—

0 N N B WD

Short title (50 characters): Aggregates of hybrid cyanobacteria-tobacco Rubisco

Correspondence:
Douglas J Orr
Lancaster University, Lancaster Environment Centre, Lancaster, LA1 4YQ, UK
Tel: +44 (0)1524 593476

Email: d.j.orr@lancaster.ac.uk



mailto:d.j.orr@lancaster.ac.uk

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Hybrid cyanobacterial-tobacco Rubisco supports autotrophic growth and pre-carboxysomal
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One Sentence Summary:
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Abstract

Much of the research aimed at improving photosynthesis and crop productivity attempts to overcome
shortcomings of the primary CO; fixing enzyme Rubisco. Cyanobacteria utilize a CO, concentrating
mechanism (CCM), which encapsulates Rubisco with poor specificity but relatively fast catalytic rate
within a carboxysome micro-compartment. Alongside active transport of bicarbonate into the cell, and
localization of carbonic anhydrase within the carboxysome shell with Rubisco, cyanobacteria are able to
overcome the limitations of Rubisco via localization within a high CO, environment. As part of ongoing
efforts to engineer a B-cyanobacterial CCM into land plants, we investigated the potential for Rubisco
large subunits (LSU) from the B-cyanobacteria Synechococcus elongatus (Se) to form aggregated Rubisco
complexes with the carboxysome linker protein CcmM35 within tobacco chloroplasts. Transplastomic
plants were produced that lacked cognate SeRubisco small subunits (SSU) and expressed SeLSU in place
of tobacco LSU, with and without CcmM35. Plants were able to form a hybrid enzyme utilizing tobacco
SSU and the SelSU, allowing slow autotrophic growth in high CO,. CcmM35 was able to form large
Rubisco aggregates with the SelLSU, and these incorporated small amounts of native tobacco SSU. Plants
lacking the SeSSU showed delayed growth, poor photosynthetic capacity and significantly reduced
Rubisco activity compared to both wild-type tobacco and lines expressing the SeSSU. These results
demonstrate the ability of the SeLSU and CcmM35 to form large aggregates without the cognate SeSSU
in planta, harboring active Rubisco that enables plant growth, albeit at much slower pace than plants

expressing the cognate SeSSU.



55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Introduction

The need to produce sufficient food for a growing population requires increasing the productivity and
efficiency of agriculture in order to increase yields by the estimated 70% that will be needed by 2050
(Lobell et al., 2009; Ray et al., 2012). Given its central role in crop growth and productivity, improving
photosynthesis is one approach that has the potential to generate step-change improvements in crop
yields and resource use efficiency (Long et al., 2006; Ort et al., 2015). One of the primary limitations to
photosynthesis is the relative inefficiency of the central carbon fixing enzyme Rubisco (ribulose 1,5-
bisphosphate carboxylase/oxygenase), in particular its lack of specificity for CO, versus O,, which leads to
the energetically costly photorespiratory cycle (Whitney et al., 2011; Carmo-Silva et al., 2015; Sharwood
et al., 2016; Flamholz et al., 2019). Exemplifying this, at current atmospheric levels of CO, and O,
Rubisco’s tendency to oxygenate rather than carboxylate its substrate RuBP (ribulose 1,5-bisphosphate)
is estimated to reduce yields by as much as 36% and 20% in US grown soybean and wheat, respectively
(Walker et al., 2016). Recent work has shown that limiting the costs of photorespiration by increasing its
efficiency can provide dramatic benefits to plant growth (South et al., 2019).

Synthetic biology approaches hold promise for improving a number of facets of photosynthetic
efficiency in crop plants (Maurino and Weber, 2013; Erb and Zarzycki, 2016; Orr et al., 2017). One
example is the introduction of CO,-concentrating mechanisms (CCM’s) into Cs crops to increase CO,
concentrations at the site of Rubisco, a strategy which is likely to dramatically reduce the propensity of
Rubisco to carry out oxygenation reactions by creating an environment which favors the beneficial
carboxylation reaction (Price et al., 2011; McGrath and Long, 2014; Hanson et al., 2016; Long et al.,
2016). Significant research efforts are being invested in this area, with varying sources for the CCMs
being engineered, such as C4 (Hibberd et al., 2008; Langdale, 2011) and CAM (Borland et al., 2014; Yang
et al., 2015) systems from plants, and the pyrenoid and carboxysome-based systems of algae and
cyanobacteria, respectively (Rae et al., 2017; Mackinder, 2018).

The CCM employed by cyanobacteria uses a combination of factors to create a high CO;
environment localized around Rubisco (Price et al., 2008; Hanson et al., 2016). Aggregation and
encapsulation of Rubisco within a highly ordered icosahedral protein micro-compartment, or
carboxysome, allows co-localization of Rubisco and carbonic anhydrase (CA) to convert HCOs to CO,
where it is needed, and permits the movement of key molecules while limiting CO, escape. Generating a
high CO, environment is also facilitated by a complex system of inorganic carbon transporters on the
cyanobacterial outer membrane that move either HCOs- or CO; into the cytoplasm through active and

passive mechanisms (Price, 2011). Modelling the incorporation of the various components of the CCM
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into plants suggests that once a fully functioning system is established within a higher plant chloroplast,
photosynthetic rates could be improved by as much as 60% (McGrath and Long, 2014). The resulting
subsequent improvements in yield could facilitate a major change in crop productivity and resource use
efficiency (Ort et al., 2015; Hanson et al., 2016).

Significant progress has been made during recent years to unravel the molecular mechanisms of
CCMs involving either carboxysomes or pyrenoids. In Synechococcus elongatus PCC7942, which produces
B-carboxysomes, the ccmM gene gives rise to two proteins: CcmM58 and CcmM35, the latter arising
from an internal ribosomal entry site (Long et al., 2007; Long et al., 2010). CcmM35 possesses three
tandem repeats of Rubisco small subunit-like domains, and was initially thought to interact with Rubisco
by replacing small subunits (Long et al., 2011). However, recent experiments suggest that CcmM35 binds
Rubisco without releasing the small subunits (Ryan et al., 2019). A recent structural study revealed that
the interaction between CcmM35 and Rubisco leads to dramatic phase separation (Wang et al., 2019).
This nucleation of Rubisco holoenzymes by CcmM35 represents a critical first step in the assembly of B-
carboxysomes (Cameron et al., 2013). In the pyrenoid of Chlamydomonas, similar phase separation was
also observed when the Rubisco and a repeat protein called EYPC1 interact (Wunder et al., 2018).
Likewise, in a-carboxysomes, Rubisco holoenzymes interact with a highly disordered repeat protein
called CsoS2 (Cai et al., 2015; Liu et al., 2018). In a recent breakthrough, Long and co-workers were able
to assemble a-carboxysomes in tobacco chloroplasts by co-expressing Rubisco large and small subunit
genes along with CsoS2 and a shell protein called CsoS1A from Cyanobium marinum PCC7001 (Long et
al., 2018). In another study, the shell proteins of B-carboxysome transiently expressed in the chloroplasts
of Nicotiana benthamiana were able to assemble structures similar to micro-compartments (Lin et al.,
2014a).

