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Abstract—In many drone applications, drones need the ability
to fly fully or partially autonomously to carry out their mission.
To enable such fully/partially autonomous flights, the ground
control station that is supporting the drone’s operation needs to
constantly localize and track the drone, and send this information
to the drone’s navigation controller to enable autonomous/semi-
autonomous navigation. In outdoor environments, localization and
tracking can be readily carried out using GPS and the drone’s
Inertial Measurement Units (IMUs). However, in indoor areas or
GPS-denied environments, such an approach is not feasible. In this
paper, we propose a localization and tracking scheme for drones
called ROLATIN (Robust Localization and Tracking for Indoor
Navigation of drones) that was specifically devised for GPS-denied
environments. Instead of GPS signals, ROLATIN relies on speaker-
generated ultrasonic acoustic signals to estimate the target drone’s
location and track its movement. Compared to vision and RF
signal-based methods, our scheme offers a number of advantages
in terms of performance and cost.

Index Terms—indoor localization, drones, ultrasound
transceiver, FHSS, Doppler shift, Kalman filter

I. INTRODUCTION

The global drone industry has grown rapidly in the past few
years and the number of applications in which drones play
an important role, both in indoor and outdoor environments,
has increased consequently. Today, there is a wide variety
of indoor drone applications, spanning from recreational use
cases to safety-of-life critical use cases. Examples include
reconnaissance inside nuclear power plants, aiding firefighters
to locate people inside burning buildings, security surveillance
inside large warehouses, etc.

In all of the aforementioned applications, drones need to be
able to fly fully or partially autonomously to carry out their
mission. To enable such fully/partially autonomous flights, the
ground control station or other infrastructure that is supporting
the drone’s operation needs to constantly localize and track
the drone, and send this information to the drone’s navigation
controller to enable autonomous/semi-autonomous navigation.
In outdoor environments, localization and tracking can be read-
ily carried out using GPS and the drone’s Inertial Measurement
Units (IMUs). However, in indoor environments or GPS-denied
environments, such an approach is not possible.

When GPS is not available, vision based methods are com-
monly used for drone localization and tracking (e.g., [1]).
However, the accuracy of current vision-based methods is
usually limited because of the vibration of a drone during

flight. Moreover, the accuracy can deteriorate further in vision
impaired environments (e.g., low light environments). Also,
vision-based methods incur high computational complexity.

In addition to vision-based methods, there are other tech-
niques, including RF-based localization (e.g., [2]), Doppler-
shift-based tracking (e.g., [3]), and tracking using cellular
networks (e.g., [4]). In indoor environments, where the cellular
signal level is weak, cellular signal-based approaches are not
feasible. Doppler-shift-based tracking also has limitations; by
itself, it does not provide sufficient tracking accuracy.

In this paper, we propose a localization and tracking scheme
for drones in GPS-denied environments that is referred to as
Robust Localization and Tracking for Indoor Navigation of
Drones (ROLATIN). ROLATIN uses acoustic (or ultrasonic)-
based localization and tracking. We claim that acoustic signal-
based localization/tracking offers a number of advantages over
RF signal-based approaches. The significantly slower propa-
gation speed of acoustic signals, as compared to RF signals,
enables higher tracking accuracy. Moreover, RF signals can
penetrate walls and ceilings, which can further degrade lo-
calization/tracking accuracy. To avoid any interference with a
drone’s propeller noise or human-generated noise, ROLATIN
uses high frequency acoustic signals, known as ultrasounds.
Our contributions are summarized below.
• We propose ROLATIN, a three-dimensional localization

and tracking scheme for drones in GPS-denied environments
(such as indoor environments) which is highly robust against
noise and multi-path effects and achieves high accuracy.
• To achieve high accuracy and robustness against noise,

ROLATIN employs two stages. In the first stage, ROLATIN
uses Frequency Hopping Spread Spectrum (FHSS) to localize
a target drone continuously. In the second stage, the velocity of
the drone is estimated by measuring the frequency shift of the
received signal. ROLATIN uses a Kalman filter to combine the
information obtained from the two stages to improve accuracy
and to increase robustness against noise.
• We conducted comprehensive simulations to evaluate RO-

LATIN. According to our results, ROLATIN achieves much
higher accuracy compared to prior works. Specifically, it incurs
localization/tracking errors on the order of a few millimeters in
the X−Y plane, while prior works reported errors on the order
of a few centimeters.



