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E.    Di  mit r o v a  et  al.

1.   I n t r o  d u c ti o n

Gr ̈ o b n er  b a s es  h a v e  e nj o y e d  a  di v er s e  s et  of  a p pli c ati o ns  si n c e  t h eir  i n c e pti o n  i n

1 9 6 5  (f or  e x a  m pl e,  s e e  [ 1 2,  1 3,  1 6,  1 7]).  I n  2 0 0 4,    Gr ö b n er  b a s es    w er e  a p pli e d  t o

t h e  pr o bl e  m  of    m o d el  s el e cti o n  i n  s yst e  ms  bi ol o g y  [ 1 1].  S p e ci fi c all y,  t h e y   w er e i n-

tr o d u c e d  as  a  t o ol  t o  s el e ct    mi ni  m al    m o d els  fr o  m  a  s et  of  p ol y n o  mi al  d y n a  mi c al

s y st e  ms (  P  D S)  t h at  fit  dis cr eti z e d  e x p eri  m e nt al  d at a: f or  a  gi v e n s et  of  d at a  p oi nts

o v er  a  fi nit e  fi el d,  t h e i d e al  of  p oi nts f o r  ms  a  c o s et  r e pr es e nti n g  t h e  s p a c e  of   P  D Ss

t h at  fit  t h e  d at a  a n d  a    mi ni  m al    m o d el  is  s el e ct e d  fr o  m  t h e  s p a c e  b y  c o  m p uti n g  a

r e d u c e d   Gr ̈o b n er  b a sis  of t h e i d e al  a n d t a ki n g t h e  n or  m al f or  ms  of t h e   m o d el  e q u a-

ti o ns.    W hil e  t his  pr o vi d es  a n  al g o rit h  mi c  s ol uti o n  t o    m o d el  s el e cti o n,  e a c h  c h oi c e

of    m o n o  mi al  o r d er  r es ults  i n  a  di ff er e nt    mi ni  m al   P  D S,   wit h  e a c h  o n e  yi el di n g  dif-

f er e nt  h y p ot h es es  a b o ut  t h e  u n d erl yi n g  bi ol o gi c al  n et  w o r k.   T h e  f oll o  wi n g  e x a  m pl e

ill ustr at es  t his  cl ai  m.

L a ct o s e    m et a b olis  m i n   E. c oli    is  c o ntr oll e d  b y  t h e  l a c  o p er o n,  a  g e n eti c  s y st e  m

m a d e  u p  of  si  m ult a n e o usl y  tr a ns cri b e d  g e n es.  It is  s ai d  t h at  t h e    l a c  o p er o n  ( x ) is

O  N  (l a ct o s e  is    m et a b oli z e d)    w h e n  t h e  a cti v ati n g  pr ot ei n    C  A  P  (  y )  is   pr es e nt  a n d

w h e n t h e i n hi biti n g  pr ot ei n   l a cI (z ) is  a bs e nt.   T his  b e h a vi or c a n  b e  d es cri b e d  b y t h e

B o ol e a n f u n cti o n   f  =   y  ∧  ¬  z ;  a s  a  p ol y n o  mi al  o v er  t h e  fi nit e  fi el d F 2 ,   w e  c a n   writ e

f   =    y (z  +  1)   =    y z  +   y .  If    w e  c o nsi d er  t h e  i n p uts  X   =    { ( 1, 0 , 0) , ( 0, 1 , 0) , ( 1, 0 , 1) }

r e pr es e nti n g   B o ol e a n st at es f o r t h e  l a c o p er o n,   C  A  P,  a n d  l a cI  r es p e cti v el y, t h e n t h e

i d e al  of  p ol y n o  mi als  v a nis hi n g  o n  X   h a s  t  w o   Gr ö b n er  b a s e s,  n a  m el y  { x 2 +   x, z 2 +

z, y +  x  + 1  ,  x z +  z }  a n d  { y 2 +  y, z 2 +  z,  x +  y + 1  ,  y z} .   T h e  n o r  m al f o r  ms  of f  a r e  x  + 1

a n d  y ,  r es p e cti v el y.   N ot e  t h at  t h e  f u n cti o n  f   is  s el e ct e d  as  a    m o d el  usi n g  t h e  first

Gr ̈ o b n er  b a sis   w hil e  a  di ff er e nt   m o d el  is  s el e ct e d  usi n g  t h e  s e c o n d   Gr ̈o b n er  b a sis.

C o  m p uti n g  all  p o ssi bl e    mi ni  m al   P  D Ss  r e q uir es  c o  m p uti n g  t h e    Gr ¨o b n er  f a n  of

t h e  i d e al    w hi c h  is  c o  m p ut ati o n all y  e x p e nsi v e,  e v e n  i n  t h e   fi nit e   fi el d  c a s e.    T h e

a ut h o r s  i n  [ 5],  p o s e d  t h e  q u esti o n  of  fi n di n g  d at a  s ets   w h o s e  c o r r es p o n di n g i d e als

h a v e  a  s  m all  n u  m b er,  p o ssi bl y  a  u ni q u e  r e d u c e d   Gr ö b n er  b a sis,  o r   w h o s e   Gr ö b n er

f a ns  c o nsist  of  a si n gl e  c o n e.   T h eir   m oti v ati o n   w a s  a  d esir e t o   mi ni  mi z e t h e  n u  m b er

of  a ss o ci at e d   m o d els,  e a c h   wit h  a  di ff er e nt  s et  of  pr e di cti o ns.

Si  mil a r  pr o bl e  ms  a ris e i n  t h e  br a n c h  of  st atisti cs  c all e d  c o  m bi n at o ri al  d esi g n  of

e x p eri  m e nts  (s e e [ 1 5]  a n d [ 9],   T ut o ri al  9 2, f o r  a n i ntr o d u cti o n  t o  t his  t o pi c).  I n  t h e

c o nt e xt  of  a  fi el d  K   , f u n cti o ns   w hi c h  fit  d at a i n X   ⊆   K n li e i n  t h e  c o o r di n at e  ri n g

K   [X  ] :  = K   [x 1 , . . . ,  xn ]/ I (X  ).   T h e n  t h e  c o s et  f  +   I (X  )  d es cri b es  t h e  s et  of    m o d els

w hi c h  fit  t h e  i n p ut  d at a  i n   X   a n d  o n e    m o d el  is  c h o s e n  b y  c o  m p uti n g  t h e  n o r  m al

f o r  m  of  f   ∈   K   [x 1 , . . . ,  xn ]    wit h  r e s p e ct  t o  a    Gr ̈o b n er  b a sis  of  t h e  i d e al  of  p oi nts

I (X  ).    C h a n gi n g  t er  m  o r d eri n g s  r es ults  i n  p ot e nti all y  di ff er e nt  n o r  m al  f o r  ms,  i. e.

di ff er e nt   m o d els.

T h e  fir st   m ai n g o al of t his  p a p er is t o i d e ntif y cl a s s e s of i d e als i n  p ol y n o  mi al ri n g s

w hi c h  h a v e  a  u ni q u e  r e d u c e d    Gr ö b n er  b a sis.  I n  S e c.  2,   w e  i ntr o d u c e  f u n d a  m e nt al

t o ols  s u c h  a s    G- b a si c  s ets,    G F a n  n u  m b er s,  a n d  li n e a r  s hifts  (s e e    D e fi niti o ns  2. 1 –

2. 3).    T h e n  it  is  s h o  w n  i n    T h e o r e  m  2. 1  t h at  i d e als  r el at e d  b y  a  li n e a r  s hift  s h a r e
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S  m all    G r ö b n e r  f a n s  of  i d e al s  of  p oi nt s

t h e  s a  m e  n u  m b er  of   G- b a si c s ets,  e q ui v al e ntl y t h e  s a  m e   G F a n  n u  m b er.   Fi n all y, t h e

cl a s si c al  n oti o n  of  a n i d e al  of  p oi nts  is  r e c all e d  t o g et h er   wit h  t h e  n oti o n  of  a  gri d

of  p oi nts.

S e cti o n  3  st arts   wit h    T h e or e  m  3. 1   w hi c h  pr o vi d es  a  c h ar a ct eri z ati o n  of  i d e als

w h o s e    G F a n  n u  m b er  is  1.  S u c h  i d e als  t ur n  o ut  t o  h a v e  als o  a  u ni q u e  b a si c  s et  a s

s h o  w n i n   C or oll a r y  3. 1.   T h e n t h e i  m p ort a nt  n oti o n  of  a  distr a cti o n is  r e c all e d. It is

s h o  w n  t h at  distr a cti o ns  a n d  t h eir  li n e ar  s hifts  pr o vi d e  a  l ar g e  cl a s s  of  i d e als   wit h

G  F a n  n u  m b er e q u al t o  1 (s e e   T h e or e  m 3. 2 a n  d   C o r oll a r y 3. 3).   T h e l a st s u bs e cti o n  of

t his  s e cti o n f o c us e s  o n  n at ur al  distr a cti o ns  a n d  a s s o ci at e d  st air c a s e s.   T h eir  str o n g

c o n n e cti o n is  hi g hli g ht e d i n   P r o p o siti o n  3. 2.

S e cti o n 4 c o nt ai ns t h e   m ost r el e v a nt r es ul ts of t h e  p a p er. It is   w ell k n o  w n t h at e v-

er y  z er o- di  m e nsi o n al i d e al i n  P   =   K   [x 1 , . . . ,  xn ]  c o nt ai ns n   u ni v ari at e  p ol y n o  mi als,

o n e f or  e a c h i n d et er  mi n at e.   A c c o r di n gl y,   w e  c o nsi d er  a n i d e al  J   i n P   g e n er at e d  b y

n   u ni v a ri at e  p ol y n o  mi als,  o n e f o r  e a c h i n d et er  mi n at e,  a n d   D e fi niti o n  4. 3  d e s cri b e s

h o  w  t  w o i d e als   I 1 a n d  I 2 w hi c h  c o nt ai n   J   c a n  b e  c o nsi d er e d  t o  b e  c o  m pl e  m e nt ar y

wit h  r es p e ct  t o   J .   T h e    m ai n   T h e o r e  m  4. 1  s h o  ws  t h at  c o  m pl e  m e nt ar y  i d e als  h a v e

t h e  s a  m e   Gr ̈o b n er f a n,  h e n c e  t h e  s a  m e   G F a n  n u  m b er,  a n d  t h e n   C or oll a r y  4. 1  pr o-

vi d e s  g o o d cl ass es  of c o  m pl e  m e nt ar y i d e a ls.   T h e  p a p er is c o n cl u d e d i n  S e c.  5,   w h er e

s o  m e  a p pli c ati o ns  of t h e  t h e or y  d e v el o p e d  b ef o r e  a n d s o  m e  hi nts  t o f ut ur e  r e s e ar c h

a r e ill ustr at e d.

B a si c  d e fi niti o ns  a n d  r es ults  a r e  t a k e n fr o  m [ 8 – 1 0],   wit h  e x a  m pl es  c o  m p ut e d i n

Co  Co A- 5 [ 1]  t o  all o  w  t h e i nt er est e d  r e a d er  t o  c h e c k  t h e  c o  m p ut ati o ns  dir e ctl y.

2.    B a c k g r o u n d

L et   K    b e  a  fi el d,   P    =    K   [x 1 , . . . ,  xn ]  a  p ol y n o  mi al  ri n g,  a n d  I   a n  i d e al  i n  P  .     We

r e c all  t h at  T n i s  t h e    m o n oi d  of  p o  w er  pr o d u cts  i n  t h e  i n d et er  mi n at es  x 1 , . . . ,  xn
a n d  t h at  a  n o n e  m pt y  s u bs et  O    of  T n i s  c all e d  a n o r d e r  i d e al   if it is  cl o s e d  u n d er

di visi o n  (s e e  [ 9,    D e fi niti o n  6. 4. 3]).  If   σ   is  a  t er  m  o r d eri n g,  t h e  s et  T n \  L T σ (I )  is

d e n ot e d  b y   O σ (I ).  It  is    w ell  k n o  w n  t h at  O σ (I )  is  a n  o r d er  i d e al  a n d  t h e  r esi d u e

cl ass es  of its  el e  m e nts f o r  m  a  K   - b a sis  of P / I   (s e e f or i nst a n c e [ 8,   C or oll ar y  2. 4. 1 1]).

It  is  als o    w ell  k n o  w n  t h at,  gi v e n  I ,  t h er e  a r e  o r d er  i d e als    w hi c h  a r e  n ot  of  t y p e

O σ (I );  n e v ert h el ess,  t h e  r esi d u e  cl ass es  of  t h eir  el e  m e nts  f o r  m  a  K   - b a sis  of  P / I  .

T h e f oll o  wi n g  e x a  m pl e  t a k e n fr o  m [ 9]  (s e e   E x a  m pl e  6. 4. 2) is  a  c a s e i n  p oi nt.

E x a   m pl e   2. 1.    C o nsi d er  t h e  i d e al   I   =     x 2 +   x y  +   y 2 ,  x3 ,  x2 y,  x y 2 ,  y3 i n  Q  [x, y ].

