

1 Short title (50 characters): **Aggregates of hybrid cyanobacteria-tobacco Rubisco**

2

3 Correspondence:

4 Douglas J Orr

5 Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, UK

6 Tel: +44 (0)1524 593476

7 Email: d.j.orr@lancaster.ac.uk

8

9 **Hybrid cyanobacterial-tobacco Rubisco supports autotrophic growth and pre-carboxysomal
10 aggregation**

11 Douglas J. Orr^{1*}, Dawn Worrall¹, Myat T. Lin², Elizabete Carmo-Silva¹, Maureen R. Hanson², Martin A. J.
12 Parry¹

13

14 ¹ Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK.

15 ² Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.

16

17 **One Sentence Summary:**

18 Cyanobacterial Rubisco large subunits form functional hybrids with tobacco small subunits and pro-
19 carboxysome micro-compartments via the linker protein CcmM35 in absence of cognate small subunits.

20

21 **Keywords:** carboxysome, CCM, cyanobacteria, Rubisco, photosynthesis

22

23 **FOOTNOTES:**

24 **List of author contributions:**

25 MAJP, MRH, MTL & ECS conceived research. All authors designed experiments. DJO, DW & MTL
26 performed the experiments and analyzed data. All authors contributed to writing the manuscript.

27 **Funding**

28 This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) under
29 grant number BB/I024488/1 to M.A.J.P. and the US National Science Foundation (NSF) under grant
30 number EF-1105584 to M.R.H.

31

32 *Correspondence: Douglas J Orr (d.j.orr@lancaster.ac.uk)

33

34 **Abstract**

35 Much of the research aimed at improving photosynthesis and crop productivity attempts to overcome
36 shortcomings of the primary CO₂ fixing enzyme Rubisco. Cyanobacteria utilize a CO₂ concentrating
37 mechanism (CCM), which encapsulates Rubisco with poor specificity but relatively fast catalytic rate
38 within a carboxysome micro-compartment. Alongside active transport of bicarbonate into the cell, and
39 localization of carbonic anhydrase within the carboxysome shell with Rubisco, cyanobacteria are able to
40 overcome the limitations of Rubisco via localization within a high CO₂ environment. As part of ongoing
41 efforts to engineer a β-cyanobacterial CCM into land plants, we investigated the potential for Rubisco
42 large subunits (LSU) from the β-cyanobacteria *Synechococcus elongatus* (Se) to form aggregated Rubisco
43 complexes with the carboxysome linker protein CcmM35 within tobacco chloroplasts. Transplastomic
44 plants were produced that lacked cognate SeRubisco small subunits (SSU) and expressed SeLSU in place
45 of tobacco LSU, with and without CcmM35. Plants were able to form a hybrid enzyme utilizing tobacco
46 SSU and the SeLSU, allowing slow autotrophic growth in high CO₂. CcmM35 was able to form large
47 Rubisco aggregates with the SeLSU, and these incorporated small amounts of native tobacco SSU. Plants
48 lacking the SeSSU showed delayed growth, poor photosynthetic capacity and significantly reduced
49 Rubisco activity compared to both wild-type tobacco and lines expressing the SeSSU. These results
50 demonstrate the ability of the SeLSU and CcmM35 to form large aggregates without the cognate SeSSU
51 in planta, harboring active Rubisco that enables plant growth, albeit at much slower pace than plants
52 expressing the cognate SeSSU.

53

54

55 **Introduction**

56 The need to produce sufficient food for a growing population requires increasing the productivity and
57 efficiency of agriculture in order to increase yields by the estimated 70% that will be needed by 2050
58 (Lobell et al., 2009; Ray et al., 2012). Given its central role in crop growth and productivity, improving
59 photosynthesis is one approach that has the potential to generate step-change improvements in crop
60 yields and resource use efficiency (Long et al., 2006; Ort et al., 2015). One of the primary limitations to
61 photosynthesis is the relative inefficiency of the central carbon fixing enzyme Rubisco (ribulose 1,5-
62 bisphosphate carboxylase/oxygenase), in particular its lack of specificity for CO₂ versus O₂, which leads to
63 the energetically costly photorespiratory cycle (Whitney et al., 2011; Carmo-Silva et al., 2015; Sharwood
64 et al., 2016; Flamholz et al., 2019). Exemplifying this, at current atmospheric levels of CO₂ and O₂,
65 Rubisco's tendency to oxygenate rather than carboxylate its substrate RuBP (ribulose 1,5-bisphosphate)
66 is estimated to reduce yields by as much as 36% and 20% in US grown soybean and wheat, respectively
67 (Walker et al., 2016). Recent work has shown that limiting the costs of photorespiration by increasing its
68 efficiency can provide dramatic benefits to plant growth (South et al., 2019).

69 Synthetic biology approaches hold promise for improving a number of facets of photosynthetic
70 efficiency in crop plants (Maurino and Weber, 2013; Erb and Zarzycki, 2016; Orr et al., 2017). One
71 example is the introduction of CO₂-concentrating mechanisms (CCM's) into C₃ crops to increase CO₂
72 concentrations at the site of Rubisco, a strategy which is likely to dramatically reduce the propensity of
73 Rubisco to carry out oxygenation reactions by creating an environment which favors the beneficial
74 carboxylation reaction (Price et al., 2011; McGrath and Long, 2014; Hanson et al., 2016; Long et al.,
75 2016). Significant research efforts are being invested in this area, with varying sources for the CCMs
76 being engineered, such as C₄ (Hibberd et al., 2008; Langdale, 2011) and CAM (Borland et al., 2014; Yang
77 et al., 2015) systems from plants, and the pyrenoid and carboxysome-based systems of algae and
78 cyanobacteria, respectively (Rae et al., 2017; Mackinder, 2018).

79 The CCM employed by cyanobacteria uses a combination of factors to create a high CO₂
80 environment localized around Rubisco (Price et al., 2008; Hanson et al., 2016). Aggregation and
81 encapsulation of Rubisco within a highly ordered icosahedral protein micro-compartment, or
82 carboxysome, allows co-localization of Rubisco and carbonic anhydrase (CA) to convert HCO₃⁻ to CO₂
83 where it is needed, and permits the movement of key molecules while limiting CO₂ escape. Generating a
84 high CO₂ environment is also facilitated by a complex system of inorganic carbon transporters on the
85 cyanobacterial outer membrane that move either HCO₃⁻ or CO₂ into the cytoplasm through active and
86 passive mechanisms (Price, 2011). Modelling the incorporation of the various components of the CCM

87 into plants suggests that once a fully functioning system is established within a higher plant chloroplast,
88 photosynthetic rates could be improved by as much as 60% (McGrath and Long, 2014). The resulting
89 subsequent improvements in yield could facilitate a major change in crop productivity and resource use
90 efficiency (Ort et al., 2015; Hanson et al., 2016).

91 Significant progress has been made during recent years to unravel the molecular mechanisms of
92 CCMs involving either carboxysomes or pyrenoids. In *Synechococcus elongatus* PCC7942, which produces
93 β -carboxysomes, the *ccmM* gene gives rise to two proteins: CcmM58 and CcmM35, the latter arising
94 from an internal ribosomal entry site (Long et al., 2007; Long et al., 2010). CcmM35 possesses three
95 tandem repeats of Rubisco small subunit-like domains, and was initially thought to interact with Rubisco
96 by replacing small subunits (Long et al., 2011). However, recent experiments suggest that CcmM35 binds
97 Rubisco without releasing the small subunits (Ryan et al., 2019). A recent structural study revealed that
98 the interaction between CcmM35 and Rubisco leads to dramatic phase separation (Wang et al., 2019).
99 This nucleation of Rubisco holoenzymes by CcmM35 represents a critical first step in the assembly of β -
100 carboxysomes (Cameron et al., 2013). In the pyrenoid of Chlamydomonas, similar phase separation was
101 also observed when the Rubisco and a repeat protein called EYPC1 interact (Wunder et al., 2018).
102 Likewise, in α -carboxysomes, Rubisco holoenzymes interact with a highly disordered repeat protein
103 called CsoS2 (Cai et al., 2015; Liu et al., 2018). In a recent breakthrough, Long and co-workers were able
104 to assemble α -carboxysomes in tobacco chloroplasts by co-expressing Rubisco large and small subunit
105 genes along with CsoS2 and a shell protein called CsoS1A from *Cyanobium marinum* PCC7001 (Long et
106 al., 2018). In another study, the shell proteins of β -carboxysome transiently expressed in the chloroplasts
107 of *Nicotiana benthamiana* were able to assemble structures similar to micro-compartments (Lin et al.,
108 2014a).

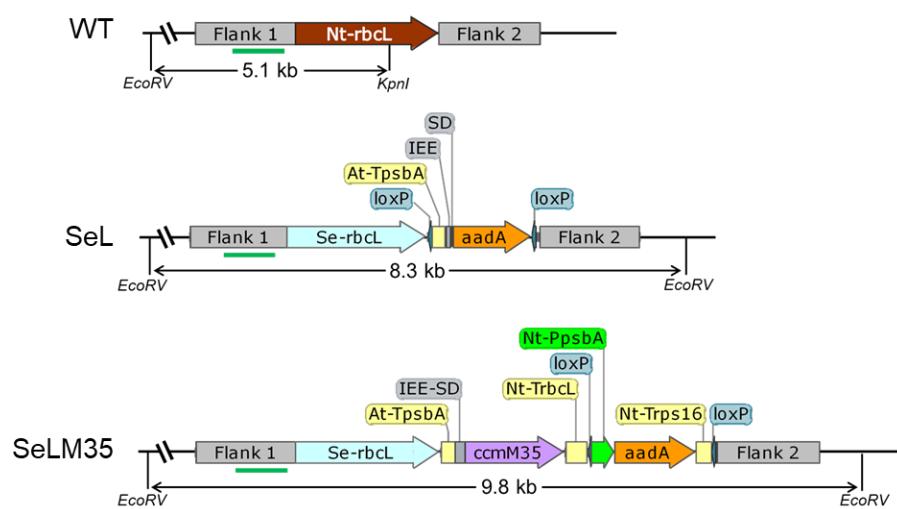
109 Our previous work demonstrated that replacing the Rubisco large subunit gene in tobacco with
110 the Rubisco large and small subunit genes from *Synechococcus elongatus* PCC7942 (Se) resulted in plants
111 that can support photosynthetic growth under elevated CO₂ conditions (Lin et al., 2014b; Occhialini et
112 al., 2016). When CcmM35 was co-expressed in tobacco chloroplasts, the heterologous Rubisco was
113 observed in a large aggregate with an appearance resembling a separate liquid phase (Lin et al., 2014a).
114 In a previous study performed by another group, when the tobacco *rbcL* gene was replaced with that
115 from *Synechococcus* PCC6301, no Rubisco large subunit (LSU) was detected in the transformed plant
116 (Kanevski et al., 1999), and it was thought that the cyanobacterial LSU could not assemble with plant
117 small subunit (SSU) to form a functional enzyme.

