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1. Introduction

Grobner bases have enjoyed a diverse set of applications since their inception in
1965 (for example, see (12, 13, 16, 17]). In 2004, Gribner bases were applied to
the problem of model selection in systems biclogy [11]. Specifically, they were in-
troduced as a tool to select minimal models from a set of polynomial dynamical
systems (PDS) that fit discretized experimental data: for a given set of data paoints
over a finite field, the ideal of points forms a coset representing the space of PDSs
that fit the data and a minimal model is selected from the space by computing a
reduced Grobner basis of the ideal and taking the normal forms of the model equa-
tions. While this provides an algorithmic solution to model selection, each choice
of monomial order resultzs in a different minimal PDS, with each one yielding dif-
ferent hypotheses about the underlying biological network. The following example
illustrates this claim.

Lactose metabolism in E coli is controlled by the lac operon, a genetic system
made up of simultaneously transcribed genes. It is said that the lac operon () is
ON (lactose is metabolized) when the activating protein CAP (y) is present and
when the inhibiting protein lacl(z) is absent. This behavior can be described by the
Boolean function f = ¢ A —z; as a polynomial aver the finite field Fa, we can write
f=ulz+1) = yz +y. If we consider the inputs X = {(1,0,0),(0,1,0),(1,0,1)}
representing Boolean states for the lac operon, CAP, and lac] respectively, then the
ideal of palynomials vanishing on ¥ has two Grébner bases, namely {r® + 1,22 +
z,y+x+1,xz+z} and {82 +y, 22+ 2z, 2+ y+1,yz}. The normal forms of f are z+1
and g, respectively. Note that the function [ is selected as a model nsing the first
Gribner basis while a different model is selected using the second Gribner basis.

Computing all possible minimal PDSs requires computing the Gribner fan of
the ideal which is computationally expensive, even in the finite field case. The
authors in [3], posed the question of finding data sets whose corresponding ideals
have a small number, possibly a unigque reduced Gréabner basis, or whose Griobner
fans consist of a single cone, Their motivation was a desire to minimize the number
of associated models, each with a different set of predictions.

Similar problems arise in the branch of statistics called combinatorial design of
experiments (see [15] and [9], Tutorial 92, for an introduction to this topic). In the
context of a field K, functions which fit data in X € K™ lie in the coordinate ring
K[Z] = K[xy,...,25]/I(X). Then the coset f+ T(E) describes the set of models
which fit the input data in X and one model is chosen by computing the normal
form of f € Klry,...,2,] with respect to a Gribner basis of the ideal of points
T(E). Changing term orderings results in potentially different normal forms, i.e
different models.

The first main goal of this paper is to identify classes of ideals in polynomial rings
which have a unique reduced Gribner basis. In Sec. 2, we introduce fundamental
tools such as G-basic sets, GFan numbers, and linear shifts (see Definitions 2.1-
2.3). Then it is shown in Theorem 2.1 that ideals related by a linear shift share
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the same number of G-basic sets, equivalently the same GFan number. Finally, the
classical notion of an ideal of points is recalled together with the notion of a grid
of points,

Section 3 starts with Theorem 3.1 which provides a characterization of ideals
whose GFan number is 1. Such ideals turn out to have also a unique basic set as
shown in Corollary 3.1, Then the important notion of a distraction is recalled. It is
shown that distractions and their linear shifts provide a large class of ideals with
GFan number equal to 1 (see Theorem 3.2 and Corollary 3.3). The last subsection of
this section focuses on natural distractions and associated staircases, Their strong
connection is highlighted in Proposition 3.2,

Section 4 contains the most relevant results of the paper. It is well known that ev-
ery zero-dimensional ideal in P = K[xq, ..., &,] containsg n univariate polynomials,
one for each indeterminate, Accordingly, we consider an ideal J in P generated by
n univariate polynomials, one for each indeterminate, and Definition 4.3 describes
how two ideals [y and I3 which contain J can be considered to be complementary
with respect to J. The main Theorem 4.1 shows that complementary ideals have
the same Groboer fan, hence the same GFan number, and then Corollary 4.1 pro-
vides pood classes of complementary ideals. The paper is concluded in Sec. 5, where
some applications of the theory developed before and some hints to future research
are llustrated.

Basic definitions and results are taken from [8-10], with examples computed in
CoCoA-5 [1] to allow the interested reader to check the computations directly.

2. Background
Let K be a field, P = K[#1,...,on] a polynomial ring, and 7 an ideal in P2, We
recall that T™ is the monoid of power products in the indeterminates xy,..., 10

and that a nonempty subset (@ of T is called an order ideal if it is closed under
division (see [9, Definition 6.4.3]). If & is a term ordering, the set T™\ LT, (I) is
denoted by Oy (1), It is well known that O (1) is an order ideal and the residue
classes of its elements form a K-basis of P/1 (see for instance [8, Corollary 2.4.11]).
It is also well known that, given I, there are order ideals which are not of type
O (1); nevertheless, the residue classes of their elements form a K-basis of P/1.
The following example taken from [9] (see Example 6.4.2) is a case in point.

Example 2.1. Consider the ideal I = (£ + ay + o2, 2=, 22y, 32, %) in Qlr, 3.
This ideal is symmetric with respect to switching @ and 4. Since the leading term
of #* + ry + y? is either =* or y*, the ideal I has two possible leading term ideals,
namely the ideals J; = (2%, 0%, 3®) and Jy = (&%, 2%y, v*). Neither is symmetric.
Thus, they do not give rise to symmetric vector space bases of Q[x, y]/1. However,
the set of terms @ = {1,x,y, 2%, 1*} is symmetric and represents a vector space
basis of Qx, v]/T.

These considerations motivate the following definition.
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Definition 2.1. An order ideal & such that the classes of its elements form a
K -hasis of P/1 is called a basic set for I. If there exists a term ordering o such
that & = (1), it is called a G-basic set for I. If we want to specify that a
(G-basic set is obtained using o, we call it a o-basic set.