T his i d e al is  s y  m  m etri c   wit h  r es p e ct  t o  s  wit c hi n g   x   a n d  y .  Si n c e  t h e l e a di n g  t er  m

of  x 2 +   x y  +   y 2 i s  eit h er x 2 o r  y 2 ,  t h e i d e al I  h a s  t  w o  p o ssi bl e l e a di n g  t er  m i d e als,

n a  m el y  t h e  i d e als   J 1 =     x 2 ,  x y2 ,  y3 a n d  J 2 =     x 3 ,  x2 y, y 2 .   N eit h er  is  s y  m  m etri c.

T h us,  t h e y  d o  n ot  gi v e ris e  t o  s y  m  m etri c  v e ct or  s p a c e  b a s e s  of   Q  [x, y ]/ I .   H o  w e v er,

t h e  s et  of  t er  ms  O    =    { 1 ,  x,  y,  x2 ,  y2 }   i s  s y  m  m etri c  a n d  r e pr es e nts  a  v e ct or  s p a c e

b a sis  of  Q  [x, y ]/ I .

T h es e  c o nsi d er ati o ns   m oti v at e  t h e f oll o  wi n g  d e fi niti o n.
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E.    Di  mit r o v a  et  al.

D e fi ni ti o n   2. 1.    A n  o r d er  i d e al    O    s u c h  t h at  t h e  cl a s s es  of  its  el e  m e nts  f o r  m  a

K   - b a sis  of  P / I   is  c all e d  a  b a si c  s e t   f o r  I .  If  t h er e  e xists  a  t er  m  o r d eri n g  σ   s u c h

t h at  O    =    O σ (I ),  it  is  c all e d  a  G- b a si c  s e t    f o r  I .  If    w e    w a nt  t o  s p e cif y  t h at  a

G- b a si c  s et is  o bt ai n e d  usi n g   σ ,   w e  c all it  a σ  -b a si c  s e t .

L et   I   b e  a  z er o- di  m e nsi o n al i d e al   wit h  di  m K (P / I  )   =  s   <  ∞   ,  l et  σ   b e  a  t er  m

o r d eri n g,  a n d  l et   O    b e  a n  o r d er  i d e al    wit h   s  el e  m e nts.    T h e  n or  m al  f o r  ms  of  t h e

el e  m e nts i n  O    wit h  r es p e ct  t o   σ   ar e li n e ar  c o  m bi n ati o ns  of  t h e  el e  m e nts  of  O σ (I ),

a n d  h e n c e  c a n  b e  r e pr e s e nt e d  b y  a n  s  ×   s  m atri x,  s a y    M   . It is  t h e n  cl e a r  t h at O   is

a  b a si c  s et f or  I  if  a n d  o nl y if M     is i n v erti bl e.

S o  m e  r el ati o ns  b et  w e e n  b asi c  s ets  a n d   σ - b asi c  s ets  ar e  d es cri b e d i n [ 4,  S e c.  2].

F o r  z er o- di  m e nsi o n al i d e als,  b a si c s ets  a r e t h e   m ai n  b uil di n g  bl o c k s  of t h e t h e o r y  of

b o r d er  b a s es  (s e e [ 9,  S e c.  6. 4] f o r  t h e i ntr o d u cti o n  t o  t h at  t h e o r y)   w hi c h is  o utsi d e

t h e  s c o p e  of  t h e  pr es e nt  p a p er.

As   m e nti o n e d  a b o v e, t h e  a ut h or s i n [ 5]  a n d  ot h er s r ais e d t h e  q u e sti o n  of  pr o p er-

ti es  of  X   t h at  g u a r a nt e e  I (X  )  h a s  a  u ni q u e  r e d u c e d   Gr ö b n er  b a sis,  h e n c e  a  u ni q u e

G- b a si c  s et:  s u c h  d at a  s ets  h a v e  u ni q u el y  i d e nti fi a bl e    m o d els.   T o  c o u nt  t h e  n u  m-

b er  of    G- b a si c  s ets  of  a n  i d e al,    w e  us e  t h e  n oti o n  of  t h e   G r ¨o b n e r  f a n   w hi c h    w a s

i ntr o d u c e d i n [ 1 4].  It is  a  s u b di visi o n  of  t h e  cl o s e d  n o n- n e g ati v e  o rt h a nt   R n
+ m a d e

wit h  a  fi nit e  n u  m b er  of  p ol y h e dr al  c o n es,  s u c h  t h at  t h e  c o n e s  ar e  i n  o n e-t o- o n e

c o r r es p o n d e n c e  t o  t h e   G- b a si c  s ets f o r  I .

D e fi ni ti o n  2. 2.    L et   I  b e  a n i d e al i n   P   a n d l et   G F a n ( I )   b e  t h e   Gr ö b n er f a n  of  I .

T h e  n u  m b er  of   G- b a si c s ets f o r   I ,  e q ui v al e ntl y, t h e  n u  m b er  of l e a di n g t er  m i d e als  of

I , is c all e d t h e G  F a n   n u   m b e r    of  I ,  a n d is  d e n ot e d  b y   G F  N u  m (I ), si n c e it c oi n ci d es

wit h  t h e  n u  m b er  of  p ol y h e dr al  c o n e s i n   G F a n(  I ).

We  p oi nt  o ut t h at t h e  d e fi niti o n  d o es  n ot  c o u nt t h e  n u  m b er  of  di ff er e nt r e d u c e d

Gr ̈ o b n er  b a s es,  a s  s h o  w n   wit h  t h e  h el p  of  t h e f oll o  wi n g  e a s y  e x a  m pl es.

E x a   m pl e   2. 2.    L et   I   =     f     ⊂    K   [x, y ],    w h er e  f   =    x   +   y   a n d   K     is  a n y   fi el d.

O n e  c a n  ar g u e  t h at  f or  e v er y  t er  m  o r d eri n g    { f }   is  t h e  r e d u c e d    Gr ̈o b n er   b a sis.

H o  w e v er,  f o r  e v er y  t er  m  o r d eri n g    σ   wit h    x    >   y ,    w e   h a v e   L T(I )    =    x     a n d  t h e

c o r r es p o n di n g   G- b a si c s et is  { y n | n  ∈   N  } .   F or e v er y t er  m  o r d eri n g σ  wit h   y   >  x ,   w e

h a v e   L T( I )   =   y    a n d  t h e  c o r r es p o n di n g   G- b a si c  s et is  { x n | n  ∈   N  } .   C o ns e q u e ntl y,

w e  h a v e   G F  N u  m (  I )   =  2.

E x a   m pl e  2. 3.    L et   I  =     x  +   y  +   z    ⊂   K   [x, y, z ],   w h er e K    is  a n y  fi el d.  I n  t his  c a s e,

w e  h a v e    G F  N u  m (  I )    =  3  si n c e  t h e  o nl y  p o ssi bl e  l e a di n g  t er  m  i d e als  of  I   a r e    x   ,

y   ,   z   .

Si n c e  a  t o pi c  of  t his   p a p er  is  t o  i d e ntif y  i d e als    w hi c h   h a v e  t h e  s a  m e    G F a n

n u  m b er,   w e  n ot e t h at s o  m e  a  ffi n e tr a nsf o r  m ati o ns  d o  n ot  a ff e ct l e a di n g t er  ms.   T his

o bs er v ati o n   m oti v at e s  t h e f oll o  wi n g  d e fi niti o n.
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D e fi ni ti o n  2. 3.    A n  a  ffi n e  tr a nsf or  m ati o n   Φ :   P   →    P    d e fi n e d  b y   x i →    a i x i +   b i ,

w h er e   a i ∈   K   \ { 0 } , b i ∈   K    f o r i =  1  , . . . ,  n is  c all e d  a li n e a r  s hif t  of  P  .

P r o p o si ti o n  2. 1.    L et   Φ   b e  a li n e a r  s hift  of  P   a n d  I  a n  i d e al  i n  P  .

( a)  T h e  i d e al s   I  a n d  Φ(  I )  h a v e  t h e  s a  m e   G- b a si c  s et s.

( b)   W e  h a v e    G F  N u  m (  I )   =   G F  N u  m (  Φ(I )).

P r o of.    T o   pr o v e  ( a),  l et    σ   b e   a  t er  m  o r d eri n g  o n   T n a n d  l et   f   b e  a   n o n z er o

p ol y n o  mi al i n   I .  It  is  cl e a r  t h at   L Tσ (f )   =   L T σ (  Φ(f ))   w hi c h  i  m pli es  t h e  i n cl usi o n

L T σ (I )  ⊆   L T σ (  Φ(I )).   B ut   Φ is  a n is o  m o r p his  m  a n d its i n v er s e is  als o  a li n e a r s hift,

h e n c e,   w e  g et  t h e  ot h er i n cl usi o n.   C o ns e q u e ntl y,   w e  h a v e   L T σ (I )   =   L T σ (  Φ(I ))  f o r

e v er y  t er  m  o r d eri n g  σ   w hi c h i  m pli es  t h at   I  a n d   Φ( I )  h a v e  t h e  s a  m e   G- b asi c  s ets.

Cl ai  m  ( b) f oll o  ws fr o  m  ( a),  t h er e b y  c o  m pl eti n g  t h e  pr o of.

E x a   m pl e   2. 4.    L et  us  r et ur n  t o  t h e  i d e al   I   i n    E x a  m pl e  2. 1.    C o nsi d er  t h e  li n e a r

s hift   Φ   =  ( x  +  1  ,  y −   2).   T h e n   Φ( I )   =   (x  +  1) 2 + (  x  +  1)(  y  −   2)   + ( y  −   2) 2 , (x  +

1) 3 , (x  +  1) 2 (y  −   2) , (x  +  1)(  y  −   2) 2 , (y  −   2) 3 .   N ot e  t h at   Φ(I )  als o  h a s  t  w o l e a di n g

t er  m  i d e als,  n a  m el y,  t h e  s a  m e    mi ni  m all y  g e n er at e d  i d e als  J 1 =     x 2 ,  x y2 ,  y3 a n d

J 2 =     x 3 ,  x2 y, y 2 a s  I  a b o v e.  I n d e e d,   G F  N u  m ( I )   =   G F  N u  m (  Φ(I ))   =  2.

I n  ar e as  s u c h  a s   d esi g n  of  e x p eri  m e nts ,  i d e als  a r e  c o nstr u ct e d  fr o  m  d at a  a s

w a s  d es cri b e d  i n  t h e  i ntr o d u cti o n.    As  s u c h,    w e  c all  a  t u pl e  (  c 1 , . . . , cn )  ∈   K n a

p oi n t ,  c o r r es p o n di n g  t o  t h e  li n e a r    m a xi  m al i d e al  m   =     x 1 −   c 1 , . . . ,  xn −   c n ∈   P  .

F urt h er  m or e,  t h e   v a ni s hi n g  i d e al   I (Y  )  of  a  fi nit e  s et  Y    of   s   p oi nts  is  a  z er o-

di  m e nsi o n al  r a di c al  i d e al  i n   P    of  t y p e   I (Y  )    =  m 1 ∩ · · ·   ∩   m s ,  a n d    w hi c h    w e  als o

c all  a n  i d e al  of    p oi n t s.   F or  a n  i ntr o d u cti o n  t o  i d e als  of  p oi nts,  s e e  [ 9,  S e c.  6. 3];

f o r    m et h o ds  t o  e  ffi ci e ntl y  c o  m p ut e  t h e  m  a n d  ot h er  z er o- di  m e nsi o n al i d e als,  s e e [ 2]

a n d [ 3].

3.   I d e al s    wi t h    O n e    R e d u c e d    G r ö b n e r    B a si s

I n   t his   s e cti o n,    w e  l o o k   f o r   c o n diti o ns    w hi c h   g u ar a nt e e   t h at   a n  i d e al   I   h a s

G F  N u  m (  I )    =  1.    We  a s s u  m e  t h at  K    is  a n y  a   fi el d  a n d  P    =    K   [x 1 , . . . ,  xn ]  is   a

p ol y n o  mi al  ri n g.    W h er e  s p e ci fi c  c o n diti o ns  f o r   K    a r e  r e q uir e d,    w e    will  n ot e  it  a s

n e c e s s ar y.

3. 1.   G e n e r al  r e s ult s

We  st a rt  t his  s u bs e cti o n  b y  r e c alli n g  t h e  n oti o n  of  S u p p (   f )  (s e e  f or  i n st a n c e  [ 8,

D e fi niti o n  1. 1. 1 1]).   L et    f   ∈   P    a n d  l et  f   =
r
i= 1 c i ti ,   w h er e  c i ∈   K    a n d  t i ∈   T n .

T h e n t h e s u p p o rt of   f  is  d e fi n e d  a s  S u p p (f )   =  { t i | c i =  0  } .   N oti c e t h at  S u p p ( 0)   = ∅ .

D e fi ni ti o n  3. 1.    A  p ol y n o  mi al    f   ∈   P    is  c all e d  f a c t o r- cl o s e d  if  t h er e  e xists  t  ∈

S u p p( f )  s u c h  t h at  all  t   ∈   S u p p ( f )  h a v e  t h e  pr o p ert y  t h at  t   di vi d es   t.
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E.    Di  mit r o v a  et  al.