118 Here we investigated the assembly and functioning of cyanobacterial Rubisco within higher plant

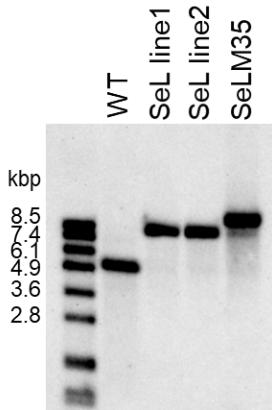
119 chloroplasts when the Se LSU is expressed either with or without CcmM35 in the absence of cognate
120 cyanobacterial SSU. Analysis of transplastomic tobacco lines incorporating some cyanobacterial
121 components but lacking the cognate SSU revealed that the Se LSU and CcmM35 are able to form large
122 aggregates of Rubisco within tobacco chloroplasts. Though only low amounts of tobacco SSUs were
123 present, the transplastomic lines characterized differed significantly in physiology and biochemistry from
124 comparable lines that also co-expressed the cognate cyanobacterial SSU. Remarkably, albeit at slow
125 rates, in the absence of the cognate small subunits, the hybrid cyanobacterial LSU-tobacco SSU
126 expressed in tobacco chloroplasts with and without CcmM35 was active and supported plant growth.

127

128


129 **Results**

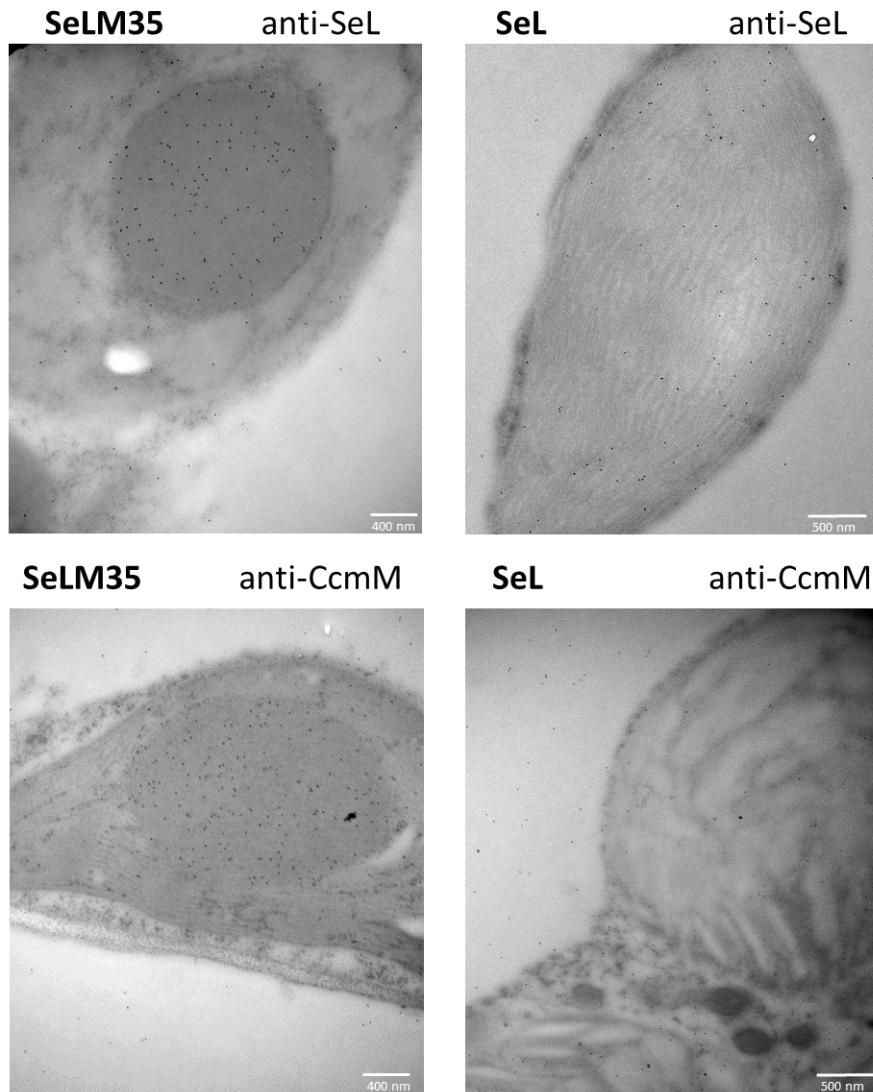
130


131 **Cyanobacterial Rubisco large subunits can support carbon fixation in tobacco chloroplasts in the** 132 **absence of cognate small subunits**

133 We generated two transplastomic tobacco lines named SeL and SeLM35 by replacing in-frame the entire
134 tobacco Rubisco large subunit gene with that from *Synechococcus elongatus* PCC7942 (Se). In the
135 SeLM35 line, the *ccmM35* gene was introduced downstream of the *Se-rbcL* gene to be co-expressed
136 from the same chloroplast genome locus (Fig. 1A). We used the same regulatory elements at intergenic
137 regions as described in our previous work namely, a terminator, an intercistronic expression element
138 (IEE) and a Shine-Dalgarno (SD) or ribosome binding site (Lin et al., 2014b; Occhialini et al., 2016). In
139 contrast to our previous work, the new transplastomic lines do not possess a corresponding
140 cyanobacterial Rubisco small subunit gene. The *aadA* selectable marker gene was incorporated into the
141 same operon as the *Se-rbcL* gene in the SeL construct instead of a separate operon as in the SeLM35
142 construct. We obtained homoplasmic transformed shoots after two rounds of selection, and were able
143 to transfer them to soil for growth under elevated CO₂ (9000 ppm). We collected seeds from two
144 independent SeL lines and one SeLM35 line. Both DNA and RNA blots confirmed complete removal of
145 the *Nt-rbcL* gene and its corresponding transcript in these plants (Fig. 1B, S1). We also analyzed the
146 transcripts containing *Se-rbcL* and *ccmM35* genes in these lines together with SeLS and SeLSM35 lines
147 generated in our previous study (Fig. S1). The RNA blots showed bands arising from incomplete
148 processing of IEE as well as read-through transcription of the downstream *aadA* operon, consistent with
149 our previous observations (Occhialini et al., 2016).

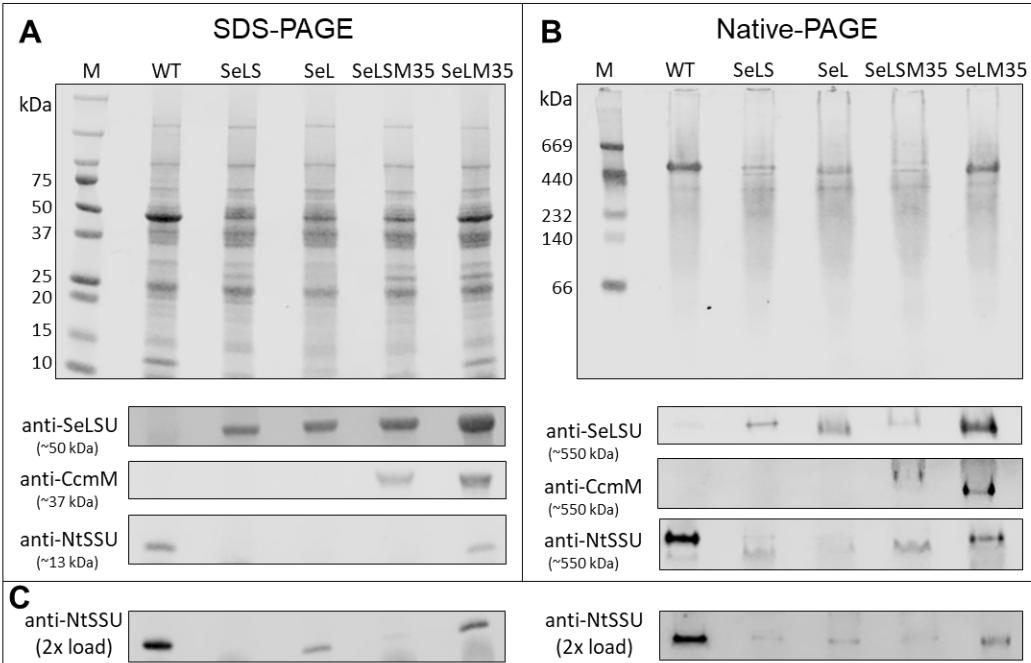
A

B


150
151 **Figure 1. Replacement of the *rbcL* gene in tobacco chloroplasts with or without**
152 **the *Se-rbcL* with or without the *ccmM35* gene.** (A) The gene arrangements of wild-type (WT), SeL and SeLM35 tobacco lines along
153 with the locations of the EcoRV and KpnI restriction sites used in the DNA blot. The binding site for the
154 DIG-labeled DNA probe is shown in green bars. Seeds were obtained from two independent SeL lines
155 and one SeLM35 line. (B) DNA blot analysis of the WT, SeL and SeLM35 samples digested with EcoRV
156 and KpnI. All samples produced the expected band on the DNA blot.

157
158
159
160 **Cyanobacterial Rubisco large subunits and CcmM35 aggregate in pro-carboxysome micro-**
161 **compartments in tobacco chloroplasts**

162 Expression of Se CcmM35 together with the cyanobacterial LSU in the SeLM35 transformant resulted in
163 the formation of aggregates, or pro-carboxysome micro-compartments, in tobacco chloroplasts (Fig. 2).
164 These aggregates were similar in size and shape to those observed in plants containing both the large
165 and small subunits of Rubisco, and CcmM35 (SeLM35, Fig. S2), but were absent from tobacco plants


166 expressing the Se LSU in the absence of CcmM35. Immuno-gold labelling confirmed the presence of the
167 Se LSU and CcmM35 proteins within the SeLM35 pro-carboxysome compartments (Fig. 2, S3, S4). In
168 comparison, in SeL plants, the Se LSU protein could be detected throughout the chloroplast and, as
169 expected, the anti-CcmM antibody gave only background level signal.

170 Gel electrophoresis and immunoblotting of leaf extracts demonstrated the presence of
171 cyanobacterial LSU and CcmM35 in SeLM35 transplastomic plants (Fig. 3). Visually, the two proteins
172 appear to be more abundant on a total soluble protein basis in these plants compared to SeLSM35. As
173 expected, both proteins were absent from WT leaf extracts, and in SeLS and SeL plants, Se LSU was
174 present but CcmM35 was not observed. The tobacco SSU was detected in WT, SeL and SeLM35 leaf
175 extracts, although its abundance in SeL was very low, and visualization of the ~13 kDa SSU required a
176 higher TSP load to detect clearly using immunoblotting (Fig. 3C). Non-denaturing native-PAGE suggested
177 that CcmM35 is present in functional complexes with Rubisco in the tobacco transplastomic lines
178 SeLSM35 and SeLM35 (Fig. 3B).