The rest of this paper is organized as followings. In the next
section, we are going through some of the related works in this
area. Then, in section III and IV, which are the core sections
of our paper, we fully explain our scheme for localizing and
tracking a drone in an indoor environment. Next, in section V,
we describe our test setup for simulations followed by section
VI where we bring the simulation results for the proposed
scheme. We conclude our work in section VII.

II. RELATED WORK

Our work is related to the following research areas: (i) indoor
drone localization and navigation, (ii) positioning and tracking
of a moving object, and (iii) indoor localization techniques in
general.

For indoor drone localization and navigation, there are sev-
eral methods that research groups have been working on them
including: vision based models using different visual techniques
such as visual odometry (VO), simultaneous localization and
mapping (SLAM), and optical flow technique [1], [5]– [7].
There are also a few research papers where they use deep neural
network in combination by visual techniques (e.g., [8]) or use
of LiDAR for autonomous flying (e.g., [9]). In [10], Mao et al.
track a drone using acoustic signal. In this work, they devised
a system where a drone can follow a user autonomously in
an indoor environment. In their work, drone sends acoustic
signal to the cell phone which the user used. Microphones
in the cellphone received the signal and using the cellphone
processor, the distance between the drone and user calculated.
At the end, the cellphone sends a command signal to the drone
and guide the drone to follow user. This work has robust
indoor positioning and tracking for drones, just in terms of
following the source in short distance and it does not have three-
dimensional localization. Another research work presented the
sound base direction sensing where simply by using the shift
in the received signal’s frequency (Doppler-shift effect), they
found the direction of the drone, but again there is no exact
localization here [3].

For positioning and tracking of a moving object in indoor
scenarios for short ranges, there are quite a few research works
where they use radio frequency (RF) or acoustic signals and
simply by calculating the time of flight (TOF) of the signal
between the system and the target object, they find the distance
and therefore find the position of the target object [10]– [12].

In term of indoor localization, RF, acoustic, or ultrasonic
signals are topics of interest [2], [13]– [16]. In [2], Chen et
al. use a WiFi platform to achieve centimeter accuracy for
indoor localization using Frequency Hopping Spread Spectrum
(FHSS) technique. RF signals propagate in speed of light which
makes the receiver processing harder and more expensive. As
we mentioned earlier, in [10], Mao et al. use acoustic signal for
tracking drones. Problem with acoustic signal is that human-
generated noise or drone’s propeller noise may interfere the
signal, hence degrade the accuracy of localization.

III. ROBUST FHSS-BASED LOCALIZATION

As we have discussed previously, three-dimensional local-
ization and tracking are the most important requirements in
realizing fully or partially autonomous navigation of drones.
In this section, we describe how ROLATIN carries out three-
dimensional localization and in the next section we will
elaborate on how it increases the robustness and accuracy
when tracking drones. Well-known measurement methods for
localization include angle of arrival (AOA), time of arrival
(TOA), time difference of arrival (TDOA), and received signal
strength (RSS) and techniques for location estimation are an-
gulation, lateration, and fingerprinting. AOA requires the use of
special antenna arrays and incurs high complexity calculations
which make the approach expensive both in terms of cost and
processing power. RSS and fingerprinting are too sensitive to
real-time changes, and hence, they are not reliable.

