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D e si g n a n d  A n al ysis of a  Mi cr o w a v e- O pti c al  D u al
M o d alit y  Bi o m ol e c ul ar S e nsi n g Pl atf or m

L u y a  Z h a n g, St u d e nt  M e m b er, I E E E, a n d  Ali  M.  Ni k n ej a d, Fell o w, I E E E

A bstr a ct — A c o m bi n e d  mi c r o w a v e- o pti c al bi o m ol e c ul a r s e ns o r
wit h hi g h s e nsiti vit y a n d s el e cti vit y is p r es e nt e d.  T h e  mi c r o w a v e
s e ns o r c h a r a ct e ri z es t h e di el e ct ri c p r o p e rti es of a  m e di u m usi n g
t h e os cill ati o n f r e q u e n c y s hift.  T o i m p r o v e t h e s e ns o r s e nsiti vit y
b e y o n d t h e 1/ f 3 p h as e n ois e li mit, a q u a d r at u r e- os cill at o r- b as e d
r e a ct a n c e s e nsi n g s c h e m e is p r o p os e d,  w hi c h att e n u at es t h e 1/ f 3

n ois e b y 2 0 d B/ d e c.  F u rt h e r s e nsiti vit y e n h a n c e m e nt is r e ali z e d
b y a n o v el c h o p pi n g t e c h ni q u e  w hi c h  m o d ul at es t h e f r e e- r u n ni n g
f r e q u e n ci es of t h e c o u pl e d os cill at o rs diff e r e nti all y  w hil e  m ai n-
t ai ni n g a fi x e d l o c ki n g f r e q u e n c y.  T o a c hi e v e a hi g h e r s el e cti vit y,
o pti c al s e ns o rs a r e i nt r o d u c e d t o t a r g et f o r s p e ci fi c bi o m ol e c ul es.
Utili zi n g si n gl e p h ot o n a v al a n c h e di o d es, t h e y d et e ct b ot h p h ot o n
i nt e nsit y a n d p h ot o n e missi o n ti m e.  A bi os e ns o r p r ot ot y p e  w as
f a b ri c at e d i n a 2 8 n m  C M O S t e c h n ol o g y.  T h e  mi c r o w a v e s e ns o r
a c hi e v es 0. 2 p p m/

√
H z f r e q u e n c y s e nsiti vit y  wit h 1 1. 5  m W p o w e r

c o ns u m pti o n.  T h e o pti c al s e ns o r s h o ws 5 0 0/s e c o n d d a r k c o u nt
r at e a n d 3 0 0 ps ti mi n g jitt e r at 1  V e x c ess bi as.  A p r ot ei n t h e r m al
d e n at u r ati o n e x p e ri m e nt c o n fi r ms t h e s e nsiti vit y a n d s el e cti vit y
e n h a n c e m e nt of t h e d u al- m o d alit y bi os e nsi n g pl atf o r m.

I n d e x  Ter ms — Bi ol o gi c al a n d c h e mi c al s e ns o rs,  m ulti p a r a m et-
ri c,  milli m et e r- w a v e ci r c uits, i nj e cti o n l o c k, q u a d r at u r e g e n e r a-
ti o n, di el e ct ri c s p e ct r os c o p y, si n gl e p h ot o n a v al a n c h e di o d es.

I. I N T R O D U C T I O N

H I G H L Y s e nsiti v e a n d s el e cti v e d et e cti o n of bi o m ol e c ul es
a n d t h eir i nt er a cti o ns pl a ys a c e ntr al r ol e i n t h e pr o mis es

of pr e cisi o n  m e di ci n e, dr u g dis c o v er y a n d  m a n y ot h er cli ni c al
ar e as.  T h e s e nsiti vit y of a bi os e ns or c a n b e i m pr o v e d b y  mi ni-
mi zi n g s e ns or n ois e a n d i nt erf er e n c es,  w hil e t h e s el e cti vit y of
a bi os e ns or r eli es pri m aril y o n t h e s p e ci fi c bi n di n g pr o c ess,
e. g. a nti b o d y- a nti g e n r e a cti o n, oft e n n ot a c hi e v a bl e d u e t o t h e
hi g h a n al yt e si mil ariti es i n a c o m pl e x bi o m e di u m [ 1].