L e   m   m a  3. 1.    L et   I  ⊂   P   b e  a n  i d e al.  L et  σ   b e  a t e r  m  o r d e ri n g  a n d  G   b e  a   mi ni  m al

m o ni c    σ -  G r ö b n e r  b a si s  of  I .   A s s u  m e  t h at  e v e r y  p ol y n o  mi al  i n  G   i s  f a ct o r- cl o s e d.

( a)   T h e  s et   G   i s  t h e  r e d u c e d  σ -  G r ö b n e r  b a si s  of  I .

( b)   W e  h a v e    G F  N u  m (  I )   =  1.

P r o of.    L et  us  pr o v e  cl ai  m  ( a).   F or  c o ntr a di cti o n  a s s u  m e  t h at   G    is  n ot  r e d u c e d.

Si n c e  it  is    mi ni  m al  a n d    m o ni c,  t h er e  e xist   i, j   ∈   {  1 , . . . , s}   a n d  a   p o  w er  pr o d-

u ct t̃  ∈   S u p p ( g i )  s u c h  t h at    L T σ (g j ) | t̃.   Si n c e  g i i s  f a ct o r- cl o s e d,    w e  d e d u c e  t h at

L T σ (g j ) | L T σ (g i ),  a  c o ntr a di cti o n  t o  t h e    mi ni  m alit y  of  G  .

T h e  pr o of  of  ( b)  f oll o  ws  fr o  m  t h e  o bs e r v ati o n  t h at  f o r  e v er y   i  ∈  {  1 , . . . , s}  t h e

l e a di n g  t er  m  of  g i i s  t h e  s a  m e  f or  e v er y  t er  m  o r d eri n g,  h e n c e,  G    is  t h e  r e d u c e d

Gr ̈ o b n er  b a sis  of  I  f o r  e v er y  t er  m  o r d eri n g.

T h e o r e   m  3. 1.    L et   I  ⊂   P   b e  a n  i d e al.   T h e  f oll o  wi n g  c o n diti o n s  a r e  e q ui v al e nt.

( a)   T h e r e  e xi st s  a  t e r  m  o r d e ri n g   σ   a n d  a    mi ni  m al    m o ni c   σ -  G r ö b n e r  b a si s   G    of   I

s u c h  t h at  all  t h e  p ol y n o  mi al s  i n  G   a r e  f a ct o r- cl o s e d.

( b)   T h e r e  e xi st s  a  t e r  m  o r d e ri n g    σ   s u c h  t h at  all  t h e  p ol y n o  mi al s  i n  t h e  r e d u c e d

σ -  G r ö b n e r  b a si s  of  I  a r e  f a ct o r- cl o s e d.

( c)   W e  h a v e    G F  N u  m (  I )   =  1.

P r o of.    Fr o  m   L e  m  m a  3. 1,    w e  d e d u c e  t h at    Cl ai  ms  ( a)  a n d  ( b)  ar e  e q ui v al e nt  a n d

t h at  ( a)  ⇒    ( c).   N e xt,   w e  pr o v e  ( c)  ⇒    ( b).   B y  c o ntr a di cti o n,   w e  a s s u  m e  t h at  t h er e

e xists  i  a n d  a  p o  w er  pr o d u ct t̃  ∈   S u p p( g i )  s u c h  t h at t̃  d o es  n ot  di vi d e   L T σ (g i ).

We  l et    t   = t̃ /g c d( t̃, L T σ (g i ))  a n d  t  =   L T σ (g i ))/ g c d( t̃, L T σ (g i )).   T h e n  t   a n d  t  a r e

c o pri  m e  a n d  t   =  1.   T h er ef o r e,  t h er e  e xists   x j s u c h  t h at  x j | t   a n d  x j t.   L et τ   b e

t h e  l e xi c o g r a p hi c  t er  m  o r d eri n g   wit h  x j > τ x i f o r  i  =    j .   T h e n t̃   >τ L T σ (g i )  a n d

h e n c e  t h e  r e d u c e d  τ -  Gr ̈o b n er  b a sis  of  I  is  di ff er e nt fr o  m G  .   T his is  a  c o ntr a di cti o n

a n d  t h e  pr o of is  c o  m pl et e.

I n  t h e  r e c e nt  pr e pri nt [ 6],  r el at e d  r es ult s  a r e  pr o v e d f o r  s o- c all e d  n e ur al i d e al s,

w hi c h  a r e  g e n er at e d  b y  c ert ai n  f a ct o r- cl o s e d  g e n er ali z ati o ns  of    m o n o  mi als  ( ps e u-

d o  m o n o  mi als) i n   B o ol e a n  ri n g s.

T h e o r e  m  3. 1  gi v es  a n  e  ffi ci e nt    w a y  t o  c h e c k    w h et h er  a n  i d e al    I   h a s  a  u ni q u e

r e d u c e d    Gr ̈o b n er  b a sis:  i n  f a ct,  o n e  c a n  si  m pl y  i ns p e ct  e a c h    mi ni  m al  g e n er at or

f o r   b ei n g  f a ct or- cl os e d.    T his  t h e or e  m  also  pr o vi d es  i nt er esti n g  c o ns e q u e n c es,  a s

d es cri b e d i n  t h e f oll o  wi n g  c o r oll a ri es.

C o r oll a r y  3. 1.    L et   I   b e  a n  i d e al  i n  P    wit h   G F  N u  m (  I )   =  1 ,  a n d  l et   O  (I )  b e  t h e

u ni q u e   G- b a si c  s et  f o r   I .   T h e n  O  (I )  i s  al s o  t h e  u ni q u e  b a si c  s et  f o r  I .

P r o of.    L et   G    =   { g 1 , . . . , gs }  b e  t h e  u ni q u e  r e d u c e d    Gr ö b n er  b a sis  of  I .   F o r  c o n-

tr a di cti o n,  a s s u  m e  t h at  t h er e  e xists  a  b a si c  s et  O    f o r  I   s u c h  t h at  O    =   O  (I ),  a n d

l et t  ∈   O \  O  (I ).   B y  d e fi niti o n  of   Gr ö b n er  b a sis,  t h er e  e xists  i  s u c h  t h at   L T( g i ) | t.
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Fr o  m  t h e  t h e o r e  m,    w e  k n o  w  t h at   g i i s  f a ct or- cl os e d,  h e n c e,  e v er y  p o  w er  pr o d u ct

i n  S u p p (g i )  di vi d es  t.    O n  t h e  ot h er  h a n d  O    is  a n  or d er  i d e al,  h e n c e  e v er y  p o  w er

pr o d u ct  i n  S u p p ( g i )  is  i n  O  .    T h er ef o r e,   w e  g et  a  n o ntri vi al  li n e ar  c o  m bi n ati o n  of

el e  m e nts  of  O    w hi c h is  z er o i n   P / I  ,  t h us  a  c o ntr a di cti o n.

C o r oll a r y  3. 2.    L et   Φ   b e  a li n e a r  s hift  of  P  .   L et  I  b e  a    m o n o  mi al  i d e al  i n  P,   a n d

O  (I )  t h e  s et  of  p o  w e r  p r o d u ct s   w hi c h  a r e  n ot  di vi si bl e  b y  a n y  p o  w e r  p r o d u ct  i n  I .

( a)  W e  h a v e    G F  N u  m (  I )   =  1  a n d  O  (I )  i s  t h e  u ni q u e  b a si c  s et  f o r  I .

( b)   W e  h a v e    G F  N u  m (  Φ(  I ))   =  1  a n d  O  (I )  i s  t h e  u ni q u e  b a si c  s et  f o r  Φ(  I ).

P r o of.    T o  pr o v e   Cl ai  m  ( a),   w e  o bs er v e  t h at   O  (I )  is  t h e  u ni q u e    G- b a si c  s et  f o r  I

b y   T h e o r e  m  3. 1.   T h e n  t h e  c o n cl usi o n f oll o  ws fr o  m   C o r oll a r y  3. 1.

Cl ai  m  ( b) f oll o  ws fr o  m  ( a)  a n d   T h e o r e  m  2. 1.

W h e n    I  h a s  a  u ni q u e r e d u c e d   Gr ö b n er  b a sis, t h e  a b o v e r es ults  s h o  w t h at li n e a r

s hifts  pr es er v e l e a di n g  t er  ms  a s   w ell  a s  b a si c  s ets.  I n  t h e  r e  m ai n d er  of  t his  s e cti o n

a n d i n  S e c.  4,   w e   will  s e e  si  mil a r  r es ults f o r  ot h er  t y p es  of i d e als.

We  o bs er v e t h at  a li n e ar  s hift is  c o  m p o s e d  of  t  w o  t y p e s  of  s hifts,  n a  m el y,   Φ 1 of

t y p e x i →    a i x i a n d   Φ 2 of t y p e  x i →    x i +   b i .   Cl e a rl y, if I  is a   m o n o  mi al i d e al,   w e  h a v e

I  =   Φ 1 (I ),  s o  t h e  o nl y  n o ntri vi al  p a rt  of   C o r oll a r y  3. 2 is  t h at   G F  N u  m (  Φ 2 (I ))   =  1.

3. 2.   Di st r a cti o n s

I n   C o r oll a r y  3. 2,   w e  h a v e  s e e n  a    m o di fi c ati o n  of    m o n o  mi al  i d e als   w hi c h  pr o d u c es

i d e als   wit h   G F a n  n u  m b er  e q u al  t o  1.  I n  t h e liter at ur e,  t h er e is  a n o t h er i nt er esti n g

c o nstr u cti o n   w hi c h  yi el ds t h e s a  m e r es ult.   F o r a c o  m pl et e i ntr o d u cti o n t o t h e t h e o r y

of  distr a cti o ns,  s e e [ 9].

D e fi ni ti o n  3. 2.    L et   K    b e  a n  i n fi nit e  fi el d.   F o r   i  =  1  , . . . ,  n, l et π i =  (  c i1 , ci2 , . . .)

b e  a  s e q u e n c e   wit h   c i j ∈   K    a n d  c i j =   c i k f o r  e v er y j  =   k .  S et π  =  (  π 1 , . . . ,  πn ).

( 1)    F or  e v er y  p o  w er  pr o d u ct  t =   x α 1
1 · · · x α n

n i n T n ,  t h e  p ol y n o  mi al

D π (t)   =
α 1

i = 1

(x 1 −   c 1 i ) ·
α 2

i = 1

(x 2 −   c 2 i ) · · ·
α n

i = 1

(x n −   c n i )

i s  c all e d  t h e di s t r a c ti o n   of  t  wit h  r es p e ct  t o   π .

( 2)    L et   I   b e   a    m o n o  mi al  i d e al  i n   P  ,   a n d  l et  { t 1 , . . . , ts }   b e  t h e   u ni q u e    mi ni-

m al     m o n o  mi al   s y st e  m   of   g e n er at or s   of     I .     T h e n     w e   s a y   t h at   t h e   i d e al

D π (I )   =   D π (t1 ), . . . ,   Dπ (ts )   is  t h e di s t r a c ti o n   of  I  wit h  r es p e ct  t o   π .

T h e o r e   m  3. 2  ([ 9] ).    L et   I  b e  a    m o n o  mi al  i d e al  i n  P,   l et { t 1 , . . . , ts }  b e  a    mi ni  m al

s et  of  p o  w e r  p r o d u ct s   w hi c h  g e n e r at e s  I,  l et π  =  (  π 1 , . . . ,  πn ) b e s e q u e n c e s  of  p ai r  wi s e

di sti n ct  el e  m e nt s  i n   K,    a n d  l et  D π (I )   =   D π (t1 ), . . . ,   Dπ (ts )   b e  t h e  c o r r e s p o n di n g
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E.    Di  mit r o v a  et  al.

di st r a cti o n  of  I .

( a)   T h e  i d e al   D π (I )  i s  r a di c al.

( b)   T h e  s et   { D π (t1 ), . . . ,   Dπ (ts )}  i s  t h e  r e d u c e d σ -  G r ö b n e r  b a si s  of  D π (I )  f o r  e v e r y

t e r  m  o r d e ri n g  σ .

( c)   W e  h a v e    G F  N u  m (  D π (I ))   =  1 .

S e e [ 9,   T h e or e  m  6. 2. 1 2] f o r  a  pr o of.

E x a   m pl e  3. 1.    L et  K    =   Q  .   C o nsi d er I  =     t 1 , t2 ,   w h er e t1 =   x 3 y  a n d  t2 =   x 2 y 4 .  S et

π 1 =  ( 3  , 2 , 5),  π 2 =  ( 2  , −  1 , 3 , 1 2).   As t h e  el e  m e nts i n  π 1 ,  π2 a r e  p air  wis e  disti n ct,   w e

c a n   m a k e t h e  distr a cti o n of  I  wit h r es p e ct t o   π  =  (  π 1 ,  π2 ): D π (I )   =   D π (t1 ),   Dπ (t2 )

w h er e

D π (t1 )   =  (x  −   3)( x  −   2)( x  −   5)( y  −   2) ,

D π (t2 )   =  (x  −   3)( x  −   2)( y  −   2)( y  +  1)(  y  −   3)( y  −   1 2) .