179

180 **Figure 2. Tobacco plants expressing cyanobacterial Rubisco large subunits and CcmM35 contain**
 181 **a pro-carboxysome compartment in the chloroplast.** Immunolocalization of *Synechococcus elongatus*
 182 (*Se*) proteins in the chloroplasts of transplastomic tobacco lines expressing the Rubisco large subunit and
 183 CcmM35 (SeLM35) or the large subunit alone (SeL). Electron micrographs of ultrathin sections of
 184 mesophyll cells probed with the indicated primary antibody and a secondary antibody conjugated to 10
 185 nm gold particles. Scale bars indicate size. Additional images are presented in Supplemental Figures S3
 186 and S4.
 187

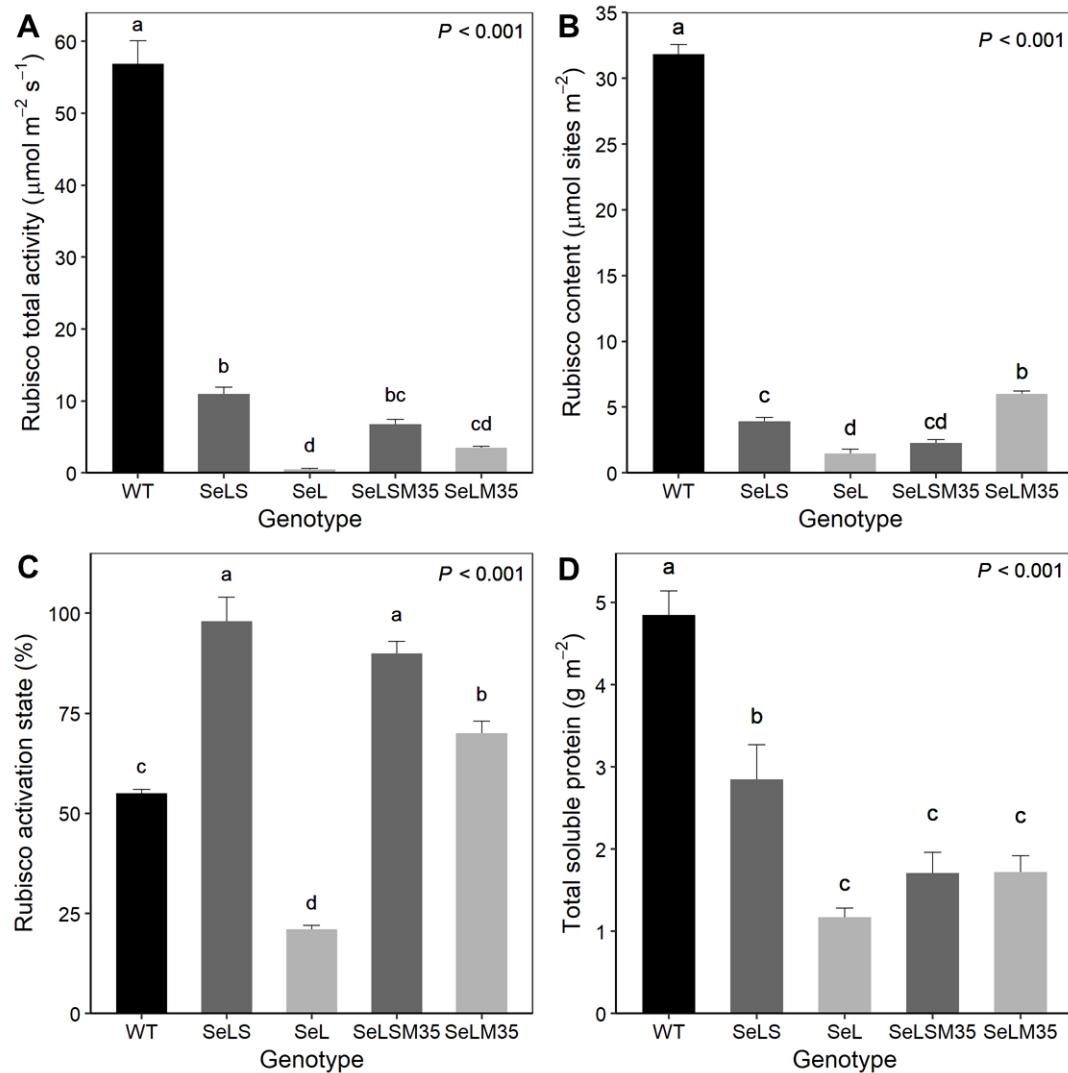
188

189 **Figure 3. Protein composition of wild-type (WT) tobacco and transplastomic lines expressing β -
190 cyanobacterial carboxysome components.** Polypeptides in leaf extracts prepared from plants of each
191 line were separated by denaturing SDS-PAGE (A) and non-denaturing Native-PAGE (B) and either
192 stained with Coomassie Blue (upper panels) or used for immunoblotting with antibodies against
193 cyanobacterial Rubisco large subunit (SeLSU) and CcmM35, and against tobacco Rubisco small subunit
194 (NtSSU) (lower panels). Panels showing blotting of PAGE gels are slices from blots (see Fig. S5) that
195 show the indicated size regions where the respective antibodies detect proteins of interest. For SDS-
196 PAGE and Native-PAGE, 10 and 20 μ g total soluble protein was loaded per lane, respectively. (C), SDS-
197 Page and Native-PAGE gels immunoblotted with antibody against NtSSU, loaded with 20 and 40 μ g total
198 soluble protein, respectively.

199

200

201 **Cyanobacterial Rubisco activity is impaired by the lack of a cognate SSU within tobacco chloroplasts**


202 Consistent with previous efforts expressing Se Rubisco within tobacco chloroplasts, Rubisco content and
203 activity on a leaf area basis were significantly lower in leaf extracts of all the transplastomic lines,
204 representing less than 20% of the values in WT plants (Fig. 4). SeL plants in particular displayed minimal
205 amounts of Rubisco. While Rubisco active sites in SeL were ca. 20% of SeLS plants expressing both Se
206 Rubisco subunits (Fig. 4B), total activity in SeL was less than 5% of SeLS, and ca. 1% of WT tobacco,
207 consistent with the extremely slow growth of these plants (see below). SeLM35 plants had significantly
208 more Rubisco active sites than other transplastomic lines, including SeLSM35, which also expresses the
209 CcmM35 linker protein (Fig. 4B, $P < 0.001$), although Rubisco total activity was not significantly different
210 between the two lines (Fig. 4A, $P > 0.001$).

211 To ascertain the ability of tobacco chloroplasts to maintain active cyanobacterial Rubisco, we

212 determined Rubisco activation states from WT and transplastomic plants under steady state conditions.
213 As anticipated, WT plants were observed to have a comparatively low activation state in high CO₂
214 conditions (Fig. 4C). Lines expressing both Se Rubisco subunits, with or without CcmM35 showed
215 essentially fully active Rubisco. In contrast, in SeLM35 Rubisco, activation was ca. 70 %, and in SeL,
216 expressing just the cyanobacterial LSU, it was only ca. 20 %. These data indicate that these complexes,
217 although able to function, did not become fully active in these growth conditions.

218 All transplastomic lines displayed significantly lower total soluble protein compared to WT
219 tobacco (Fig. 4D, $P < 0.001$) and this decrease was largely consistent with the decreased amount of
220 Rubisco on an area basis (Fig. S6). Alongside reduced total soluble protein and Rubisco content and in
221 agreement with visual observation of these transplastomic plants, levels of chlorophyll a, b, and thus
222 total chlorophyll were significantly reduced (Fig. S7). Chlorophyll a was more severely reduced, and with
223 the exception of SeLS, all lines had a significantly reduced chlorophyll a/b ratio compared to WT tobacco.

224 Cyanobacterial Rubisco has been characterized to have a very high catalytic rate, but also a poor
225 affinity for CO₂ (high K_C value). In SeLS and SeLSM35 plants, values obtained for carboxylation rate, V_C,
226 and K_C, the Michaelis-Menten constant for CO₂, were consistent with previous work (Table 1; (Occhialini
227 et al., 2016). Rubiscos from SeLM35 and SeL, which contain the cyanobacterial LSU but lack a cognate
228 SSU, were able to carboxylate RuBP at significant rates. Immunoblotting suggested the presence of
229 tobacco SSU in the Rubisco complex, but this was likely at a stoichiometric ratio lower than 1:1 in
230 relation to the cyanobacterial LSU (Fig. 3). These two Rubisco enzymes had affinities for CO₂ comparable
231 to the enzyme from the transplastomic lines containing both the cyanobacterial LSU and SSU (Table 1).

232

233 **Figure 4. Rubisco and total soluble protein.** Rubisco total activity (A), activation state (B), and content
 234 (C), and total soluble protein (D), of wild-type (WT) tobacco and transplastomic lines expressing β -
 235 cyanobacterial carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L),
 236 Rubisco small subunit (S), CcmM35 (M35). Values represent mean \pm SEM ($n = 3$ -4 biological replicates).
 237 Letters denote significant differences ($P < 0.001$) as determined by Tukey's honestly significant difference
 238 [HSD] mean-separation test following ANOVA (P -values indicated on each panel).
 239

240

241

242

243

244

245

246

247

248

249

250

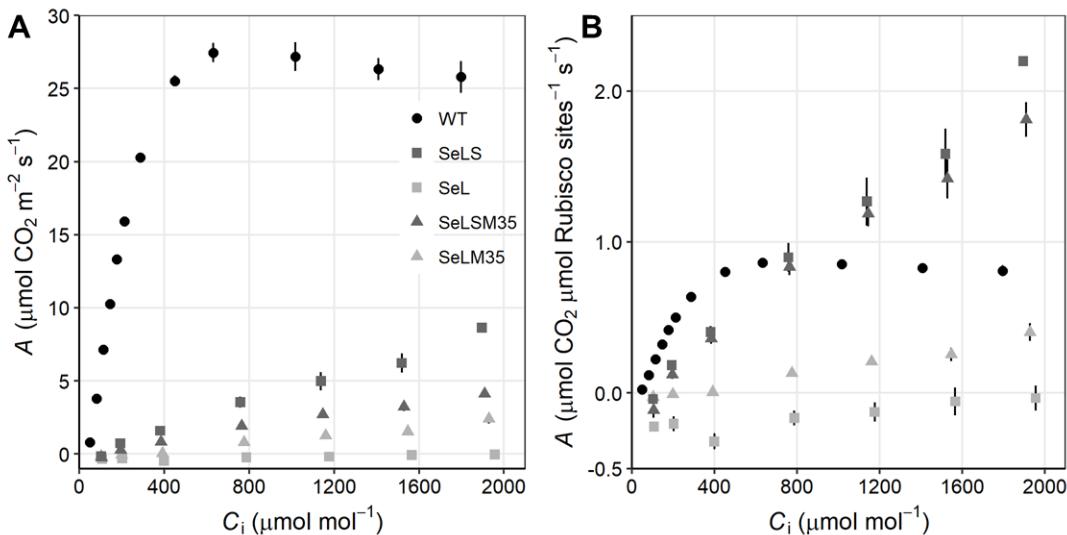
251 **Table 1. Rubisco catalytic properties.** Maximum carboxylation rate (V_c), and Michaelis-Menten
 252 constant for CO_2 (K_c) of Rubisco from wild-type (WT) tobacco and transplastomic lines expressing β -
 253 cyanobacterial carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L),
 254 Rubisco small subunit (S), CcmM35 (M35). Values represent mean \pm SEM (n = 3-5 biological replicates).
 255 * Wild-type values from Occhialini et al. (2016). Letters denote significant differences ($P < 0.05$) between
 256 transplastomic lines as determined by Tukey's pairwise comparisons following ANOVA. For K_c
 257 differences were not significant at $P = 0.05$ level.