F ort u n at el y, a d v a n c es i n l a b- o n- c hi p t e c h ni q u es p er mit t h e
i nt e gr ati o n of  m ulti p ar a m etri c bi os e ns ors t o cr e at e a  m ulti-
di m e nsi o n al fi n g er pri nt f or t h e t ar g et a n al yt es,  w hi c h e n h a n c es
t h e s e ns or s el e cti vit y a n d cl assi fi c ati o n c a p a biliti es gr e atl y [ 2] –
[ 4]. F or i nst a n c e, [ 2] d e v el o p e d a d u al- m o d alit y  mi cr o fl ui di c
d e vi c e,  w hi c h  m e as ur es c ell el o n g ati o n l e n gt h, d ef or m a bilit y
a n d el e ctri c al i m p e d a n c e t o b ett er cl assif y diff er e nt t y p es of
c ells.  A f urt h er st e p t o w ar ds l a b- o n- C M O S [ 5] –[ 1 0] off ers
a c o m pl et e s yst e m i nt e gr ati o n o n a  mi ni at uri z e d pl atf or m t o
r e d u c e p ar asiti cs a n d i nt erf er e n c es.  M or e i m p ort a ntl y, v ari o us
si g n al pr o c essi n g t e c h ni q u es c a n b e a p pli e d i n sit u t o e n h a n c e
t h e s e ns or s e nsiti vit y.  E x a m pl es i n cl u d e c h o p p er st a bili z ati o n
i n a fl o w c yt o m et er [ 1 1] t o all e vi at e s e ns or offs ets a n d fli c k er

T his  w or k  w as s u p p ort e d b y t h e  N ati o n al S ci e n c e F o u n d ati o n  Di visi o n
of  El e ctri c al,  C o m m u ni c ati o ns a n d  C y b er S yst e ms ( E C C S) u n d er  Gr a nt
N o. 1 6 0 8 9 5 8.

T h e a ut h ors ar e  wit h t h e  El e ctri c al  E n gi n e eri n g a n d  C o m p ut er S ci-
e n c es,  U ni v ersit y of  C alif or ni a,  B er k el e y,  C A 9 4 7 2 0  U S A ( e- m ail:
l u y a z h a n g @ b er k el e y. e d u).
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Fi g. 1. Pr o p os e d d u al- m o d alit y  mi cr o w a v e- o pti c al bi o m ol e c ul ar s e ns or.

n ois e, c orr el at e d d o u bl e s a m pli n g ( C D S) i n a bi ol u mi n es c e n c e
c hi p [ 1 2] t o s u p pr ess t h e d ar k c urr e nt, a n d Σ -∆ m o d ul ati o n
i n a fl u or es c e n c e  D N A c hi p [ 1 3] t o e xt e n d t h e d y n a mi c r a n g e.

D es pit e t h e n u m er o us b e n e fits, l a b- o n- C M O S i nt e gr ati o n of
hi g hl y s e nsiti v e  m ulti m o d al bi os e ns ors s uf fi ci e nt f or bi o m ol e c-
ul ar d et e cti o n r e m ai ns a n iss u e.  T h e c h all e n g e is t h at diff er e nt
s e nsi n g  m o d aliti es f a v or diff er e nt a n d s o m eti m es c o ntr a di ct or y
f a bri c ati o n r e ci p es f or s e nsiti vit y e n h a n c e m e nt. F or e x a m pl e,
mi cr o w a v e s p e ctr os c o pi es ( di el e ctri c [ 1 4] –[ 1 7],  m a g n eti c [ 1 8],
m ol e c ul ar r ot ati o n al [ 1 9]) b e n e fit fr o m d e e p-s u b mi cr o n  M O S-
F E Ts  wit h hi g h er f T a n d l o w er p ar asiti cs,  w hil e p h ot o d et e ct ors
e x hi bit b ett er p erf or m a n c e  m etri cs ( e. g. q u a nt u m ef fi ci e n c y)
[ 2 0] –[ 2 2] i n t h e c o n v e nti o n al t e c h n ol o g y n o d es  wit h l o w er
d o pi n g l e v els a n d  wi d er d e pl eti o n r e gi o ns.  M or e o v er, e xtr a
p ost pr o c essi n g r e q uir e d b y o n e  m o d alit y c o ul d i nt erf er e  wit h
t h e o p er ati o n of ot h ers. F or e x a m pl e, d e p ositi n g o pti c al filt er
l a y ers o n t o p of t h e c hi p s urf a c e d es e nsiti z es n e ar- fi el d s e ns ors.