A c c or di n g  t o    T h e or e  m  3. 2,  t h e  i d e al    D π (I )  is  r a di c al  a n d { D π (t1 ),   Dπ (t2 )}   is  t h e

r e d u c e d  σ -  Gr ̈o b n er  b a sis f o r  e v er y  σ ,  a n d  s o   G F  N u  m (D π (I ))   =   1.

T h e  a s s u  m pti o n  t h at   K    is  i n fi nit e  g u a r a nt e es  t h e  e xist e n c e  of  a  distr a cti o n  of

all    m o n o  mi al  i d e als.   H o  w e v er, i n  or d er  t o  d e fi n e  t h e  distr a cti o n   D π (I )  of  a  si n gl e

m o n o  mi al  i d e al    I ,  it  s u  ffi c es  t o  s p e cif y  t h e  first  d i el e  m e nts  of  t h e  s e q u e n c e   π i ,

w h er e   d i =   m a x  { d e g x i
(tj ) | j  ∈  {  1 , . . . , s} }  f o r i =  1  , . . . ,  n. I n  p a rti c ul a r, t o  distr a ct

a    m o n o  mi al  i d e al  I ,  it  is  s u  ffi ci e nt  t o  us e  fi nit e  t u pl es  of  el e  m e nts.    C o ns e q u e ntl y,

w e  d o  n ot  h a v e  t o  a ss u  m e  t h at    K    is  i n fi nit e,  a s  l o n g  a s  K    h a s   s u  ffi ci e ntl y    m a n y

el e  m e nts.

E x a   m pl e  3. 2.    C o nsi d er t h e i d e al i n   E x a  m pl e  3. 1.   As t h e l a r g est e x p o n e nt is  4,   w e

n e e d a fi el d   w hi c h h as at l e ast f o ur el e  m e nts. S o  F 2 a n d  F 3 a r e e x cl u d e d.   O n t h e ot h er

h a n d, if   K    =   F 5 ,   w e  c a n  c h o o s e π   =  (  π 1 ,  π2 ),   w h er e  π 1 =  ( 1  , 3 , 0),  π 2 =  ( 0  , 1 , 2 , 3).

T h e n   w e  g et   D π (t1 )   =  (x −  1)( x −  3) x y , D π (t2 )   =  (x −  1)( x −  3) y (y −  1)( y −  2)( y −  3).

As  a  c o ns e q u e n c e  of    T h e or e  m  3. 2  a n d    P r o p o siti o n  2. 1,    w e  g et  t h e  f oll o  wi n g

r e s ult.

C o r oll a r y  3. 3.    W e   m a k e  t h e  s a  m e  a s s u  m pti o n s  a s i n   T h e o r e  m    3. 2  wit h t h e  e xt r a-

c o n diti o n  t h at  I  i s  a  z e r o- di  m e n si o n al  i d e al.

( a)   T h e  i d e al   D π (I )  i s  a n  i d e al  of  p oi nt s  a n d  G F  N u  m(  D π (I ))   =  1 .

( b)   If   Φ    i s   a  li n e a r   s hift   of  P,    t h e  i d e al   Φ(  D π (I ))   i s   a n  i d e al   of   p oi nt s,  a n d

G F  N u  m(  Φ(  D π (I )))   =  1 .

P r o of.    Cl ai  m  ( a) f oll o  ws fr o  m [ 9,   T h e or e  m  6. 2. 1 2( a)  a n d   T h e or e  m  3. 2( c)].

Cl ai  m  ( b) f oll o  ws fr o  m  ( a)  a n d   P r o p o siti o n  2. 1.

T h e f oll o  wi n g  e x a  m pl es ill ustr at e i nt er esti n g  o ut c o  m es  of  t his  c o r oll a r y.
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S  m all    G r ö b n e r  f a n s  of  i d e al s  of  p oi nt s

E x a   m pl e  3. 3.    C o nsi d er  t h e    m o n o  mi al  i d e al   J   =     x 4 ,  y3 ,  x2 y,  x y 2 ⊂   Q  [x, y ].    We

will  s h o  w  h o  w  t o  c o nstr u ct  a  s et  of  p oi nts   X   s u c h  t h at its i d e al  of  p oi nts  I (X  ) is  a

distr a cti o n  of  J .

Si n c e  t h e  fir st  t  w o  g e n er at o r s  of   J   ar e  n ot    mi x e d  a n d  h a v e  d e gr e e s l a r g er  t h a n

t h e  p o  w er s of x  a n d  y  i n t h e  ot h er t  w o  g e n er at ors,   w e c a n  us e x 4 a n d  y 3 t o c o nstr u ct

t  w o s e q u e n c es  a n d t  w o  p ol y n o  mi als.   L et  π 1 b e  a n y s e q u e n c e   wit h  at l e ast  4  e ntri es,

s a y  ( 0 , 1
5 , 2 , −  1 , . . .).

T h e n  t h e   p ol y n o  mi al    f 1 :  =  x (x   − 1
5 )(x  −   2)( x  +  1)  is  t h e   distr a cti o n  of    x 4

wit h  r e s p e ct  t o    π 1 .  Si  mil a rl y  l et  π 2 b e  a n y  s e q u e n c e    wit h  at  l e ast  3  e ntri es,  s a y

( 0 , 1 , 2 , . . .).   T h e n  f 2 :  = y (y  −   1)( y  −   2)   =  D π 2 (y 3 ).  S et  π   =  (  π 1 ,  π2 ).   N o  w   w e  c a n

c o nstr u ct t h e  distr a cti o ns  of t h e  ot h er t  w o  p o  w er  pr o d u cts,  n a  m el y  f 3 :  = x (x  − 1
5 )y

a n d  f 4 :  = x y (y  −   1).

C o nsi d er  t h e i d e al   I  =     f 1 ,  f2 ,  f3 ,  f4 .   N oti c e  t h at I  is  t h e  distr a cti o n  of J   wit h

r e s p e ct  t o  π .   F urt h er  m o r e, I  is  t h e i d e al  of  t h e  p oi nts

X   =     ( 0, 0) , ( 0, 1) , ( 0, 2) ,
1

5
, 0    ,

1

5
, 1    , ( 2, 0) , (−  1 , 0)    .

We  o bs er v e  t h at     I (X  )    =  D π (J )  a n d    G F  N u  m (D π (J ))    =  1  f oll o  ws  fr o  m   C o r ol-

l a r y  3. 3( a).

T h e  f oll o  wi n g  e x a  m pl es  s h o  w  t h at  if    w e  d o  n ot  f oll o  w  t h e  ri gi d  o r d er  i n  t h e

c h oi c e  of  t h e  c o nst a nts i  m p o s e d  b y  t h e  d e fi niti o n  of  distr a cti o n,  u n e x p e ct e d  t hi n g s

c a n  h a p p e n.

E x a   m pl e  3. 4.    If   w e  c o nsi d er  t h e  p ol y n o  mi als  f 1 ,  f2 of   E x a  m pl e  3. 3  a n d  t h e  t  w o

p ol y n o  mi als 3 =  (  x  −   2)( y  −   1)( y  −   2), 4 =  (  x  +  1)    x  − 1
5 (y  −   1),  t h e n  t h e

i d e al I 4 =     f 1 ,  f2 , 3 , 4 i s  n ot  a  distr a cti o n  of J   f o r  a n y  p er  m ut ati o n  of  t h e  t u pl es

( 0 , 1
5 , 2 , −  1)  a n d  ( 0 , 1 , 2).    H o  w e v er,  it  h as  t h e  u ni q u e  r e d u c e d    Gr ̈o b n er  b a sis  G    =

{ x 4 − 6
5 x 3 − 9

5 x 2 + 2
5 x,   y 2 −   3 y  +  2  ,    x2 y  −   x 2 + 4

5 x y  − 4
5 x  − 1

5 y  + 1
5 } .

Fr o  m  t h e  e q u aliti es

x 4 −
6

5
x 3 −

9

5
x 2 +

2

5
x  =  (  x  +  1)     x  −

1

5
(x )(x  −   2)

y 2 −   3 y  +  2   =  (  y  −   1)( y  −   2)

x 2 y  −   x 2 +
4

5
x y  −

4

5
x  −

1

5
y  +

1

5
=  (  y  −   1)( x  +  1)     x  −

1

5
.

We  s e e  t h at     I 4 i s  t h e  distr a cti o n  of  t h e    m o n o  mi al  i d e al   x 4 ,  y2 ,  x2 y    wit h  r es p e ct

t o  π  =  (  π 1 ,  π2 ),   w h er e  π 1 =  (  −  1 , 1
5 , 0 , 2)  a n d  π 2 =  ( 1  , 2).

E x a   m pl e  3. 5.    C o nsi d er  t h e i d e al   I  of  t h e f oll o  wi n g  s et  of f o ur  p oi nts

{ ( 0, 0 , 0) , ( 1, 0 , 0) , ( 1, 1 , 0) , ( 1, 1 , 1) } .

Its  r e d u c e d   Gr ̈o b n er  b a sis   wit h  r es p e ct  t o  σ  =   D e g R e v L e x  is

{ z 2 −   z, y z  −   z,  x z  −   z, y 2 −   y,  x y  −   y,  x 2 −   x } .
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E.    Di  mit r o v a  et  al.

All  p ol y n o  mi als i n  t his  b a sis  a r e  f a ct o r- cl o s e d,  h e n c e,   w e  h a v e    G F  N u  m (  I )   =  1   b y

T h e o r e  m  3. 1.    We  h a v e   L T σ (I )   =   z 2 ,   y z,   x z,   y2 ,   x y,   x2 .   H o  w e v er,   L Tσ (I ) is  n ot

a  distr a cti o n  of  I  si n c e   w e  h a v e  t h e  e q u aliti es

y z  −   z  =   z (y  −   1 )    a n d    x y  −   y  =  (  x  −   1) y .

3. 3.    N at u r al  di st r a cti o n s  a n d  st ai r c a s e s

I n t his s u bs e cti o n,   w e i ntr o d u c e  a n i nt er esti n g f a  mil y  of  distr a cti o ns.    We r e c all t h at

a n i d e al is  c all e d  i r r e d u ci bl e  if it  c a n n ot  b e   writt e n  a s t h e i nt er s e cti o n  of t  w o i d e als,

b ot h  of   w hi c h  pr o p erl y  c o nt ai n it,  a n d  us e  s o  m e  r e s ults fr o  m [ 9].

P r o p o si ti o n  3. 1.    L et   K    b e  a   fi el d  a n d l et  P   =   K   [x 1 , . . . ,  xn ].

( a)   E v e r y  p r o p e r  i d e al  i n   P   i s  a  fi nit e  i nt e r s e cti o n  of  i r r e d u ci bl e  i d e al s.

( b)   A    m o n o  mi al  i d e al    I   i n  P    i s  i r r e d u ci bl e  if  a n d  o nl y  if  it  i s  of  t h e  f o r  m  I   =

x d 1

i 1
, . . . ,  xd s

i s
wit h   1  ≤   i1 <   · · · < i s ≤   n   a n d  d 1 , . . . ,  ds ∈   N  .

( c)   A  z e r o- di  m e n si o n al    m o n o  mi al i d e al  i s i r r e d u ci bl e  if  a n d  o nl y if it i s  of t h e f o r  m

I  =     x d 1
1 , . . . ,  xd n

n wit h   d 1 , . . . ,  ds ∈   N  .

P r o of.    F o r   Cl ai  m  ( a)  s e e [ 9,   P r o p o siti o n  5. 6. 1 7].   F or   Cl ai  m ( b)  s e e [ 9,   Pr o p o siti o n

6. 2. 1 1].   Cl ai  m  ( c) f oll o  ws i  m  m e di at el y fr o  m  ( b).

Fr o  m   C o r oll a r y  3. 2,   w e  k n o  w  t h at  a s s o ci at e d  t o  e v er y    m o n o  mi al i d e al  t h er e is

a  u ni q u e  b a si c  s et  O  (I ),  t h e  s et  of  p o  w er  pr o d u cts   w hi c h  a r e  n ot  di visi bl e  b y  a n y

p o  w er  pr o d u ct i n   I .   T his  o bs er v ati o n    m oti v at es  t h e  f oll o  wi n g  d e fi niti o n.  Si n c e  t h e

e x p o n e nts  of  e v er y   m o n o  mi al  ar e  n at ur al  n u  m b er s, t h e y  c a n  b e  vi e  w e d  a s  el e  m e nts

of  a n y  fi el d  K    vi a  t h e  n at ur al   m a p  N   →    K   .

D e fi ni ti o n  3. 3.    L et   K    b e  a  fi el d  a n d l et   P   =   K   [x 1 , . . . ,  xn ].

( 1)    Gi v e n  t  =    x a 1
1 · · · x a n

n ,    w e  s a y  t h at  p (t)  :  =  (a 1 , . . . ,  an )   ∈    K n i s  t h e  p oi n t

a s s o ci a t e d  t o   t.

( 2)    L et  I  b e  a    m o n o  mi al i d e al  a n d l et   O  (I )  b e  t h e  u ni q u e  b a si c  s et  a ss o ci at e d  t o

I .   T h e n  t h e  s et { p (t) | t ∈   O  (I )}  is  c all e d  t h e s t ai r c a s e  of  p oi nts  a s s o ci at e d t o

I  a n d  d e n ot e d  b y  St air( I ).