Let I be a zero-dimensional ideal with dimg (P/I) = s < oo, let ¢ be a term
ordering, and let @ be an order ideal with s elements. The normal forms of the
elements in O with respect to ¢ are linear combinations of the elements of Of (1),
and hence can be represented by an s x s matrix, say M. It is then clear that O is
a basic set for I if and only if M is invertible.

Some relations between basic sets and o-basic sets are described in [4, Sec. 2].
For zero-dimensional ideals, basic sets are the main building blocks of the theory of
border bases (see [9, Sec. 6.4] for the introduction to that theory) which is outside
the scope of the present paper.

As mentioned above, the authors in [5] and others raised the question of proper-
ties of X that guarantee T{X) has a unique reduced Grobner basis, hence a unique
(G-basic set: such data sets have uniquely identifiable models. To count the num-
ber of G-basic sets of an ideal, we use the notion of the Grobner fun which was
mtroduced m [14]. It is a subdivision of the closed non-negative orthant R" made
with a finite number of polyhedral cones, such that the cones are in one-to-one
correspondence to the G-basic sets for 1.

Definition 2.2, Let I be an ideal in P and let GFan(I) be the Grobner fan of 1.
The number of G-basic sets for I, equivalently, the number of leading term ideals of
I, is called the GFan number of 1, and is denoted by GFNum(1), since it coincides
with the number of polyhedral cones in GFan([1).

We point out that the definition does not count the number of different reduced
Groboer bases, as shown with the help of the following easy examples.

Example 2.2, Let I = (f} © Klz,y], where f = 2 + 3 and K is any fHeld.
One can argue that for every term ordering {f} is the reduced Grobner basis.
However, for every term ordering o with © > g, we have LT(I) = {x) and the
corresponding G-basic set is {y™ |n € M}, For every term ordering o with y > x, we
have LT{I) = {y) and the corresponding G-basic set is {=™ | n € M}, Consequently,
we have GFNum(/) = 2.

Example 2.3, Let [ = (& +y+ 2) © K[r, v, 2], where K is any field. In this case,
we have GFNum([l) = 3 since the only possible leading term ideals of I are (&},
(wh, (=)

Since a topic of this paper is to identify ideals which have the same GFan
number, we note that some affine transformations do not affect leading terms. This

observation motivates the following definition.
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Definition 2.3. An affine transformation & : P — P defined by @; — a0 + by,
where a; € K\ {0}, b; € K fori=1,...,n is called a linear shift of P,

Proposition 2.1, Let & be a linewr shift of P and 1 an ideal in P,

(a) The ideals T and $(1) have the same G-busic sets,
(b} We have GFNum(/) = GFNum(®(7)).

Proof. To prove (a), let o be a term ordering on T" and let f be a nonzero
polynomial in I, It is clear that LT (f}) = LT (2(f)) which implies the inclusion
LT, (I) € LTZ(2(I)). But & is an isomorphism and its inverse is also a linear shift,
hence, we get the other inclusion. Consequently, we have LT (1) = LT (®(1)) for
every term ordering o which implies that 1 and $(1) have the same G-basic sets.
Claim (b) follows from (a), thereby completing the proof. |

Example 2.4, Let us return to the ideal I in Example 2.1. Consider the linear
shift # = (r+ Ly —2). Then B(I) = {(z+ 1P +(z+ D)y —2) + (y — 2)%,(z +
1P (x4 1)%(y —2), (z+ 1){y — 2)%, (y — 2)%}. Nate that ®(I) also has twa leading
term ideals, namely, the same minimally generated ideals .J; = {r? zy? 3"} and
Jo = (£, x%y, 3%} as I above. Indeed, GFNum(J) = GFNum(®(I)) = 2.

In areas such as design of experiments, ideals are constructed from data as
was described in the introduction. As such, we call a tuple (e,...,00) € K™ a
point, corresponding to the linear maximal ideal m = (21 —eq, ... 00 —cn) € P,
Furthermore, the vanishing ideal I(Y) of a finite set ¥ of s points is a zero-
dimensional radical ideal in P of type Z(Y) = m; 1 - -« N mg, and which we also
call an ideal of points. For an introduction to ideals of points, see [9, Sec. 6.3];
for methods to efficiently compute them and other zero-dimensional ideals, see [2]
and [3].

3. Ideals with One Reduced Gribner Basis

In this section, we look for conditions which gnarantee that an ideal T has
GFNum(f) = 1. We assume that K is any a field and P = K([z;,...,7,] is a
polynomial ring. Where specific conditions for K are required, we will note it as
NeCessaTy.

3.1. General results

We start this subsection by recalling the notion of Supp(f) (see for instance [8,
Definition 1.1.11]). Let f € P and let f =%, | e;t;, where ¢; € K and ¢, € T".
Then the support of f is defined as Supp(f) = {¢: | ¢ # 0}. Notice that Supp(0) =0,

Definition 3.1. A polynomial f € P is called factor-closed if there exists ¢ ©
Supp( f) such that all ¢' € Supp( f) have the property that ¢ divides ¢.
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Lemma 3.1. Let [ © P be an ideal. Let o be o term ordering and G be a minimal
monic a-Grobner busis of 1. Assume that every polynomial in G is factor-closed.

(a) The set 3 is the reduced o-Gribner basis of .
(b) We have GFNum(/l) = 1.

Proof. Let us prove claim (a). For contradiction assume that & is not reduced.
Since it is minimal and monic, there exist 4.5 € {1....,s} and a power prod-
uct ¢ € Supp(gs) such that LT,(g;)|%. Since g; is factor-closed, we deduce that
LTs(g;) | LT (g:), a contradiction to the minimality of 7.

The proof of (b) follows from the observation that for every i € {1...., s} the
leading term of g; is the same for every term ordering, hence, (7 is the reduced
Grobner basis of I for every term ordering. |

Theorem 3.1. Let I < P be an ideal. The following conditions are equivalent.

(a) There erists a ferm ordering o and o minemal monic o-Grabner basis G of 1
such that all the polynomials in G are foclor-closed.

(b) There exisis a term ordering o such that all the polynomials in the reduced
o-Gribner basis of I are fuctor-closed.