Line	V_c ($\mu\text{mol mg}^{-1} \text{min}^{-1}$)		K_c (μM)	
Wild-type*	3.9	\pm 0.2	9.0	\pm 0.3
SeLS	15.0	\pm 0.9 a	168	\pm 59 a
SeL	0.6	\pm 0.2 b	105	\pm 9 a
SeLSM35	10.9	\pm 0.8 c	133	\pm 12 a
SeLM35	2.0	\pm 0.3 b	110	\pm 22 a

258

259

260


261 The lack of a cognate Rubisco small subunit also impairs photosynthetic gas exchange

262 To evaluate the impact of the unusual Rubisco composition in the leaves of these transplastomic lines,
 263 gas exchange measurements were carried out. At the levels present in these transplastomic plants and in
 264 absence of a functional CO_2 -concentrating mechanism, the faster catalytic rate of Se Rubisco does not
 265 confer an advantage in photosynthetic rate per leaf area even at 2000 ppm CO_2 (Fig. 5A). Consistent with
 266 previous work, aggregating cyanobacterial Rubisco through the expression of CcmM35 in SeLSM35
 267 plants slightly reduced photosynthetic rates on an area basis (Fig 5A; Occhialini et al., 2016). SeLM35
 268 photosynthetic rates show that the lack of the cognate Se SSU decreases photosynthetic rates even
 269 further (Fig. 5A). Most transplastomic lines showed a noticeable increase of photosynthesis under low
 270 oxygen conditions (Fig. S8). However, even at the highest CO_2 concentration measured combined with
 271 2% oxygen, SeL plants displayed net photosynthetic rates that were barely above zero (Fig. S8C).

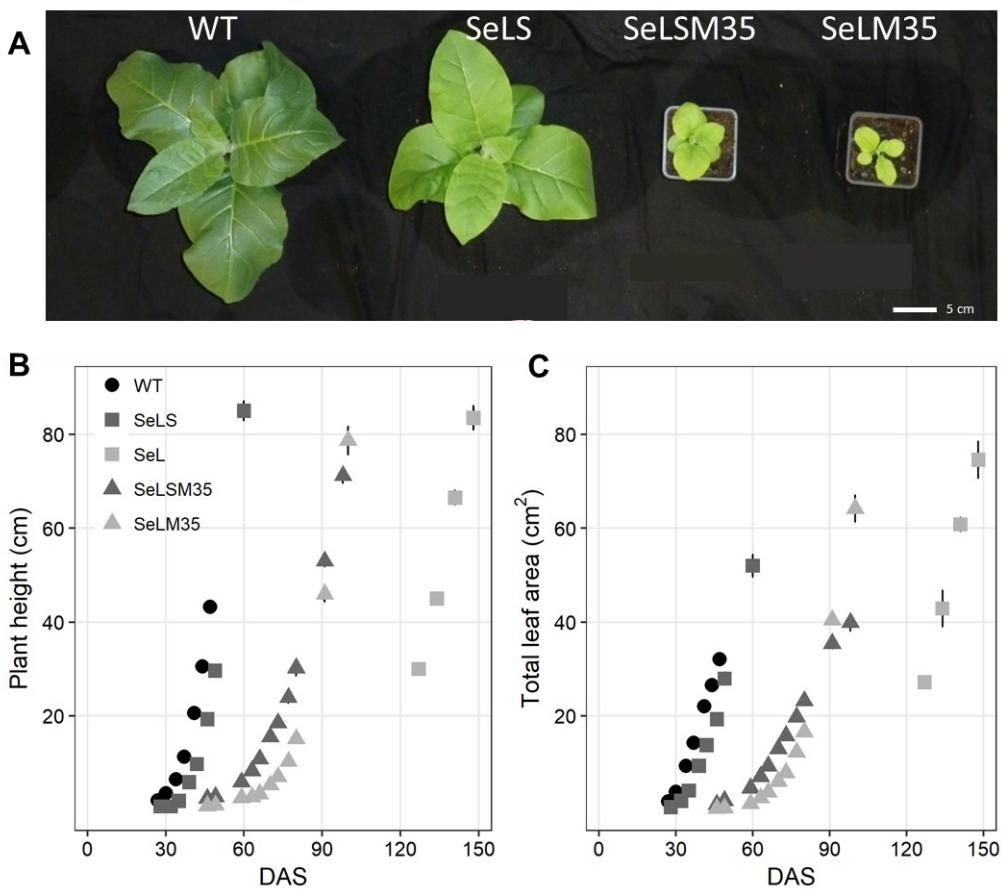
272 As a fully functional cyanobacterial CCM within tobacco will ideally require less Rubisco than
 273 wild-type plants, we also determined Rubisco content in the leaves used for gas exchange analyses.
 274 When CO_2 assimilation was normalized by Rubisco active site concentration, neither SeLM35 nor SeL
 275 outperformed WT plants even at 2000 ppm CO_2 (Fig 5B). Consistent with earlier work, at CO_2 levels well
 276 above ambient SeLS and SeLSM35 plants showed higher photosynthesis per Rubisco active site (Fig.
 277 5B;(Occhialini et al., 2016)). Even accounting for very low Rubisco content, SeL plants show null
 278 normalized rates even at C_i of 2000 ppm CO_2 (Fig. 5B). This is consistent with the observation that even a

279 short exposure of several hours in ambient CO_2 conditions leads to tissue damage, and that even in
280 growth conditions of 4000 ppm CO_2 SeL plants are extremely slow to develop (see below).

281

282

283 **Figure 5. Response of leaf CO_2 assimilation to intercellular CO_2 concentrations (C_i).** Rates are
284 expressed on an area basis (A) and on a Rubisco active site basis (B) for leaves of wild-type (WT)
285 tobacco and transplastomic lines expressing β -cyanobacterial carboxysome components from
286 *Synechococcus elongatus* (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35).
287 Values represent mean \pm SEM ($n = 3-4$ biological replicates).


288

289

290 **Replacement of tobacco Rubisco large subunits with cyanobacterial large subunits impairs growth 291 irrespective of other components**

292 Transplastomic plants where the native tobacco Rubisco large subunit (LSU) was replaced with the Se
293 large subunit with or without the carboxysome linker protein CcmM35 (SeLSM35 and SeLM35) grew
294 slowly even at 4000 ppm CO_2 when compared to both WT and lines expressing both Se Rubisco subunits
295 (SeLS, Fig. 6A, S6, Table S2). Germination time was similar between all lines (~7 days). Plant height and
296 total leaf area of SeLSM35 and SeLM35 plants started to visibly increase 60 days after sowing, and the
297 growth rate for the subsequent 15 days was significantly slower in SeLM35 plants lacking the Se SSU
298 compared to SeLSM35 ($P < 0.05$, Fig. 6B, 6C, Table S2). SeL plants expressing only the Se LSU were
299 dramatically slower in growth ($P < 0.001$), which necessitated germination in tissue culture for
300 establishment before transferring to soil. These plants took approximately three times as long as SeLS
301 plants to reach a plant height of ~80 cm (Fig. 6B). SeL and SeLM35 plants produced numerous smaller
302 leaves, consistent with the other line expressing CcmM35, SeLSM35 (Fig. S10). Both SeL and SeLM35

303 were noticeably paler than WT controls and transplastomic lines expressing the Se SSU (Fig. S7, S9, S10).
304

305
306 **Figure 6. Plant development and growth traits.** Photographs of 33 day old plants growing in parallel in
307 the same growth conditions of 4000ppm CO₂ (A), plant height (B) and leaf area (C) development during
308 the growth cycle of wild-type (WT) tobacco and transplastomic lines expressing β-cyanobacterial
309 carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L), Rubisco small
310 subunit (S), CcmM35 (M35). Values represent mean ± SEM (n = 2-5 biological replicates). DAS, days
311 after sowing.
312

313

314 Discussion

315 The current study describes two new transplastomic tobacco lines, namely SeL and SeLM35, where the
316 native *rbcL* gene has been replaced with its cyanobacterial counterpart without the *Se-rbcS* gene.
317 Previous work had shown the ability of L₈S₈ Rubisco from *Synechococcus elongatus* to assemble and
318 function within higher plant chloroplasts and to form large aggregates of linked Rubisco complexes in the
319 presence of CcmM35 (Lin et al., 2014a; Occhialini et al., 2016). Our current results show that
320 cyanobacterial LSU interacts with the carboxysome linker protein CcmM35 in the absence of a cognate

321 cyanobacterial SSU, and forms pro-carboxysome-like aggregates in tobacco chloroplasts. In contrast to a
322 previous study where no cyanobacterial LSU was detected in a similar tobacco transformant (Kanevski et
323 al., 1999), we were able to detect the cyanobacterial LSU as well as catalytic activity of Rubisco in both
324 SeL and SeLM35 lines (Table 1). It should be noted that the cyanobacterial LSU expressed in the previous
325 study had the first 8 residues at its N terminus replaced by the first 11 residues of the tobacco LSU,
326 possibly leading to lower stability of the modified LSU or inhibition of its assembly with the tobacco SSU
327 (Kanevski et al., 1999).

328 Relative to comparable lines expressing Se SSU, both SeLM35 and SeL plants showed delayed
329 growth (Fig. 6) and developed more numerous, but smaller leaves (Fig. S9, S10). SeL was not able to
330 grow autotrophically from seeds even in high CO₂ levels, and required establishment on tissue culture
331 media. Similar effects have been seen when engineering Rubisco in tobacco where either the
332 introduction of a foreign LSU (Whitney and Andrews, 2001; Sharwood et al., 2008) or mutation of the
333 native tobacco LSU (Whitney et al., 1999) leads to very low Rubisco amount and/or very poor activity.