E x a   m pl e  3. 6.    L et   I  =     x 2 ,  x y z2 ,  y2 , z3 ⊂   Q  [x, y, z ].   T h e n   w e  h a v e

O  (I )   =  { 1 , z, z2 ,  y,  y z,  y z2 ,  x,  x z,  x z2 ,  x y,  x y z} .

H e n c e,   w e  g et

St air( I )   =  { ( 0, 0 , 0) , ( 0, 0 , 1) , ( 0, 0 , 2) , ( 0, 1 , 0) , ( 0, 1 , 1)( 0 , 1 , 2) ,

( 1, 0 , 0) , ( 1, 0 , 1) , ( 1, 0 , 2) , ( 1, 1 , 0) , ( 1, 1 , 1) } .

L e   m   m a   3. 2.    A s s u  m e    I 1 ,   I2 a r e   z e r o- di  m e n si o n al     m o n o  mi al   i d e al s   i n   P  .    L et

π 1 , . . . ,  πn b e   s e q u e n c e s   of   p ai r  wi s e   di sti n ct   el e  m e nt s   of   t h e   fi el d   K,     a n d   s et
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S  m all    G r ö b n e r  f a n s  of  i d e al s  of  p oi nt s

π  = (  π 1 , . . . ,  πn ).

( a)   D π (I 1 ∩  I 2 )   =  D π (I 1 ) ∩  D π (I 2 ).

( b)   O  (I 1 +   I 2 )   =  O  (I 1 ) ∩   O  (I 2 )

( c)   O  (I 1 ∩  I 2 )   =  O  (I 1 ) ∪   O  (I 2 ).

( d)   St air(I 1 ∩  I 2 )   =  St air(I 1 ) ∪  St air( I 2 ).

P r o of.    Cl ai  m  ( a) f oll o  ws fr o  m [ 9,   P r o p o siti o n  6. 2. 1 0].

T o  pr o v e   Cl ai  m  ( b),  n oti c e  t h at  t h e  i n cl usi o ns    I 1 ⊆    I 1 +   I 2 a n d  I 2 ⊆    I 1 +   I 2

i  m pl y  O  (I 1 +   I 2 )  ⊆    O  (I 1 )  a n d  O  (I 1 +   I 2 )  ⊆    O  (I 2 ).  It  f oll o  ws  t h at  O  (I 1 +   I 2 )  ⊆

O  (I 1 ) ∩   O  (I 2 ).    O n  t h e  ot h er  h a n d, if  t  is  a  p o  w er  pr o d u ct   wit h  t   /∈   I 1 a n d  t   /∈   I 2 ,

t h e n  t  /∈   I 1 +   I 2 a n d  t h e  cl ai  m is  pr o v e d.

L et  us  n o  w  pr o v e  ( c).   Fr o  m  t h e  i n cl usi o ns   I 1 ∩   I 2 ⊆    I 1 a n d   I 1 ∩   I 2 ⊆    I 2 ,   w e

g et  t h e i n cl usi o ns  O  (I 1 )  ⊆   O  (I 1 ∩  I 2 )  a n d  O  (I 2 )  ⊆   O  (I 1 ∩  I 2 ),  h e n c e,  t h e i n cl usi o n

O  (I 1 ) ∪   O  (I 2 )  ⊆   O  (I 1 ∩  I 2 ).   T o  c o n cl u d e  t h e  pr o of,   w e  n e e d  t o  s h o  w  t h at  t h e  t  w o

s ets  h a v e t h e s a  m e  n u  m b er of el e  m e nts.   O n t h e  ot h er  h a n d, if  I  is a z er o- di  m e nsi o n al

m o n o  mi al i d e al,  t h e  n u  m b er  of  el e  m e nts  of    O  (I ) is  fi nit e.  Si n c e   w e  h a v e

c ar d  O  (I 1 ) ∪   O  (I 2 )   =  c a r d(  O  (I 1 ))   + c a r d( O  (I 2 )) −   c a r d   O  (I 1 ) ∩   O  (I 2 )

w e  n e e d  t o  pr o v e  t h e  e q u alit y

c ar d( O  (I 1 ∩  I 2 ))   =  c a r d(O  (I 1 ))   + c a r d( O  (I 2 )) −   c a r d  O  (I 1 ) ∩   O  (I 2 )  .     ( 1)

T o  s h o  w  t his  e q u alit y,   w e  c o nstr u ct  t h e  e x a ct  s e q u e n c e  of   K   - v e ct or  s p a c e s

0   →     P / (I 1 ∩  I 2 )   →     (P / I 1 ) ⊕   (P / I 2 )   →     P / (I 1 +   I 2 )   →     0

d e fi n e d  b y  t h e    m a p

P / (I  ∩  J )  →    (P / I  ) ⊕   (P / J  )     gi v e n  b y  f  + (  I  ∩  J )  →    (f  +   I,  f  +   J )

a n d  t h e   m a p

(P / I  ) ⊕   (P / J  )  →    P / (I  +   J )    gi v e n  b y  (f  +   I, g  +   J )  →    f  −   g  +   I  +   J.

Fr o  m  t h e  e x a ct  s e q u e n c e,   w e  g et  t h e  e q u alit y

c ar d( O  (I 1 ∩  I 2 ))   =  c a r d(O  (I 1 ))   + c a r d( O  (I 2 )) −   c a r d  O  (I 1 +   I 2 )  .

Fr o  m   Cl ai  m  ( b),   w e  d e d u c e  t h at  t his  e q u alit y  c oi n ci d es   wit h  ( 1).

Cl ai  m ( d) f oll o  ws i  m  m e di at el y fr o  m ( c)  a n d t h e  d e fi niti o n  of  a  st air c a s e.   H e n c e,

t h e  pr o of is  c o  m pl et e.

We  a r e  r e a d y  t o i ntr o d u c e  a  s p e ci al  t y p e  of  distr a cti o ns.

D e fi ni ti o n  3. 4.    C o nsi d er  a   m o n o  mi al i d e al   I  i n P  .   L et d 1 , . . . ,  dn b e  t h e   m a xi  m al

e x p o n e nts  of  x 1 , . . . ,  xn i n t h e   mi ni  m al s et  of  g e n er at o r s of I  a n d t a k e  d  =   m a x  { d i } .

As s u  m e  t h at  0  , 1 , . . . ,  d −   1  a r e  disti n ct  el e  m e nts  of   K   .   F urt h er  m o r e,  l et  π d i =

( 0 , 1 , 2 , 3 , . . . ,  di −   1)  a n d l et  π n a t =  (  π d 1 , . . . ,  πd n ).   T h e n  t h e  distr a cti o n  D π n  a t ( I ) is

c all e d  t h e  n a t u r al   di s t r a c ti o n   ( o r  cl a ssi c  distr a cti o n)  of  t h e i d e al  I .
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E.    Di  mit r o v a  et  al.

T h e  f oll o  wi n g  pr o p o siti o n  s h o  ws  t h e  c o n n e cti o ns  b et  w e e n  n at ur al  distr a cti o ns

a n d  st air c a s e s.

P r o p o si ti o n  3. 2.    C o n si d e r  a    m o n o  mi al  i d e al    I   i n  P  .    T h e n   w e  h a v e  t h e  e q u alit y

I ( St air(I ))   =  D π n  a t ( I ).

P r o of.    As  a  fir st  st e p,    w e  pr o v e  t h e  cl ai  m    wit h  t h e  e xtr a  a ss u  m pti o n  t h at    I   is

ir r e d u ci bl e,  h e n c e  of  t y p e  I   =     x a 1

1 , . . . ,  xa n
n .  I n  t his  c a s e  it  is  e a s y  t o  s e e  t h at

St air( I )   =  { (c 1 , . . . , cn ) | 0  ≤   c k <  a k f o r k  =  1  , . . . ,  n} .   C o ns e q u e ntl y,   w e  h a v e

I ( St air(I ))   =
0 ≤  c k < a k

x 1 −   c 1 , . . . ,  xn −   c n

=

a 1 −  1

c 1 = 1

(x 1 −   c 1 ), . . . ,

a n −  1

c n = 1

(x n −   c n )

=   D π n  a t ( I ).

N e xt,    w e  pr o v e  t h e  g e n er al  cl ai  m.   Fr o  m   Pr o p o siti o n  3. 1,    w e  g et  a n  e q u alit y    I   =
s
k = 1 J k wit h   J k ir r e d u ci bl e f o r k  =  1  , . . . , s.    We  d e d u c e  t h e f oll o  wi n g  e q u aliti es

I ( St air(I ))   =  I     St air
s

k = 1

(J k )
( 1 )
= =    I

s

k = 1

St air( J k )

=

s

k = 1

I ( St air(J k ))
( 2 )
= =

s

k = 1

D π n  a t ( J k )
( 3 )
= =   D π n  a t

s

k = 1

J k =   D π n  a t ( I ),

w h er e   E q u alit y ( 1) f oll o  ws fr o  m   L e  m  m a  3. 2( d),   E q u alit y ( 2) f oll o  ws fr o  m t h e s p e ci al

c a s e  dis c us s e d  a b o v e,  a n d   E q u alit y  ( 3) f oll o  ws fr o  m   L e  m  m a  3. 2( a).

T h e  f oll o  wi n g  e x a  m pl e  ill ustr at es  t h e  s p e ci al  f e at ur e   of   n at ur al   distr a cti o ns

pr o v e d i n  t h e  t h e or e  m  a b o v e.

E x a   m pl e  3. 7.    L et   P   =   Q  [x, y ]  a n d l et I  =     x 5 ,  x4 y,  x y 2 ,  y4 .   T h e n   w e  h a v e

D π n  a t ( I )   =   x (x  −   1)( x  −   2)( x  −   3)( x  −   4) ,   x(x  −   1)( x  −   2)( x  −   3) y,

x y (y  −   1) ,   y(y  −   1)( y  −   2)( y  −   3)  .

If   w e  dr a  w  a  pi ct ur e  of  t h e  p o  w er  pr o d u cts i n v ol v e d,   w e  g et

............................... ................

......

.......

..................

................

x

y

•   •
•

•
•
•

•

•
•

•

•
•

◦

◦
◦

◦

w h er e  t h e    w hit e  d ots  r e pr e  s e nt  t h e  g e n er at ors  of  I   a n d  t h e  bl a c k  d ots  r e pr e s e nts

t h e  p o  w er  pr o d u cts  i n  O  (I ).    A c c o r di n g  t o   P r o p o siti o n  3. 2,   w e  c a n  c h e c k  t h at  t h e
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S  m all    G r ö b n e r  f a n s  of  i d e al s  of  p oi nt s

s et  of  p oi nts  d e fi n e d  b y  t h e  i d e al  D π n  a t ( I )  is  e x a ctl y  t h e  st air c a s e  r e pr e s e nt e d  b y

t h e  bl a c k  d ots.

4.    C o   m pl e   m e n t a r y  I d e al s

I n t his  s e cti o n,   w e  c o n c e ntr at e  o n  z er o- di  m e nsi o n al i d e als  a n d i ntr o d u c e t h e  n oti o n

of  c o  m pl e  m e nt ar y i d e als  (s e e   D e fi niti o n  4. 3).   T hr o u g h o ut  t h e  s e cti o n,   w e l et  K    b e

a  fi el d  a n d  P   =   K   [x 1 , . . . ,  xn ]  a s  b ef or e.

4. 1.   G ri d s

It is   w ell  k n o  w n  t h at  u n d er  t h e  a ss u  m pti o n  t h at  I  is  a  z er o- di  m e nsi o n al i d e al,   w e

h a v e  di  m K (P / I  )  <    ∞     (s e e  f o r  i nst a n c e  [ 8,   P r o p o siti o n  3. 7. 1]).    C o ns e q u e ntl y,  f o r

e v er y  i  =   1  , . . . ,  n,  t h e  n at ur al  e  m b e d di n g  K   [x i ]/ (I  ∩   K   [x i ])  →     P / I   s h o  ws  t h at

I  ∩   K   [x i ]  =     0  ,  a n d  h e n c e  I  ∩   K   [x i ]  is  a  pri n ci p al  n o n z er o  i d e al.    We  d e n ot e  its

m o ni c  g e n er at or  b y    f I (x i ).   T h es e f a cts    m oti v at e  t h e f oll o  wi n g  d e fi niti o n.

D e fi ni ti o n  4. 1.    L et   I   b e  a  z er o- di  m e nsi o n al  i d e al  i n   P    a n d  f o r   i  =  1  , . . . ,  n,  l et

f I (x i )  b e  t h e    m o ni c  g e n er at or  of  I  ∩  K   [x i ].

( 1)    T h e  i d e al    f I (x 1 ), . . . ,  fI (x n )    ⊆    I   is  c all e d  t h e  m a xi   m al   g ri d  i d e al   c o n-

t ai n e d  i n  I  a n d  d e n ot e d  b y    m g ri d( I ).

( 2)    M or e  g e n er all y,  e v er y  i d e al  i n  P    of  t y p e    g 1 (x 1 ), . . . , gn (x n )    a n d  s u c h  t h at

d e g ( g i (x i ))  >   0 f or  e v er y  i =  1  , . . . ,  n is  c all e d  a g ri d  i d e al .