ROLATIN uses trilateration techniques and the TOA of
received ultrasound signals for localization. The main challenge
of using TOA of received signals is multi-path fading. In
[10], Mao et al. proposed an FMCW method to overcome the
impact of interference and multi-path. In [13], Segers et al.
compared the two spread spectrum methods, frequency hopping
spread spectrum (FHSS) and direct sequence spread spectrum
(DSSS). They showed that both FHSS and DSSS are effective
in addressing multi-path effects to increase accuracy. According
to their results, FHSS outperforms DSSS even in case of multi-
users.

Similar to the approach used in [14], in our scheme, transmit-
ting signal of the k-th drone is modulated using Binary Phase
Shift Keying (BPSK) modulation and then it is spread using
a sinusoidal signal with variable frequency depending on the
pseudo-random code:

s(k)(t) = d(k) · pTB(t) · sin(2πfmt+ φ), (1)

where TB is the data symbol duration, dk is the transmitted
data symbol of ultrasonic speaker on k-th drone, the rectangular
pulse pTB is equal to 1 for 0 ≤ t < TB and zero otherwise,
and fm is the set of frequencies over which the signal hops.
Then the received signal is in the form of:

r(k) = d(k) · pTB(t− τ) · sin(2πfm(t− τ) + φ)+

M(t) +N(t),

where τ is the propagation delay that we are using for calcu-
lating the distance, N(t) is the Gaussian noise, and M(t) is
the multi-path effect, which can be expressed as the following
summation:

M(t) =
N∑
i=1

αi · s(k)(t− τi), (2)

where αi is the attenuation of path i and τi is the time delay of
path i. Multi-path is an inevitable effect in indoor environments
due to the reflection of the original signal from walls, ceiling,
floor, and other objects inside the room. For calculating the
precise TOA, multi-path fading could be a big issue because
multiple copies of the original signal with different arrival times



make it impossible to detect the exact TOA of the original
signal. We are using FHSS to mitigate the multi-path effect
and be able to detect the exact TOA of the original signal. As
long as we make sure that the speed of hopping is faster than
the time delay of each path (τi), then before arrival of any of
the reflected signals we already have changed the frequency
and different paths don’t interfere with the original signal.

By ensuring the elimination of multi-path effect using FHSS
technology, the received signal would be just the time delayed
of transmitted signal plus noise:

r(k) = d(k) · pTB(t− τ) · sin(2πfm(t− τ) + φ) +N(t). (3)

Therefore, by performing a cross-correlation between the
received signal and the known transmitted signal (the one
without the time delay) and by detecting the sample bit at which
the peak occurs, the distance is calculated as follows:

d =
nsamples

fs
· csound, (4)

where nsamples is the sample number of the maximum peak
and fs is the sampling frequency.

Using the method described above, the distance between an
ultrasonic transmitter (speaker) and receiver (microphone) can
be calculated. The next step is three-dimensional localization
of the transmitter. For localizing an object in two dimensions
using trilateration, at least distances between the object and
three sources are needed. In three-dimensional localization, we
need to compute the distances between the target object and
at least four different sources in order to uniquely localize the
target object. Let’s denote the distance between a transmitter
and i-th receiver as di. Also, the position of the transmitter
is denoted as [x y z]T and the position of the i-th receiver is
denoted as [xi yi zi]

T . Then using trilateration rules we have:

(x1 − x)2 + (y1 − y)2 + (z1 − z)2 = d21

(x2 − x)2 + (y2 − y)2 + (z2 − z)2 = d22
...

(xn − x)2 + (yn − y)2 + (zn − z)2 = d2n (5)

We can then simplify these quadratic equations and write
them down in the form of Ax = b where A and b are equal
to:

A =


2(xn − x1) 2(yn − y1) 2(zn − z1)
2(xn − x2) 2(yn − y2) 2(zn − z2)

...
...

...
2(xn − xn−1) 2(yn − yn−1) 2(zn − zn−1)

 ,

b =


d21 − d2n − x2

1 − y2
1 − z21 + x2

n + y2
n + z2n

d22 − d2n − x2
2 − y2

2 − z22 + x2
n + y2

n + z22
...

d2n−1 − d2n − x2
n−1 − y2

n−1 − z2n−1 + x2
n + y2

n + z2n

 .