334 Rubisco from both SeLM35 and SeL had dramatically slower maximum catalytic rates compared
335 to the native Se enzyme (SeLS, Table 1), consistent with the slower growth of these plants. Combined
336 with the significantly lower Rubisco active sites, this led to much lower Rubisco activity on a leaf area
337 basis (Fig. 4). In both lines containing CcmM35, Rubisco catalytic rate was worse than that of β -
338 cyanobacterial Rubisco extracted from SeLS where no aggregation occurs, which would suggest a
339 putative negative impact of CcmM35 on Rubisco activity in the Se plants, and agrees with previous work
340 with the SeLSM35 line (Occhialini et al., 2016). This is consistent with previous observations from plants
341 expressing α -cyanobacterial Rubisco within a minimal α -carboxysome from *Cyanobium* (Long et al.,
342 2018). The authors found that Rubisco catalytic rate was approximately halved when determined for
343 Rubisco from tobacco chloroplasts; however, after high-speed centrifugation to remove insoluble
344 carboxysomes, rates were consistent with those obtained from either the native cyanobacteria or
345 expressed without linker proteins within tobacco. Movement of metabolites such as RuBP may be
346 similarly inhibited by the formation of large β -pro-carboxysomes of LSU-CcmM35, as observed via K_{MRuBP}
347 measurements made on tobacco derived minimal α -carboxysomes (Long et al., 2018). The large size of
348 the observed pro-carboxysomes in SeLSM35 and SeLM35 plants, relative to native cyanobacterial
349 carboxysomes, appears likely to have influenced metabolite movement. This highlights that an important
350 part of balancing expression of the various components is not only to ensure correct formation of a
351 functional carboxysome, but also to achieve a suitably sized microcompartment. However, Rubisco
352 extracted from SeLM35 was significantly more active than the enzyme extracted from SeL plants,

353 showing that in the absence of Se SSU, CcmM35 helps sequester more tobacco SSU, possibly by
354 increasing stability of the hybrid L₈S₈ enzyme or facilitating its assembly (Fig. 3).

355 The very low activity observed for SeL Rubisco that lacked the cognate SSU from cyanobacteria
356 agrees with *in vitro* findings from a number of previous studies investigating the ability of LSU-only
357 Rubisco to perform catalysis (Andrews and Ballment, 1984; Jordan and Chollet, 1985; Andrews, 1988). In
358 studies including cyanobacterial Rubisco, *in vitro* preparations containing only L₈ octameric cores
359 typically had detectable activity corresponding to only ~1% of the cyanobacterial holoenzyme, and even
360 addition of heterologous higher plant SSU from spinach led to dramatic increases in activity (Andrews,
361 1988). The cyanobacterial L₈ core binds spinach SSU with an affinity an order of magnitude lower than its
362 native SSU, and the activity of the hybrid enzyme was only half that of the enzyme with homologous
363 subunits (Andrews and Lorimer, 1985). This suggests that the minimal activity observed for SeL Rubisco,
364 ~5% of SeLS (Fig. 4), may in part result from a substoichiometric amount of tobacco SSU's binding to
365 cyanobacterial L₈ cores.

366 A common theme in organization of Rubisco enzymes within both carboxysomes of
367 photosynthetic bacteria and pyrenoids from green algae appears to be through interactions with a
368 disordered repeat protein such as CcmM35 in β-carboxysomes, CsoS2 in α-carboxysomes and EPYC1 in
369 pyrenoids (Long et al., 2011; Cai et al., 2015; Mackinder et al., 2016). In the case of β-carboxysomes and
370 pyrenoids, the Rubisco enzymes were sequestered into a separate liquid phase by these linker proteins
371 (Freeman Rosenzweig et al., 2017; Wunder et al., 2018; Wang et al., 2019). EPYC1 or CsoS2 were shown
372 to interact only with the SSU (Liu et al., 2018; Atkinson et al., 2019), whereas both the large and small
373 subunits are involved in binding CcmM35 based on a cryo-EM structural model, and the L₈ core alone
374 was insufficient to form a separate liquid phase with CcmM35 (Wang et al., 2019). Thus, the tobacco
375 SSUs are likely involved in the formation of CcmM35-Rubisco aggregates in SeLM35 plants although the
376 stoichiometry between the Se LSU and tobacco SSUs was not determined. Indeed, the residues in Se SSU
377 critical for interaction with CcmM35 are well conserved in tobacco SSU (Fig. S11; (Wang et al., 2019)).

378 The poor photosynthetic performance of these transplastomic lines in the absence of a
379 functional CCM with all the necessary components is unsurprising. However, the ability of some lines to
380 outperform wild-type plants on a per Rubisco basis at higher CO₂ levels suggests that provided with high
381 CO₂ concentrations such as those within a fully formed β-carboxysome shell in a complete CCM, the
382 Rubisco levels within these plants may be sufficient to support improved rates of carbon assimilation.
383 Consistent with this, Long and colleagues (2018) observed that leaf discs from plants expressing α-
384 cyanobacterial Rubisco produced similar photosynthetic rates to wild-type tobacco plants in 2% (v/v) CO₂

385 conditions within a membrane inlet mass spectrometry system (MIMS). Thus, and even considering the
386 associated nitrogen costs of producing the shell components, reducing the typically very large
387 investment into Rubisco by C₃ plants may represent an overall nitrogen saving (McGrath and Long, 2014).
388 An issue that is highly likely to be encountered when dealing with the numerous other components of
389 the carboxysome shell is to optimize expression levels, and this may also be necessary for Rubisco. An
390 increasing understanding of the role of chaperones for Rubisco assembly (Feiz et al., 2014; Salesse-Smith
391 et al., 2018; Wilson and Hayer-Hartl, 2018; Conlan et al., 2019) may provide avenues to increase Se
392 Rubisco amounts, should this become necessary to support the desired number of carboxysomes per
393 chloroplast, in order to drive higher photosynthetic rates within a fully formed CCM. It is also possible
394 that adjusting the chloroplast regulatory sequences used to express Se Rubisco subunits may be
395 sufficient to increase the Rubisco amount.

396 The ability of CcmM35 to link Se LSU *in planta* without a cognate SSU shows that tobacco SSU
397 can not only substitute Se SSU to form functional hybrid Rubisco, but can also result in an enzyme to
398 which CcmM35 can bind. While the Se SSU does not appear to be essential for formation of a pro-
399 carboxysome, the differences shown here based on its presence in a pro-carboxysome highlight its
400 importance for full Rubisco functionality and carboxysome structural organization. These results support
401 the likely necessity of co-engineering cognate subunits from a distant foreign Rubisco, as part of efforts
402 to engineer both a foreign Rubisco into higher plants (Whitney and Andrews, 2001; Sharwood et al.,
403 2008) and for more complex engineering of CO₂-concentrating mechanisms such as carboxysomes and
404 pyrenoids from cyanobacteria and algae, respectively (Atkinson et al., 2016; Rae et al., 2017).

405 The carboxysome alone will be insufficient to attain higher rates of photosynthesis without the
406 removal of existing stromal carbonic anhydrase and the addition of transporters to pump high levels of
407 HCO₃⁻ into the chloroplast (Hanson et al., 2016; Long et al., 2018; Desmarais et al., 2019). There have
408 been recent improvements in approaches to tackle the issue of localizing these inorganic carbon pumps
409 (Rolland et al., 2016; Uehara et al., 2016), alongside advances in understanding the role of the various
410 carbonic anhydrases (Hu et al., 2015; DiMario et al., 2016). Furthermore, there is now a better
411 understanding of the actual ratios of components in β-carboxysomes (Sun et al., 2019), engineering of β-
412 carboxysome shells to obtain cryoEM structural models (Cai et al., 2016; Sutter et al., 2019), an assembly
413 of full β-carboxysomes in *E. coli* (Fang et al., 2018), and recent successes with α-carboxysomes (Long et
414 al., 2018). These advances provide encouragement that ongoing research is steadily moving toward the
415 ability to assemble these complex, powerful CCMs within plants to improve photosynthesis with the
416 ultimate goal of improving global food security.

417

418

419 **Materials and Methods**

420 *Construction of chloroplast transformation vectors*

421 All primers used were obtained from Integrated DNA Technologies and listed in Table S1. Phusion™ high-
422 fidelity DNA polymerase, FastDigest restriction enzymes and T4 DNA ligase from Thermo Scientific were
423 used to generate amplicons, restriction digests and ligation products respectively. The ligation products
424 were transformed into chemically competent DH5 α *E. coli* and selected on LB agar medium with 100
425 μ g/mL ampicillin. A template vector to hold each DNA piece was first constructed as follows. The *aadA*
426 operon from BJF-070 vector (Hanson et al., 2013) was removed by self-ligation of the *Ns*II digest. An
427 amplicon was generated from the resulting vector using *Ns*II-BJF3 and *Bam*HI-BJF5 primers and ligated
428 into the *Bam*HI and *Ns*II sites of the vector to introduce *Sbf*I and *Not*I sites upstream of the *Ns*II locus.
429 The resulting vector, BJFE-BB, was used as a vector to hold each DNA element between the *Sbf*I and *Not*I
430 sites using BB-XXX-f and BB-XXX-r primers where 'XXX' stands for the name of each DNA element. Once
431 ligated into the BJFE-BB vector, each DNA element was flanked by *Sbf*I-*Mlu*I upstream and *Mau*BI-*Not*I
432 downstream. Since *Mlu*I and *Mau*BI restriction sites have compatible cohesive ends, these DNA parts can
433 be assembled in any desired order using an approach similar to the BioBrick method (Shetty et al., 2008).
434 Specifically, we assembled an *aadA* module comprised of *loxP*-At_*TpsbA*-*IEE*-*SD*-*RBS*-*aadA*-*loxP*. We then
435 modified pGEM-F1-*rbcL*-F2 vector described previously (Lin et al., 2014b) by introducing a *Sbf*I site
436 immediately downstream of the *Se-rbcL* gene. It was accomplished by ligating the amplicon generated
437 with *Hind*III-*LSUE5* and *T1L-IEE3* primers into the *Hind*III and *Xba*I sites to obtain the pCT-*rbcL*-BB2 vector.
438 Next, *Xba*I+*Ascl* digest of the amplicon from *TrbcL5* and *Ascl-LSUFI2r* primers was ligated into *Xba*I and
439 *Mlu*I sites of pCT-*rbcL*-BB2 vector to obtain pCT-*rbcL*-BB vector. Finally, we introduced the *aadA* module
440 between the *Sbf*I and *Not*I sites of pCT-*rbcL*-BB vector to obtain pCT-*rbcL*-BB-*aadA* vector used to
441 generate the *SeL* chloroplast transformant tobacco line. pCT-*rbcL*-*ccmM35* described previously (Lin et
442 al., 2014b) was used in the generation of *SeLM35* tobacco chloroplast transformant.

443

444 *Generation of transplastomic tobacco plants*

445 We introduced transformation vectors into two-week-old tobacco (*Nicotiana tabacum* cv. Samsun)
446 seedlings with the Biolistic PDS-1000/He Particle Delivery System (Bio-Rad Laboratories) and tissue-
447 culture based selection method as described previously (Occzialini et al., 2016). Briefly, about 10 μ g of
448 DNA was mixed with 100 μ L of 50 mg/mL 0.6 μ m gold nanoparticles, 100 μ L of 2.5 M *CaCl*₂ and 40 μ L of

449 0.1 M spermidine free-base by vortexing for about one minute. The gold particles were then pelleted in
450 a microcentrifuge at 1000 rpm for 8 seconds and resuspended in 180 μ L of 70% ethanol. After the
451 washing of the gold particles was repeated one more time, the pellet was resuspended in about 60 μ L of
452 100% ethanol and then spread on ten microcarrier discs used for bombardment. Two days later, the
453 leaves from the bombarded seedlings were cut into halves and placed on RMOP agar medium with 500
454 μ g/mL spectinomycin for 4-6 weeks at 23°C under 14 h light per day. The shoots arising were cut into 5
455 mm² pieces and subjected to a second round of selection on the same medium for another 4-6 weeks.
456 The regenerated shoots were then transferred to MS agar medium for rooting and subsequently
457 transferred to soil for growth in a chamber with elevated CO₂ (~9000 ppm) until the seeds were
458 collected. Total DNA was extracted from leaf tissues using CTAB buffer, digested with EcoRV+KpnI
459 restriction enzymes, separated on a 1% agarose gel, transferred to a Nylon membrane and detected with
460 a DIG-label DNA probe as described previously (Lin et al., 2014b).