T o a d dr ess t h es e c h all e n g es,  w e d e m o nstr at e d a  mi cr o w a v e-
o pti c al bi o m ol e c ul ar s e ns or i n a 2 8 n m  C M O S pr o c ess [ 2 3].
Q u a dr at ur e l o c k e d os cill at ors ( Q V C Os) ar e us e d f or hi g hl y
s e nsiti v e di el e ctri c s e nsi n g at  mi cr o w a v e fr e q u e n ci es ( 4 0  G H z)
t o b y p ass t h e p ar asiti c i nt erf a ci al p ol ari z ati o n at t h e s e ns or-
w at er i nt erf a c e [ 2 4], [ 2 5].  M e a n w hil e, si n gl e p h ot o n a v al a n c h e
di o d es ( S P A Ds) ar e i ntr o d u c e d t o c o m p e ns at e f or t h e r e d u c e d
q u a nt u m ef fi ci e n c y i n s u c h a n a d v a n c e d pr o c ess.  T h e y  m e as ur e
bi ol u mi n es c e n c e i nt e nsit y a n d fl u or es c e n c e lif eti m e i n a ti m e-
g at e d f as hi o n [ 2 6] –[ 2 8],  w hi c h eli mi n at es o pti c al filt ers a n d
a v oi ds di el e ctri c s e ns or d es e nsiti z ati o n.  E x p a n d e d fr o m [ 2 3],
t his p a p er pr es e nts a c o m pl et e d esi g n a n al ysis  wit h  m or e
m e as ur e m e nt r es ults. I n t h e c as e of t h e  mi cr o w a v e s e ns or, [ 2 3]
i d e nti fi es fli c k er n ois e as t h e pri m ar y s e nsiti vit y li mit a n d us es
C D S t o s u p pr ess it, b ut at t h e e x p e ns e of n ois e ali asi n g.  H er e
t h e s o ur c e of fli c k er n ois e is i n v esti g at e d a n d a n o v el c h o p pi n g
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T A B L E I
S Y S T E M S P E C I FI C A T I O N S

Mi c r o w a v e S e ns o r O pti c al S e ns o r
Tr a ns d u c e r  T y p e Os cill at or A v al a n c h e  Di o d e
Si g n al  T y p e P er mitti vit y Fl u or es c e n c e  Lif eti m e

Si g n al  L e v el
∆ = 0. 1 %

( w at er = 2 0 [ 2 9])
τ = 1 − 3 0 ns [ 2 6]

N ois e  R e q ui r e m e nt f n / f r ms < 4 p p m t jitt er < 0. 5 ns

t e c h ni q u e is pr o p os e d t o i m pr o v e t h e s e nsiti vit y  wit h o ut n ois e
f ol di n g p e n alt y.

T his p a p er is or g a ni z e d as f oll o ws.  T h e s yst e m ar c hit e ct ur e
a n d s p e ci fi c ati o ns t o s atisf y bi o m ol e c ul ar s e nsi n g r e q uir e m e nts
ar e pr o vi d e d i n S e cti o n II. S e cti o n III a n d I V dis c uss t h e
d et ail e d d esi g n c o nsi d er ati o ns of t h e t w o s e nsi n g  m o d aliti es,
r es p e cti v el y.  T h e el e ctri c al a n d bi ol o gi c al  m e as ur e m e nt r es ults
ar e pr es e nt e d i n S e cti o n  V a n d  VI.

II.  S Y S T E M A R C H I T E C T U R E  A N D S P E C I FI C A T I O N

Fi g. 1 ill ustr at es t h e s yst e m-l e v el di a gr a m of t h e  mi cr o w a v e-
o pti c al bi os e nsi n g pl atf or m.  T h e  mi cr o w a v e s e ns or utili z es a
p air of s e nsi n g c a p a cit ors as p art of t h e  Q V C O t a n k t o d et e ct
t h e a n al yt e p er mitti vit y.  As s h all b e s h o w n i n t h e n e xt s e cti o n,
c o m p ar e d  wit h a si n gl e os cill at or or i n- p h as e c o u pl e d os cil-
l at ors, usi n g  Q V C Os a c c o m p a ni e d b y t h e pr o p os e d r e a d o ut
s c h e m e i n cr e as es t h e s e ns or s e nsiti vit y.  M e a n w hil e, t h e S P A D-
b as e d o pti c al s e ns ors d et e cts t h e bi ol u mi n es c e n c e i nt e nsit y a n d
fl u or es c e n c e lif eti m e t o f urt h er i m pr o v e t h e s e ns or s el e cti vit y.
A S P A D c a n b e vi e w e d as a n o pti c al l at c h,  w hi c h is tri g g er e d
u p o n a p h ot o n a bs or pti o n, s o t h at b ot h p h ot o n q u a ntiti es a n d
t h eir arri v al ti m es c a n b e  m e as ur e d.