The vector x = [x y z]T which includes the coordinate of the
object that need to be localized would be: x = (AT A)−1AT b.
Further, we can multiply a constant in each row of A and b to
assign weights according to the channel quality of each receiver,
i.e., assign weights according to the SNR of the received data.

IV. ENHANCING THE ROBUSTNESS OF FHSS
LOCALIZATION AND TRACKING

In the last section, we proposed a method for localizing
and tracking drones using TOA of FHSS ultrasonic signals
and estimated the distance. Another method for tracking is
by estimating the relative velocity of the drone with respect
to each of the receivers. This can be done by measuring the
received signals’ frequency shift (i.e., Doppler-shift effect) and
then estimating the distance. The major problem with merely
using this method is that the error would increase over time,
and therefore, this method by itself cannot provide reliable and
accurate tracking over an extended period of time.

However, by leveraging a Kalman filter to combine the data
from both methods (i.e., TOA-based distance estimation and
velocity estimation based on frequency shift measurements),
we can prevent the errors from the velocity estimation to
increase over time. In this approach, obtained data from each
of the methods play an important role for maintaining the
system’s high accuracy over time. Velocity estimation based
on frequency shift measurements cancels out the measurement
error of TOA-based distance estimation and improve the ac-
curacy of system. On the other hand, at each time instant,
the data obtained from TOA-based distance estimation is the
main source of initial data for calculating the final distance and
the system is not merely depending on the velocity estimation
which makes it not reliable over time. Therefore, combination
of the data from both methods keeps system’s estimation
of distance highly accurate for all the time. This approach
achieves greater robustness to noise and enables more accurate
localization and tracking. In this section, we first describe
how ROLATIN estimates the velocity, and then explain how
it combines distance and velocity estimations using a Kalman
filter.

A. Velocity Estimation by Measuring Doppler Shift

Doppler shift can be expressed using the following equation:

Fs =
v
c
· F, (6)

where Fs is the amount of the frequency shift, v is the relative
velocity between transmitter and receiver, c is the speed at
which the signal propagates (if the signal is an RF signal, c
would denote the speed of light, and if the signal is an acoustic
signal, c would denote the speed of sound), and F is the actual
frequency in which the signal is transmitted. Using 6, it is
possible to determine whether the receiver and transmitter are
moving toward each other or moving away from each other by
treating v as a vector in the equation.

A number of prior studies have used Doppler shift measure-
ments to estimate the speed and direction of an Unmanned
Aerial Vehicle (UAV). In [3], Shin et al. use Doppler-shift to
estimate the speed and direction of a flying UAV. However, re-
lying exclusively on Doppler shift has limitations. For instance,
the initial position of the target drone has to be known and high
accuracy cannot be achieved. To address these limitations, some
approaches use Doppler shift measurements as an auxiliary



localization method to increase the performance of the primary
localization method [10]– [11], [17]. ROLATIN adopts this
strategy as well.

ROLATIN uses the following procedure to estimate the
relative velocity between the target drone and each of the
microphones in the room (where the drone is located):

• A speaker mounted on board the drone continuously
transmits sine waves at frequency F .

• After receiving the signal in each of the microphones, first,
ROLATIN applies FFT techniques to obtain the frequency
content of the received signal and find the pick in the
frequency domain and then estimates the frequency shift
of the signal, Fs, by calculating the difference between
the peak frequency of the received signal and F .

• An estimate of the drone’s velocity is calculated using
Equation 6.