W h e n    I  is  a  z er o- di  m e nsi o n al i d e al  a n d J   =     g 1 (x 1 ), . . . , gn (x n )   is  a  g ri d i d e al

s u c h t h at  J   ⊆   I , it is  cl e a r g i (x i ) is  a   m ulti pl e  of  f I (x i ) f or  e v er y  i =  1  , . . . ,  n.   T his

o bs e r v ati o n  v ali d at e s  t h e  us e  of  “  m a xi  m al ” i n  t h e  a b o v e  d e fi niti o n.

S p e ci al  c a s e s  of  g ri d i d e als  a r e  o bt ai n e d  a s f oll o  ws,  usi n g l a n g u a g e fr o  m  c o  m bi-

n at o ri al  e x p eri  m e nt al  d esi g n.

D e fi ni ti o n   4. 2.    L et   d 1 , . . . ,  dn ∈   N + a n d  f o r   i  =   1  , . . . ,  n,  l et  (c i, 1 , . . . , ci, d i )   b e

a   d i -t u pl e  of   p air  wis e   disti n ct  el e  m e nts  of  K   .    T h e n  t h e  f oll o  wi n g  s et  of   p oi nts

X   =   { (c 1 , k1 , . . . , cn, k n ) | 1  ≤   k 1 ≤   d 1 , . . . , 1  ≤   k n ≤   d n }  is  c all e d  a  g ri d  of   p oi n t s

o r  a  f ull   d e si g n  i n K n .  It  c o n si sts  of n
i= 1 d i p oi nts.   T h e  v a nis hi n g i d e al  of  X   is  a

gri d i d e al  g e n er at e d  b y  { g 1 (x 1 ), . . . , gn (x n )} ,   w h er e g i (x i )   =
d i

j = 1 (x i −   c i j ).

R e   m a r k  4. 1.    L et   Y   b e  a  s et  of  p oi nts.   T h e   m a xi  m al  g ri d i d e al  c o nt ai n e d i n   I (Y  )

is t h e  v a nis hi n g i d e al  of  a  s et X   of  p oi nts. I n  a gr e e  m e nt   wit h   D e fi niti o n  4. 1,  t h e  s et

X   is  c all e d  t h e mi ni   m al  g ri d  of   p oi n t s  c o n t ai ni n g    Y  .

E x a   m pl e   4. 1.    As  o bs er v e d  i n    R e  m a r k  4. 1,  gi v e n  a  s et  of  p oi nts    Y    ⊆    K n ,  its

v a nis hi n g  i d e al   I (Y  )  c o nt ai ns  n   u ni v ari at e  p ol y n o  mi als   f i (x i )   w hi c h  a r e  pr o d u cts

of li n e ar  p ol y n o  mi als  of t y p e  x i −   c i j ,  a n d  d e fi n e  t h e   mi ni  m al  g ri d K   c o nt ai ni n g  Y  .

If  d i =  d e g (  f i (x i )),  t h e n  f i (x i ) is  t h e  distr a cti o n  of  x
d i

i wit h  r e s p e ct  t o  a n y  p er  m u-

t ati o n  of  t h e  t u pl e  of  t h e  c i j ’ s.
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E.    Di  mit r o v a  et  al.

We  r e c all  t h at  f o r  a  z er o- di  m e nsi o n al  l o c al  ri n g     R    wit h    m a xi  m al  i d e al   m  ,  t h e

s o cl e  of  R   is  d e fi n e d  a s s o c(R  )   =   A n n R (m  ), t h e  a n ni hil at o r  of  m  .   T h e f oll o  wi n g e a s y

l e  m  m a  c oll e cts  s o  m e  pr o p erti es  of  g ri d i d e als.

L e   m   m a  4. 1.    L et   J   =     g 1 (x 1 ), . . . , gn (x n )   b e  a  g ri d i d e al   wit h  d i =  d e g (  g i (x i ))  f o r

i =  1  , . . . ,  n.

( a)   T h e  i d e al   J   i s  z e r o- di  m e n si o n al.

( b)   T h e  s et   { g 1 (x 1 ), . . . , gn (x n )}  i s t h e  r e d u c e d σ -  G r ö b n e r  b a si s  of  J   f o r  e v e r y t e r  m

o r d e ri n g  σ,   a n d  h e n c e  G F  N u  m (  J )   =  1.

( c)   F o r  e v e r y  t e r  m  o r d e ri n g   σ   t h e  r e si d u e  cl a s s  of  x d 1 −  1
1 x d 2 −  1

2 · · · x d n −  1
n g e n e r at e s

s o c(P /  L T σ (J )).

( d)   W e  h a v e    T n \  L T σ (J )   =  { t ∈   T n | t di vi d es  x d 1 −  1
1 x d 2 −  1

2 · · · x d n −  1
n }  f o r  e v e r y t e r  m

o r d e ri n g  σ   o n  T n .

P r o of.    Cl ai  m ( a) f oll o  ws fr o  m t h e   Fi nit e n e s s   Crit eri o n (s e e [ 8,   P r o p o siti o n  3. 7. 1]).

Cl ai  m ( b) f oll o  ws fr o  m t h e f a ct t h at   L T σ (g i )   =  x
d i

i ,  h e n c e t h e y ar e  p air  wis e c o pri  m e.

T h e  ot h er  cl ai  ms f oll o  w i  m  m e di at el y.

T his l e  m  m a s u g g ests t h at   x d 1 −  1
1 x d 2 −  1

2 · · · x d n −  1
n will  b e  d e n ot e d  b y   t s o c (J ).   Fr o  m

L e  m  m a  4. 1( b),   w e  k n o  w t h at if   J   is  a  g ri d i d e al   w e  h a v e   G F  N u  m (J )   =  1.   T h er ef or e,

t h e  s et  O σ (J ) is  t h e  s a  m e f o r  e v er y  σ   a n d  h e n c e it   will  b e  d e n ot e d  b y  O  (J ).

D e fi ni ti o n   4. 3.    L et   J   b e  a  g ri d  i d e al  a n d  l et   J   =    q 1 ∩ · · ·   ∩   q s b e  its  pri  m a r y

d e c o  m p o siti o n.   F o r  0  < t   <  s  ,  s et I 1 =   q 1 ∩ · · ·  ∩  q t ,  a n d I 2 =   q t + 1 ∩ · · ·  ∩  q s .   T h e n

w e  s a y  t h at    I 1 ,  I 2 a r e   c o   m pl e   m e n t a r y  i d e al s    wi t h  r e s p e c t  t o   J ,  o r  si  m pl y

c o  m pl e  m e nt a r y i d e als, if  J   is  cl e ar fr o  m  t h e  c o nt e xt.

T h e f oll o  wi n g l e  m  m a  c oll e cts  s o  m e  pr o p erti es  of  c o  m pl e  m e nt a r y i d e als.

L e   m   m a  4. 2.    L et   J   b e  a  g ri d i d e al i n  P   a n d l et  I 1 ,  I2 b e  c o  m pl e  m e nt a r y i d e al s   wit h

r e s p e ct  t o  J .

( a)   J   =   I 1 ∩  I 2 ,  I1 +   I 2 =     1  ,  I2 =   J   : I 1 , a n d  I 1 =   J   : I 2 .

( b)   T h e r e  i s  a n  i s o  m o r p hi s  m  of   K   - al g e b r a s  ϕ   : P / I ∼= P / I 1 ×   P / I 2 .

( c)   di  m K (P / J  )   =  di  m K (P / I 1 )   +  di  m K (P / I 2 ), a n d  h e n c e , w e  h a v e

c ar d( O  (J ))   =  c a r d(O σ (I 1 ))   + c a r d( O σ (I 2 ))  f o r  e v e r y  t e r  m  o r d e ri n g  σ .

( d)   If  I  i s  a  z e r o- di  m e n si o n al  i d e al  i n  P,   t h e n    Cl ai  m s  ( a),  ( b),  a n d   ( c)  h ol d  f o r

J   =   m g ri d(  I ),  I1 =   I,  a n d  I 2 =   m g ri d(  I ) :  I .

P r o of.    Cl ai  m  ( a)  c a n   b e   pr o v e d   usi n g  st a n d a r d  f a cts  i n  c o  m  m ut ati v e  al g e br a.

Cl ai  m ( b) f oll o  ws fr o  m ( a) a n d t h e   C hi n es e   R e  m ai n d er   T h e o r e  m (s e e f o r i nst a n c e [ 8,

L e  m  m a  3. 7. 4]).   Cl ai  m  ( c) f oll o  ws fr o  m  ( b)  si n c e  t h e  r esi d u e  cl ass es  of  t h e  el e  m e nts

of   B σ (I )  f o r  m   a  K   - b a sis  of  P / I    f o r  a n y  t er  m  o r d eri n g  σ   a n d  a n y  i d e al   I   i n  P  .

Fi n all y,   Cl ai  m  ( d) is  a  c o ns e q u e n c e  of  t h e  f a ct  t h at    m g ri d(  I ) is  a  g ri d i d e al   w hi c h

c o nt ai ns  I .
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S  m all    G r ö b n e r  f a n s  of  i d e al s  of  p oi nt s

T h e f oll o  wi n g  r es ult is  o n e  of  t h e    m ai n  c o ntri b uti o ns  of  t his  p a p er.

T h e o r e   m  4. 1.    L et   J   b e  a  g ri d  i d e al  i n  P,   l et I 1 ,  I2 b e  c o  m pl e  m e nt a r y  i d e al s   wit h

r e s p e ct  t o  J,   a n d l et  σ   b e  a  t e r  m  o r d e ri n g.

( a)   F o r   i =  1  , 2 , w e  h a v e   O  (J ) ∩  L T σ (I i )   =  O  (J )\  O σ (I i ).

( b)   L et   α σ : O  (J ) ∩  L T σ (I i )  →    T
n b e  t h e    m a p   w hi c h  s e n d s  t →    t s o c (J )/t .   T h e n  α σ

i s  i nj e cti v e  a n d  i n d u c e s  a    m a p  ϑ σ : O  (J )\  O σ (I 1 )  →   O σ (I 2 )  w hi c h  i s  bij e cti v e.

( c)   W e  h a v e    G F a n(  I 1 )   =   G F a n(I 2 )  a n d  h e n c e  G F  N u  m (  I 1 )   =   G F  N u  m (I 2 ).

P r o of.    Fir st,   w e  pr o v e   Cl ai  m  ( a).   Fr o  m   I i ⊇   J ,   w e  d e d u c e  t h at   L T(I i )  ⊇   L T( J ),

h e n c e  O σ (I i )  ⊆   O  (J )   w hi c h i  m pli es  t h e  cl ai  m.

N e xt,   w e   pr o v e   Cl ai  m  ( b).   T h e  f a ct  t h at    α   is  i nj e cti v e  is  b y  c o nstr u cti o n.   B y

c o ntr a di cti o n,  ass u  m e  t h at  t s o c (J )/t  /∈   O σ (I 2 ).   T h e n  ts o c (J )/t  ∈   L T σ (I 2 ).    We  h a v e

ts o c (J )    =  t · ts o c (J )/t  ∈   L T σ (I 1 ) · L T σ (I 2 )  ⊆    L T σ (I 1 · I 2 ).    Cl e a rl y  I 1 · I 2 ⊆    J ,  a n d

s o   w e  g et  t s o c (J )  ∈   L T σ (I )   w hi c h  yi el ds  a  c o ntr a di cti o n  b y   L e  m  m a  4. 1( b).   C o ns e-

q u e ntl y,   w e  g et  a n i nj e cti v e    m a p   O  (J ) ∩   L T σ (I 1 )  →   O σ (I 2 ),  a n d fr o  m  ( a),   w e  c a n

r e  writ e  it  a s  a    m a p  ϑ   :  O  (J )\  O σ (I 1 )  →    O σ (I 2 )    w hi c h  is  i nj e cti v e.   L e  m  m a  4. 2( c)

s h o  ws  t h at  t h e  t  w o  s ets  h a v e  t h e  s a  m e  c a r di n alit y,  h e n c e,    w e  c o n cl u d e  t h at  ϑ   is

bij e cti v e.

We  o bs er v e t h at  t h e  s et    O σ (I 1 )) is  t h e s a  m e f o r  e v er y  σ   w hi c h  c orr e s p o n ds t o  a

p oi nt  i nsi d e  a  p ol y h e dr al  c o n e  of    G F a n( I 1 ).   T h er ef or e,  als o  t h e  s et  O  (J )\  O σ (I 1 ))

is t h e s a  m e,  h e n c e,   w e  d e d u c e fr o  m   Cl ai  m ( b) t h at  als o t h e s et O σ (I 2 )) is t h e s a  m e,

a n d  t h e  pr o of is  c o  m pl et e.

R e   m a r k  4. 2.    I n t h e  pr o of  of   Cl ai  m ( b),   w e  us e d t h e f a ct t h at  I 1 · I 2 ⊆   J .   A ct u all y,

w e  h a v e   I 1 · I 2 =   J   (s e e f o r i nst a n c e [ 1 0,   T h e or e  m  2. 2. 1]).