Our previous work demonstrated that replacing the Rubisco large subunit gene in tobacco with
the Rubisco large and small subunit genes from Synechococcus elongatus PCC7942 (Se) resulted in plants
that can support photosynthetic growth under elevated CO, conditions (Lin et al., 2014b; Occhialini et
al., 2016). When CcmM35 was co-expressed in tobacco chloroplasts, the heterologous Rubisco was
observed in a large aggregate with an appearance resembling a separate liquid phase (Lin et al., 2014a).
In a previous study performed by another group, when the tobacco rbcL gene was replaced with that
from Synechococcus PCC6301, no Rubisco large subunit (LSU) was detected in the transformed plant
(Kanevski et al., 1999), and it was thought that the cyanobacterial LSU could not assemble with plant
small subunit (SSU) to form a functional enzyme.

Here we investigated the assembly and functioning of cyanobacterial Rubisco within higher plant
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chloroplasts when the Se LSU is expressed either with or without CcmM35 in the absence of cognate
cyanobacterial SSU. Analysis of transplastomic tobacco lines incorporating some cyanobacterial
components but lacking the cognate SSU revealed that the Se LSU and CcmM35 are able to form large
aggregates of Rubisco within tobacco chloroplasts. Though only low amounts of tobacco SSUs were
present, the transplastomic lines characterized differed significantly in physiology and biochemistry from
comparable lines that also co-expressed the cognate cyanobacterial SSU. Remarkably, albeit at slow
rates, in the absence of the cognate small subunits, the hybrid cyanobacterial LSU-tobacco SSU

expressed in tobacco chloroplasts with and without CcmM35 was active and supported plant growth.

Results

Cyanobacterial Rubisco large subunits can support carbon fixation in tobacco chloroplasts in the
absence of cognate small subunits

We generated two transplastomic tobacco lines named Sel and SeLM35 by replacing in-frame the entire
tobacco Rubisco large subunit gene with that from Synechococcus elongatus PCC7942 (Se). In the
SeLM35 line, the ccmM35 gene was introduced downstream of the Se-rbcl gene to be co-expressed
from the same chloroplast genome locus (Fig. 1A). We used the same regulatory elements at intergenic
regions as described in our previous work namely, a terminator, an intercistronic expression element
(IEE) and a Shine-Dalgarno (SD) or ribosome binding site (Lin et al., 2014b; Occhialini et al., 2016). In
contrast to our previous work, the new transplastomic lines do not possess a corresponding
cyanobacterial Rubisco small subunit gene. The aadA selectable marker gene was incorporated into the
same operon as the Se-rbcl gene in the Sel construct instead of a separate operon as in the SeLM35
construct. We obtained homoplasmic transformed shoots after two rounds of selection, and were able
to transfer them to soil for growth under elevated CO, (9000 ppm). We collected seeds from two
independent Sel lines and one SeLM35 line. Both DNA and RNA blots confirmed complete removal of
the Nt-rbcL gene and its corresponding transcript in these plants (Fig. 1B, S1). We also analyzed the
transcripts containing Se-rbcL and ccmM35 genes in these lines together with SelS and SeLSM35 lines
generated in our previous study (Fig. S1). The RNA blots showed bands arising from incomplete
processing of IEE as well as read-through transcription of the downstream aadA operon, consistent with

our previous observations (Occhialini et al., 2016).
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Figure 1. Replacement of the rbcL gene in tobacco chloroplasts with the Se-rbcL with or without
the ccmM35 gene. (A) The gene arrangements of wild-type (WT), SeL and SeLM35 tobacco lines along
with the locations of the EcoRV and Kpnl restriction sites used in the DNA blot. The binding site for the
DIG-labeled DNA probe is shown in green bars. Seeds were obtained from two independent SelL lines
and one SeLM35 line. (B) DNA blot analysis of the WT, SelL and SeLM35 samples digested with EcoRV
and Kpnl. All samples produced the expected band on the DNA blot.

Cyanobacterial Rubisco large subunits and CcmM35 aggregate in pro-carboxysome micro-
compartments in tobacco chloroplasts

Expression of Se CcmM35 together with the cyanobacterial LSU in the SeLM35 transformant resulted in
the formation of aggregates, or pro-carboxysome micro-compartments, in tobacco chloroplasts (Fig. 2).
These aggregates were similar in size and shape to those observed in plants containing both the large

and small subunits of Rubisco, and CcmM35 (SeLSM35, Fig. S2), but were absent from tobacco plants
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expressing the Se LSU in the absence of CcmM35. Immuno-gold labelling confirmed the presence of the
Se LSU and CcmM35 proteins within the SeLM35 pro-carboxysome compartments (Fig. 2, S3, S4). In
comparison, in Sel plants, the Se LSU protein could be detected throughout the chloroplast and, as
expected, the anti-CcmM antibody gave only background level signal.

