tuples �I ′′ of the above form good, thus there are � d2k+1/N
good tuples. Given a good tuple, to each edge {I ′′

j,i , I ′′
j+1,i } we have (uniquely

determined) primes p′
1, j,i , p′

2, j,i in [P ′, 2P ′], such that I ′′
j+1,i lies within

100 H
P ′ P ′′ of

p′
1, j,i

p′
2, j,i

I ′′
j,i for j = 0, 1, . . . , k − 1 and i = 1, 2; we also have

9 This bound also follows from the work of Sidorenko [29], as the graph consisting of two
k-cycles (with k even) connected by an edge is one of the confirmed cases of Sidorenko’s
conjecture.
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Fig. 10 A tuple (50) in G
with k = 4, with the
orientation and labels
restored. Compare with
Fig. 5

primes p′
1, p′

2 ∈ [P ′, 2P ′] such that I ′′
0,2 lies within 100

H
P ′ P ′′ of

p′
1

p′
2

I ′′
0,1. Again,

we refer the reader to Fig. 10 for a depiction of these relationships. Iterating

the former claim, we see that I ′′
0,i lies within O( H

P ′ P ′′ ) from
∏k

j=1 p′
2, j,i∏k

j=1 p′
1, j,i

I ′′
0,i for

i = 1, 2, thus

∏k
j=1 p′

2, j,i∏k
j=1 p′

1, j,i

= 1 + O

(
H

X

)
= 1 + Oε,k

(
1

N

)
.

Multiplying out, we conclude that

k∏
j=1

p′
2, j,i −

k∏
j=1

p′
1, j,i � (P ′)k

N
�ε

dk/2(log P ′)k

N
�ε d2 (51)

thanks to (48).
We now eliminate some degenerate cases. Suppose∏k
j=1 p′

2, j,1 − ∏k
j=1 p′

1, j,1 = 0. Then, by the fundamental theorem of
arithmetic, the p′

1, j,1 are a permutation of the p′
2, j,1. By the prime number

theorem, the total number of possibilities for the p′
1, j,1, p′

2, j,1 is then at most

�k (P ′/ log P ′)k � dk/2. By Lemma 2.6, there are O(dk/N ) choices for
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p′
1, j,2, p′

2, j,2, and finally there are O(d) possibilities for p′
1, p′

2 and O(N )

possibilities for I ′′
0,1. All the other I ′′

j,i are uniquely determined by this data,

so the number of tuples with
∏k

j=1 p′
2, j,1 − ∏k

j=1 p′
1, j,1 = 0 is

� dk/2 dk

N
d N = d3k/2+1

which is negligible compared to d2k+1/N thanks to (48). Thus there are �
d2k+1/N good tuples for which

∏k
j=1 p′

2, j,1 − ∏k
j=1 p′

1, j,1 does not vanish.

Repeating this argument for
∏k

j=1 p′
2, j,2 −∏k

j=1 p′
1, j,2, we may see that with

probability � 1, there are � d2k+1/N good tuples for which
∏k

j=1 p′
2, j,i −∏k

j=1 p′
1, j,i �= 0 for i = 1, 2. We will call such good tuples non-degenerate.

Another case we would like to exclude is when the set

P( �I ′′):=
k⋂

j=1

⋂
i=1,2

P({I ′′
j,i , I ′′

j+1,i }) ∩ P({I ′′
0,1, I ′′

0,2})

is unusually small, say

#P( �I ′′) ≤ δ
P ′

log P ′ (52)

for some small δ > 0 depending on ε, θ, ρ, η) to be chosen later. Define
a candidate tuple to be a tuple �I ′′ = (I ′′

j,i ) j∈{0,1,...,k−1};i=1,2 ∈ V 2k with
{I ′′

0,1, I ′′
0,2} ∈ E , {I ′′

j,i , I ′′
j+1,i } ∈ E for j = 0, . . . , k − 1, and i = 1, 2

obeying (52) and with
∏k

j=1 p′
2, j,i − ∏k

j=1 p′
1, j,i non-vanishing for i = 1, 2.

Observe that a tuple �I ′′ is a non-degenerate good tuple obeying (52) precisely
if it is a candidate tuple with p ∈ P( �I ′′). In particular, the probability that a
given candidate tuple is actually good is O(δ). On the other hand, from two
applications of Lemma 2.6, the number of candidate tuples is at most

�ε N × d ×
(

dk

N

)2

= d2k+1/N ,

and so, by linearity of expectation, the expected number of good tuples obeying
(52) is O(δd2k+1/N ). On the other hand, with probability � 1 we have �
d2k+1/N non-degenerate good tuples. With X large enough (which makes P ′
large compared with η, ε, ρ, θ ), and setting δ sufficiently small depending on
η, ε, ρ, θ , we thus have with positive probability that there are � d2k+1/N
non-degenerate good tuples �I ′′ for which

123



Fourier uniformity of bounded multiplicative functions 39

#P( �I ′′) > δ
P ′

log P ′ . (53)

Let us call such tuples very good, thus we can find a deterministic choice of p
such that there are � d2k+1/N very good tuples.