T o all o w d et e cti o n of bi o m ol e c ul es a n d t h eir i nt er a cti o ns,
Ta bl e I lists t h e d esi g n s p e ci fi c ati o ns f or e a c h s e nsi n g  m o d al-
it y.  T h e  mi ni m al si g n al l e v el d uri n g t h e bi o m e di u m a n al ysis
d et er mi n es t h e s e ns or n ois e fl o or.  B as e d o n  E M si m ul ati o ns,
1 % of |∆ | i n a n a q u e o us s ol uti o n ( at 4 0  G H z, w at er = 2 0)
l e a ds t o |∆ C | = 5. 2 2 a F.  Wit h 5 4 f F t ot al t a n k c a p a cit a n c e i n
t his d esi g n, a 4. 8 3 p p m fr e q u e n c y c h a n g e n e e ds t o b e r es ol v e d
f or  m e as ur e m e nt of 1 % di el e ctri c c h a n g e  wit h 2 0 d B S N R, or
0 .1 % c h a n g e  wit h 0 d B S N R,  w hi c h s ets t h e s e ns or n ois e fl o or.
Si mil arl y, si n c e t h e t y pi c al fl u or es c e n c e lif eti m es of st a n d ar d
d y es ar e 1 − 3 0 ns, t h e ti mi n g jitt er of t h e o pti c al s e ns or s h o ul d
b e k e pt b el o w 0. 5 ns, i. e., h alf of t h e  mi ni m al lif eti m e.

III.  Q V C O- B A S E D P E R M I T T I V I T Y S E N S O R

A. S e nsi n g S c h e m e

Os cill at ors ar e p arti c ul arl y p o p ul ar i n a b o v e- G H z r e a ct a n c e
s e nsi n g [ 3 0] –[ 3 3] t hr o u g h t h e  m e as ur e m e nt of t h e os cill ati o n
fr e q u e n c y s hift.  As a n al y z e d i n [ 3 4], t h e os cill at or 1/ f 3 p h as e
n ois e li mits t h e  mi ni m u m d et e ct a bl e si g n al ( M D S) a n d aff e cts
t h e l o n g-t er m fr e q u e n c y st a bilit y.  T o s u p pr ess t h e 1/ f 3 p h as e
n ois e, [ 3 4] i ntr o d u c e d a c orr el at e d d o u bl e c o u nti n g ( C D C)
t e c h ni q u e [s e e Fi g. 2( a)],  w h er e a r e pli c a r ef er e n c e t a n k is
a d d e d a n d s h ar es t h e s a m e a cti v e c or e  wit h t h e s e nsi n g t a n k
t o f or m t w o os cill at ors  wit h c orr el at e d 1/ f 3 p h as e n ois e.  T h e
n ois e c a n b e att e n u at e d b y s wit c hi n g b et w e e n t h e t w o t a n ks
a n d t a ki n g t h e fr e q u e n c y diff er e n c e.  H o w e v er,  C D C f a c es t w o
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(ri g ht).  T h e ti m e-i nt erl e a v e d o p er ati o n is i g n or e d f or ill ustr ati o n si m pli cit y.
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Fi g. 3. Pr o p os e d p er mitti vit y s e ns or ar c hit e ct ur e.

m aj or li mit ati o ns  w h e n us e d i n di el e ctri c d et e cti o n. First, l ar g e
s wit c h es ar e r e q uir e d t o a v oi d t a n k q u alit y f a ct or d e gr a d ati o n,
w hi c h i n t ur n c o ntri b ut e e x c essi v e c a p a citi v e p ar asiti cs a n d
d e cr e as e s e nsiti vit y. S e c o n d, t o is ol at e t h e r ef er e n c e t a n k
fr o m t h e bi o m e di u m, a pr ot e cti o n l a y er ( e. g. P D M S, S U- 8)
m ust b e a p pli e d. Si n c e t h e p er mitti vit y of t h e pr ot e cti o n l a y er
( P D M S = 2. 3, S U- 8 = 4. 1) is  m u c h s m all er t h a n  w at er, t h e t w o
t a n ks r es p o n d diff er e ntl y t o t h e s a m e ( c orr el at e d) n ois e c h ar g e
i nj e cti o n Q n , as ill ustr at e d i n Fi g. 2( b),  w hi c h d e c orr el at es t h e
t w o os cill at ors a n d l e a ds t o o nl y p arti al n ois e c a n c ell ati o n.