{c) We hove GFNum(l) = 1.

Proof. From Lemma 3.1, we deduce that Claims (a) and (b) are equivalent and
that (a) = (c). Next, we prove (c) = (b). By contradiction, we assume that there
exists ¢ and a power product t € Supp(g;) such that ¢ does not divide LTz(g;).
We let ¢ = t/ged(t, LT;(g;)) and t = LT,(g;))/ged{t, LT4(g;:)). Then t' and ¢ are
coprime and t' # 1. Therefore, there exists x; such that =; | ¢ and «; {t. Let 7 be
the lexicographic term ordering with x; >, x; for i # j. Then { >; LT;(g;) and
hence the reduced 7-Grobner basis of 1 is different from &, This is a contradiction
and the proof is complete. m|

In the recent preprint [6], related results are proved for so-called neural ideals,
which are generated by certain factor-closed generalizations of monomials [pseuw-
domonomials) in Boolean rings.

Theorem 3.1 gives an efficient way to check whether an ideal I has a unique
reduced Gréhner basis: in fact, one can simply inspect each minimal generator
for being factor-closed. This theorem also provides interesting consequences, as
described in the following corollaries.

Corollary 3.1. Let I be an ideal in P with GFNum(l) = 1, and let O(I) be the
unigque G-busic set for . Then Q1) is also the unigue basic sef for 1.

Proof. Let G = {qy.....g:} be the unique reduced Grobner basis of I. For con-
tradiction, assume that there exists a basic set O for I such that @ # OI), and
let ¢ € ONO(T). By definition of Grobner basis, there exists ¢ such that LT(g) | ¢t.

2050087-6
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From the theorem, we know that g; is factor-closed, hence, every power product
in Supp(g;) divides t. On the other hand € is an order ideal, hence every power
product in Supp(g;) is in &, Therefore, we get a nontrivial linear combination of
elements of & which is zero in P/1, thus a contradiction. O

Corollary 3.2, Let © be o linear shift of P. Let 1 be @ monomial ideal in P, and
OI) the set of power products which are not divisible by any power product in .

(a) We hove GFNum(I) =1 and OI) is the unique busic set for I.
(b) We hove GFNum(®(1)) =1 and OI) is the unigue basic set for ©(1).

Proof. To prove Claim (a), we observe that ()(J) is the unique G-basic set for T
by Theorem 3.1. Then the conclusion follows from Corollary 3.1.
Claim (b] follows from (a) and Theorem 2.1. |

When I has a unique reduced Grabner basis, the above results show that linear
shifts preserve leading terms as well as basic sets, In the remainder of this section
and in Sec. 4, we will see similar results for other types of ideals.

We ohserve that a linear shift is composed of two types of shifts, namely, & of
type o —r a;r; and ®g of type ; — o3 + b;. Clearly, if 1 is & monomial ideal, we have
1 =&,(T), so the only nontrivial part of Corollary 3.2 is that GFNum($:(1)) = 1.

3.2, Distractions

In Caorollary 3.2, we have seen a modification of monomial ideals which produces
ideals with GFan nmumber equal to 1. In the literature, there is another interesting
construction which yields the same result. For a complete introduction to the theory
of distractions, see [3].

Definition 3.2. Let K be an infinite field. For i = 1,... . n, let m = (ep1, 090, .. .)
be a sequence with c;; € K and cg; # e for every j # k. Set 7= (mq, ..., 7).

|

(1) For every power product ¢ = " -- - z3"

mn

in T", the polynomial

oy () Cn

Dx(t) = [1(x1 —ew) - [1{za —ea) -+ [] (0 — i)
i=1 i=1 i=1
is called the distraction of { with respect to .
(2) Let I be a monomial ideal in P, and let {#;,....%;} be the unique mini-
mal monomial system of generators of I. Then we say that the ideal
Do(I) = {Dz(t1), ..., Dr(ts)} is the distraction of I with respect to .

Theorem 3.2 ([9]). Let I be a monomial ideal in P, let {t,...,1;} be o minimal
set of power products which generates I, let w = (7y, ..., 7 ) be sequences of pairwise
distinct elements in K, and let Dy (1) = {(Dz(ty)...., Dz(ts)) be the corresponding

2050087-7
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distraction of 1.

(a) The ideal Do(I) is radical.
(b) The set {Dg(ty), ..., Dr(t:)} is the reduced o-Grobner basis of Dy (1) for every
term ordering o.

(c) We hove GFNum(D (1)) =1.
See [0, Theorem 6.2.12] for a proof.

Example 3.1. Let K = Q. Consider I = (t;,#). where t; = 27y and t; = 2%y?. Set
m = (3,2,5), m = (2, -1,3,12). As the elements in 71, 73 are pairwise distinct, we
can make the distraction of I with respect to ™ = (my, mo): D (T) = {Dx(t1), De(ta)}
where

Dy(th) = (& —3)(x — 2)(x — 5)(y — 2),

Dy(ta) = (z = 3)(z = 2)(y = 2)(y + 1)(y — 3)(y — 12).

According to Theorem 3.2, the ideal Dy (I) is radical and{D(t;), Dz(i2)} is the
reduced o-Grobner basis for every o, and so GFNum(D;(I})) = 1.

The assumption that K iz infinite guarantees the existence of a distraction of
all monomial ideals. However, in order to define the distraction D, (I) of a single
monomial ideal I, it suffices to specify the first d; elements of the sequence m;,
where d; = max{deg, (t;)|j e {l,... st} fori =1, .. n In particular, to distract
a monomial ideal T, it is sufficient to use finite tuples of elements. Consequently,
we do not have to assume that K is infinite, as long as K has sufficiently many
elements.

Example 3.2. Consider the ideal in Example 3.1. As the largest exponent is 4, we
need a field which has at least four elements. So Fa and Fy are excluded. On the other
hand, if K = Fy, we can choose 7 = (my, ), where m = (1,3,0), m = (0,1, 2, 3).
Then we get Dy(ty) = (2 —1)(x—3)xy, Dx(t2) = (x—1){z—3)yly—1)(y—2)(y—3).