B. Combining Distance and Velocity Estimation Using a
Kalman Filter

ROLATIN combines the estimates from the FHSS-based
distance estimation method and the estimates from Doppler
shift-based velocity estimation method. The motivation for this
approach is to improve the performance of distance estimation
in terms of accuracy and robustness against noise. There are two
approaches for combining these two types of estimates—using
a Kalman filter [10] or through an optimization framework
[17]. We concluded that the second approach is not appropriate
because of its significantly higher computational complexity,
which would put an excessive amount of burden on the process-
ing elements of ROLATIN. Hence, ROLATIN employs the first
approach. One of our main aims is to ensure that ROLATIN’s
computing complexity and communication overhead are low
compared to the state of the art. In the following paragraphs,
we will provide a brief description of how ROLATIN combines
distance and velocity estimates using a Kalman filter.

Let Dk denote the actual distance between the speaker and
a microphone in the k-th window, t denote the duration, vk
denote the measured Doppler velocity, nk capture the error in
Doppler measurements, dk denote the measured distance, and
wk denote the distance measurement error. These variables have
the following relationship:

Dk = Dk−1 + vk · t+ nk

dk = Dk + wk (7)

As we mentioned before, dk and vk are from distance and ve-
locity measurements, respectively. By using a Kalman filter, we
can exploit the redundancy between these two measurements to
reduce the impact of noise and further improve the accuracy
of distance estimation. According to [10], the optimal distance
estimation D̂k is given by

D̂k = D̂k−1 + vk · t+ p̂k−1+qk
p̂k−1+qk+rk

(dk − D̂k−1 − vk · t),
(8)

where p̂k = rk(p̂k−1+qk)
p̂k−1+qk+rk

, and the variables, qk and rk, denote
the standard deviation for nk and wk, respectively.
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Fig. 1. ROLATIN’s procedure for three-dimensional localization.

The procedure that ROLATIN employs to localize and track
a drone in a GPS-denied environment is illustrated in Figure 1.

V. SIMULATION SETUP

The performance of ROLATIN was comprehensively as-
sessed using simulations in MATLAB. We provide details of
the simulations in the following subsections.

A. Transmitter

The transmitter subsystem, which in is the ultrasonic speaker
on board the drone, generates the desired FHSS signals. We
used signals in the frequency range between 25 KHz and 55
KHz because of two reasons. First, frequencies at 20 KHz or
below need to be avoided because that range would overlap
with a human voice’s frequency range. Any overlap would
result in degraded performance. Moreover, according to the
Nyquist theorem, the sampling rate needs to be at least twice the
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Fig. 2. Comparison between ROLATIN’s estimated trajectory of a drone and
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maximum frequency to avoid aliasing, i.e., if the system works
in the frequency range of 25 KHz to 55 KHz, then the sampling
rate should be at least 110 KHz. Since we don’t intend to deal
with high frequencies to avoid both processing and equipment
cost, we don’t transmit above 55 KHz which means that
sampling rate simply needs to be 110 KHz or more. ROLATIN
uses FHSS waveforms. In this waveform, the frequency range is
from 25 KHz to 55 KHz with 6 sub-frequency carriers located
at 27.5 KHz, 32.5 KHz, 37.5 KHz, 42.5 KHz, 47.5 KHz, and
52.5 KHz and the bandwidth dedicated for each of these sub-
carriers is 5 KHz. A single hop occurs within the transmission
time of each data bit, and this hopping rate is fast enough
to mitigate the effects of multi-path interference. We set the
sampling frequency (fs) to 340 KHz. In terms of modulation,
ROLATIN uses BPSK (Binary Phased Shift Keying) to take
advantage of BPSK’s high robustness to noise.

B. Channel

In the simulations, we used a Rayleigh channel model that
considers the impact of additive white Gaussian noise (AWGN)
and multi-path interference on the transmitted signals. More-
over, we assumed that the target drone’s movement is restricted
to a rectangle room whose dimensions are 5 m × 5 m × 3 m.

C. Receiver

The receiver sub-system cross-correlates the received signal
with a reference signal, and then finds the sample bit which
makes the peak in the cross-correlation. Then, it estimates the
distance from the drone to the microphone using the following
relation: d = nsamples × csound/fs, where nsamples is the
sample number that the maximum cross-correlation occurs and
fs is the sampling frequency. There are four microphones in
the room, and the same procedure is used by each of them.