Fi g. 3 s h o ws t h e si m pli fi e d s e nsi n g ar c hit e ct ur e pr o p os e d i n
t his  w or k,  w h er e t h e s e nsi n g os cill at or is di vi d e d i nt o t w o  m u-
t u all y c o u pl e d os cill at ors e q u all y e x p os e d t o t h e bi o m e di u m.
T o f a cilit at e  m e as uri n g t h e t a n k c a p a cit a n c e i n a 1 / f 3 - p h as e-
n ois e-fr e e r e gi m e, a n a d diti o n al v ar a ct or is i n cl u d e d i n e a c h
os cill at or, a n d t h eir v al u es ar e  m o d ul at e d diff er e nti all y at ω m ,

C V A R 1, 2 = C V A R, C M ± δ C V A R · c os (ω m t) , ( 1)

s o t h at t h e fr e e-r u n ni n g fr e q u e n ci es of t h e t w o os cill at ors ar e
als o  m o d ul at e d diff er e nti all y,

ω 1, 2 = ω 0 1 ∓
δ C V A R

2 C T
· c os (ω m t)

= ω 0 ∓ ω ∆ · c os (ω m t) .
( 2)

Wit h a s h all o w  m o d ul ati o n d e pt h ω ∆ , i nj e cti o n l o c ki n g
m ai nt ai ns t h e o p er ati n g fr e q u e n c y of t h e t w o os cill at ors at
ω 0 a n d c o n v erts t h e  m o d ul at e d fr e q u e n c y diff er e n c e i nt o a
diff er e nti al p h as e si g n al, t o b e  m e as ur e d b y t h e s u bs e q u e nt
p h as e d et e ct or.  T h e gist is t h at t h e t a n k c a p a cit a n c e C T i s
e n c o d e d i n t h e p h as e si g n al a n d is n ot c orr u pt e d b y 1 / f 3 p h as e
n ois e as l o n g as ω m i s b e y o n d t h e fli c k er c or n er fr e q u e n c y ω C .

T h e q u a ntit ati v e r el ati o ns hi p b et w e e n t h e t a n k c a p a cit a n c e
a n d t h e p h as e si g n al c a n b e est a blis h e d vi a  A dl er’s e q u ati o n
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Fi g. 4. Pr o p os e d s e nsi n g s c h e m e. ( a)  Ta n k i m p e d a n c e p h as e s p e ctr u m
s h o wi n g t h e  m o d ul ati o n pri n ci pl e, a n d ( b) i nj e cti o n p h as or di a gr a m s h o wi n g
|θ si g | ≈ Φ ∆ / K i nj.

[ 3 5] –[ 3 7].  T h e p h as e d y n a mi cs of a n os cill at or u n d er i nj e cti o n
is gi v e n b y

d θ i

dt
= ω i − ω i nj + K i nj

ω i

2 Q
si n (θ i nj, i − θ i ) , ( 3)

w h er e θ i = os cill ati o n p h as e, θ i nj, i = i nj e cti o n p h as e, ω i = fr e e-
r u n ni n g fr e q u e n c y, ω i nj = i nj e cti o n fr e q u e n c y, K i nj = i nj e cti o n
str e n gt h, Q = t a n k q u alit y f a ct or a n d i = 1, 2.  At st e a d y st at e,
t h e t w o os cill at ors ar e l o c k e d t o ω os c s o t h at d θ i / dt = 0 a n d
ω i nj = ω os c .  Ass u m e t h e i nj e cti o n si g n al is i n- p h as e  wit h t h e
i nj e cti o n s o ur c e, i. e., θ i nj, 1 = θ 2 a n d vi c e v ers a. It f oll o ws fr o m
( 3) t h at,

ω os c = ω 1 + K i nj
ω 1

2 Q
si n (θ 2 − θ 1 )

= ω 2 + K i nj
ω 2

2 Q
si n (θ 1 − θ 2 ) .

( 4)

C o m bi ni n g ( 2) a n d ( 4) v ali d at es t h at t w o os cill at ors l o c k b a c k
t o ω os c = ω 0 , a n d yi el ds t h e s ol uti o n t o t h e p h as e si g n al θ si g .