As a consequence of Theorem 3.2 and Proposition 2.1, we get the following
result.

Corollary 3.3. We make the same assumptions as in Theorem 3.2 with the ertra-
condition that I iz a zero-dimensional ideal.

(a) The ideal Dy(T) is an ideal of points and GFNum(D(I)) = 1.
(b) If ® is a linear shift of P. the tdeal ®(Dy(I)) is an ideal of points, and
GFNum(®({D (1)) = 1.

Proof. Claim (a) follows from [9, Theorem 6.2.12(a) and Theorem 3.2(c)].
Claim (b) follows from (a) and Proposition 2.1, O

The following examples illustrate interesting outcomes of this corollary.
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Example 3.3. Consider the monomial ideal J = {z*,y*, %y, zv?) € Qlz,y]. We
will show how to construct a set of points X such that its ideal of points T(X) is a
distraction of J.

Since the first two generators of J are not mived and have degrees larger than
the powers of  and y in the other two generators, we can use 2 and y* to construct
two sequences and two polynomials. Let sy be any sequence with at least 4 entries,
say (0, é, 2,-1,...).

Then the polynomial f; = <z — % (x — 2)(x + 1) is the distraction of z*
with respect to ;. Similarly let 7o be any sequence with at least 3 entries, say

(0,1,2,...). Then f3 == y{y — 1){w — 2) = Dr,(z*). Set w = (71, m2). Now we can
construct the distractions of the other two power products, namely f3 := x{xr — %]Iy
and fi = ry(y — 1).

Consider the ideal I = {fi, fa, fa. f4}. Notice that I is the distraction of J with
respect to 7. Furthermore, I is the ideal of the points

X-— {(u,u},(n,n,{n?z}, (%u) (% 1),(2,0]?(—1,0)}_

We observe that T(E) = D;(J) and GFNum(D.(J)) = 1 follows from Corol-
lary 3.3(a).

The following examples show that if we do not follow the rigid order in the
choice of the constants imposed by the definition of distraction, unexpected things
can happen.

Example 3.4. If we consider the polynomials f;, fo of Example 3.3 and the two
polynomials £3 = (z — 2)(y — 1)(y — 2), £y = (z + 1)(z — é}{y — 1), then the
ideal Ty = {f1, fa, 3, £4) is not a distraction of .J for any permmutation of the tuples
(0, é, 2. —1) and (0, 1,2). However, it has the unique reduced Gribner basis G =
{zt - EIE'— grz+§2, y? — 3y +2, Izy—12+gz“y— gz— éy+i}
From the equalities
] 9 2 1
=t — EIE_ EIQ+E:: ={x+1) (I— E) (x)(z —2)
¥ —3y+2=(y—1)(y—2)
4 1 1

4 1
e ot L Sy — e — B r—
oy —° + By — 2L 5y+ 5 {y—1){x+1) (.L 5).

We see that I is the distraction of the monomial ideal {x?, 4%, z%y) with respect
to m = (my,m2), where m = (—1, %,l], 2) and m = (1,2).
Example 3.5. Consider the ideal I of the following set of four points
{00,0,0),(1,0,0),(1,1,0),(1,1,1}}.
Its reduced Gribner basis with respect to & = DegRevLex is
(2 —z,yz— 7,22 —z,0° —y, oy —y,2° — ).

2050087-9
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All polynomials in this basis are factor-closed, hence, we have GFNum(J) = 1 by
Theorem 3.1. We have LT, (1) = (=2, yz, ==z, 3°, zy, =%). However, LT, (I) is not
a distraction of I since we have the equalities

yz—z=2z(y—1) and zy—y=(x—1)y.

3.3. Naotwral distractions and statreases

In this subsection, we introduce an interesting family of distractions. We recall that
an ideal is called frreducible if it cannot be written as the intersection of two ideals,
both of which properly contain it, and use some results from [9].

Proposition 3.1. Let K be a field and let P = K|[zq,..., 7.

(a) Every proper ideal in P is a finite intersection of frreducible tdeals.

(b} A monomial ideal I in P s irreducible if and only if it is of the form I =
P, withl <ip <~ <i;<nanddy,... d; € N

(c) A zero-dimensional monomial ideal is drreducible if and only if it is of the form
I={®, ... %) withdy, ..., d, € K.

Proof. For Claim (a) see [9, Proposition 5.6.17]. For Claim (b) see [9, Proposition
6.2.11]. Claim (c) follows immediately from (b). 0

From Corollary 3.2, we know that associated to every monomial ideal there is
a unigque basic set (1), the set of power products which are not divisible by any
power product in 7. This observation motivates the following definition. Since the
exponents of every monomial are natural numbers, they can be viewed as elements
of any field K via the natural map M — K.

Definition 3.3. Let K be a field and let P = K|[zq,...,7,].
(1) Given t = ' ---zf», we say that p{t) := (a1.....an) € K" is the point
associated to {.
(2} Let I be a monomial ideal and let O[] be the unique basic set associated to
I. Then the set {p(t) |t € O(I)} is called the staircase of points associated to
I and denoted by Stair(1).
Example 3.6. Let [ = (&, xy2z?, 32, %) © Qfr.y, z]. Then we have
an =11, =, 22y yz, st E, e, wzz,.ry,;ﬂyz},
Hence, we get
Stair(l) = {(0,0,0),(D,0,1),(0,0,2),(0,1,0),(0,1,1)(0,1,2),
(1,0,0),(1,0,1),(1,0,2),(1,1,0),(1,1,1}}.

Lemma 3.2, Asswme [, o are zero-dimensional monomial tdeals in P. Lel
TlyenesTn be seguences of pairwise distinct elements of the field K, and set
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T= (T, ..., )

(a) D(lyniz)=Dz(I) N Dx(lz).

(b) Oy +I2) = O(11) N O(1a)

(c) Oy Niz) =0 )L O(Is).

(d) Stair(I; N Iy) = Stair(I;) U Stair(Is).