Henceforth p is chosen deterministically as above. Let �I ′′ be a very good
tuple, with attendant primes p′

1, j,i , p′
2, j,i and p′

1, p′
2 for j ∈ {0, 1, . . . , k − 1}

and i = 1, 2. From (47), (53) we see that there is a collection P( �I ′′) of primes
in [P ′′/2, P ′′] of cardinality

#P( �I ′′) � P ′

log P ′

such that

p′
2, j,iα

′′
I ′′

j,i
− p′

1, j,iα
′′
I ′′

j+1,i
= O

(
(P ′)2P ′′

H

)
mod p′′

and

p′
2α

′′
I ′′
0,1

− p′
1α

′′
I ′′
0,2

= Oη

(
(P ′)2P ′′

H

)
mod p′′

for all p′′ ∈ P( �I ′′), j ∈ {0, 1, . . . , k−1}, and i = 1, 2. For X large enough, the

error term Oη(
(P ′)2P ′′

H ) is less than 1/2 in magnitude; thus the nearest integer
to p′

2, j,iα
′′
I ′′

j,i
− p′

1, j,iα
′′
I ′′

j+1,i
is divisible by all the primes inP( �I ′′), and is hence

divisible by the product Q:= ∏
p′′∈P( �I ′′) p′′ of all the primes. Thus

p′
2, j,iα

′′
I ′′

j,i
− p′

1, j,iα
′′
I ′′

j+1,i
= O

(
(P ′)2P ′′

H

)
mod Q

for all j = 0, 1, . . . , k − 1 and i = 1, 2 and similarly

p′
2α

′′
I ′′
0,1

− p′
1α

′′
I ′′
0,2

= O

(
(P ′)2P ′′

H

)
mod Q. (54)

We multiply the former equation by
∏

0≤ j ′< j p′
1, j ′,i

∏
j< j ′<k p′

2, j ′,i and sum
the telescoping series for j = 0, . . . , k − 1 to conclude that

⎛
⎝k−1∏

j=0

p′
2, j,i

⎞
⎠ α′′

I ′′
0,i

−
⎛
⎝k−1∏

j=0

p′
1, j,i

⎞
⎠ α′′

I ′′
0,i

= O

(
(P ′)k+1P ′′

H

)
mod Q.
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This implies that

qiα
′′
I ′′
0,i

= O

(
(P ′)k+1P ′′

H

)
mod Q (55)

for i = 1, 2, where qi is the non-negative integer

qi :=
∣∣∣∣∣∣

k∏
j=1

p′
2, j,i −

k∏
j=1

p′
1, j,i

∣∣∣∣∣∣ .

As �I ′′ is non-degenerate, qi is strictly positive. From (51) we conclude that

1 ≤ qi � d2.

From (55), we may write

α′′
I ′′
0,i

= bi

qi
Q + O

(
(P ′)k+1P ′′

H

)
mod Q (56)

for i = 1, 2 and some integers b1, b2. Inserting this into (54), we conclude
that

(
p′
2

b1
q1

− p′
1

b2
q2

)
Q = O

(
(P ′)k+2P ′′

H

)
mod Q

or equivalently

p′
2

b1
q1

− p′
1

b2
q2

= O

(
(P ′)k+2P ′′

Q H

)
mod 1.

The left-hand side is a rational of denominator at most O(d4). Meanwhile,
since P( �I ′′) has cardinality � P ′

log P ′ � Xε2/ log X , we have

Q � exp(cXε2) (57)

for some c > 0 depending on ε, ρ, θ, η. Thus the expression O(
(P ′)k+2P ′′

Q H ) is
far smaller than the denominator on the left-hand side, and hence

p′
2

b1
q1

− p′
1

b2
q2

= 0 mod 1.
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Since we can modify b1
q1

and b2
q2

by arbitrary integers without affecting the
claimed properties, and p′

1, p′
2 are distinct, we may in fact assume without

loss of generality that

p′
2

b1
q1

− p′
1

b2
q2

= 0,

thus we can write bi
qi

= ap′
i

q for some integer a, some 1 ≤ q � d2, and for
i = 1, 2. In particular, from (56) we have

α′′
I ′′
0,i

= ap′
i

q
Q + O

(
(P ′)k+1P ′′

H

)
mod Q

for i = 1, 2; from (48) we thus have

α′′
I ′′
0,i

= ap′
i

q
Q + O

(
d3P ′′ · X

H2

)
mod Q.

We can then write

α′′
I ′′
0,1

= ap′
1

q
Q + T

xI ′′
0,1

mod Q

for some real number

T = O

(
d3P ′′ · X2

H2

)
, (58)

and we then write

α′′
I ′′
0,2

= ap′
2

q
Q + T

xI ′′
0,2

+ θ mod Q

for some real number

θ = O

(
d3P ′′ · X

H2

)
. (59)

Inserting these equations back into (54), we obtain

T

(
p′
2

xI ′′
0,1

− p′
1

xI ′′
0,2

)
− p′

1θ = O

(
(P ′)2P ′′

H

)
mod Q.
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Since I ′′
0,2 lies within 100

H
P ′ P ′′ of

p′
1

p′
2

I ′′
0,1, we have

xI ′′
0,2

= p′
1

p′
2

xI ′′
0,1

+ O

(
H

P ′ P ′′

)

and hence by (58)

p′
1θ = O

(
d3

H
+ (P ′)2P ′′

H

)
mod Q.