Gel electrophoresis and immunoblotting of leaf extracts demonstrated the presence of
cyanobacterial LSU and CcmM35 in SeLM35 transplastomic plants (Fig. 3). Visually, the two proteins
appear to be more abundant on a total soluble protein basis in these plants compared to SeLSM35. As
expected, both proteins were absent from WT leaf extracts, and in SeLS and Sel plants, Se LSU was
present but CcmM35 was not observed. The tobacco SSU was detected in WT, SelL and SeLM35 leaf
extracts, although its abundance in Sel was very low, and visualization of the ~13 kDa SSU required a
higher TSP load to detect clearly using immunoblotting (Fig. 3C). Non-denaturing native-PAGE suggested
that CcmM35 is present in functional complexes with Rubisco in the tobacco transplastomic lines

SeLSM35 and SeLM35 (Fig. 3B).
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Figure 2. Tobacco plants expressing cyanobacterial Rubisco large subunits and CcmM35 contain
a pro-carboxysome compartment in the chloroplast. Immunolocalization of Synechococcus elongatus
(Se) proteins in the chloroplasts of transplastomic tobacco lines expressing the Rubisco large subunit and
CcmM35 (SeLM35) or the large subunit alone (SeL). Electron micrographs of ultrathin sections of
mesophyll cells probed with the indicated primary antibody and a secondary antibody conjugated to 10
nm gold particles. Scale bars indicate size. Additional images are presented in Supplemental Figures S3
and S4.
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Figure 3. Protein composition of wild-type (WT) tobacco and transplastomic lines expressing f3-
cyanobacterial carboxysome components. Polypeptides in leaf extracts prepared from plants of each
line were separated by denaturing SDS-PAGE (A) and non-denaturing Native-PAGE (B) and either
stained with Coomassie Blue (upper panels) or used for immunoblotting with antibodies against
cyanobacterial Rubisco large subunit (SeLSU) and CcmM35, and against tobacco Rubisco small subunit
(NtSSU) (lower panels). Panels showing blotting of PAGE gels are slices from blots (see Fig. S5) that
show the indicated size regions where the respective antibodies detect proteins of interest. For SDS-
PAGE and Native-PAGE, 10 and 20 ug total soluble protein was loaded per lane, respectively. (C), SDS-
Page and Native-PAGE gels immunoblotted with antibody against NtSSU, loaded with 20 and 40 ug total
soluble protein, respectively.

Cyanobacterial Rubisco activity is impaired by the lack of a cognate SSU within tobacco chloroplasts
Consistent with previous efforts expressing Se Rubisco within tobacco chloroplasts, Rubisco content and
activity on a leaf area basis were significantly lower in leaf extracts of all the transplastomic lines,
representing less than 20% of the values in WT plants (Fig. 4). Sel plants in particular displayed minimal
amounts of Rubisco. While Rubisco active sites in SeL were ca. 20% of SelS plants expressing both Se
Rubisco subunits (Fig. 4B), total activity in SelL was less than 5% of SelLS, and ca. 1% of WT tobacco,
consistent with the extremely slow growth of these plants (see below). SeLM35 plants had significantly
more Rubisco active sites than other transplastomic lines, including SeLSM35, which also expresses the
CcmM35 linker protein (Fig. 4B, P < 0.001), although Rubisco total activity was not significantly different
between the two lines (Fig. 4A, P> 0.001).

To ascertain the ability of tobacco chloroplasts to maintain active cyanobacterial Rubisco, we
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determined Rubisco activation states from WT and transplastomic plants under steady state conditions.
As anticipated, WT plants were observed to have a comparatively low activation state in high CO,
conditions (Fig. 4C). Lines expressing both Se Rubisco subunits, with or without CcmM35 showed
essentially fully active Rubisco. In contrast, in SeLM35 Rubisco, activation was ca. 70 %, and in Sel,
expressing just the cyanobacterial LSU, it was only ca. 20 %. These data indicate that these complexes,
although able to function, did not become fully active in these growth conditions.

All transplastomic lines displayed significantly lower total soluble protein compared to WT
tobacco (Fig. 4D, P < 0.001) and this decrease was largely consistent with the decreased amount of
Rubisco on an area basis (Fig. S6). Alongside reduced total soluble protein and Rubisco content and in
agreement with visual observation of these transplastomic plants, levels of chlorophyll a, b, and thus
total chlorophyll were significantly reduced (Fig. S7). Chlorophyll a was more severely reduced, and with
the exception of SelS, all lines had a significantly reduced chlorophyll a/b ratio compared to WT tobacco.

Cyanobacterial Rubisco has been characterized to have a very high catalytic rate, but also a poor
affinity for CO; (high Kc value). In SeLS and SeLSM35 plants, values obtained for carboxylation rate, V¢,
and K¢, the Michaelis-Menten constant for CO,, were consistent with previous work (Table 1; (Occhialini
et al., 2016). Rubiscos from SeLM35 and Sel, which contain the cyanobacterial LSU but lack a cognate
SSU, were able to carboxylate RuBP at significant rates. Immunoblotting suggested the presence of
tobacco SSU in the Rubisco complex, but this was likely at a stoichiometric ratio lower than 1:1 in
relation to the cyanobacterial LSU (Fig. 3). These two Rubisco enzymes had affinities for CO, comparable

to the enzyme from the transplastomic lines containing both the cyanobacterial LSU and SSU (Table 1).
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Table 1. Rubisco catalytic properties. Maximum carboxylation rate (V ), and Michaelis-Menten
constant for CO, (K,) of Rubisco from wild-type (WT) tobacco and transplastomic lines expressing -

cyanobacterial carboxysome components from Synechococcus elongatus (Se): Rubisco large subunit (L),
Rubisco small subunit (S), CcmM35 (M35). Values represent mean £ SEM (n = 3-5 biological replicates).
* Wild-type values from Occhialini et al. (2016). Letters denote significant differences (P < 0.05) between

transplastomic lines as determined by Tukey’s pairwise comparisons following ANOVA. For K.

differences were not significant at P = 0.05 level.

Ve Kc
Line (umol mg* min?t) (uM)
Wild-type* 3.9 + 0.2 9.0 = 0.3
SelS 15.0 + 09a 168 + 59a
Sel 0.6 + 02b 105 <+ 9a
SelLSM35 10.9 + 0.8c 133 <+ 12a
SeLM35 2.0 + 03b 110 + 22a

The lack of a cognate Rubisco small subunit also impairs photosynthetic gas exchange

To evaluate the impact of the unusual Rubisco composition in the leaves of these transplastomic lines,
gas exchange measurements were carried out. At the levels present in these transplastomic plants and in
absence of a functional CO,-concentrating mechanism, the faster catalytic rate of Se Rubisco does not
confer an advantage in photosynthetic rate per leaf area even at 2000 ppm CO; (Fig. 5A). Consistent with
previous work, aggregating cyanobacterial Rubisco through the expression of CcmM35 in SeLSM35
plants slightly reduced photosynthetic rates on an area basis (Fig 5A; Occhialini et al., 2016). SeLM35
photosynthetic rates show that the lack of the cognate Se SSU decreases photosynthetic rates even
further (Fig. 5A). Most transplastomic lines showed a noticeable increase of photosynthesis under low
oxygen conditions (Fig. S8). However, even at the highest CO, concentration measured combined with
2% oxygen, Sel plants displayed net photosynthetic rates that were barely above zero (Fig. S8C).