Proof. Claim (a) follows from [9, Proposition 6.2.10].

To prove Claim (b), notice that the inclusions Iy € Iy + s and Is C I} + I
imply Oy +12) € Q1) and Oy + I2) © O(fz). It follows that O(I; + I3) C
Q1) n@(I3). On the other hand, if { is a power product with ¢ & I and £ & Is,
then ¢ ¢ 1) + Iz and the claim is proved.

Let us now prove (c). From the inclusions Iy nls € 1) and Iy Nls € 15, we
get the inclusions (1) C O N1s) and O(12) € O(I; N 1s), hence, the inclusion
OL)UO(T:) € O Niz). To conclude the proof, we need to show that the two
sets have the same number of elements. On the other hand, if [ i= a zero-dimensional
monomial ideal, the numhber of elements of (NI is finite. Since we have

card(O(I;) U O(I1)) = card(O( 1)) + card(O(I2)) — card (O(I;) N O(I2))
we need to prove the equality
card(O( N I3)) = card(O(1;)) + card(O(13)) — card(O()) N O(1z)). (1)
To show this equality, we construct the exact sequence of K-vector spaces
0 — P/InIa) — (P/I) @ (P/l) — P/ +12) — 0
defined by the map
P/(InJ)—= (P/T)&(P/T) givenby f+(TnJ)— (F+T1,f+.0)
and the map
(P (PLT) = P/I+J) givenby (f+ 19+ D)= f—g+I+J
From the exact sequence, we get the equality
card(O(I; N Iz)) = card(O(I1)) + card(O(I3)) — card (O(I1 + I2)).

From Claim (b}, we deduce that this equality coincides with (1).
Claim (d) follows immediately from (¢) and the definition of a staircase. Hence,
the proof is complete. O

We are ready to introduce a special type of distractions.

Definition 3.4. Consider a monomial ideal I in P. Let dy. ..., dy be the maximal
exponents of £1,.. ., Iy in the minimal set of generators of I and take d = max{d;}.
Assume that 0,1,...,d — 1 are distinct elements of K. Furthermore, let wy, =
(0,1,2,3,....d; — 1) and let mpae = (7q,, ..., 7a, ). Then the distraction D (1) is
called the natural distraction (or classic distraction) of the ideal I.

Tnat
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The following proposition shows the connections between natural distractions
and staircases,

Proposition 3.2. Consider o monomial ideal I in P. Then we have the equality
T(Stair(l)) = Dy, (1).

Proof. A= a first step, we prove the claim with the extra assumption that I is
irreducible, hence of type I = (z]',....2%). In this case it is easy to see that
Stair(F) = {(e1,....ea) |0 < g < ap for £ =1,...,n}. Consequently, we have

I(Stair(I)) = (| (T1—ct,.-o Tn —cn)

0= o<
a1—1 iy —1
=<H (21 —c1)yerey [ Con — >
c1=1 tn=1
= Dy (1)

Next, we prove the general claim. From Proposition 3.1, we get an equality I =
Miz; J& with Ji irreducible for k= 1,...,s. We deduce the following equalities

I(Stair(I)) =T (Sta.ir (ﬁ(.r,,])) Yo7 (U Stmr(m)

k=1 k=1

= ﬂ I{St‘air(Jk” g m DFuu:{.Jk- EDTLL“ (ﬂ Jk) = lTu.-u_ ]r

k=1 k=1
where Equality (1) follows from Lemma 3.2(d), Equality (2) follows from the special
case discussed above, and Equality (3) follows from Lemma 3.2(a). O

The following example illustrates the special feature of natural distractions
proved in the theorem above,

Example 3.7. Let P = Q[c,y] and let I = (=%, «*y, 3%, y*). Then we have
Dy (T} = (el = 1)z = 2}z — 3)(x — 4), wlx — 1} — 2}z — 3)u,
ey(y — 1), wly — 1y — 2)(y —3)).

If we draw a picture of the power products involved, we get

¥

where the white dots represent the generators of I and the black dots represents
the power products in Q). According to Proposition 3.2, we can check that the
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set of points defined by the ideal Dy, () is exactly the staircase represented by
the black dots.

4. Complementary Ideals

In this section, we concentrate on zero-dimensional ideals and introduce the notion
of complementary ideals (see Definition 4.3). Throughout the section, we let K be
a field and P = K[xy,...,&,] as before.

4.1. Grids

It is well known that under the assumption that I is a zero-dimensional ideal, we
have dimg (P/1) < oo (see for instance [8, Proposition 3.7.1]). Consequently, for
every i = 1,...,n, the natural embedding K[x,]/(I N K[x;]) — P/I shows that
InK[x] # {0}, and hence I N K[z is a principal nonzero ideal. We denote its
monic generator by fr{rg). These facts motivate the following definition.

Definition 4.1. Let I he a zero-dimensional ideal in P and for i = 1,... . n, let
fi(z:) be the monic generator of T K|z

(1) The ideal {fr(z1),....frizn)} C 1 is called the maximal grid ideal con-
tained in [ and denoted by mgrid(f).
(2) More generally, every ideal in P of type {(gi({x1),...,gn{xy)) and such that

deg(gy(x;)) = 0 for every i = 1,...,n is called a grid ideal.

When I i= a zero-dimensional ideal and J = {g1(x1), ..., gnl(Tn)} is a grid ideal
such that J C I, it is clear g;(x;) is a multiple of fi(x;) for every i = 1,...,n. This
ohservation validates the use of “maximal” in the above definition.

Special cases of grid ideals are obtained as follows, nsing langnage from combi-
natorial experimental design.