Combining this with (59), (57) we conclude that

θ = O

(
d3

H
+ (P ′)2P ′′

H

)

and thus

α′′
I ′′
0,i

= ap′
i

q
Q + T

xI ′′
0,i

+ O

(
d3

H
+ (P ′)2P ′′

H

)
mod Q

for i = 1, 2.
Finally, by two applications ofLemma2.6, each pair (I ′′

0,1, I ′′
0,2) is associated

to at most (O(dk

N ))2 very good tuples; since there are� d2k+1/N such tuples,
the number of pairs (I ′′

0,1, I ′′
0,2) that arise in this fashion is

� d2k+1/N

(dk

N )2
� d N � X

H

(
P ′

log P ′

)2

.

The claim follows. ��

5 Global structure of α′′

Proposition 4.1 gives some control on α′′, but it is currently “local” because the
parameters T, q that arise in this control depend on the pair I ′′

1 , I ′′
2 . Fortunately,

one can use the “mixing” or “ergodicity” properties of the graph of such pairs
to convert this local control to global control. To do this we first need a lemma.

Lemma 5.1 (Mixing lemma) Let θ, η, X, H, f, ρ, ε, P ′, P ′′, I ′′, α′′ be as in
Proposition3.2. We allow implied constants to depend on θ, η, ρ, ε. LetA1,A2
be two subsets of I ′′. Then the number of quadruplets (I ′′

1 , I ′′
2 , p′

1, p′
2) with
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I ′′
1 ∈ A1, I ′′

2 ∈ A2, p′
1, p′

2 primes in [P ′, 2P ′], and I ′′
1 lying within 100 H

P ′ P ′′

of
p′
2

p′
1

I ′′
2 is

� (#A1)(#A2)
H

X

(
P ′

log P ′

)2

+ (#A1)
1/2(#A2)

1/2
(

P ′

log P ′

)2

log−100 P ′.

(60)

Proof Let ψ : R → R be a non-negative Schwartz function whose Fourier
transform ψ̂(ξ):= ∫

R
ψ(x)e(−xξ) dx is supported on [−1, 1]. Observe that

if (I ′′
1 , I ′′

2 , p′
1, p′

2) is a quadruplet of the required form, then

ψ

(
X

H

(
log xI ′′

2
− log xI ′′

1
+ log p′

2 − log p′
1

))
� 1.

Thus it will suffice to bound the expression

∑
I ′′
1 ∈A1,I ′′

2 ∈A2

∑
p′
1,p′

2∈[P ′,2P ′]
ψ

(
X

H

(
log xI ′′

2
− log xI ′′

1
+ log p′

2 − log p′
1

))

by (60). Using the Fourier inversion formula ψ(x) = ∫
R

ψ̂(ξ)e(xξ) dξ , we
can write this expression as

∫
R

ψ̂(ξ)

⎛
⎝ ∑

I ′′∈A1

e

(
X

H
· ξ log xI ′′

)⎞
⎠

×
∑

I ′′∈A2

e

(
X

H
· ξ log xI ′′

)
·
∣∣∣∣∣∣

∑
p′∈[P ′,2P ′]

e

(
X

H
· ξ log p′

)∣∣∣∣∣∣
2

dξ,

which after a change of variable can be bounded by

� H

X

∫
|ξ |≤ X

H

|S1(ξ)||S2(ξ)||T (ξ)|2 dξ

where

Si (ξ):=
∑

I ′′∈Ai

e(ξ log xI ′′)

for i = 1, 2 and
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T (ξ):=
∑

p∈[P ′,2P ′]
p2π iξ .

From the triangle inequality we have

sup
ξ∈R

|Si (ξ)| � #Ai

while from the large sieve inequality (Lemma 2.3) we have

∫
|ξ |≤ X

H

|Si (ξ)|2 � #Ai
X

H
.

Furthermore from [21, Lemma 2] we have

T (ξ) � P ′

log P ′

(
1

1 + |ξ | + log−100 P ′
)

.

for |ξ | ≤ X
H . The claim now follows from the triangle inequality and the

Cauchy–Schwarz inequality. ��
Using this lemma, we have the following tool for converting local approxi-

mate constancy to global approximate constancy. The corollary will allow us
to show that many of the intervals I ′′ in Proposition 4.1 share essentially same
values of T and q.