ω os c =
2 ω 1 ω 2

ω 1 + ω 2
= ω 0 −

ω 2
∆

ω 0
c o s 2 ( ω m t) ≈ ω 0 ( 5)

si n (θ si g ) = si n (θ 1 − θ 2 ) = −
δ C V A R

C T

Q

K i nj
c o s (ω m t) ( 6)

It is a p p ar e nt fr o m ( 6) t h at t h e t a n k c a p a cit a n c e C T m a nif ests
its elf t hr o u g h t h e a m plit u d e of t h e  m o d ul at e d p h as e si g n al,
wit h a n a m pli fi c ati o n f a ct or of δ C V A R · Q / K i nj.  C o ns e q u e ntl y,
i n cr e asi n g δ C V A R a n d r e d u ci n g i nj e cti o n str e n gt h K i nj i m pr o v e
t h e si g n al q u alit y, gi v e n t h at t h e s h all o w  m o d ul ati o n ass u m p-
ti o n still h ol ds ( w hi c h s ets t h e li mits t o δ C V A R a n d K i nj).

T h e pr o p os e d s e nsi n g s c h e m e is i n f a ct a d eri v ati v e s p e c-
tr os c o p y,  w hi c h c a n b e vis u ali z e d i n Fi g. 4( a).  W h e n t h e t w o
os cill at ors ar e i nj e cti o n l o c k e d at ω 0 ( gr e e n), t h eir fr e e-r u n ni n g
fr e q u e n ci es ar e  m o d ul at e d diff er e nti all y ar o u n d ω 0 ( bl u e a n d
r e d),  w hi c h l e a ds t o t h e t a n k i m p e d a n c e p h as es φ 1, 2 b ei n g
m o d ul at e d as  w ell. If ω ∆ i s s m all, t h e o ut p ut a m plit u d e φ ∆

i s pr o p orti o n al t o t h e d eri v ati v e of t h e t a n k i m p e d a n c e p h as e
s p e ctr u m, d φ / d ω = 2 Q / ω 0 .  B as e d o n t h e i nj e cti o n p h as ors
i n Fi g. 4( b), t h e p h as e si g n al θ si g i s si m pl y φ ∆ b o ost e d b y
1 / K i nj.  T h at is, b y  m o d ul ati n g t h e fr e e-r u n ni n g fr e q u e n ci es of
t h e t w o c o u pl e d s e nsi n g os cill at ors, t h e bi o m e di u m di el e ctri c
c o nst a nt, e n c o d e d i n t h e t a n k i m p e d a n c e p h as e s p e ctr u m, c a n
b e  m e as ur e d at a fr e q u e n c y b e y o n d t h e fli c k er c or n er.

θ 1 + θ 1 n

θ 2 + θ 2 n

θ si g + θ n

+

+

+

+ +
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S
θ,

P
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d B
/ d e

c

Φ 2 n

Fi g. 5.  T h e n ois e  m o d el of t h e p er mitti vit y s e ns or.

B.  N ois e  A n al ysis

O n e c o m m o n f all a c y is t o pr es u m e t h at t h e p h as e n ois e of
t h e t w o  m ut u all y c o u pl e d os cill at ors ar e c o m pl et el y c a n c ell e d
t hr o u g h s elf- mi xi n g, s o t h at t h e a b o v e  m o d ul ati o n t e c h ni q u e is
u n n e c ess ar y. St arti n g fr o m  A dl er’s e q u ati o n, it s h all b e s h o w n
t h at i nj e cti o n l o c ki n g a n d  mi xi n g o nl y p erf or ms a first- or d er
hi g h- p ass filt eri n g t o t h e 1 / f 3 p h as e n ois e,  m a n d ati n g t h e us e
of  m o d ul ati o n.

Fi g. 5 s h o ws t h e s e ns or n ois e  m o d el, i n cl u di n g t h e os cill at or
p h as e n ois e ( u n c o u pl e d), S φ, O S C 1, 2 , i nj e cti o n n ois e I n,i nj 1, 2 a n d
p h as e d et e ct or n ois e V n, P D . Si n c e I n,i nj 1, 2 str o n gl y d e p e n ds o n
t h e c o u pli n g  m et h o d a n d c a n b e a bs or b e d i nt o S φ, O S C 1, 2 ,  w hil e
V n, P D i s si m pl y a d diti v e, t h e f o c us h er e  will b e S φ, O S C 1, 2 .