Definition 4.2. Let dy,...,dy € My and for ¢ = 1,..., %, let (e1,...,614,) be
a di-tuple of pairwise distinct elements of K. Then the following set of points
X={lct s snp )|l €k <dyg,...,1 < kp < dy} is called a grid of points
or a full design in K". It consists of [[;_, d; points. The vanishing ideal of X is a
grid ideal generated by {g1(z1),...,gnlzn)}, where gi(x;) = l_[f':l{;:,, — i)

Remark 4.1. Let % be a set of points. The maximal grid ideal contained in Z(%)
is the vanishing ideal of a set X of points. In agreement with Definition 4.1, the set
£ is called the minimal grid of points containing %,

Example 4.1. As observed in Bemark 4.1, given a set of points ¥ © K7, its
vanishing ideal T(¥) contains n univariate polynomials fi(x;) which are products
of linear polynomials of type x; — ¢4y, and define the minimal grid K containing V.
If dy = deg( fi{xy)), then fi(x;) is the distraction of .'r.:f‘ with respect to any permu-
tation of the tuple of the ;.
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We recall that for a zero-dimensional local ring B with maximal ideal m, the
socle of R is defined as soc(R) = Anng(m), the anmihilator of m. The following easy
lemma collects some properties of grid ideals,

Lemma 4.1, Let J = {(gi(z1). ..., gnlTa)) be a grid ideal with d; = deg(g:(x:)) for

t=1,...,n.

(a) The ideal J is zero-dimensional,

(b) The set {g1(x1),- .., gn(xs)} is the reduced o-Gribner basis of J for every term
ordering o, and henee GFNum(J) = 1.

(¢) For every term ordering o the residue class of 37 a3~ o281 generates
soc( Pf LTo(J)).

(d) We have T"\ LTy (J) = {t € T" | ¢ divides 7 ~1z3*~1 ... e 1] for every term

ordering o on T".

Proof. Claim (a) follows from the Finiteness Criterion (see [B, Proposition 3.7.1]).
Claim (b} follows from the fact that LTz (g:) = .rf‘, hence they are pairwise coprime.
The other claims follow immediately. 0

This lemma suggests that 2 25>~ ... o8 —1 will be denoted by fuge(J). From

Lemma 4. 1(b), we know that if J is a grid ideal we have GFNum(J) = 1. Therefore,
the set O (J) is the same for every o and hence it will be denoted by OUJ).

Definition 4.3. Let J be a grid ideal and let J = g3 M --- M q; be its primary
decomposition. For 0 < § < s, set Iy =qp M-+ -1, and fo = qgeg N ---Mgs. Then
we say that Iy, Is are complementary ideals with respect to J, or simply
complementary ideals, if J is clear from the context.

The following lemma collects some properties of complementary ideals.

Lemma 4.2, Let J be a grid ideal in P and let [y, 15 be complementary ideals with
respect to J.

(a) J=Linly, h+la=(1},Is=J: 0, and I, = J: I1.

(b) There is an isomorphism of K -algebrus ¢ : P/T 2 P/I, = P/Is.

(c) dimg(P/J) = dimg P/} + dimg (P/I2), and hence, we have
card{(.J)) = card(Dy (1)) + card(D;(I2)) for every term ordering o.

(d) If I is a zero-dimensional ideal in P, then Claims (a), (b), and (c) hold for
J =mgrid(I), I = I, and I, = mgrid(T) : I.

Proof. Claim (a) can be proved using standard facts in commutative algebra.
Claim (b) follows from (a) and the Chinese Remainder Theorem (see for instance [8,
Lemma 3.7.4]). Claim (c) follows from (b) since the residue classes of the elements
of Bz(I) form a K-basis of P/I for any term ordering o and any ideal I in P.
Finally, Claim (d) is a consequence of the fact that megrid(1) is a grid ideal which

contains [, 0
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The following result is one of the main contributions of this paper.

Theorem 4.1. Let J be ¢ grid ideal in P, let Iy, I3 be complementary ideals with

respect to J, and lel o be a term ordering.

(a) Fori=1,2, we have O(J) N LT (I;) = OLIN\Ou(L;).

(b) Let ag : O(J) N LT, (1) — T" be the map which sends t — tae(J)/t. Then a,
is injective and induces a map J; : O[INOg (1) — Oy (Ia) which is bijective.

(c) We have GFan(l;) = GFan(ls) and hence GFNum(l;) = GFNum([3).

Proof. First, we prove Claim (a). From I; = J, we deduce that LT(1;) = LT{J),
hence O;(1;) C OJ) which implies the claim.

Next, we prove Claim (b). The fact that o is injective is by construction. By
contradiction, assume that teo:(J) /¢ € Of(I2). Then tee(J)/t € LTz(I2). We have
tsoc(JS) = t-tsoclJ)/t € LTo(Iy)- LT (I2) € LTo(1y - I2). Clearly Iy -I3 € J, and
g0 we get {0 (J) € LT () which yields a contradiction by Lemma 4.1(b). Conse-
quently, we get an injective map O(J) N LT (1) = Oz(I2), and from (a), we can
rewrite it as a map ¢ : Q[J)\OF(I1) — Op(I2) which is injective. Lemma 4.2(c)
shows that the two sets have the same cardinality, hence, we conclude that o is
bijective.

We observe that the set Oz(1)) is the same for every o which corresponds to a
point inside a polyhedral cone of GFan({;). Therefore, also the set O(J)NOL(11))
is the same, hence, we deduce from Claim (b) that also the set O;(I3)) is the same,
and the proof is complete. |

Remark 4.2, In the proof of Claim (b), we used the fact that ;- 1z € J. Actually,
we have [y - In = J (see for instance [10, Theorem 2.2.1]).

Let us illustrate the theorem with an example.
Example 4.2. Let P = [z, y|. Consider the grid ideal
J = (a(a® +1)% (= 1), (4" — 1)y +2))
with primary decomposition
oy +2) Ny — 0z’ ty+ e —Ly+2)nle—1,y—1)
Nfr— Ly +y+ 1Nz + 22 4+ 1,9+ 2)
Nt + 2 + Ly — 1Nt + 27 + 1,2 +y+ 1),
Let I1 and I» are complementary with respect to .J. If
L={zy+2)niz-Lg+y+1)n{z® + 227 + Ly +2),
then
L=J:Lh=(y-)n{ry+y+Ln{z—Ly+2)n{z—1,y—1)
Nt + 2082 + Ly — U + 202 + 1,97 +y+ 1),
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We have GFNum(l1) = GFNum(l.) = 2. See the following ColoA-5 code for
details.