Corollary 5.2 (Approximate ergodicity) Let θ, η, X, H, f, ρ, ε,

P ′, P ′′, I ′′, α′′ be as in Proposition 3.2. We allow implied constants to depend
on θ, η, ρ, ε. Let M, K , δ > 0. Let (Z , d) be a metric space, and let r > 0
be a radius with the property that every ball of radius 5r/2 can contain
at most M disjoint balls of radius r/2. For each I ′′ ∈ I ′′, let F(I ′′) be
a finite subset of Z with cardinality at most K . Let S be a collection of
sextuples (I ′′

1 , I ′′
2 , z1, z2, p′

1, p′
2) with I ′′

1 , I ′′
2 ∈ I ′′ with z1 ∈ F(I ′′

1 ), z2 ∈
F(I ′′

2 ), d(z1, z2) ≤ r , and p′
1, p′

2 distinct primes in [P ′, 2P ′] with I ′′
1 lying

within 100 H
P ′ P ′′ of

p′
2

p′
1

I ′′
2 . Suppose that

#S ≥ δ(X/H)(P ′/ log P ′)2. (61)

Then either

M K 3

δ
� log100 P ′ (62)
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or else there exists z0 ∈ Z and a collection T of pairs (I ′′, z) with I ′′ ∈ I,
z ∈ F(I ′′), and d(z, z0) ≤ 2r such that

#T � δ

M K 3

X

H
,

and such that there are � δ2

M K 4
X
H (P ′/ log P ′)2 sextuples

(I ′′
1 , I ′′

2 , z1, z2, p′
1, p′

2) ∈ S such that (I ′′
1 , z1), (I ′′

2 , z2) both lie in T .

Proof For technical reasons we first need to refine the set S. Let T0 be the set
of all pairs (I ′′

1 , z1) with I ′′
1 ∈ I ′′ and z1 ∈ F(I ′′). From (61) we have

∑
(I ′′
1 ,z1)∈T0

N (I ′′
1 , z1) ≥ δ(X/H)(P ′/ log P ′)2

where

N (I ′′
1 , z1):=#{(I ′′

2 , z2, p′
1, p′

2) : (I ′′
1 , I ′′

2 , z1, z2, p′
1, p′

2) ∈ S}.

We have #T0 ≤ 10K X/H . We conclude that there is a subset T1 of T0 with

N (I ′′
1 , z1) � δ

K
(P ′/ log P ′)2 (63)

for all (I ′′
1 , z1) ∈ T1, such that

∑
(I ′′
1 ,z1)∈T1

N (I ′′
1 , z1) � δ(X/H)(P ′/ log P ′)2. (64)

Let � be a maximal r -separated net in Z , thus every point in Z lies within
distance r of at least one point in �. From (64) and the triangle inequality we
conclude that

∑
z0∈�

∑
(I ′′
2 ,z2)∈T0:z2∈B(z0,2r)

(I ′′
1 ,z1)∈T1:z1∈B(z0,r)

∑
p′
1,p′

2∈[P ′,2P ′]
dist(I ′′

1 ,
p′
2

p′
1

I ′′
2 )≤100 H

P ′ P ′′

1 � δ(X/H)(P ′/ log P ′)2.

(65)

If we define

A1(z0):={I ′′
1 ∈ I ′′ : ∃z1 ∈ B(z0, r) such that (I ′′

1 , z1) ∈ T1}
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and

A2(z0):={I ′′
2 ∈ I ′′ : ∃z2 ∈ B(z0, 2r) such that (I ′′

2 , z2) ∈ T0}

then the left-hand side of (65) is bounded by

K 2
∑
z0∈�

∑
I ′′
1 ∈A1(z0)

I ′′
2 ∈A2(z0)

∑
p′
1,p′

2∈[P ′,2P ′]
dist(I ′′

1 ,
p′
2

p′
1

I ′′
2 )≤100 H

P ′ P ′′

1

which by Lemma 5.1 is bounded by

� K 2
(

P ′

log P ′

)2 ( ∑
z0∈�

(#A1(z0))(#A2(z0))
H

X

+
∑
z0∈�

(#A1(z0))
1/2(#A2(z0))

1/2 log−100 P ′).

Any pair (I ′′
2 , z2) ∈ T0 can contribute toA2(z0) only if B(z0, r/2) is contained

in B(z2, 5r/2). As the balls B(z0, r/2) with z0 ∈ � are disjoint, we conclude
that each such pair contributes to at most M sets A2(z0), and hence

∑
z0∈�

#A2(z0) � M K
X

H

and similarly

∑
z0∈�

#A1(z0) � M K
X

H
.

By Cauchy–Schwarz, we may thus bound the left-hand side of (65) by

� M K 3 X

H

(
P ′

log P ′

)2
(
sup
z0∈�

#A1(z0)
H

X
+ log−100 P ′

)

and hence

sup
z0∈�

#A1(z0)
H

X
+ log−100 P ′ � δ

M K 3 .
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Thus, either (62) holds, or there exists z0 ∈ � with

#A1(z0) � δ

M K 3

X

H
.

Suppose the latter claim is true. If we now let T2 denote the collection of those
(I ′′

1 , z1) ∈ T1 with I ′′
1 ∈ A1(z0) and z1 ∈ B(z0, r), then we have

#T2 � δ

M K 3

X

H
.