F or n ois e a n al ysis, ( 3) is p ert ur b e d b y θ i ⇒ θ i + θ i, n a n d
ω i ⇒ ω i + d φ i, n / dt ,  w h er e θ i, n a n d φ i, n (i = 1, 2) ar e os cill at or
p h as e fl u ct u ati o ns  wit h a n d  wit h o ut i nj e cti o n l o c ki n g, r es p e c-
ti v el y.  At st e a d y st at e, ass u mi n g s h all o w  m o d ul ati o n a n d i n-
p h as e i nj e cti o n, ( 3) b e c o m es

d θ 1 n

dt
= ω 1 +

d φ 1 n

dt
− ω 0 − K i nj

ω 1

2 Q
si n (θ si g + θ 1 n − θ 2 n )

d θ 2 n

dt
= ω 2 +

d φ 2 n

dt
− ω 0 + K i nj

ω 2

2 Q
si n (θ si g + θ 1 n − θ 2 n ) .

( 7)

T h er ef or e t h e si g n al n ois e θ n = θ 1 n − θ 2 n c a n b e d eri v e d as

d θ n

dt
=

d φ 1 n

dt
−

d φ 2 n

dt
− K i nj

ω 0

Q
si n (θ si g + θ n ) − 2 ω ∆ c os (ω m t)

d φ 1 n

dt
−

d φ 2 n

dt
− K i nj

ω 0

Q
θ n .

( 8)

L a pl a c e tr a nsf or mi n g ( 8) yi el ds

Θ n ( s ) =
s

s + ω L
Φ 1 n ( s ) − Φ 2 n ( s ) , ( 9)

w h er e ω L = K i nj · ω 0 / Q is t h e o v er all l o c k r a n g e [ 3 8]. ( 9)
v ali d at es s u c h first- or d er hi g h- p ass filt eri n g  wit h ω 3 d B = ω L .
I n ot h er  w or ds,  m ut u al c o u pli n g o nl y att e n u at es t h e 1/ f 3 p h as e
n ois e i n θ n b y 2 0 d B/ d e c, a n d c h o p pi n g is t h er e b y r e q uir e d
f or hi g h er s e nsiti vit y.  N ot e t h at  m ut u al i nj e cti o n l o c ki n g al o n e
d o es n ot pr o vi d e a n y n ois e filt eri n g eff e ct, o nl y l o w eri n g it b y
3 d B, i. e., S θ, O S C 1, 2 = S φ, O S C 1, 2 / 2 [ 3 9].  T h e c o n c e pt u al n ois e
s p e ctr u ms ar e pl ott e d i n Fi g. 5. F or v ali d ati o n, t h e si m ul at e d
n ois e s p e ctr u ms ar e s h o w n i n Fi g. 6.
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Fi g. 6. Si m ul at e d n ois e p o w er s p e ctr u m, r el ati v e t o t h e c arri er ( 4 0  G H z) f or
S θ , O S C a n d  D C f or S θ , P D (ω C = fli c k er c or n er, ω L = l o c k r a n g e).

C.  Cir c uit I m pl e m e nt ati o n

Fi g. 7 s h o ws t h e c o m pl et e cir c uit di a gr a m of t h e di el e ctri c
s e ns or.  T h e t w o s e nsi n g os cill at ors ar e l o c k e d i n q u a dr at ur e
t hr o u g h a s u p er h ar m o ni c c o u pli n g n et w or k [ 4 0].  C o m p ar e d
wit h c o u pli n g at t h e f u n d a m e nt al o ut p ut n o d es, e x pl oiti n g
s e c o n d h ar m o ni cs at t h e t ail n o d es pr es er v es s e ns or s e nsiti vit y
si n c e it a v oi ds p ar asiti c l o a di n g t o t h e s e nsi n g t a n k.  Q u a dr at ur e
l o c k is s el e ct e d o v er i n- p h as e l o c k t o  m a xi mi z e t h e c o n v ersi o n
g ai n f or s m all θ si g .  Aft er s wit c hi n g t o a  Q V C O, o n e n e e ds
t o e x a mi n e if t h e d eri v e d e q u ati o ns still h ol d.  T his c a n b e
d o n e t hr o u g h v ali d ati o n of t h e o nl y ass u m pti o n  m a d e d uri n g
t h e d eri v ati o n, i. e., i n- p h as e i nj e cti o n (θ i nj, 1 = θ 2 a n d vi c e
v ers a).  T h a n ks t o t h e s u p er h ar m o ni c n et w or k, t h e f u n d a m e nt al
i nj e cti o n is d el a y e d b y 9 0◦ t hr o u g h t h e i n v ersi o n of t h e s e c o n d
h ar m o ni c [ 4 0]. S u p p os e t h e o ut p ut v olt a g es of I Q os cill at ors
ar e si n (ω 0 t + θ 1 ) a n d c os (ω 0 t + θ 2 ) = si n (ω 0 t + θ 2 + 9 0 ◦ ) ,
r es p e cti v el y ( Fi g. 7).  T h e si g n al i nj e ct e d i nt o  Os cI is t h er e b y
θ i nj, 1 = θ 2 + 9 0 ◦ − 9 0 ◦ = θ 2 ,  w hi c h v ali d at es t h e ass u m pti o n.