As a fully functional cyanobacterial CCM within tobacco will ideally require less Rubisco than
wild-type plants, we also determined Rubisco content in the leaves used for gas exchange analyses.
When CO; assimilation was normalized by Rubisco active site concentration, neither SeLM35 nor SelL
outperformed WT plants even at 2000 ppm CO; (Fig 5B). Consistent with earlier work, at CO, levels well
above ambient SeLS and SeLSM35 plants showed higher photosynthesis per Rubisco active site (Fig.
5B;(Occhialini et al., 2016)). Even accounting for very low Rubisco content, SeL plants show null

normalized rates even at G of 2000 ppm CO; (Fig. 5B). This is consistent with the observation that even a
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short exposure of several hours in ambient CO, conditions leads to tissue damage, and that even in

growth conditions of 4000 ppm CO; Sel plants are extremely slow to develop (see below).
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Figure 5. Response of leaf CO, assimilation to intercellular CO, concentrations (C). Rates are

expressed on an area basis (A) and on a Rubisco active site basis (B) for leaves of wild-type (WT)
tobacco and transplastomic lines expressing 3-cyanobacterial carboxysome components from
Synechococcus elongatus (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35).
Values represent mean + SEM (n = 3-4 biological replicates).

Replacement of tobacco Rubisco large subunits with cyanobacterial large subunits impairs growth
irrespective of other components

Transplastomic plants where the native tobacco Rubisco large subunit (LSU) was replaced with the Se
large subunit with or without the carboxysome linker protein CcmM35 (SeLSM35 and SeLM35) grew
slowly even at 4000 ppm CO, when compared to both WT and lines expressing both Se Rubisco subunits
(SeLs, Fig. 6A, S6, Table S2). Germination time was similar between all lines (~7 days). Plant height and
total leaf area of SeLSM35 and SeLM35 plants started to visibly increase 60 days after sowing, and the
growth rate for the subsequent 15 days was significantly slower in SeLM35 plants lacking the Se SSU
compared to SeLSM35 (P < 0.05, Fig. 6B, 6C, Table S2). SelL plants expressing only the Se LSU were
dramatically slower in growth (P < 0.001), which necessitated germination in tissue culture for
establishment before transferring to soil. These plants took approximately three times as long as SelS
plants to reach a plant height of ~80 cm (Fig. 6B). SelL and SeLM35 plants produced numerous smaller
leaves, consistent with the other line expressing CcmM35, SeLSM35 (Fig. S10). Both Sel and SeLM35
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were noticeably paler than WT controls and transplastomic lines expressing the Se SSU (Fig. S7, S9, S10).
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Figure 6. Plant development and growth traits. Photographs of 33 day old plants growing in parallel in
the same growth conditions of 4000ppm COz2 (A), plant height (B) and leaf area (C) development during
the growth cycle of wild-type (WT) tobacco and transplastomic lines expressing B-cyanobacterial
carboxysome components from Synechococcus elongatus (Se): Rubisco large subunit (L), Rubisco small
subunit (S), CcmM35 (M35). Values represent mean = SEM (n = 2-5 biological replicates). DAS, days
after sowing.

Discussion

The current study describes two new transplastomic tobacco lines, namely SelL and SeLM35, where the
native rbcL gene has been replaced with its cyanobacterial counterpart without the Se-rbcS gene.
Previous work had shown the ability of LsSs Rubisco from Synechococcus elongatus to assemble and
function within higher plant chloroplasts and to form large aggregates of linked Rubisco complexes in the
presence of CcmM35 (Lin et al., 2014a; Occhialini et al., 2016). Our current results show that

cyanobacterial LSU interacts with the carboxysome linker protein CcmM35 in the absence of a cognate
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cyanobacterial SSU, and forms pro-carboxysome-like aggregates in tobacco chloroplasts. In contrast to a
previous study where no cyanobacterial LSU was detected in a similar tobacco transformant (Kanevski et
al., 1999), we were able to detect the cyanobacterial LSU as well as catalytic activity of Rubisco in both
Sel and SeLM35 lines (Table 1). It should be noted that the cyanobacterial LSU expressed in the previous
study had the first 8 residues at its N terminus replaced by the first 11 residues of the tobacco LSU,
possibly leading to lower stability of the modified LSU or inhibition of its assembly with the tobacco SSU
(Kanevski et al., 1999).

Relative to comparable lines expressing Se SSU, both SeLM35 and Sel plants showed delayed
growth (Fig. 6) and developed more numerous, but smaller leaves (Fig. S9, S10). Sel was not able to
grow autotrophically from seeds even in high CO; levels, and required establishment on tissue culture
media. Similar effects have been seen when engineering Rubisco in tobacco where either the
introduction of a foreign LSU (Whitney and Andrews, 2001; Sharwood et al., 2008) or mutation of the
native tobacco LSU (Whitney et al., 1999) leads to very low Rubisco amount and/or very poor activity.

Rubisco from both SeLM35 and Sel had dramatically slower maximum catalytic rates compared
to the native Se enzyme (SelS, Table 1), consistent with the slower growth of these plants. Combined
with the significantly lower Rubisco active sites, this led to much lower Rubisco activity on a leaf area
basis (Fig. 4). In both lines containing CcmM35, Rubisco catalytic rate was worse than that of B-
cyanobacterial Rubisco extracted from SelS where no aggregation occurs, which would suggest a
putative negative impact of CcmM35 on Rubisco activity in the Se plants, and agrees with previous work
with the SeLSM35 line (Occhialini et al., 2016). This is consistent with previous observations from plants
expressing a-cyanobacterial Rubisco within a minimal a-carboxysome from Cyanobium (Long et al.,
2018). The authors found that Rubisco catalytic rate was approximately halved when determined for
Rubisco from tobacco chloroplasts; however, after high-speed centrifugation to remove insoluble
carboxysomes, rates were consistent with those obtained from either the native cyanobacteria or
expressed without linker proteins within tobacco. Movement of metabolites such as RuBP may be
similarly inhibited by the formation of large B-pro-carboxysomes of LSU-CcmM35, as observed via Kyrusp
measurements made on tobacco derived minimal a-carboxysomes (Long et al., 2018). The large size of
the observed pro-carboxysomes in SeLSM35 and SeLM35 plants, relative to native cyanobacterial
carboxysomes, appears likely to have influenced metabolite movement. This highlights that an important
part of balancing expression of the various components is not only to ensure correct formation of a
functional carboxysome, but also to achieve a suitably sized microcompartment. However, Rubisco

extracted from SeLM35 was significantly more active than the enzyme extracted from Sel plants,
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showing that in the absence of Se SSU, CcmM35 helps sequester more tobacco SSU, possibly by
increasing stability of the hybrid LsSs enzyme or facilitating its assembly (Fig. 3).