L et  us ill ustr at e  t h e  t h e o r e  m   wit h  a n  e x a  m pl e.

E x a   m pl e  4. 2.    L et   P   =   Q  [x, y ].   C o nsi d er  t h e  g ri d i d e al

J   =     x (x 2 +  1) 2 (x  −   1) , (y 3 −   1)( y  +  2)

wit h  pri  m a r y  d e c o  m p o siti o n

x, y  +  2     ∩    x, y  −   1   ∩    x, y 2 +   y  +  1    ∩    x  −   1 ,  y +  2    ∩    x  −   1 ,  y −   1

∩    x  −   1 ,  y2 +   y  +  1    ∩    x 4 +  2  x 2 +  1  ,  y +  2

∩    x 4 +  2  x 2 +  1  ,  y −   1   ∩    x 4 +  2  x 2 +  1  ,  y2 +   y  +  1    .

L et   I 1 a n d  I 2 a r e  c o  m pl e  m e nt ar y   wit h  r es p e ct  t o  J .  If

I 1 =     x, y  +  2    ∩    x  −   1 ,  y2 +   y  +  1    ∩    x 4 +  2  x 2 +  1  ,  y +  2    ,

t h e n

I 2 =   J   : I 1 =     x, y  −   1   ∩    x, y 2 +   y  +  1    ∩    x  −   1 ,  y +  2    ∩    x  −   1 ,  y −   1

∩    x 4 +  2  x 2 +  1  ,  y −   1   ∩    x 4 +  2  x 2 +  1  ,  y2 +   y  +  1    .
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E.    Di  mit r o v a  et  al.

We   h a v e    G F  N u  m (   I 1 )    =    G F  N u  m (I 2 )    =     2.  S e e  t h e  f oll o  wi n g    Co  Co A- 5  c o d e  f o r

d et ails.

K : : = Q Q ;   U s e   P : : = K [ x , y ] ;
J : = i d e a l ( x * ( x  ̂2 + 1 )  ̂2 * ( x - 1 ) ,   ( y  ̂3 - 1 ) * ( y + 2 ) ) ;
P D : = P r i m a r y D e c o m p o s i t i o n 0 ( J ) ; [ R e d u c e d G B a s i s ( X )   |   X   I n   P D ] ;
/ *
[ [ y   + 2 ,   x ] ,   [ y   - 1 ,   x ] ,   [ x ,   y  ̂2   + y   + 1 ] ,   [ y   + 2 ,   x   - 1 ] ,
[ y   - 1 ,   x   - 1 ] ,   [ x   - 1 ,   y  ̂2   + y   + 1 ] ,   [ y   + 2 ,   x  ̂4   + 2 * x  ̂2   + 1 ] ,
[ y   - 1 ,   x  ̂4   + 2 * x  ̂2   + 1 ] ,   [ y  ̂2   + y   + 1 ,   x  ̂4   + 2 * x  ̂2   + 1 ] ]
* /
I 1 : =   I n t e r s e c t i o n ( i d e a l ( x   - 1 ,   y  ̂2   + y   + 1 ) ,   i d e a l ( y   + 2 ,   x ) ,
i d e a l ( y   + 2 ,   x  ̂4   + 2 * x  ̂2   + 1 ) ) ;
R e d u c e d G B a s i s ( I 1 ) ;   Q B 1 : = Q u o t i e n t B a s i s S o r t e d ( I 1 ) ;   Q B 1 ;
- -   [ x * y   + 2 * x   - y   - 2 ,   y  ̂3   + 3 * y  ̂2   + 3 * y   + 2 ,
- -     x  ̂5   + 2 * x  ̂3   + ( 4 / 3 ) * y  ̂2   + x   + ( 4 / 3 ) * y   - 8 / 3 ]

- -   [ 1 ,   y ,   x ,   y  ̂2 ,   x  ̂2 ,   x  ̂3 ,   x  ̂4 ]
I 2 : = I n t e r s e c t i o n ( i d e a l ( x ,   y  ̂2   + y   + 1 ) ,   i d e a l ( y   - 1 ,   x   - 1 ) ,

i d e a l ( y   - 1 ,   x ) ,   i d e a l ( y   + 2 ,   x   - 1 ) ,   i d e a l ( y   - 1 ,   x  ̂4   + 2 * x  ̂2   + 1 ) ,
i d e a l ( y  ̂2   + y   + 1 ,   x  ̂4   + 2 * x  ̂2   + 1 ) ) ;

i n d e n t ( R e d u c e d G B a s i s ( I 2 ) ) ;   Q B 2 : = Q u o t i e n t B a s i s S o r t e d ( I 2 ) ;   Q B 2 ;
/ * [

y  ̂4   + 2 * y  ̂3   - y   - 2 ,
x * y  ̂3   - y  ̂3   - x   + 1 ,
x  ̂5 * y   - x  ̂5   + 2 * x  ̂3 * y   - 2 * x  ̂3   + ( - 4 / 3 ) * y  ̂3   + x * y   - x   + 4 / 3 ,
x  ̂6   - x  ̂5   + 2 * x  ̂4   - 2 * x  ̂3   + x  ̂2   - x

]   * /
- -   [ 1 ,   y ,   x ,   y  ̂2 ,   x * y ,   x  ̂2 ,   y  ̂3 ,   x * y  ̂2 ,   x  ̂2 * y ,   x  ̂3 ,   x  ̂2 * y  ̂2 ,
- -      x  ̂3 * y ,   x  ̂4 ,   x  ̂3 * y  ̂2 ,   x  ̂4 * y ,   x  ̂5 ,   x  ̂4 * y  ̂2 ]
m u l t i p l i c i t y ( P / J ) ;   m u l t i p l i c i t y ( P / I 1 ) ;   m u l t i p l i c i t y ( P / I 2 ) ;
- -   2 4
- -   7
- -   1 7
G F 1 : = G r o e b n e r F a n R e d u c e d G B a s e s ( I 1 ) ; i n d e n t ( G F 1 ) ;
/ *

[ x * y   + 2 * x   - y   - 2 ,   y  ̂3   + 3 * y  ̂2   + 3 * y   + 2 ,   x  ̂5   + 2 * x  ̂3   + ( 4 / 3 ) * y  ̂2   + x   + ( 4 / 3 ) * y   - 8 / 3 ] ,
[ x * y   - y   + 2 * x   - 2 ,   y  ̂2   + ( 3 / 4 ) * x  ̂5   + ( 3 / 2 ) * x  ̂3   + y   + ( 3 / 4 ) * x   - 2 ,

x  ̂6   - x  ̂5   + 2 * x  ̂4   - 2 * x  ̂3   + x  ̂2   - x ]
* /
G F 2 : = G r o e b n e r F a n R e d u c e d G B a s e s ( I 2 ) ;   i n d e n t ( G F 2 ) ;
/ *

[ y  ̂4   + 2 * y  ̂3   - y   - 2 ,   x * y  ̂3   - y  ̂3   - x   + 1 ,
x  ̂5 * y   - x  ̂5   + 2 * x  ̂3 * y   - 2 * x  ̂3   + ( - 4 / 3 ) * y  ̂3   + x * y   - x   + 4 / 3 ,
x  ̂6   - x  ̂5   + 2 * x  ̂4   - 2 * x  ̂3   + x  ̂2   - x ] ,

[ y  ̂3   + ( - 3 / 4 ) * x  ̂5 * y   + ( - 3 / 2 ) * x  ̂3 * y   + ( 3 / 4 ) * x  ̂5   + ( - 3 / 4 ) * x * y   + ( 3 / 2 ) * x  ̂3   + ( 3 / 4 ) * x   - 1 ,
x  ̂5 * y  ̂2   + 2 * x  ̂3 * y  ̂2   + x  ̂5 * y   + x * y  ̂2   + 2 * x  ̂3 * y   - 2 * x  ̂5   + x * y   - 4 * x  ̂3   - 2 * x ,
x  ̂6   - x  ̂5   + 2 * x  ̂4   - 2 * x  ̂3   + x  ̂2   - x ]

* /

C o r oll a r y  4. 1.    L et   J   b e  a  r a di c al  g ri d  i d e al  i n  P    a n d l et  I  b e  a n  i d e al  i n  P    s u c h

t h at  I  ⊇   J .

( a)   T h e  i d e al s   I  a n d  J   : I  a r e  r a di c al.

2 0 5 0 0 8 7- 1 6



M a y  1 9,  2 0 2 0    1 9: 3 5      W S  P  C / S 0 2 1 9- 4 9 8 8      1 7 1- J  A  A      2 0 5 0 0 8 7
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( b)   T h e  i d e al s   I   a n d  J   : I   a r e  c o  m pl e  m e nt a r y  i d e al s   wit h  r e s p e ct  t o   J,   a n d  h e n c e ,

t h e  c o n cl u si o n s  of   T h e o r e  m  4. 1  a p pl y  t o  I 1 =   I  a n d  I 2 =   J   : I .

( c)   L et   X   b e  a  g ri d  of   p oi nt s ,   J  =   I (X  ),  a n d   I  ⊇   J .   T h e n  t h e r e  e xi st s  a  s u b s et  Y

of  X   s u c h  t h at  I  =   I (Y  ),   J  : I  =   I (X   \  Y  ), a n d  ( a)  a n d  ( b)  a r e  s ati s fi e d  b y  t h e

i d e al s  J,  I   a n d  J   : I .

P r o of.    T o   pr o v e    Cl ai  m  ( a),   n oti c e  t h at  a s  t h e  i d e al    J   is  z er o- di  m e nsi o n al  a n d

r a di c al,  t h er e  a r e   m a xi  m al i d e als  m 1 , . . . , m s i n P   s u c h  t h at  J   =
s
i= 1 m i .   L et S   =

{ 1 , . . . , s} .   T h e   C hi n es e   R e  m ai n d er   T h e o r e  m i  m pli es  t h at  t h er e is  a n is o  m o r p his  m

ϕ   : P / J ∼= i∈  S P / m i .   Vi a t his is o  m o r p his  m, t h e i  m a g e ϕ (I ) is  a  pr o d u ct of s  i d e als

w hi c h  a r e  eit h er     0    o r    1  .   L et T   ⊆   S   b e  t h e  s u bs et  of i n di c es   w hi c h  c o r r es p o n d t o

t h e  z er o  i d e als.   T h e n  I  = i∈  T m i a n d  h e n c e  it  is  r a di c al.  Si  mil a rl y,   w e  fi n d  t h at

J   : I .

T o  pr o v e   Cl ai  m  ( b), it  s u  ffi c es  t o  o bs er v e  t h at   w e  h a v e   J   : I  = i∈  S  \ T m i .

Fi n all y,  t o  pr o v e  ( c),  l et   X   b e  a  g ri d  of  p oi nts  i n   K n ,  a n d  f o r  i  =  1  , . . . ,  n, l et

g i =
d i

j = 1 (x i −   c i j ).    T h e n  t h e  v a nis hi n g  i d e al  of  X    is  I (X  )    =    g 1 , . . . , gn .    T h e

i d e al  I (X  )  is  r a di c al  b y  c o nstr u cti o n,  a n d  e v er y  i d e al    w hi c h  c o nt ai ns  I (X  )  is  t h e

v a nis hi n g i d e al  of  a  s u bs et  Y   of  X  , i. e. it is  of  t y p e I (Y  ).   C o ns e q u e ntl y,   w e  h a v e

I (X  ) :  I (Y  )   =  I (X  \ Y  ).

T h e f oll o  wi n g  e x a  m pl e ill ustr at es  t his  c o r oll a r y.

E x a   m pl e  4. 3.