From (63) there exist � δ
M K 3

X
H

δ
K (P ′/ log P ′)2 sextuples

(I ′′
1 , I ′′

2 , z1, z2, p′
1, p′

2) ∈ S such that (I ′′
1 , z1) ∈ T2. Since z1 ∈ B(z0, r)

and d(z1, z2) ≤ r , we have z2 ∈ B(z0, 2r). Thus, if we take T to be the
collection of those (I ′′

1 , z1) ∈ T0 with I ′′
1 ∈ A2(z0) and z1 ∈ B(z0, 2r), we

obtain the claim. ��
Let θ, η, X, H, f, ε, ρ, P ′, P ′′, I ′′, α′′ be as in Proposition 3.2. Let δ > 0

be a small quantity (depending on θ, η, ε) which we will specify in a moment.
Inspired by Proposition 4.1, define a good quadruple to be a quadruple
(I ′′, T, q, a), where I ′′ is an interval in I ′′ ∈ I ′′, T is a real number with

|T | ≤ 1

δ

X2

H2−ρ
, (66)

q is a natural number with 1 ≤ q ≤ Hρ/δ, a ∈ {0, . . . , q − 1} is coprime to
q, and there exists a real number θ with |θ | ≤ 1

δ
1

H1−ρ such that

α′′
I ′′ = T

xI ′′
+ a

q

∏
p′′∈P

p′′ + θ mod
∏

p′′∈P
p′′ (67)

for a set P of primes in [P ′′/2, P ′′] of cardinality at least δ P ′′
log P ′′ . Proposi-

tion 4.1 guarantees that once δ is chosen sufficiently small in terms of θ, ε, η, ρ

there exist � X/H good quadruples. Throughout we fix δ sufficiently small
so that this holds; in particular, implied constants may now depend on δ in
addition to θ, ε, η, ρ.

We have some limitations on how many good quadruples can be associated
to a single interval I ′′:

Proposition 5.3 Let δ, ρ be as above, and let I ′′ be an interval in I ′′. Let
K ≥ 2

δ
, and let (I ′′, Tj , q j , a j ) for j = 1, . . . , K be a collection of good

quadruples. Then there exist 1 ≤ j < j ′ ≤ K with the following properties:

(i) q j = q j ′ .
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(ii) a j = a j ′ .

(iii) Tj = Tj ′ + O
(

X
H1−ρ

)
.

Proof Without loss of generality we may take K = �2
δ
�. For j = 1, . . . , K ,

let P j be the set of primes in [P ′′/2, P ′′] associated to the good quadruple
(I ′′, Tj , q j , a j ). Then

∑
p′′∈[P ′′/2,P ′′]

⎛
⎝ K∑

j=1

1p′′∈P j

⎞
⎠ ≥ K δ

P ′′

log P ′′ ≥ 2
P ′′

log P ′′

and
∑K

j=1 1P j ≤ K � 1/δ. From this and the prime number theorem we

conclude that
∑K

j=1 1P j ≥ 2 for at least � P ′′
log P ′′ primes in [P ′, 2P ′]; this

implies that there exist distinct indices j, j ′ ∈ {1, . . . , K } such that

#(P j ∩ P j ′) � P ′′

log P ′′ .

If one writes Q:=∏
p′′∈P j ∩P j ′ p′′, we then have

Q � exp(cδ P ′′) ≥ exp(cδ Xε2) (68)

for some cδ > 0. On the other hand, from (67) one has

α′′
I ′′ = Tj

xI ′′
+ a j

q j
Q + O

(
1

H1−ρ

)
mod Q (69)

and

α′′
I ′′ = Tj ′

xI ′′
+ a j ′

q j ′
Q + O

(
1

H1−ρ

)
mod Q. (70)

In particular,

(
a j

q j
− a j ′

q j ′

)
Q = O

(
X2

H2−ρ

)
mod Q

which when combined with (68) (and noting that the denominator on the left-
hand side is at most Oδ(H2ρ)) forces

a j

q j
− a j ′

q j ′
= 0 mod 1.
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Since a j/q j and a j ′/q j ′ are in lowest terms and in [0, 1), this implies that
a j = a j ′ and q j = q j ′ . Subtracting (69) from (70), we conclude that

Tj − Tj ′

xI ′′
= O

(
1

H1−ρ

)
mod Q;

since |Tj − Tj ′ | ≤ 2
δ

X2

H2−ρ , we conclude from (68) that

Tj − Tj ′

xI ′′
= O

(
1

H1−ρ

)
,

and hence Tj − Tj ′ �δ
X

H1−ρ . The claim follows. ��
From the above proposition and the greedy algorithm, we conclude

Corollary 5.4 For each I ′′ ∈ I ′′, there exists a set F(I ′′) of triples (T, q, a)

of cardinality

#F(I ′′) ≤ 2

δ
,

such that, for any good quadruple (I ′′, T, q, a), there exists T ′ ∈ R such that
(T ′, q, a) ∈ F(I ′′) and

T = T ′ + O

(
X

H1−ρ

)
.

On the other hand, Proposition 4.1 provides us with a large number of
quadruples:

Proposition 5.5 Let δ be as above and X sufficiently large depending on
δ and ε. All implied constants may depend on ε, η, θ, ρ. Then, for �
(X/H) · (P ′/ log P ′)2 of the pairs (I ′′

1 , I ′′
2 ) of intervals (I ′′)2, there exist

T1, T2, q ′, a′
1, a′

2 such that (T1, q ′, a′
1) ∈ F(I ′′

1 ) and (T2, q ′, a′
2) ∈ F(I ′′

2 ),
and

T2 = T1 + O

(
X

H1−ρ

)
. (71)

Furthermore, for each such pair, there exist primes p′
1, p′

2 ∈ [P ′, 2P ′] coprime

to q ′ such that I ′′
1 lies within 100 H

P ′ P ′′ of
p′
2

p′
1

I ′′
2 , and such that

p′
2a′

1 = p′
1a′

2 mod q ′. (72)
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Proof This is almost immediate from Proposition 4.1; the main difficulty is
that the integers a, q provided by that proposition need not be coprime.