The very low activity observed for SelL Rubisco that lacked the cognate SSU from cyanobacteria
agrees with in vitro findings from a number of previous studies investigating the ability of LSU-only
Rubisco to perform catalysis (Andrews and Ballment, 1984; Jordan and Chollet, 1985; Andrews, 1988). In
studies including cyanobacterial Rubisco, in vitro preparations containing only Ls octameric cores
typically had detectable activity corresponding to only ~1% of the cyanobacterial holoenzyme, and even
addition of heterologous higher plant SSU from spinach led to dramatic increases in activity (Andrews,
1988). The cyanobacterial Ls core binds spinach SSU with an affinity an order of magnitude lower than its
native SSU, and the activity of the hybrid enzyme was only half that of the enzyme with homologous
subunits (Andrews and Lorimer, 1985). This suggests that the minimal activity observed for SelL Rubisco,
~5% of SelS (Fig. 4), may in part result from a substoichiometric amount of tobacco SSU’s binding to
cyanobacterial Ls cores.

A common theme in organization of Rubisco enzymes within both carboxysomes of
photosynthetic bacteria and pyrenoids from green algae appears to be through interactions with a
disordered repeat protein such as CcmM35 in B-carboxysomes, CsoS2 in a-carboxysomes and EPYC1 in
pyrenoids (Long et al., 2011; Cai et al., 2015; Mackinder et al., 2016). In the case of B-carboxysomes and
pyrenoids, the Rubisco enzymes were sequestered into a separate liquid phase by these linker proteins
(Freeman Rosenzweig et al., 2017; Wunder et al., 2018; Wang et al., 2019). EPYC1 or CsoS2 were shown
to interact only with the SSU (Liu et al., 2018; Atkinson et al., 2019), whereas both the large and small
subunits are involved in binding CcmM35 based on a cryo-EM structural model, and the Ls core alone
was insufficient to form a separate liquid phase with CcmM35 (Wang et al., 2019). Thus, the tobacco
SSUs are likely involved in the formation of CcmM35-Rubisco aggregates in SeLM35 plants although the
stoichiometry between the Se LSU and tobacco SSUs was not determined. Indeed, the residues in Se SSU
critical for interaction with CcmM35 are well conserved in tobacco SSU (Fig. S11; (Wang et al., 2019).

The poor photosynthetic performance of these transplastomic lines in the absence of a
functional CCM with all the necessary components is unsurprising. However, the ability of some lines to
outperform wild-type plants on a per Rubisco basis at higher CO; levels suggests that provided with high
CO, concentrations such as those within a fully formed B-carboxysome shell in a complete CCM, the
Rubisco levels within these plants may be sufficient to support improved rates of carbon assimilation.
Consistent with this, Long and colleagues (2018) observed that leaf discs from plants expressing a-

cyanobacterial Rubisco produced similar photosynthetic rates to wild-type tobacco plants in 2% (v/v) CO;
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conditions within a membrane inlet mass spectrometry system (MIMS). Thus, and even considering the
associated nitrogen costs of producing the shell components, reducing the typically very large
investment into Rubisco by C; plants may represent an overall nitrogen saving (McGrath and Long, 2014).
An issue that is highly likely to be encountered when dealing with the numerous other components of
the carboxysome shell is to optimize expression levels, and this may also be necessary for Rubisco. An
increasing understanding of the role of chaperones for Rubisco assembly (Feiz et al., 2014; Salesse-Smith
et al., 2018; Wilson and Hayer-Hartl, 2018; Conlan et al., 2019) may provide avenues to increase Se
Rubisco amounts, should this become necessary to support the desired number of carboxysomes per
chloroplast, in order to drive higher photosynthetic rates within a fully formed CCM. It is also possible
that adjusting the chloroplast regulatory sequences used to express Se Rubisco subunits may be
sufficient to increase the Rubisco amount.

The ability of CcmM35 to link Se LSU in planta without a cognate SSU shows that tobacco SSU
can not only substitute Se SSU to form functional hybrid Rubisco, but can also result in an enzyme to
which CcmM35 can bind. While the Se SSU does not appear to be essential for formation of a pro-
carboxysome, the differences shown here based on its presence in a pro-carboxysome highlight its
importance for full Rubisco functionality and carboxysome structural organization. These results support
the likely necessity of co-engineering cognate subunits from a distant foreign Rubisco, as part of efforts
to engineer both a foreign Rubisco into higher plants (Whitney and Andrews, 2001; Sharwood et al.,
2008) and for more complex engineering of CO,-concentrating mechanisms such as carboxysomes and
pyrenoids from cyanobacteria and algae, respectively (Atkinson et al., 2016; Rae et al., 2017).

The carboxysome alone will be insufficient to attain higher rates of photosynthesis without the
removal of existing stromal carbonic anhydrase and the addition of transporters to pump high levels of
HCOs" into the chloroplast (Hanson et al., 2016; Long et al., 2018; Desmarais et al., 2019). There have
been recent improvements in approaches to tackle the issue of localizing these inorganic carbon pumps
(Rolland et al., 2016; Uehara et al., 2016), alongside advances in understanding the role of the various
carbonic anhydrases (Hu et al., 2015; DiMario et al., 2016). Furthermore, there is now a better
understanding of the actual ratios of components in B-carboxysomes (Sun et al., 2019), engineering of -
carboxysome shells to obtain cryoEM structural models (Cai et al., 2016; Sutter et al., 2019), an assembly
of full B-carboxysomes in E. coli (Fang et al., 2018), and recent successes with a-carboxysomes (Long et
al., 2018). These advances provide encouragement that ongoing research is steadily moving toward the
ability to assemble these complex, powerful CCMs within plants to improve photosynthesis with the

ultimate goal of improving global food security.
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Materials and Methods