461

462 *Analyses of transgenes' transcripts on RNA blots*

463 The transcripts were analyzed on RNA blots using the procedure described previously with the same
464 DIG-labeled RNA probes (Occhialini et al., 2016). Briefly, RNA samples were prepared from leaf tissues
465 with a PureLink[®] RNA mini kit (Life Technologies) and their concentrations were estimated with a Qubit[®]
466 RNA BR assay kit. About 1 μ g each RNA sample was mixed with NorthernMax[®] formaldehyde load dye
467 (Life Technologies) with 50 μ g/mL ethidium bromide and incubated at 65 °C for 15 min before they were
468 loaded to 1.3% agarose gel with 2% formaldehyde. After separation at 7 V cm⁻¹ for about 2 h, the gel was
469 washed three times in diethylpyrocarbonate-treated water for 10 min each and incubated in 20x SSC for
470 45 min before the RNAs were transferred to a positively charged nylon membrane under capillary action.
471 The membrane was then exposed to UV radiation with a Stratalinker[®] UV Crosslinker, hybridized with 200
472 ng of each DIG-labeled RNA probe in ~ 4 mL of DIG EasyHyb buffer (Roche) at 68 °C overnight, and
473 detected with anti-digoxigenin-AP antibody and CDP-Star chemiluminescent substrate (Roche).

474

475 *Plant material*

476 Seeds of wild type (WT) and transplastomic tobacco (*Nicotiana tabacum* cv. Samsun) were sown into
477 trays of a commercial potting mix (Petersfield Products, UK) with a slow-release fertiliser (Osmocote,
478 Scotts UK Professional, UK). Seedlings were thinned out after *ca.* two weeks, with individual plants
479 transferred to 1 L pots after three weeks. Seeds of SeL were sown into tissue culture pots containing agar
480 solidified MS medium containing 1% sucrose before transferring to soil after three weeks. Plants were

481 grown in a controlled environment chamber (Microclima 1750, Snijders Scientific B.V., Netherlands). The
482 chamber was set at day/night temperatures of 24/22 °C with a 16 h photoperiod, 60 % humidity. The
483 ambient CO₂ concentration within the chamber was maintained at 4000 ± 400 ppm using the integrated
484 CO₂ controller. CO₂ levels were also monitored in the chamber with a Vaisala hand held GM70 meter
485 (Vaisala, UK). Plants were kept well-watered. Space limitations within growth chambers necessitated
486 growing plants in batches for growth analysis.

487

488 *Fixation and embedding of plant tissue, immunogold labelling and TEM*

489 Small pieces (1x1.5mm) of tissue from fully expanded leaves of plants equivalent in size to 33 DAS WT
490 plants were incubated in fixative (4% paraformaldehyde, 2.5 % glutaraldehyde in 0.05 M sodium
491 phosphate buffer pH 7.2) for 2 hours at room temperature with rotation. A vacuum was used to aid
492 infiltration. After washing 3x 10 minutes in 0.05 M sodium phosphate buffer pH 7.2, the tissue was
493 dehydrated in an ethanol series (50%, 70%, 80%, 90%) at room temperature for 30 minutes each step
494 and finally 100% ethanol for 1 hour. Tissue was infiltrated with LR white resin (Agar Scientific, UK), first
495 by incubating for 1 hour in 100% ethanol:LR white 1:1 (v/v), then for 2 hours in 100% LR white and finally
496 overnight in 100% LR white. Specimens were transferred to Eppendorf tubes charged with fresh 100%
497 LR white resin. The tubes were sealed with plastic film and the resin polymerised at 50 °C for 16 hours.

498 Ultrathin sections (~90 nm) of embedded leaf material were captured on gold gilded grids (Agar
499 Scientific, Stansted, UK) and used for immunogold labelling. Samples were blocked for 30 minutes in 1%
500 BSA in phosphate buffered saline (PBS) and then incubated in primary antibody solution (antibody
501 diluted 1/100 in 1% BSA in PBS) for 1.5 hours. Grids were washed 3x 10 minutes with 1% BSA in PBS
502 before incubation for 1 hour with secondary goat anti-rabbit antibody conjugated to 10 nm gold particles
503 (Agar Scientific, UK, 1/100 antibody dilution prepared in 1% BSA in PBS). Grids were washed 3x 10
504 minutes in 1% BSA in PBS and 3x 5 minutes in distilled water before air-drying. Images were obtained at
505 80kv using a JEOL 1010 (JEOL, Japan) microscope equipped with a digital AMT NanoSprint500 camera
506 (Deben, UK).

507

508 *Gel electrophoresis and immunoblotting*

509 Soluble protein extracts were analysed for the presence of proteins via both denaturing (SDS-PAGE) and
510 non-denaturing (Native-PAGE) gel electrophoresis. SDS-PAGE and immunoblotting was carried out as
511 described in Perdomo *et al.* (2018) using Bio-Rad Mini-Protean TGX gels (Bio-Rad, UK). Non-denaturing
512 gels were run using a Tris-glycine buffering system at 4°C as per the manufacturer's instructions. For both

513 types of electrophoresis, immunoblotting was as described by Perdomo *et al.* (2018) using SeLSU and
514 CcmM antibodies described previously (Lin *et al.*, 2014b) and a plant SSU antibody (Agri-Sera AS07 259,
515 Agri-Sera, Sweden).

516

517 *Rubisco biochemistry*

518 Rubisco activities and activation state in leaf extracts were determined as described by Carmo-Silva *et al.*
519 (2017), except that homogenate centrifugation was at a reduced 300 g for 1 min. Chlorophyll content in
520 the homogenates was determined by the method of Wintermans and de Mots (1965) using ethanol and
521 measuring absorbance in a microplate reader (SPECTROstar Nano, BMG LabTech, UK). Total soluble
522 protein (TSP) in the same supernatant as used for Rubisco activity assays was determined via Bradford
523 assay (1976). The amount of Rubisco was also quantified in the same supernatant by a [¹⁴C]CABP
524 [carboxyarabinitol-1,5-bisphosphate] binding assay (Whitney *et al.*, 1999).

525 Rubisco catalytic properties were determined essentially as described previously (Prins *et al.*,
526 2016; Orr and Carmo-Silva, 2018) with the following changes: leaf discs were ground in extraction buffer,
527 followed by centrifugation at 300 g and 4°C for 1 min. Supernatants were immediately used for assays,
528 which was previously found to be suitable with similar cyanobacterial Rubisco complexes (Lin *et al.*,
529 2014b). Additional higher CO₂ concentrations (180, 280, and 410 μM) were also used for catalysis assays
530 to enable determination of the Michaelis-Menten constant for CO₂ (K_M^{CO₂} or K_d).

531

532 *Photosynthesis measurements*

533 Photosynthetic gas exchange was measured in healthy leaves that had recently reached full expansion,
534 typically leaf 4 or 5 on plants of approximately 45 cm in height. A LI-6800F portable gas exchange system
535 (LI-COR, Lincoln, NE, USA) was used to enclose a 6 cm² portion of leaf, with constant irradiance of 600
536 μmol photons m⁻² s⁻¹ supplied by the cuvette head LEDs, a vapour pressure deficit of 1.20 ± 0.03 kPa and
537 a flow rate of 300 μmol m⁻² s⁻¹. Leaf temperature was maintained at 24 ± 1°C. For all measurements, the
538 entire gas exchange system was positioned inside the plant growth chamber, and controlled remotely via
539 Ethernet connection. After the cuvette was clamped onto a leaf, the chamber door was kept closed to
540 minimise fluctuations in CO₂ levels and the plant allowed to stabilise for at least 15 min at 3000 ppm CO₂
541 prior to commencing measurements. For transplastomic tobacco lines, the ambient CO₂ concentration
542 (Ca) was subsequently decreased to 100 ppm, followed by increases to 200, 400, 800, 1200, 1600, 2000
543 and 2500 ppm CO₂. For wild-type tobacco, additional concentrations were used such that increases in
544 CO₂ went from 50 to 100, 150, 200, 250, 300, 400, 600, 800, 1200, 1600, 2000 and 2500 ppm. For all

545 leaves measured, a separate CO₂ response curve was determined under 2% (v/v) O₂ conditions using a
546 balanced air gas cylinder for input, using otherwise identical settings.

547

548 *Plant biomass*

549 Leaf numbers and leaf measurements were taken every 3-7 days from four or five individuals for each
550 line (2 in the case of the SeL line). Plant height was measured from soil level to growing point.
551 Measurements were initiated at 28 DAS for WT and SeLS, 46 DAS for SeLSM35 and SeLm35 and 127 DAS
552 for SeL, due to the differing growth rates between lines and continued until the initiation of flowering. At
553 the end of the growth period, final leaf measurements were taken and area measured using a LI-COR
554 3100 leaf area machine (LI-COR, Europe). Leaf areas were then derived for all time points.

555

556 *Statistical analysis*

557 Statistical differences between trait means were tested via one-way analysis of variance (ANOVA). In
558 cases where an effect of genotype was observed ($P < 0.05$), a post-hoc Tukey test was used to conduct
559 multiple pairwise comparisons. Statistical analyses were performed using RStudio (version 1.1.453, (R
560 Studio Team, 2019)) and R (version 3.5.0, (R Core Development Team, 2013)). Plots were prepared with
561 ggplot2 (Wickham, 2016). Plant height and leaf area data analyses involved fitting curves to the
562 exponential phase of growth and comparing means of the curve coefficients using ANOVA. Where a
563 significant difference was observed between lines, a post-hoc Holm-Sidak test was used for multiple
564 pairwise comparisons. Analyses were performed in SigmaPlot (version 13, Systat Software, UK).

565

566

567 **Accession Numbers**

568 Sequence data for cyanobacterial RbcL and CcmM35 can be found in the GenBank data library under
569 accession numbers AIM40198.1 and AIM40200.1 respectively.

570

571 **Supplemental Data**

572 **Supplemental Figure S1.** RNA blots of WT and transplastomic tobacco lines.

573 **Supplemental Figure S2.** Presence of pro-carboxysome compartments in tobacco transplastomic plants
574 containing cyanobacterial Rubisco large subunits and CcmM35, with and without Rubisco small subunits.

575 **Supplemental Figure S3.** Electron micrographs of tobacco plants expressing cyanobacterial Rubisco large
576 subunits and CcmM35 contain a pro-carboxysome compartment in the chloroplast.