We resolve this as follows. If I ′′ ∈ I ′′ and (T, q, a) ∈ F(I ′′), then q has at
most O(

log X
log P ′′ ) = Oε(1) prime factors in [P ′′/2, P ′′]. Thus, for each I ′′ ∈ I ′′,

there are at most O(1) primes that divide q for some (T, q, a) ∈ F(I ′′).
Proposition 4.1 provides us with � X

H

(
P ′

log P ′
)2

pairs (I ′′
1 , I ′′

2 ) of intervals

(I ′′)2, together with associated primes p′
1, p′

2, obeying the properties of that
proposition. It could happen that p′

1 or p′
2 divides q for some (T, q, a) in

F(I ′′
1 ) or F(I ′′

2 ), but by the preceding paragraph, the number of times this can

happen is at most O( X
H

P ′
log P ′ ), which is a negligible portion when X is large

enough. Thus for � X
H

(
P ′

log P ′
)2

of the above pairs, p′
1 or p′

2 do not divide

any such q.
From Proposition 4.1, we have

α′′
I ′′

j
= T

xI ′′
j

+ a j

q
Q + O

(
1

H1−ρ

)
mod Q

for j = 1, 2, where Q:= ∏
p′′∈P(I ′′

1 ,I ′′
2 ) p′′. We write a1/q in lowest terms as

a′
1/q ′. Then (I ′′

1 , T, q ′, a′
1) is a good quadruple and p′

1, p′
2 do not divide q ′.

From (46) we may thus also write a2/q in lowest terms as a′
2/q ′ and still have

that (72) holds. Then (I ′′
2 , T, q ′, a′

2) is a good quadruple, and the claim follows
from Corollary 5.4. ��

Let Z be the collection of triples (T, q, a)with T ∈ R, q ≥ 1, and a coprime
to q, endowed with the metric10

d((T1, q1, a1), (T2, q2, a2)):=c(δ)
H1−ρ

X
|T1 − T2| + 1q1 �=q2 + 1

100
1a1 �=a2 .

(73)

and some sufficiently small constant c(δ) > 0 depending on δ (and thus
ultimately on θ, η, ρ, ε). Let S be the collection of sextuples

(I ′′
1 , I ′′

2 , (T1, q ′, a1), (T2, q ′, a2), p′
1, p′

2)

with I ′′
1 , I ′′

2 ∈ I ′′, (T1, q ′, a1) ∈ F(I ′′
1 ), (T2, q ′, a2) ∈ F(I ′′

2 ), and p′
1, p′

2

distinct primes in [P ′, 2P ′]with I ′′
1 lying within 100 H

P ′ P ′′ of
p′
2

p′
1

I ′′
2 , with p1, p2

10 The 1
1001a1 �=a2 term is present only to keep the metric Z from degenerating, but other-

wise plays no role in the argument; if one prefers, one could drop this term and observe that
Corollary 5.2 also applies to degenerate metric spaces.
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coprime to q ′ and obeying (72) and (71). In particular (for c(δ) sufficiently
small) we have

d((T1, q ′, a1), (T2, q ′, a2)) ≤ 1

10
.

From Proposition 5.5 we have #S � (X/H) · (P ′/ log P ′)2. Applying Corol-
lary 5.2 with r = 1

10 , M = 100, K = 2
δ
, we conclude that there exists

(T0, q0, a0) ∈ Z and a collection T of quadruples (I ′′, T, q, a) with I ′′ ∈ I,
(T, q, a) ∈ F(I ′′), and d((T, q, a), (T0, q0, a0)) ≤ 1

5 such that

#T � X

H
, (74)

and there are � X
H (P ′/ log P ′)2 sextuples (I ′′

1 , I ′′
2 , (T1, q1, a1),

(T2, q2, a2), p′
1, p′

2) ∈ S such that (I ′′
1 , T1, q1, a1), (I ′′

2 , T2, q2, a2) both lie
in T .

If (I ′′, T, q, a) ∈ T , then d((T, q, a), (T0, q0, a0)) ≤ 1
5 , and hence by (73)

we have q = q0 and

T = T0 + O

(
X

H1−ρ

)
. (75)

From (66) we thus have

T0 � X2

H2−ρ
. (76)

At present q0 obeys the bounds 1 ≤ q0 � Hρ . We can improve the control
on q0 significantly.

Proposition 5.6 q0 � 1.

Proof Consider the graph G whose vertex set V is the set T as above, and
whose edge set E consists of pairs (I ′′

1 , T1, q0, a1), (I ′′
2 , T2, q0, a2) in T with

(I ′′
1 , I ′′

2 , (T1, q0, a1), (T2, q0, a2), p′
1, p′

2) ∈ S

for some p′
1 and p′

2. Then by the preceding dicussion G has � N vertices and
� d N edges, where N :=X/H and d:=(P ′/ log P ′)2.

Now let k be the first even integer for which

dk ≥ N 2+ε.