K : : = Q Q ;   U s e   P : : = K [ x , y ] ;
I : = i d e a l ( ( x  ̂2 + 1 ) * ( x - 1 ) * ( x - 2 ) ,  ( y  ̂2 - 2 ) * ( y + 2 ) ) ;
J 1 : =   I + i d e a l ( x - 1 + y  ̂2 - 2 ) ;
J 2 : = C o l o n ( I , J 1 ) ;

R e d u c e d G B a s i s ( J 1 ) ;  Q B 1 : = Q u o t i e n t B a s i s ( J 1 ) ;  Q B 1 ;
- -   [ x   - 1 ,   y  ̂2   - 2 ]
- -   [ 1 ,   y ]
R e d u c e d G B a s i s ( J 2 ) ;  Q B 2 : = Q u o t i e n t B a s i s ( J 2 ) ;  Q B 2 ;
- -   [ y  ̂3   + 2 * y  ̂2   - 2 * y   - 4 ,

x  ̂3 * y   + 2 * x  ̂3   - 2 * x  ̂2 * y   - 4 * x  ̂2   + x * y   + 2 * x   - 2 * y   - 4 ,
x  ̂4   - 3 * x  ̂3   + 3 * x  ̂2   - 3 * x   + 2 ]

- -   [ 1 ,   y ,   y  ̂2 ,   x ,   x * y ,   x * y  ̂2 ,   x  ̂2 ,   x  ̂2 * y ,   x  ̂2 * y  ̂2 ,   x  ̂3 ]
m u l t i p l i c i t y ( P / I ) ;  m u l t i p l i c i t y ( P / J 1 ) ;   m u l t i p l i c i t y ( P / J 2 ) ;
- -   1 2
- -   2
- -   1 0
G F 1 : = G r o e b n e r F a n R e d u c e d G B a s e s ( J 1 ) ; G F 1 ;
- -   [ y  ̂2   - 2 ,   x   - 1 ]
G F 2 : = G r o e b n e r F a n R e d u c e d G B a s e s ( J 2 ) ; G F 2 ;
- -   [ y  ̂3   + 2 * y  ̂2   - 2 * y   - 4 ,
- -     x  ̂3 * y   + 2 * x  ̂3   - 2 * x  ̂2 * y   - 4 * x  ̂2   + x * y   + 2 * x   - 2 * y   - 4 ,
- -     x  ̂4   - 3 * x  ̂3   + 3 * x  ̂2   - 3 * x   + 2 ]

5.    Fi n al    R e   m a r k s

I n  t his  s e cti o n,    w e  c oll e ct  s om e  c o ns e q u e n c es  of  t h e  t h e or eti c al  r es ults  d es cri b e d

i n  t h e  pr e c e di n g  s e cti o ns.   T h e  si g ni fi c a n c e  of   T h e o r e  m  4. 1 is  t h e  a bilit y  t o  q ui c kl y
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E.    Di  mit r o v a  et  al.

c o  m p ut e  n e  w i d e als   wit h   G F  N u  m  1.   T his is  e s p e ci all y c o n v e ni e nt f o r  n et  w o r k i nf er-

e n c e  o r  d esi g n  of  e x p eri  m e nts   w h er e  d at a  oft e n  h a v e  st at es i n  a  fi nit e  fi el d.   L et  K

b e  a  fi nit e  fi el d   wit h  c h a r a ct eristi c  p   >  0.   T h e n  K    is  a  fi nit e- di  m e nsi o n al F p - v e ct or

s p a c e  h e n c e  t h e  n u  m b er  of  its  el e  m e nts  is  q  =   p e ,   w h er e e  =  di  m F p (K   ).    Gi v e n  a n

i n d et er  mi n at e z ,  t h e  u ni v ari at e  p ol y n o  mi al z q −   z  is  c all e d  a fi el d  e q u a ti o n   of  K

si n c e  z q −   z  = a ∈  K (z  −   a )  (s e e [ 7,  S e c.  4. 1 3]).   C o ns e q u e ntl y, if  P   =   K   [x 1 , . . . ,  xn ]

a n d  g i =   x q
i −   x i f o r  i  =  1  , . . . ,  n,  t h e n  t h e i d e al   g 1 , . . . , gn i s  t h e  v a nis hi n g i d e al

of  a  g ri d  a n d  h e n c e   C o r oll a r y  4. 1  a p pli es  t o  t his  c a s e.

L et  us  s e e  a n  e x a  m pl e   wit h   K    =   F 3 .

E x a   m pl e  5. 1.

K : : = Z Z / ( 3 ) ;   U s e   P : : =   K [ x , y , z ] ;
I : = i d e a l ( x  ̂3 - x ,   y  ̂3 - y ,   z  ̂3 - z ) ;
J 1 : =   I + i d e a l ( x  ̂2 - y - z ) ;
J 2 : = C o l o n ( I ,   J 1 ) ;

R e d u c e d G B a s i s ( J 1 ) ;   Q B 1 : = Q u o t i e n t B a s i s ( J 1 ) ;  Q B 1 ;
- -   [ y  ̂2   - y * z   + z  ̂2   - y   - z ,   x * y   + x * z   - x ,   x  ̂2   - y   - z ,   z  ̂3   - z ]
- -   [ 1 ,   z ,   z  ̂2 ,   y ,   y * z ,   y * z  ̂2 ,   x ,   x * z ,   x * z  ̂2 ]

R e d u c e d G B a s i s ( J 2 ) ;   Q B 2 : = Q u o t i e n t B a s i s ( J 2 ) ;  Q B 2 ;
- -   [ z  ̂3   - z ,   y  ̂3   - y ,   x * y  ̂2   - x * y * z   + x * z  ̂2   + x * y   + x * z ,

x  ̂2 * y   + x  ̂2 * z   + x  ̂2   + y  ̂2   - y * z   + z  ̂2   - 1 ,   x  ̂3   - x ]
- -   [ 1 ,   z ,   z  ̂2 ,   y ,   y * z ,   y * z  ̂2 ,   y  ̂2 ,   y  ̂2 * z ,   y  ̂2 * z  ̂2 ,   x ,   x * z ,

x * z  ̂2 ,   x * y ,   x * y * z ,   x * y * z  ̂2 ,   x  ̂2 ,   x  ̂2 * z ,   x  ̂2 * z  ̂2 ]
m u l t i p l i c i t y ( P / I ) ;   m u l t i p l i c i t y ( P / J 1 ) ;  m u l t i p l i c i t y ( P / J 2 ) ;
- -   2 7
- -     9
- -   1 8
G F 1 : = G r o e b n e r F a n I d e a l s ( J 1 ) ;
G F 2 : = G r o e b n e r F a n I d e a l s ( J 2 ) ;
L e n ( G F 1 ) ; L e n ( G F 2 ) ;
- -   4
- -   4
G F 1 : = G r o e b n e r F a n R e d u c e d G B a s e s ( J 1 ) ; i n d e n t ( G F 1 ) ;
/ *
[

[ x  ̂2   - y   - z ,   z  ̂3   - z ,   x * y   + x * z   - x ,   y  ̂2   - y * z   + z  ̂2   - y   - z ] ,
[ x  ̂2   - z   - y ,   y  ̂3   - y ,   x * z   + x * y   - x ,   z  ̂2   - y * z   + y  ̂2   - z   - y ] ,
[ y   - x  ̂2   + z ,   x  ̂3   - x ,   z  ̂3   - z ] ,
[ z   + y   - x  ̂2 ,   x  ̂3   - x ,   y  ̂3   - y ]

]
* /
G F 2 : = ( J 2 ) ; i n d e n t ( G F 2 ) ;
/ *

[ z  ̂3   - z ,   y  ̂3   - y ,   x * y  ̂2   - x * y * z   + x * z  ̂2   + x * y   + x * z ,
x  ̂2 * y   + x  ̂2 * z   + x  ̂2   + y  ̂2   - y * z   + z  ̂2   - 1 ,   x  ̂3   - x ] ,

[ y  ̂3   - y ,   x  ̂3   - x ,   x  ̂2 * z   + x  ̂2 * y   + z  ̂2   + x  ̂2   - y * z   + y  ̂2   - 1 ,
x * z  ̂2   - x * y * z   + x * y  ̂2   + x * z   + x * y ,   z  ̂3   - z ] ,

[ x  ̂3   - x ,   z  ̂3   - z ,   y  ̂2   + x  ̂2 * y   - y * z   + x  ̂2 * z   + z  ̂2   + x  ̂2   - 1 ] ,
[ x  ̂3   - x ,   z  ̂2   - y * z   + y  ̂2   + x  ̂2 * z   + x  ̂2 * y   + x  ̂2   - 1 ,   y  ̂3   - y ]

* /

T h e or e  m  4. 1  s h o  ws,  a  m o n g  ot h er  r e s ults,  t h at  c o  m pl e  m e nt ar y  i d e als  h a v e  t h e

s a  m e  n u  m b er  of  r e d u c e d    Gr ̈o b n er  b a s e s.   T h e  a d v a nt a g e  of  t his  is  t h at  it    m a y  b e

c o  m p ut ati o n all y  e a s y  t o  t est    w h et h er  a   s  m all   s et  of  d at a  h a s  a  u ni q u e    Gr ̈o b n er

b asis  a ss o ci at e d  t o it  a n d  t h e n  t o  g e n er at e  a   l a r g e r  s et  vi a  t h e  c o  m pl e  m e nt.   L et  us

s e e  a n  e a s y  a p pli c ati o n  of  t his  r e  m ar k.
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P r o p o si ti o n   5. 1.    L et   J, I 1 , I2 b e  d e al s  i n   P    s u c h  t h at  J   a n d   I 1 a r e  g ri d  i d e al s ,

J   ⊂   I 1 , a n d  I 2 =   J   : I 1 ,

( a)  W e  h a v e    G F  N u  m (  I 2 )   =  1 .

( b)   I n  p a rti c ul a r ,  st at e  m e nt  ( a)  h ol d s  if   X  , Y    a r e  g ri d  of  p oi nt s ,   J  =    I (X  ), I 1 =

I (Y  ), a n d  h e n c e  I 2 =   I (X  \ Y  ).

P r o of.    As   Cl ai  m  ( b)  is  a  s p e ci al  c a s e  of  ( a), l et  us  pr o v e   Cl ai  m  ( a).  Si n c e    I 2 i s  a

g ri d i d e al,   w e  g et   G F  N u  m ( I 2 )   =  1 fr o  m   L e  m  m a  4. 1( b),  a n d  t h e  c o n cl usi o n f oll o  ws

fr o  m   T h e o r e  m  4. 1( d).

L et  us  s e e  a n  e x a  m pl e   w hi c h ill ustr at es  t his  pr o p o siti o n.

E x a   m pl e  5. 2.

U s e   P : : =   Q Q [ x , y ] ;
F : = x * ( x - 1 ) * ( x - 2 ) * ( x - 3 ) * ( x - 4 ) ;
G : = y * ( y - 1 ) * ( y - 2 ) * ( y - 3 ) ;
I : = i d e a l ( F , G ) ;
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
M : = m a t ( [ [ 0 , 1 ] ,   [ 0 , 3 ] ,   [ 1 , 1 ] ,   [ 1 , 3 ] ,   [ 3 , 1 ] ,   [ 3 , 3 ] ] ) ;
J 1 : = I d e a l O f P o i n t s ( P , M ) ;
J 2 : = C o l o n ( I , J 1 ) ;
G F : = G r o e b n e r F a n I d e a l s ( J 2 ) ; G F ;
- -   [ i d e a l ( x  ̂2 * y  ̂2   - 2 * x  ̂2 * y   - 6 * x * y  ̂2   + 1 2 * x * y   + 8 * y  ̂2   - 1 6 * y ,
- -      y  ̂4   - 6 * y  ̂3   + 1 1 * y  ̂2   - 6 * y ,   x  ̂5   - 1 0 * x  ̂4   + 3 5 * x  ̂3   - 5 0 * x  ̂2   + 2 4 * x ) ]
L e n ( G F ) ;
- -   1
- -   T h e   i d e a l   J 1   i s   t h e   v a n i s h i n g   i d e a l   o f   t h e   " w h i t e   d o t s " .
- -   T h e   i d e a l   J 2   i s   t h e   v a n i s h i n g   i d e a l   o f   t h e   " b l a c k   d o t s " .

............................... ................

.......

.......

.................

................

x

y

•     •     •     •     •

◦     ◦     •     ◦     •

•     •     •     •     •

◦     ◦     •     ◦     •

O n e  of  t h e    m ai n  g o als  of  t his  p a p er  is  t o  i d e ntif y  cl a s s e s  of i d e als i nsi d e  a  ffi n e

K   - al g e br a s   w hi c h  h a v e  a   G F a n  n u  m b er  e q u al t o  1.   Usi n g t h e  n oti o ns  of  distr a cti o ns

of i d e als  a n d  t h eir li n e a r  s hifts   w e   w er e  a bl e  t o i d e ntif y  a l a r g e  cl a ss  of  s u c h i d e als

a n d  pr o vi d e d  a    m et h o d ol o g y  f o r  c o nstr u cti n g  t h e  m.   F urt h er  m or e,   w e  pr o v e d  t h at

c o  m pl e  m e nt a r y i d e als  h a v e  t h e  s a  m e   G F a n  n u  m b er   w hi c h  pr o vi d es  a  t o ol f o r i d e n-

tif yi n g i d e als  of (l a r g e) s ets  of  p oi nts  a s  h a vi n g  a   G F a n  n u  m b er  1  b a s e d  o n t h e i d e al

of  t h e  (s  m all)  c o  m pl e  m e nt ar y  s et  of  p oi nts.   F ut ur e   w or k    m a y i n v ol v e  a  g e o  m etri c

c h a r a ct eri z ati o n  of  all  d at a  s ets   wit h   G F a n  n u  m b er  e q u al  t o  1.

A c k n o  wl e d g   m e n t s

We  t h a n k  S h u h o n g    G a o  a n d  S e a n  S at h er-   W a g st a ff  f o r  t h eir  i nsi g htf ul  c o  m  m e nts

d uri n g fr uitf ul  dis c ussi o ns.    We  als o t h a n k   A n y u   Z h a n g f o r t h e  h el pf ul c o  m p ut ati o ns

s h e  p erf o r  m e d.   Di  mitr o v a,   H e,  a n d  Sti gl er   w er e  p a rti all y s u p p ort e d  b y t h e   N ati o n al
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E.    Di  mit r o v a  et  al.

S ci e n c e   F o u n d ati o n   U n d er   A  w a r d   D   M S- 1 4 1 9 0 2 3.   Fi n all y,   w e  a r e  pl e as e d  t o  t h a n k

t h e  a n o n y  m o us  r ef er e e f o r   m a n y  us ef ul  c o  m  m e nts.
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