Kee=00; Use P::=K[x,y]:

Ji=ideal (x*(x™2+1) "2« (x-1), (y"3-1)={y+2));

PD:=PrimaryDecompositiond(J) ; [ReducedGBasia(X) | X In FD];

f=

[ly +2, =1, [y -1, =], [x, 972 +y +#1], [y #2, x -1],

Iy =1, = =1], [x =1, ¥°2 +y +1], [y +2, x™4 +2+x"2 #1],

[y =1, x"4 +2+x"2 +1], [¥y"2 +y +1, x4 +2+x2 +1]]

wf

I1:= Intersection{ideal(x =1, y"2 #+y +1), ideal(y +2, x),

ideal (y +2, x"4 +2+x"2 +1));

ReducedCBasis(Il); QBl:={uotientBasisSorted(Ii); QB1;

— [x#y +2=x -y -2, y°3 +3s7"2 +3ay 22,

—— x"5 +2=x”3 +(4/F)wxy"2 +x +(4 3=y -8/3]

— M, v, =, ¥°2, "2, z°3, x"4]

I2:=Intersection(ideal (x, ¥°2 +y +1), ideal(y -1, = -1},
ideal(y -1, =), idesl(y +2, = -1), ideal(y -1, ="4 +2+x™2 +1},
ideal (¥~2 +y +1, x"4 +2ex™2 +1));

indent (ReducedCBania{I2)); [B2:=QuotisntBasiaSarted(I2); QB2Z;

el

¥4 +2ey 3 -y =2,

x*y"3 =y"3 =x +1,

x"Bry =x"B +24x 3%y =2ex”3 +(~4/3)#y"3 +xey -x +4/3,
x°6 -x°h +2%x"4 -Dex®3 +x"2 -x

1 =f

— [, 7, =, ¥°2, z*=y, 2°2, 73, xy"2, x 2oy, x"3, x"2%y"2,

-——  x 3=y, x4, x"3xy"2, x ey, x°6, x"dsy"2]

multiplieity(P/J); multiplieity(P/T1); multiplicity(P/I2);

-— 24

-7

-= A7

GF1:=CrosbnerFanReducediBases (11} ; indent (CF1) ;

f*

[x#+y +2¢x =y =2, y"3 +3#y"2 +3%y +2, "6 +2ex"3 +(4/3psy"2 +x +(4/3)ey -8/3],
[x*y -y +2#x -2, y"2 +(3/4)*x"5 +(3/2)=x"3 +y +(3/4)»x -3,
"6 -x"5 +24x"4 -2Zex"3 +x"2 -x]

=/
GF2:=GrosbnerFanfedncedGBases (12} ; indent (GF2);
f=
[y~4 +2ey”3 -y -2, x+y"3 -y"3 -x +1,
x"Bxy —x"h +24x"3ey -Dxx"3 +(-4/3)ey"3 +xey -x +4/3,
x"6 -x"h +2«x"q -2ex"3 +x72 -u],
[¥"3 +(=3/4)ex"Bbdy +(=3/2)xx 3wy +(3/4)9x"B +(~3/4)wxey +(3/2)»x"3 +(3/4)x -1,
x"Bry 2 +2ex"3ay"d +x"Bey 4xey”d +2ex”3xy -Dex”h +xey —4ex™3 -Jex,
x"6 ~x"B +2ex"4 ~2ex"3 +x"2 -x]
»f

Corollary 4.1. Let J be a radical grid ideal in P and let T be an ideal in P such
that T 2 J.

(a) The ideals I and J : 1 wre radical.
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(b) The ideals T and J : I are complementary ideals with respect fo J, and hence,
the conclusions of Theorem 4.1 apply to I; =1 and I = J: I.

(c) Let E be a grid of points, J = T(X), and I 2 J. Then there exists a subset W
of B such that I =T(Y), J: I =T(E\Y), and (a) and (b) are satisfied by the
ideals J T and J: 1.

Proof. To prove Claim (a), notice that as the ideal J is zero-dimensional and
radical, there are maximal ideals my, ... ,m; in P such that J = ﬂf=] my. Let 5=
{1....,s}. The Chinese Remainder Theorem implies that there is an isomorphism
w: P{J 2 [];.5 P/my. Via this isomorphism, the image (1) is a product of s ideals
which are either {0} or (1}. Let T C S be the subset of indices which correspond to
the zero ideals. Then I = [),. m; and hence it is radical. Similarly, we find that
J: I

To prove Claim (b), it suflices to observe that we have J: 1 = n'-'ES"I,T my.

Finally, to prove (c), let X be a grid of points in K™, and fori = 1,...,n, let
gy = l_[fi:l{;:, — cy5). Then the vanishing ideal of X is T(X) = {g1,...,9n). The
ideal T(X) is radical by construction, and every ideal which contains T(X) is the
vanishing ideal of a subset ¥ of X, i.e. it 15 of type I(¥). Consequently, we have

T(X) : T(Y) = T(X\¥). O

The following example illustrates this corollary.

Example 4.3.

K::=0Q; Use P::=K[x,¥];

Tr=ideal {(x"2+1)={x-1)={x-2), (¥ 2-2)={y+2));
Ji:= T+ideal (x-1+#y~2-2);

J2:=Colon(T,J1);

ReducedGBasia(T1) ) QB1:=QuocientBasis{Ji): QB1;

-— [ -1, y°2 -21

== [1, ¥]

ReducadGBasis (123 ; (B2 =(uotientBasis{J2); QB2;

== [§~3 +2ey 2 -Zey -4,
I 3wy #3aE"0 -TeE ey -2 sy +2ex -Dwy -4,
174 -3ex"3 +Jex"Z -Jex +Z]

-— [1, ¥, ¥2, x, X=y, X=y"2, T 2, X "2ay, T Tmy"2, x°3]

pultiplicity{P/I); moltiplicity{P/J1); multiplicity(F/J2);

-— 12

-2

-— 10

GF1:=CroebnerFanReducedtBases (1) ; GF1;