Construction of chloroplast transformation vectors

All primers used were obtained from Integrated DNA Technologies and listed in Table S1. Phusion™ high-
fidelity DNA polymerase, FastDigest restriction enzymes and T4 DNA ligase from Thermo Scientific were
used to generate amplicons, restriction digests and ligation products respectively. The ligation products
were transformed into chemically competent DH5a E. coli and selected on LB agar medium with 100
pg/mL ampicillin. A template vector to hold each DNA piece was first constructed as follows. The aadA
operon from BJF-070 vector (Hanson et al., 2013) was removed by self-ligation of the Nsil digest. An
amplicon was generated from the resulting vector using Nsil-BJF3 and BamHI-BJF5 primers and ligated
into the BamHI and Nsil sites of the vector to introduce Sbfl and Notl sites upstream of the Nsil locus.
The resulting vector, BJFE-BB, was used as a vector to hold each DNA element between the Sbfl and Notl
sites using BB-XXX-f and BB-XXX-r primers where ‘XXX’ stands for the name of each DNA element. Once
ligated into the BJFE-BB vector, each DNA element was flanked by Sbfl-Mlul upstream and MauBI-Notl
downstream. Since Mlul and MauBl restriction sites have compatible cohesive ends, these DNA parts can
be assembled in any desired order using an approach similar to the BioBrick method (Shetty et al., 2008).
Specifically, we assembled an aadA module comprised of loxP-At_TpsbA-IEE-SD-RBS-aadA-loxP. We then
modified pGEM-F1-rbcL-F2 vector described previously (Lin et al., 2014b) by introducing a Sbfl site
immediately downstream of the Se-rbcL gene. It was accomplished by ligating the amplicon generated
with Hindlll-LSUES5 and T1L-IEE3 primers into the Hindlll and Xbal sites to obtain the pCT-rbcL-BB2 vector.
Next, Xbal+Ascl digest of the amplicon from TrbcL5 and Ascl-LSUFI2r primers was ligated into Xbal and
Milul sites of pCT-rbcL-BB2 vector to obtain pCT-rbcL-BB vector. Finally, we introduced the aadA module
between the Sbfl and Notl sites of pCT-rbcL-BB vector to obtain pCT-rbcL-BB-aadA vector used to
generate the Sel chloroplast transformant tobacco line. pCT-rbcL-ccmM35 described previously (Lin et

al., 2014b) was used in the generation of SeLM35 tobacco chloroplast transformant.

Generation of transplastomic tobacco plants

We introduced transformation vectors into two-week-old tobacco (Nicotiana tabacum cv. Samsun)
seedlings with the Biolistic PDS-1000/He Particle Delivery System (Bio-Rad Laboratories) and tissue-
culture based selection method as described previously (Occhialini et al., 2016). Briefly, about 10 pg of

DNA was mixed with 100 pL of 50 mg/mL 0.6 um gold nanoparticles, 100 pL of 2.5 M CaCl, and 40 L of
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0.1 M spermidine free-base by vortexing for about one minute. The gold particles were then pelleted in
a microcentrifuge at 1000 rpm for 8 seconds and resuspended in 180 pL of 70% ethanol. After the
washing of the gold particles was repeated one more time, the pellet was resuspended in about 60 pL of
100% ethanol and then spread on ten microcarrier discs used for bombardment. Two days later, the
leaves from the bombarded seedlings were cut into halves and placed on RMOP agar medium with 500
ug/mL spectinomycin for 4-6 weeks at 23°C under 14 h light per day. The shoots arising were cut into 5
mm? pieces and subjected to a second round of selection on the same medium for another 4-6 weeks.
The regenerated shoots were then transferred to MS agar medium for rooting and subsequently
transferred to soil for growth in a chamber with elevated CO, (~9000 ppm) until the seeds were
collected. Total DNA was extracted from leaf tissues using CTAB buffer, digested with EcoRV+Kpnl
restriction enzymes, separated on a 1% agarose gel, transferred to a Nylon membrane and detected with

a DIG-label DNA probe as described previously (Lin et al., 2014b).

Analyses of transgenes’ transcripts on RNA blots

The transcripts were analyzed on RNA blots using the procedure described previously with the same
DIG-labeled RNA probes (Occhialini et al., 2016). Briefly, RNA samples were prepared from leaf tissues
with a PureLink” RNA mini kit (Life Technologies) and their concentrations were estimated with a Qubit’
RNA BR assay kit. About 1 ug each RNA sample was mixed with NorthernMax” formaldehyde load dye
(Life Technologies) with 50 ug/mL ethidium bromide and incubated at 65 °C for 15 min before they were
loaded to 1.3% agarose gel with 2% formaldehyde. After separation at 7 V cm™ for about 2 h, the gel was
washed three times in diethylpyrocarbonate-treated water for 10 min each and incubated in 20x SSC for
45 min before the RNAs were transferred to a positively charged nylon membrane under capillary action.
The membrane was then exposed to UV radiation with a Stratalinker® UV Crosslinker, hybridized with 200
ng of each DIG-labeled RNA probe in ~ 4 mL of DIG EasyHyb buffer (Roche) at 68 °C overnight, and

detected with anti-digoxigenin-AP antibody and CDP-Star chemiluminescent substrate (Roche).

Plant material

Seeds of wild type (WT) and transplastomic tobacco (Nicotiana tabacum cv. Samsun) were sown into
trays of a commercial potting mix (Petersfield Products, UK) with a slow-release fertiliser (Osmocote,
Scotts UK Professional, UK). Seedlings were thinned out after ca. two weeks, with individual plants
transferred to 1 L pots after three weeks. Seeds of Sel were sown into tissue culture pots containing agar

solidified MS medium containing 1% sucrose before transferring to soil after three weeks. Plants were
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grown in a controlled environment chamber (Microclima 1750, Snijders Scientific B.V., Netherlands). The
chamber was set at day/night temperatures of 24/22 °C with a 16 h photoperiod, 60 % humidity. The
ambient CO, concentration within the chamber was maintained at 4000 + 400 ppm using the integrated
CO; controller. CO; levels were also monitored in the chamber with a Vaisala hand held GM70 meter
(Vaisala, UK). Plants were kept well-watered. Space limitations within growth chambers necessitated

growing plants in batches for growth analysis.