577 **Supplemental Figure S4.** Additional examples of electron micrographs of tobacco plants expressing
578 cyanobacterial Rubisco large subunits and CcmM35 with a pro-carboxysome compartment in the
579 chloroplast.

580 **Supplemental Figure S5.** Western blots of SDS-PAGE and Native-PAGE gels used to examine protein
581 composition of wild-type (WT) tobacco and transplastomic lines expressing β -cyanobacterial
582 carboxysome components.

583 **Supplemental Figure S6.** Rubisco content expressed as grams per square metre.

584 **Supplemental Figure S7.** Chlorophyll content of transplastomic lines.

585 **Supplemental Figure S8.** Response of leaf CO_2 assimilation to intercellular CO_2 concentrations (Ci) under
586 atmospheric levels and 2 % oxygen.

587 **Supplemental Figure S9.** Plant photographs at a comparable growth stage.

588 **Supplemental Figure S10.** Comparison of leaf size in transplastomic plants.

589 **Supplemental Figure S11.** Multiple sequence alignment of cyanobacterial and tobacco Rubisco small
590 subunits.

591

592 **Supplemental Table S1.** Oligonucleotide sequences used in the construction of transformation vectors.

593 **Supplemental Table S2.** Plant growth data analyses.

594

595 **Acknowledgments**

596 We are thankful to Dr Sam Taylor (Lancaster) for support and advice with gas exchange measurements,
597 and Nigel Fullwood (Lancaster) for guidance with TEM. We also thank the reviewers for helpful
598 comments on the manuscript.

599

600 **Tables**

601

602 **Table 1. Rubisco catalytic properties.** Rubisco maximum carboxylation rate (V_c), and Michaelis-Menten
603 constant for CO_2 (K_c) of wild-type (WT) tobacco and transplastomic lines expressing β -cyanobacterial
604 carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L), Rubisco small
605 subunit (S), CcmM35 (M35). Values represent mean \pm SEM ($n = 3-5$ biological replicates). * Wild-type
606 values from Occhialini *et al.* (2016). Letters denote significant differences ($P < 0.05$) between
607 transplastomic lines as determined by Tukey's pairwise comparisons following ANOVA.

608

609

610

611 **Figure legends**

612

613 **Figure 1. Replacement of the *rbcL* gene in tobacco chloroplasts with the *Se-rbcL* with or without the**

614 *ccmM35* gene. (A) The gene arrangements of WT, SeL and SeLM35 tobacco lines along with the locations

615 of the EcoRV and KpnI restriction sites used in the DNA blot. The binding site for the DIG-labeled DNA

616 probe is shown in green bars. Seeds were obtained from two independent SeL lines and one SeLM35

617 line. (B) DNA blot analysis of the WT, SeL and SeLM35 samples digested with EcoRV and KpnI. All samples

618 produced the expected band on the DNA blot.

619

620 **Figure 2. Tobacco plants expressing cyanobacterial Rubisco large subunits and CcmM35 contain a pro-**

621 **carboxysome compartment in the chloroplast.** Immunolocalization of *Synechococcus elongatus* (Se)

622 proteins in the chloroplasts of transplastomic tobacco lines expressing the Rubisco large subunit and

623 CcmM35 (SeLM35) or the large subunit alone (SeL). Electron micrographs of ultrathin sections of

624 mesophyll cells probed with the indicated primary antibody and a secondary antibody conjugated to 10

625 nm gold particles. Scale bars indicate size. Additional images are presented in Supplemental Figures S3

626 and S4.

627

628 **Figure 3. Protein composition of wild-type (WT) tobacco and transplastomic lines expressing β -**

629 **cyanobacterial carboxysome components.** Polypeptides in leaf extracts prepared from plants of each

630 line were separated by denaturing SDS-PAGE (A) and non-denaturing Native-PAGE (B) and either stained

631 with Coomassie Blue (upper panels) or used for immunoblotting with antibodies against cyanobacterial

632 Rubisco large subunit (SeLSU) and CcmM35, and against tobacco Rubisco small subunit (NtSSU) (lower

633 panels). Panels showing blotting of PAGE gels are slices from blots (see Fig. S5) and show the indicated

634 size regions where the respective antibodies detect proteins of interest. For SDS-PAGE and Native-PAGE,

635 10 and 20 μ g total soluble protein was loaded per lane, respectively. (C), SDS-PAGE and Native-PAGE gels

636 immunoblotted with antibody against NtSSU, loaded with 20 and 40 μ g total soluble protein,

637 respectively.

638

639 **Figure 4. Rubisco and total soluble protein.** Rubisco total activity (A), activation state (B), and content

640 (C), and total soluble protein (D), of wild-type (WT) tobacco and transplastomic lines expressing β -

641 cyanobacterial carboxysome components from *Synechococcus elongatus* (Se): Rubisco large subunit (L),

642 Rubisco small subunit (S), CcmM35 (M35). Values represent mean \pm SEM (n = 3-4 biological replicates).

643 Letters denote significant differences ($P < 0.05$) as determined by Tukey's honestly significant difference
644 [HSD] mean-separation test following ANOVA (P -values indicated on each panel).

645

646 **Figure 5. Response of net CO₂ assimilation (A) to intercellular CO₂ concentrations (C_i).** Rates are
647 expressed on an area basis (A) and on a Rubisco active site basis (B) for leaves of wild-type (WT) tobacco
648 and transplastomic lines expressing β-cyanobacterial carboxysome components from *Synechococcus*
649 *elongatus* (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35). Values represent
650 mean ± SEM (n = 3-4 biological replicates).

651

652 **Figure 6. Plant development and growth traits.** Photographs of 33 day old plants grown in parallel in
653 4000 ppm CO₂ (A), plant height (B) and leaf area (C) development during the growth cycle wild-type (WT)
654 tobacco and transplastomic lines expressing β-cyanobacterial carboxysome components from
655 *Synechococcus elongatus* (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35).
656 Values represent mean ± SEM (n = 3-5 biological replicates). DAS, days after sowing.

657

658

659 **References**

660

661 **Andrews TJ** (1988) Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the
662 complete absence of small subunits. *J Biol Chem* **263**: 12213–12219663 **Andrews TJ, Ballment B** (1984) Active-site carbamate formation and reaction-intermediate-analog
664 binding by ribulosebisphosphate carboxylase/oxygenase in the absence of its small subunits. *Proc
665 Natl Acad Sci U S A* **81**: 3660–3664666 **Andrews TJ, Lorimer GH** (1985) Catalytic properties of a hybrid between cyanobacterial large subunits
667 and higher plant small subunits of ribulosebisphosphate carboxylase-oxygenase. *J Biol Chem* **260**:
668 4632–4636669 **Atkinson N, Feike D, Mackinder LCM, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ**
670 (2016) Introducing an algal carbon-concentrating mechanism into higher plants: location and
671 incorporation of key components. *Plant Biotechnol J* **14**: 1302–1315672 **Atkinson N, Velanis CN, Wunder T, Clarke DJ, Mueller-Cajar O, McCormick AJ** (2019) The pyrenoidal
673 linker protein EPYC1 phase separates with hybrid *Arabidopsis*–*Chlamydomonas* Rubisco through
674 interactions with the algal Rubisco small subunit. *J Exp Bot*. doi: 10.1093/jxb/erz275675 **Borland AM, Hartwell J, Weston DJ, Schlauch KA, Tschaplinski TJ, Tuskan GA, Yang X, Cushman JC**
676 (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. *Trends Plant Sci*
677 **19**: 327–338678 **Bradford MM** (1976) A rapid and sensitive method for the quantitation of microgram quantities of
679 protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**: 248–254680 **Cai F, Bernstein SL, Wilson SC, Kerfeld CA** (2016) Production and characterization of synthetic
681 carboxysome shells with incorporated luminal proteins. *Plant Physiol* **170**: 1868–1877682 **Cai F, Dou Z, Bernstein SL, Leverenz R, Williams EB, Heinhorst S, Shively J, Cannon GC, Kerfeld CA**
683 (2015) Advances in understanding carboxysome assembly in *Prochlorococcus* and *Synechococcus*
684 implicate CsoS2 as a critical component. *Life* **5**: 1141–1171685 **Cameron JCJ, Wilson SSC, Bernstein SLS, Kerfeld CAC** (2013) Biogenesis of a Bacterial Organelle: The
686 Carboxysome Assembly Pathway. *Cell* **155**: 1131–1140687 **Carmo-Silva E, Andralojc PJ, Scales JC, Driever SM, Mead A, Lawson T, Raines CA, Parry MAJ** (2017)
688 Phenotyping of field-grown wheat in the UK highlights contribution of light response of
689 photosynthesis and flag leaf longevity to grain yield. *J Exp Bot* **68**: 3473–3486690 **Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ** (2015) Optimizing Rubisco and its regulation for
691 greater resource use efficiency. *Plant, Cell Environ* **38**: 1817–1832692 **Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM** (2019) BSD2 is a
693 Rubisco-specific assembly chaperone, forms intermediary hetero-oligomeric complexes, and is
694 nonlimiting to growth in tobacco. *Plant Cell Environ* **42**: 1287–1301695 **Desmarais JJ, Flamholz AI, Blikstad C, Dugan EJ, Laughlin TG, Oltrogge LM, Chen AW, Wetmore K,
696 Diamond S, Wang JY, et al** (2019) DABs are inorganic carbon pumps found throughout prokaryotic
697 phyla. *Nat Microbiol*. doi: 10.1038/s41564-019-0520-8698 **DiMario RJ, Quebedeaux JC, Longstreth DJ, Dassanayake M, Hartman MM, Moroney JV.** (2016) The
699 cytoplasmic carbonic anhydrases β CA2 and β CA4 are required for optimal plant growth at low CO_2 .