- [y2 -2, = -1]

GF2:=CroebnerFanReducedtBases ( J2) ; GF2;

== [§~3 +2ey 2 -Zey -4,

-— T3y +2ax°3 -2ax 3sy -dax R +usy +dem -Ray -4,

== X74 =FeX"3 +3eX"T -Fex +3]

5. Final Remarks

In this section, we collect some consequences of the theoretical results deseribed
in the preceding sections. The significance of Theorem 4.1 is the ability to quickly
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compute new ideals with GFNum 1. This is especially convenient for network infer-
ence or design of experiments where data often have states in a finite field. Let K
be a finite field with characteristic p = 0. Then K is a finite-dimensional Fp-vector
space hence the number of its elements is ¢ = p®, where ¢ = dimg, (K'). Given an
indeterminate z, the univariate polynomial 29 — 2 is called a field equation of K
since 29—z =[], (2 — a) (see [T, Sec. 4.13]). Consequently, if P = K[r;....,z,]
and g; = & —a; for i = 1,...,n, then the ideal {g,...,9,) is the vanishing ideal
of a grid and hence Corollary 4.1 applies to this case.
Let us see an example with K = Fy.

Example 5.1.

Kio=gZ/(3); Use P::= K[x,¥.Z]:
I:=ideal (x"3-x, y"3-y, 2"3-2);
Jiz= I+ideal(x~2-y-z):
I2:=Colon(T, Ji);

ReducedGBasia(J1); QBi:=QuorientBasia(Ji); QBi;
— [¥y*2 -y*z +="2 -y -2, x*y +¥*z -x, "2 -y -, 273 -zl
— [1, =, 22, y, y*2, y=2"2, x, X«z, X&x"3]

ReducedGBasia(12); QB2:=QuorientBasia(]2); QE2;
— [&73 -z, ¥y°3 -y, xey~2 -xeysz +xsz 2 +may +usz,
I™24F FXTIHZT 4XTTZ 4FTZ -yeE 4272 -1, 173 -1
-— [, =, 2°2, y, y%=, y*z 2, y°2, y "2z, y"Iex"2, x, x%z,
I4Z™Z, T&F, TeFET, TeF4ZTI, T°F, X"Iez, x7Iez"Z]
mltiplicity(P/11; multiplicity(P/J1)}; multiplicity(P/J2);
== 2T
- |
== 18
GF1:=GrocbnerFanTdeals(J1);
GF2:=GroebnerFanldesls(J2);
Len{GF1) ;Len{GF2) ;
— 4
— 4
GF1:=CroebnarFanReducedCRasas (J1) ; indant (GF1) ;
i=
[
[x°2 =y =2, Z™3 =E, XeF +XI+Z ~I, ¥ 2 -yez +z"2 -y -2].
[x°2 -z -y, ¥°3 -y, %=z +x*y -x, 22 -ysz +y°2 -z -yl,
[y -x~2 #+z, x~3 -z, 273 -Z].
[z +y -x~2, x°3 -z, ¥7°3 -yl
1
*
GF21={J2) ; indent (GF2) ;
i=
[273 =z, ¥73 =¥, I+«F"2 ~I+FeZ +I4Z"2 +T4F +X4Z,
I Ry +X°DeE 41D 42 -yez 4272 -1, 1°3 -x],
[¥*3 -y, =°83 —x, x"2=z +x" 2=y +z°2 +x°2 -yez +y~2 -1,
IFE™D -Eefer +Iey 2 +IeE +xey, 273 -z],
[x°3 -x, 28 -2, ¥y°2 +x Iy -yez +x 2%z +2°2 +x~2 -11,
[x*3 -x, 2" -y=2 +§°2 +X 2=z +x"2my +x°2 -1, ¥°3 -y]
wf

[+

Theorem 4.1 shows, among other results, that complementary ideals have the
same number of reduced Grobner bases. The advantage of this is that it may be
computationally easy to test whether a small set of data has a unique Grobner
basis assoclated to it and then to generate a lerger set via the complement. Let us
see an easy application of this remark.
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Proposition 5.1. Let J 1, I3 be deals in P osuch that J and I1 ave grid ideals,
Jc 1I|_. tmdfg =J:I],

(a) We have GFNum(/l:) = 1.
(h) In particular, statement (a) holds if XY are grid of points, J = T(E), I =
I(Y). and hence Iy = T(E\T).

Proof. As Claim (h) is a special case of (a), let us prove Claim (a). Since I3 is a
grid ideal, we get GFNum(l:) = 1 from Lemma 4.1{b), and the conclusion follows
from Theorem 4.1(d). |

Let us see an example which illustrates this proposition.

Example 5.2.

Tee P::= QQLlx,yl;

Fi=me{x-1)={x-2) = {x-3) = (x-4);

Grays(y-1)e{y-2)e(y-3);

I:=idaal(F,G);

M:=mat{[[0,11, [0,31, [1,11, [1,31, [3,11, [3,311);
Jir=IdealDfFoints(F,M);

J2:=Colon(T,J1);

GF 1=GroebtnerFanldeals(J2) | GF;

—— [1deal(xZsy"2 -Z+x"Zay —GxIay"2 +12exey +23y°2 -16sy,
- ¥4 ~Gay"3 #11ey 2 -Gay, X5 ~104X"4 +354X"3 -G0+L"2 +24+x)]
Len(GF};

-1

-- The 1deal Ji is the vaniahing ideal of The "white dors®.
-— The ideal J2 is the vanishing ideal of the "black dots®.

¥

Oune of the main goals of this paper is to identify classes of ideals inside affine
K -algebras which have a GFan number equal to 1. Using the notions of distractions
of ideals and their linear shifts we were able to identify a large class of such ideals
and provided a methodology for constructing them. Furthermore, we proved that
complementary ideals have the same GFan mumber which provides a tool for iden-
tifying ideals of (large) sets of points as having a GFan numhber 1 hased on the ideal
of the (small) complementary set of points. Future work may involve a geometric
characterization of all data sets with GFan number equal to 1.
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