Fixation and embedding of plant tissue, immunogold labelling and TEM
Small pieces (1x1.5mm) of tissue from fully expanded leaves of plants equivalent in size to 33 DAS WT
plants were incubated in fixative (4% paraformaldehyde, 2.5 % glutaraldehyde in 0.05 M sodium
phosphate buffer pH 7.2) for 2 hours at room temperature with rotation. A vacuum was used to aid
infiltration. After washing 3x 10 minutes in 0.05 M sodium phosphate buffer pH 7.2, the tissue was
dehydrated in an ethanol series (50%, 70%, 80%, 90%) at room temperature for 30 minutes each step
and finally 100% ethanol for 1 hour. Tissue was infiltrated with LR white resin (Agar Scientific, UK), first
by incubating for 1 hour in 100% ethanol:LR white 1:1 (v/v), then for 2 hours in100% LR white and finally
overnight in 100% LR white. Specimens were transferred to Eppendorf tubes charged with fresh 100%
LR white resin. The tubes were sealed with plastic film and the resin polymerised at 50 °C for 16 hours.
Ultrathin sections (~90 nm) of embedded leaf material were captured on gold gilded grids (Agar
Scientific, Stansted, UK) and used for immunogold labelling. Samples were blocked for 30 minutes in 1%
BSA in phosphate buffered saline (PBS) and then incubated in primary antibody solution (antibody
diluted 1/100 in 1% BSA in PBS) for 1.5 hours. Grids were washed 3x 10 minutes with 1% BSA in PBS
before incubation for 1 hour with secondary goat anti-rabbit antibody conjugated to 10 nm gold particles
(Agar Scientific, UK, 1/100 antibody dilution prepared in 1% BSA in PBS). Grids were washed 3x 10
minutes in 1% BSA in PBS and 3x 5 minutes in distilled water before air-drying. Images were obtained at
80kv using a JEOL 1010 (JEOL, Japan) microscope equipped with a digital AMT NanoSprint500 camera
(Deben, UK).

Gel electrophoresis and immunoblotting

Soluble protein extracts were analysed for the presence of proteins via both denaturing (SDS-PAGE) and
non-denaturing (Native-PAGE) gel electrophoresis. SDS-PAGE and immunoblotting was carried out as
described in Perdomo et al. (2018) using Bio-Rad Mini-Protean TGX gels (Bio-Rad, UK). Non-denaturing

gels were run using a Tris-glycine buffering system at 4°C as per the manufacturer’s instructions. For both
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types of electrophoresis, immunoblotting was as described by Perdomo et al. (2018) using SeLSU and
CcmM antibodies described previously (Lin et al., 2014b) and a plant SSU antibody (Agri-Sera AS07 259,

Agri-Sera, Sweden).

Rubisco biochemistry
Rubisco activities and activation state in leaf extracts were determined as described by Carmo-Silva et al.
(2017), except that homogenate centrifugation was at a reduced 300 g for 1 min. Chlorophyll content in
the homogenates was determined by the method of Wintermans and de Mots (1965) using ethanol and
measuring absorbance in a microplate reader (SPECTROstar Nano, BMG LabTech, UK). Total soluble
protein (TSP) in the same supernatant as used for Rubisco activity assays was determined via Bradford
assay (1976). The amount of Rubisco was also quantified in the same supernatant by a [**C]CABP
[carboxyarabinitol-1,5-bisphosphate] binding assay (Whitney et al., 1999).

Rubisco catalytic properties were determined essentially as described previously (Prins et al.,
2016; Orr and Carmo-Silva, 2018) with the following changes: leaf discs were ground in extraction buffer,
followed by centrifugation at 300 g and 4°C for 1 min. Supernatants were immediately used for assays,
which was previously found to be suitable with similar cyanobacterial Rubisco complexes (Lin et al.,
2014b). Additional higher CO; concentrations (180, 280, and 410 uM) were also used for catalysis assays

€02 or Ke).

to enable determination of the Michaelis-Menten constant for CO (Ku
Photosynthesis measurements

Photosynthetic gas exchange was measured in healthy leaves that had recently reached full expansion,
typically leaf 4 or 5 on plants of approximately 45 cm in height. A LI-6800F portable gas exchange system
(LI-COR, Lincoln, NE, USA) was used to enclose a 6 cm? portion of leaf, with constant irradiance of 600
umol photons m2 s supplied by the cuvette head LEDs, a vapour pressure deficit of 1.20 + 0.03 kPa and
a flow rate of 300 pumol m?2 s, Leaf temperature was maintained at 24 + 1°C. For all measurements, the
entire gas exchange system was positioned inside the plant growth chamber, and controlled remotely via
Ethernet connection. After the cuvette was clamped onto a leaf, the chamber door was kept closed to
minimise fluctuations in CO; levels and the plant allowed to stabilise for at least 15 min at 3000 ppm CO,
prior to commencing measurements. For transplastomic tobacco lines, the ambient CO, concentration
(Ca) was subsequently decreased to 100 ppm, followed by increases to 200, 400, 800, 1200, 1600, 2000
and 2500 ppm CO.. For wild-type tobacco, additional concentrations were used such that increases in

CO, went from 50 to 100, 150, 200, 250, 300, 400, 600, 800, 1200, 1600, 2000 and 2500 ppm. For all



545 leaves measured, a separate CO, response curve was determined under 2% (v/v) O, conditions using a
546  balanced air gas cylinder for input, using otherwise identical settings.

547

548  Plant biomass

549 Leaf numbers and leaf measurements were taken every 3-7 days from four or five individuals for each
550  line (2 in the case of the Sel line). Plant height was measured from soil level to growing point.

551 Measurements were initiated at 28 DAS for WT and SelLS, 46 DAS for SeLSM35 and SeLm35 and 127 DAS
552  for Sel, due to the differing growth rates between lines and continued until the initiation of flowering. At
553 the end of the growth period, final leaf measurements were taken and area measured using a LI-COR
554 3100 leaf area machine (LI-COR, Europe). Leaf areas were then derived for all time points.

555

556  Statistical analysis

557  Statistical differences between trait means were tested via one-way analysis of variance (ANOVA). In
558  cases where an effect of genotype was observed (P < 0.05), a post-hoc Tukey test was used to conduct
559  multiple pairwise comparisons. Statistical analyses were performed using RStudio (version 1.1.453, (R
560  Studio Team, 2019)) and R (version 3.5.0, (R Core Development Team, 2013)). Plots were prepared with
561 ggplot2 (Wickham, 2016). Plant height and leaf area data analyses involved fitting curves to the

562  exponential phase of growth and comparing means of the curve coefficients using ANOVA. Where a

563 significant difference was observed between lines, a post-hoc Holm-Sidak test was used for multiple
564  pairwise comparisons. Analyses were performed in SigmaPlot (version 13, Systat Software, UK).