We placed the four microphones at specific locations with the
aim of achieving the best receiving coverage for every possible
location of drone in the room, i.e., we placed microphones in
the positions that ensure at any drone’s location in the room,
there is at least one microphone in a very close distance to the
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Fig. 3. Localization error for the seven trajectories.

drone that can receive the ultrasound signal with high signal
to noise ratio (SNR). Specifically, the (x, y, z) coordination
of the microphones in the room is (2.5, 0, 1.5), (5, 2.5, 2.5),
(2.5, 5, 2), and (0, 5, 3) where all the numbers are in meter.

VI. RESULTS & EVALUATIONS

In this section, we show the results of our simulations
and evaluate the accuracy of ROLATIN by calculating the
error between the actual position of the target drone and the
estimated position. We assess the scheme’s performance by
benchmarking it with respect to a simple reference scheme that
employs only the FHSS-based distance estimation to localize
a target drone. We evaluated ROLATIN using seven different
simulation experiments, each with different drone trajectories.
The placement of the microphones remained the same for all
of the trajectories.

In Figure 2, we show a drone’s actual trajectory as well as
ROLATIN’s estimated trajectory in one of the simulation exper-
iments. The locations of the microphones are also indicated in
the figure. The two lines representing the actual and estimated
trajectories seem to perfectly overlap because the tracking error
is very small relative to the dimensions of the room.

In Figure 3(a), we compare the performance of ROLATIN
with that of the benchmark scheme (which relies only on FHSS-
based distance estimation to localize a target drone) in terms of
the localization error in the X−Y plane. The average value of
the localization error for ROLATIN is 0.22 cm. As can be seen
in the figure, the benchmark scheme’s localization error is more
than twice that of ROLATIN. Other drone localization/tracking
schemes proposed in the literature incur a localization error that
is significantly greater than that of ROLATIN. For instance, the
scheme proposed by Segers et al. [13] incur an error of 2 cm
or greater in terms of localization error.

In Figure 3(b), we compare the performance of ROLATIN
with that of the benchmark scheme in terms of the localization
error in three-dimensional space. The average localization error
for ROLATIN is 0.55 cm. As we can see, this error is greater
than the error of localization in X−Y plane and that is because
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the error in height estimation is greater than error in the X−Y
plane.

In Figure 4, we show the relationship between ROLATIN’s
performance and the signal-to-noise ratio (SNR) of the signal
received by the microphones. As expected, the localization error
was inversely proportional to the SNR value of the signal. In the
figure, note that the Z axis’ localization error is much greater
than that of the X or Y axis. This is due to the geometric
dilution of precision (GODP), which describes error caused by
the relative position of the receiver microphones [18]. Correct
placement of the receiver microphones is important and has a
big effect on the accuracy of the three-dimensional localization,
specially for the Z axis’ localization. As an example, if we put
all the microphones at the same height, error of localization
in Z-axis increases significantly. The reason is that matrix
singularity occurs in the trilateration algorithm and for avoiding
that, it is necessary to have at least one of the microphones
located at the different height than the rest of them.

In most practical applications, the localization accuracy in
the X − Y plane is more important than that of the Z-axis.
This is because precise navigation of a drone in the X − Y
plane is more important than precisely controlling its vertical
position in most applications.

VII. CONCLUSIONS

In this paper, we have proposed a localization and tracking
scheme for drones in GPS-denied environments that we refer
to as ROLATIN. ROLATIN takes advantage of the beneficial
features of ultrasonic acoustic signals to estimate a drone’s
location and track its movement. It uses a Kalman filter to
combine estimates from FHSS-based distance estimation and
estimates from Doppler shift-based velocity estimation. Our re-
sults indicate that ROLATIN achieves much higher localization
accuracy compared to the schemes proposed in the literature.
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