123



52 K. Matomäki et al.

Using the Blakley–Roy inequality as in Sect. 4, the number of ( k
2 + 1)-tuples

(Q0, . . . , Qk/2) ∈ V k/2+1

such that {Q j , Q j+1} ∈ E for 0 ≤ j < k/2 is � dk/2N . The number
of possible values for the pair (Q0, Qk/2) is O(N 2). Thus by the Cauchy–
Schwarz inequality, there are� dk pairs of k+2

2 -tuples of the above form with
matching pairs (Q0, Qk/2). Relabeling, we conclude that there the number of
k-tuples

(Q j ) j=0,1,...,k−1 ∈ V k

such that {Q j , Q j+1} ∈ E for j = 0, 1, . . . , k −1 is� dk . On the other hand,
we may upper bound the number of such tuples in a different way, as we will
now do. Writing Q j = (I ′′

j , Tj , q0, a j ), we see from (72) that there are primes
p′

j,1, p′
j,2 ∈ [P ′, 2P ′] such that

p′
j,2a j = p′

j,1a j+1 mod q0

(with the periodic convention ak = a0) and such that I ′′
j lies within 100 H

P ′ P ′′

of
p′

j,2

p′
j,1

I ′′
j+1 for all j = 0, 1, . . . , k − 1. From the first claim we have

k∏
j=1

p′
j,2 =

k∏
j=1

p′
j,1 mod q0,

while from the second claim we have

k∏
j=1

p′
2, j −

k∏
j=1

p′
1, j � (P ′)k

N
.

by repeating the derivation of (51). By Lemma 2.6, the number of tuples
of primes (p′

1,1, . . . , p′
k,1, p′

1,2, . . . , p′
k,2) obeying these constraints is �

dk

N ( 1
q1/2
0

+ 1
log X )). There are � N choices for I ′′

1 , and this interval and the

tuple of primes determine all the other I ′′
k . Since all the sets F(I ′′

j ) have cardi-
nality Oδ(1), we conclude that the number of k-tuples (Q j ) j=0,1,...,k−1 under
consideration is

� N
dk

N

(
1

q1/2
0

+ 1

log X

)
.
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Comparing the upper and lower bounds yields

1

q1/2
0

+ 1

log X
� 1

and the claim follows. ��
From (67), (75) we see that whenever (I ′′, T, q0, a) ∈ T , one has

α′′
I ′′ = T0

xI ′′
+ b

q0
+ O

(
1

H1−ρ

)
mod 1 (77)

for some b ∈ Z/q0Z. Since each I ′′ is associated to O(1) quadruples in T ,
we conclude from (74) that for �ε,δ X/H intervals I ′′ ∈ I ′′, one has (77) for
some b ∈ Z/q0Z.

Let I ′′ be one of these intervals, so that (see (40))
∣∣∣∣∣
∑
n∈I ′′

f (n)e(−α′′
I ′′n)

∣∣∣∣∣ � H

P ′ P ′′ .

Let H∗:= H1−2ρ

P ′ P ′′ . We may translate I ′′ by any shift of size at most H∗ without
affecting this estimate. Averaging over such shifts, we conclude that

∣∣∣∣∣∣
∫

I ′′

∑
x<n≤x+H∗

f (n)e(−α′′
I ′′n) dx

∣∣∣∣∣∣ � H

P ′ P ′′ H∗

and thus by the triangle inequality

∫
I ′′

∣∣∣∣∣∣
∑

x<n≤x+H∗
f (n)e(−α′′

I ′′(n − x) − bx/q0)

∣∣∣∣∣∣ dx � H

P ′ P ′′ H∗

From (77), (76) and Taylor expansion, we have

e(−α′′
I ′′(n − x) − bx/q0) = e

(
−T0

x
(n − x)

)
e(bn/q0) + O(H−ρ)

= n−2π iT0x2π iT0e(bn/q0) + O(H−ρ).

The contribution of the O(H−ρ) is negligible, thus

∫
I ′′

∣∣∣∣∣∣
∑

x<n≤x+H∗
f (n)n−2π iT0e(bn/q0)

∣∣∣∣∣∣ dx � H

P ′ P ′′ H∗.
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Recalling (b, q0) = 1 and Proposition 5.6, we can apply a Fourier decompo-
sition

e(bn/q0) =
∑

q0=q1q2

∑
χ (q1)

cb,χ1q2|nχ(n/q2) , cb,χ := 1

ϕ(q1)

∑
x mod q1

χ(x)e
(bx

q1

)

where cb,χ � 1 and χ ranges over Dirichlet characters of modulus q1. From
the triangle inequality, we thus have

∑
q0=q1q2

∑
χ (q1)

∫
I ′′

∣∣∣∣∣∣
∑

x<n≤x+H∗
f (n)n−2π iT01q2|nχ(n/q2)

∣∣∣∣∣∣ dx � H

P ′ P ′′ H∗.