565

566

567  Accession Numbers

568  Sequence data for cyanobacterial RbcL and CcmM35 can be found in the GenBank data library under
569  accession numbers AIM40198.1 and AIM40200.1 respectively.

570

571 Supplemental Data

572  Supplemental Figure S1. RNA blots of WT and transplastomic tobacco lines.

573 Supplemental Figure S2. Presence of pro-carboxysome compartments in tobacco transplastomic plants
574 containing cyanobacterial Rubisco large subunits and CcmM35, with and without Rubisco small subunits.
575  Supplemental Figure S3. Electron micrographs of tobacco plants expressing cyanobacterial Rubisco large

576  subunits and CcmM35 contain a pro-carboxysome compartment in the chloroplast.
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Supplemental Figure S4. Additional examples of electron micrographs of tobacco plants expressing
cyanobacterial Rubisco large subunits and CcmM35 with a pro-carboxysome compartment in the
chloroplast.

Supplemental Figure S5. Western blots of SDS-PAGE and Native-PAGE gels used to examine protein
composition of wild-type (WT) tobacco and transplastomic lines expressing B-cyanobacterial
carboxysome components.

Supplemental Figure S6. Rubisco content expressed as grams per square metre.

Supplemental Figure S7. Chlorophyll content of transplastomic lines.

Supplemental Figure S8. Response of leaf CO; assimilation to intercellular CO, concentrations (Ci) under
atmospheric levels and 2 % oxygen.

Supplemental Figure S9. Plant photographs at a comparable growth stage.

Supplemental Figure $S10. Comparison of leaf size in transplastomic plants.

Supplemental Figure S11. Multiple sequence alignment of cyanobacterial and tobacco Rubisco small

subunits.

Supplemental Table S1. Oligonucleotide sequences used in the construction of transformation vectors.

Supplemental Table S2. Plant growth data analyses.
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Tables

Table 1. Rubisco catalytic properties. Rubisco maximum carboxylation rate (Vc), and Michaelis-Menten
constant for CO; (Kc) of wild-type (WT) tobacco and transplastomic lines expressing B-cyanobacterial
carboxysome components from Synechococcus elongatus (Se): Rubisco large subunit (L), Rubisco small
subunit (S), CcmM35 (M35). Values represent mean + SEM (n = 3-5 biological replicates). * Wild-type
values from Occhialini et al. (2016). Letters denote significant differences (P < 0.05) between

transplastomic lines as determined by Tukey’s pairwise comparisons following ANOVA.
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Figure legends

Figure 1. Replacement of the rbcL gene in tobacco chloroplasts with the Se-rbcL with or without the
ccmM35 gene. (A) The gene arrangements of WT, SeL and SeLM35 tobacco lines along with the locations
of the EcoRV and Kpnl restriction sites used in the DNA blot. The binding site for the DIG-labeled DNA
probe is shown in green bars. Seeds were obtained from two independent Sel lines and one SeLM35
line. (B) DNA blot analysis of the WT, Sel and SeLM35 samples digested with EcoRV and Kpnl. All samples

produced the expected band on the DNA blot.

Figure 2. Tobacco plants expressing cyanobacterial Rubisco large subunits and CcmM35 contain a pro-
carboxysome compartment in the chloroplast. Immunolocalization of Synechococcus elongatus (Se)
proteins in the chloroplasts of transplastomic tobacco lines expressing the Rubisco large subunit and
CcmM35 (SeLM35) or the large subunit alone (Sel). Electron micrographs of ultrathin sections of
mesophyll cells probed with the indicated primary antibody and a secondary antibody conjugated to 10
nm gold particles. Scale bars indicate size. Additional images are presented in Supplemental Figures S3

and S4.

Figure 3. Protein composition of wild-type (WT) tobacco and transplastomic lines expressing B-
cyanobacterial carboxysome components. Polypeptides in leaf extracts prepared from plants of each
line were separated by denaturing SDS-PAGE (A) and non-denaturing Native-PAGE (B) and either stained
with Coomassie Blue (upper panels) or used for immunoblotting with antibodies against cyanobacterial
Rubisco large subunit (SeLSU) and CcmM35, and against tobacco Rubisco small subunit (NtSSU) (lower
panels). Panels showing blotting of PAGE gels are slices from blots (see Fig. S5) and show the indicated
size regions where the respective antibodies detect proteins of interest. For SDS-PAGE and Native-PAGE,
10 and 20 ug total soluble protein was loaded per lane, respectively. (C), SDS-Page and Native-PAGE gels
immunoblotted with antibody against NtSSU, loaded with 20 and 40 ug total soluble protein,

respectively.

Figure 4. Rubisco and total soluble protein. Rubisco total activity (A), activation state (B), and content
(C), and total soluble protein (D), of wild-type (WT) tobacco and transplastomic lines expressing B-
cyanobacterial carboxysome components from Synechococcus elongatus (Se): Rubisco large subunit (L),

Rubisco small subunit (S), CcmM35 (M35). Values represent mean + SEM (n = 3-4 biological replicates).
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Letters denote significant differences (P < 0.05) as determined by Tukey’s honestly significant difference

[HSD] mean-separation test following ANOVA (P-values indicated on each panel).

Figure 5. Response of net CO, assimilation (A) to intercellular CO, concentrations (C;). Rates are
expressed on an area basis (A) and on a Rubisco active site basis (B) for leaves of wild-type (WT) tobacco
and transplastomic lines expressing B-cyanobacterial carboxysome components from Synechococcus
elongatus (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35). Values represent

mean * SEM (n = 3-4 biological replicates).

Figure 6. Plant development and growth traits. Photographs of 33 day old plants grown in parallel in
4000 ppm CO; (A), plant height (B) and leaf area (C) development during the growth cycle wild-type (WT)
tobacco and transplastomic lines expressing B-cyanobacterial carboxysome components from
Synechococcus elongatus (Se): Rubisco large subunit (L), Rubisco small subunit (S), CcmM35 (M35).

Values represent mean + SEM (n = 3-5 biological replicates). DAS, days after sowing.
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