700 Plant Physiol **171**: 280–293

701 **Erb TJ, Zarzycki J** (2016) Biochemical and synthetic biology approaches to improve photosynthetic CO₂-
702 fixation. Curr Opin Chem Biol **34**: 72–79

703 **Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN** (2018) Engineering and modulating
704 functional cyanobacterial CO₂-fixing organelles. Front Plant Sci **9**: 739

705 **Feiz L, Williams-Carrier R, Belcher S, Montano M, Barkan A, Stern DB** (2014) A protein with an inactive
706 pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. Plant J
707 **80**: 862–869

708 **Flamholz AI, Prywes N, Moran U, Davidi D, Bar-On YM, Oltrogge LM, Alves R, Savage D, Milo R** (2019)
709 Revisiting trade-offs between Rubisco kinetic parameters. Biochemistry **58**: 3365–3376

710 **Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, Cartwright
711 HN, Ronceray P, Plitzko JM, Förster F, et al** (2017) The Eukaryotic CO₂-Concentrating Organelle Is
712 Liquid-like and Exhibits Dynamic Reorganization. Cell **171**: 148–162.e19

713 **Hanson MR, Gray BN, Ahner BA** (2013) Chloroplast transformation for engineering of photosynthesis. J
714 Exp Bot **64**: 731–742

715 **Hanson MR, Lin MT, Carmo-Silva AE, Parry MAJ** (2016) Towards engineering carboxysomes into C₃
716 plants. Plant J **87**: 38–50

717 **Hibberd JM, Sheehy JE, Langdale JA** (2008) Using C₄ photosynthesis to increase the yield of rice-
718 rationale and feasibility. Curr Opin Plant Biol **11**: 228–231

719 **Hu H, Rappel WJ, Occhipinti R, Ries A, Böhmer M, You L, Xiao C, Engineer CB, Boron WF, Schroeder JI**
720 (2015) Distinct cellular locations of carbonic anhydrases mediate carbon dioxide control of stomatal
721 movements. Plant Physiol **169**: 1168–1178

722 **Jordan DB, Chollet R** (1985) Subunit dissociation and reconstitution of ribulose-1,5-bisphosphate
723 carboxylase from *Chromatium vinosum*. Arch Biochem Biophys **236**: 487–496

724 **Kanevski I, Maliga P, Rhoades DF, Gutteridge S** (1999) Plastome engineering of ribulose-1,5-
725 bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco
726 small subunit hybrid. Plant Physiol **119**: 133–141

727 **Langdale JA** (2011) C₄ Cycles: Past, Present, and Future Research on C₄ Photosynthesis. Plant Cell **23**:
728 3879–3892

729 **Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MAJ, Hanson MR** (2014a) β-
730 Carboxysomal proteins assemble into highly organized structures in *Nicotiana* chloroplasts. Plant J
731 **79**: 1–12

732 **Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR** (2014b) A faster Rubisco with potential to
733 increase photosynthesis in crops. Nature **513**: 547–550

734 **Liu Y, He X, Lim W, Mueller J, Lawrie J, Kramer L, Guo J, Niu W** (2018) Deciphering molecular details in
735 the assembly of alpha-type carboxysome. Sci Rep **8**: 15062

736 **Lobell DB, Cassman KG, Field CB** (2009) Crop yield gaps: their importance, magnitudes, and causes.
737 Annu Rev Environ Resour **34**: 179–204

738 **Long BM, Badger MR, Whitney SM, Price GD** (2007) Analysis of carboxysomes from *Synechococcus*
739 PCC7942 reveals multiple rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol

740 Chem 282: 29323–29335

741 **Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim Y-L, Nguyen ND, Massey B, Bala S, von**
742 **Caemmerer S, et al** (2018) Carboxysome encapsulation of the CO₂-fixing enzyme Rubisco in
743 tobacco chloroplasts. Nat Commun 9: 3570

744 **Long BM, Rae BD, Badger MR, Price GD** (2011) Over-expression of the β -carboxysomal CcmM protein in
745 *Synechococcus* PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA)
746 and M58 content. Photosynth. Res. pp 33–45

747 **Long BM, Rae BD, Rolland V, Förster B, Price GD** (2016) Cyanobacterial CO₂-concentrating mechanism
748 components: Function and prospects for plant metabolic engineering. Curr Opin Plant Biol 31: 1–8

749 **Long BM, Tucker L, Badger MR, Dean Price G** (2010) Functional cyanobacterial β -carboxysomes have an
750 absolute requirement for both long and short forms of the CcmM protein. Plant Physiol 153: 285–
751 293

752 **Long SP, Zhu XG, Naidu SL, Ort DR** (2006) Can improvement in photosynthesis increase crop yields?
753 Plant, Cell Environ 29: 315–330

754 **Mackinder LCM** (2018) The Chlamydomonas CO₂-concentrating mechanism and its potential for
755 engineering photosynthesis in plants. New Phytol 217: 54–61

756 **Mackinder LCM, Meyer MT, Mettler-Altmann T, Chen VK, Mitchell MC, Caspari O, Rosenzweig ESF,**
757 **Pallesen L, Reeves G, Itakura A, et al** (2016) A repeat protein links Rubisco to form the eukaryotic
758 carbon-concentrating organelle. Proc Natl Acad Sci U S A 113: 5958–5963

759 **Maurino VG, Weber APM** (2013) Engineering photosynthesis in plants and synthetic microorganisms. J
760 Exp Bot 64: 743–751

761 **McGrath JM, Long SP** (2014) Can the cyanobacterial carbon-concentrating mechanism increase
762 photosynthesis in crop species? A theoretical analysis. Plant Physiol 164: 2247–2261

763 **Occhialini A, Lin MT, Andralojc PJ, Hanson MR, Parry MAJ** (2016) Transgenic tobacco plants with
764 improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type
765 rates if provided with elevated CO₂. Plant J 85: 148–160

766 **Orr DJ, Carmo-Silva E** (2018) Extraction of Rubisco to determine catalytic constants. Methods Mol. Biol.
767 Humana Press, New York, NY, pp 229–238

768 **Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÁA, Zsögön A, Araújo WL** (2017) Engineering
769 photosynthesis: Progress and perspectives. F1000Research 6: 1891

770 **Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long**
771 **SP, et al** (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy
772 demand. Proc Natl Acad Sci U S A 112: 8529–8536

773 **Perdomo JA, Sales CRG, Carmo-Silva E** (2018) Quantification of photosynthetic enzymes in leaf extracts
774 by immunoblotting. Humana Press, New York, NY, pp 215–227

775 **Price GD** (2011) Inorganic carbon transporters of the cyanobacterial CO₂ concentrating mechanism.
776 Photosynth. Res. pp 47–57

777 **Price GD, Badger MR, von Caemmerer S** (2011) The prospect of using cyanobacterial bicarbonate
778 transporters to improve leaf photosynthesis in C₃ crop plants. Plant Physiol 155: 20–26

779 **Price GD, Badger MR, Woodger FJ, Long BM** (2008) Advances in understanding the cyanobacterial CO₂-

780 concentrating- mechanism (CCM): Functional components, Ci transporters, diversity, genetic
781 regulation and prospects for engineering into plants. *J. Exp. Bot.* pp 1441–1461

782 **Prins A, Orr DJ, Andralojc PJ, Reynolds MP, Carmo-Silva E, Parry MAJ** (2016) Rubisco catalytic properties
783 of wild and domesticated relatives provide scope for improving wheat photosynthesis. *J Exp Bot* **67**:
784 1827–1838

785 **R Core Development Team** (2013) A language and environment for statistical computing. <http://www.r-project.org/>

786

787 **R Studio Team** (2019) RStudio Cloud: Integrated Development for R. <https://www.rstudio.com/>

788 **Rae BD, Long BM, Forster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ** (2017) Progress and challenges of engineering a biophysical carbon dioxide-concentrating mechanism into higher plants. *J Exp Bot* **68**: 3717–3737

789

790

791 **Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA** (2012) Recent patterns of crop yield growth and
792 stagnation. *Nat Commun* **3**: 1293

793 **Rolland V, Badger MR, Price GD** (2016) Redirecting the cyanobacterial bicarbonate transporters bica and
794 sbta to the chloroplast envelope: Soluble and membrane cargos need different chloroplast
795 targeting signals in plants. *Front Plant Sci* **7**: 185

796 **Ryan P, Forrester TJB, Wroblewski C, Kenney TMG, Kitova EN, Klassen JS, Kimber MS** (2019) The small
797 RbcS-like domains of the β -carboxysome structural protein CcmM bind Rubisco at a site distinct
798 from that binding the RbcS subunit. *J Biol Chem* **294**: 2593–2603

799 **Salesse-Smith CE, Sharwood RE, Busch FA, Kromdijk J, Bardal V, Stern DB** (2018) Overexpression of
800 Rubisco subunits with RAF1 increases Rubisco content in maize. *Nat Plants* **4**: 802–810

801 **Sharwood RE, Von Caemmerer S, Maliga P, Whitney SM** (2008) The catalytic properties of hybrid
802 rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent
803 source rubiscos and can support tobacco growth. *Plant Physiol* **146**: 83–96

804 **Sharwood RE, Ghannoum O, Whitney SM** (2016) Prospects for improving CO_2 fixation in C_3 -crops
805 through understanding C_4 -Rubisco biogenesis and catalytic diversity. *Curr Opin Plant Biol* **31**: 135–
806 142

807 **Shetty RP, Endy D, Knight TF** (2008) Engineering BioBrick vectors from BioBrick parts. *J Biol Eng* **2**: 5

808 **South PF, Cavanagh AP, Liu HW, Ort DR** (2019) Synthetic glycolate metabolism pathways stimulate crop
809 growth and productivity in the field. *Science* (80-) **363**: eaat9077

810 **Sun Y, Wollman AJM, Huang F, Leake MC, Liu L-N** (2019) Single-organelle quantification reveals
811 stoichiometric and structural variability of carboxysomes Ddependent on the environment. *Plant
812 Cell* **31**: 1648–1664

813 **Sutter M, Laughlin TG, Sloan NB, Serwas D, Davies KM, Kerfeld CA** (2019) Structure of a synthetic beta-carboxysome shell. *Plant Physiol* pp.00885.2019

814

815 **Uehara S, Adachi F, Ito-Inaba Y, Inaba T** (2016) Specific and efficient targeting of cyanobacterial
816 bicarbonate transporters to the inner envelope membrane of chloroplasts in arabidopsis. *Front
817 Plant Sci* **7**: 1–8

818 **Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR** (2016) The costs of photorespiration to food production
819 now and in the future. *Annu Rev Plant Biol* **67**: 107–129

820 **Wang H, Yan X, Aigner H, Bracher A, Nguyen ND, Hee WY, Long BM, Price GD, Hartl FU, Hayer-Hartl M**
821 (2019) Rubisco condensate formation by CcmM in β -carboxysome biogenesis. *Nature* **566**: 131–135

822 **Whitney SM, Andrews TJ** (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate
823 carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. *Proc Natl Acad*
824 *Sci U S A* **98**: 14738–14743

825 **Whitney SM, Von Caemmerer S, Hudson GS, Andrews TJ** (1999) Directed mutation of the Rubisco large
826 subunit of tobacco influences photorespiration and growth. *Plant Physiol* **121**: 579–588

827 **Whitney SM, Houtz RL, Alonso H** (2011) Advancing our understanding and capacity to engineer nature's
828 CO_2 -sequestering enzyme, Rubisco. *Plant Physiol* **155**: 27–35

829 **Wickham H** (2016) *ggplot2: Elegant graphics for data analysis using the grammar of graphics*. Springer-
830 Verlag New York

831 **Wilson RH, Hayer-Hartl M** (2018) Complex chaperone dependence of Rubisco biogenesis. *Biochemistry*
832 **57**: 3210–3216

833 **Wintermans JFGM, De Mots A** (1965) Spectrophotometric characteristics of chlorophylls a and b and
834 their phenophytins in ethanol. *BBA - Biophys Incl Photosynth* **109**: 448–453

835 **Wunder T, Cheng SLH, Lai SK, Li HY, Mueller-Cajar O** (2018) The phase separation underlying the
836 pyrenoid-based microalgal Rubisco supercharger. *Nat Commun* **9**: 5076

837 **Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H,**
838 **Smith JAC, De Paoli HC, et al** (2015) A roadmap for research on crassulacean acid metabolism
839 (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. *New Phytol*
840 **207**: 491–504

841