Summing over the �ε X/H intervals I ′′, we conclude that

∑
q0=q1q2

∑
χ (q1)

∫ 10X/P ′ P ′′

X/10P ′ P ′′

∣∣∣∣∣∣
∑

x<n≤x+H∗
f (n)n−2π iT01q2|nχ(n/q2)

∣∣∣∣∣∣ dx � X

P ′ P ′′ H∗.

By the triangle inequality, there thus exist q0 = q1q2 and χ (q1) such that

∫ 10X/P ′ P ′′

X/10P ′ P ′′

∣∣∣∣∣∣
∑

x<n≤x+H∗
f (n)n−2π iT01q2|nχ(n/q2)

∣∣∣∣∣∣ dx � X

P ′ P ′′ H∗.

Writing n = dm with d|q∞
2 and (m, q2) = 1we obtain by the triangle inequal-

ity

∑
d|q∞

2
q2|d

∫ 10X/P ′ P ′′

X/10P ′ P ′′

∣∣∣∣∣∣∣∣
∑

x<dn≤x+H∗
(n,q2)=1

f (n)n−2π iT0χ(n)

∣∣∣∣∣∣∣∣
dx � X

P ′ P ′′ H∗.

where d|q∞
2 means that all the prime factors of d are also prime factors of q2.

Since
∑

d|q∞
2

d−1 � 1 there exists an natural number d = O(1) such that,

∫ 10X/d P ′ P ′′

X/10d P ′ P ′′

∣∣∣∣∣∣∣∣
∑

x<n≤x+H∗/d
(n,q2)=1

f (n)n−2π iT0χ(n)

∣∣∣∣∣∣∣∣
dx �η,ε,δ

X

P ′ P ′′ H∗.
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Therefore by [23, Theorem A.1] we haveD( f 1(n,q2)=1n−2π iT0χ; T ′; Q) � 1
for some Q � 1 and |T ′| � X . Therefore D( f ; T ; Q) � 1 for some |T | �
X2/H2−ρ and Q � 1 as claimed.

6 Proof of Corollary 1.5 and Corollary 1.3

Nowwe prove Corollary 1.5 andCorollary 1.3. It is enough to prove the former
corollary since, for any fixed Q > 0 and A > 0, we have D(λ; X A; Q) → ∞
as X → ∞ by the Vinogradov–Korobov zero-free region [28, §9.5].

We restrict attention to the correlation for f (n)a(n + h)b(n + 2h), as the
other two correlations are handled similarly. The proof proceeds along classical
lines by noticing that

∑
|h|≤H

(
1 − |h|

H

)
f (n)a(n + h)b(n + 2h)

= 1

H

∫ X

1

∫ 1

0
Sx, f (α)Sx,b(α)Sx,a(−2α)dαdx + O(H) (78)

where

Sx,g(α):=
∑

x<n≤x+2H

g(n)e(αn).

Notice that

∣∣∣∣
∫ 1

0
Sx, f (α)Sx,b(α)Sx,a(−2α)dα

∣∣∣∣
≤ sup

α
|Sx, f (α)|1/3

∫ 1

0
|Sx,b(α)| · |Sx,a(−2α)| · |Sx, f (α)|2/3 dα

≤ sup
α

|Sx, f (α)|1/3 ·
(∫ 1

0
|Sx,b(α)|3dα

)1/3

×
(∫ 1

0
|Sx,a(α)|3dα

)1/3

·
(∫ 1

0
|Sx, f (α)|2dα

)1/3

.

We now claim the bound

∫ 1

0
|Sx,a(α)|3dα � H2
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If |a(n)| � �(n) then this bound follows from [10, Proposition 4.2]. On the
other hand if |a(n)| � 1 for all integers n ≥ 1, then, by Hölder’s inequality,

∫ 1

0
|Sx,a(α)|3dα ≤

(∫ 1

0
|Sx,a(α)|2dα

)1/2

·
(∫ 1

0
|Sx,a(α)|4dα

)1/2

� H1/2 · H3/2 = H2.

The general case a(n) � 1 + �(n) now follows from the triangle inequality.
Similarly for b(n). Therefore,

∣∣∣∣
∫ 1

0
Sx, f (α)Sx,b(α)Sx,a(−2α)dα

∣∣∣∣ � sup
α

|Sx, f (α)|1/3 · H5/3

and finally,

∫ X

1
sup
α

|Sx, f (α)|1/3dα ≤
(∫ X

1
sup
α

|Sx, f (α)|dα

)1/3

· X2/3.

Thus,

∣∣∣∣∣∣
∑

|h|≤H

(
1 − |h|

H

) ∑
n≤X

f (n)a(n + h)b(n + 2h)

∣∣∣∣∣∣ ≤ H2/3 · X2/3

·
(∫ X

1
sup
α

|Sx, f (α)|dα

)1/3

(79)

Therefore if the left-hand side of (79) is ≥ ηH X , then,

cη3H X ≤
∫ X

1
sup
α

|Sx, f (α)|dα

for some absolute constant c > 0. Hence, for some Y ∈ [cη3X/3, X ], one
has,

∫ 2Y

Y
sup
α

|Sx, f (α)|dα ≥ cη3

2
Y H.

Now the claim follows from Theorem 1.4.
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