T h e o p er ati o n fr e q u e n c y is d esi g n e d at 4 0  G H z ( m e as ur e d
3 9 − 4 2  G H z i n  w at er),  w h er e as t h e pr o p os e d t o p ol o g y c a n b e
fl e xi bl y us e d f or di el e ctri c s e nsi n g fr o m a f e w  G H z t o t e ns of
G H z.  B as e d o n  E M si m ul ati o ns, t h e  Q V C O t a n k i n d u ct a n c e
is L T = 2 6 5 p H  wit h Q = 1 2 i n air, a n d Q = 9. 5 i n
p h os p h at e- b uff er e d s ali n e ( P B S, r = 2 0, σ 0 = 2 S/ m).  Wit h
1 % ∆ r i n P B S, e a c h os cill at or pi c ks u p 5. 2 2 a F ∆ C ( o ut of
C T = 5 4 f F), cr e ati n g 4 8. 3 p p m fr e q u e n c y s hift.  T h e si g n al
is c h o p p e d b y  m o d ul ati n g t h e i n di vi d u all y a c c essi bl e v ar a ct or
c o ntr ol v olt a g es diff er e nti all y at ω m ar o u n d a c o m m o n bi as
V V A R, C M .  T h e  m o d ul at e d p h as e si g n al θ si g i s d et e ct e d b y a
d o u bl e b al a n c e d v olt a g e c o m m ut ati n g p assi v e  mi x er.  U nli k e
a  Gil b ert  mi x er, p assi v e  mi x ers c a n b e bi as e d at z er o  D C
c urr e nt t o eli mi n at e fli c k er n ois e c o ntri b uti o n. Si n c e t h e  mi x er
i n p ut i m p e d a n c e is si g n al d e p e n d e nt, a t u n e d b uff er is i ns ert e d
b et w e e n t h e  mi x er a n d  Q V C O t o pr o vi d e is ol ati o n.  T h e  mi x er
is f oll o w e d b y a  V G A ( 1− 4 0 d B),  w hi c h is  wr a p p e d b y a p air
of c h o p pi n g s wit c h es s o t h at t h e  m aj or 1 / f n ois e c o ntri b ut or
( Q V C O or  V G A) c a n b e i d e nti fi e d.

I V.  S P A D- B A S E D O P T I C A L S E N S O R

D e s pit e t h e s u p eri or s e nsiti vit y off er e d b y os cill at or- b as e d
p er mitti vit y s e ns ors [ 1 4] –[ 1 6], [ 4 1], t h e y s uff er fr o m p o or
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Fi g. 7. P er mitti vit y s e ns or cir c uit bl o c k di a gr a m.

s el e cti vit y d u e t o t h e l a c k of s p e ci fi c di el e ctri c l a b els. Si n c e
m a n y bi o m ol e c ul ar i nt er a cti o ns i n v ol v e li g ht e missi o n  wit h
ri c h i nf or m ati o n, a d di n g o pti c al s e ns ors h el ps t o i m pr o v e t h e
s el e cti vit y.  C o m p ar e d  wit h c o n v e nti o n al p h ot o di o d es, S P A Ds
ar e f a v or e d as t h e y c a n als o r es ol v e p h ot o n arri v al ti m es  wit h
s u b- ns pr e cisi o n.

A.  D e vi c e I m pl e m e nt ati o n

A si n gl e p h ot o n a v al a n c h e di o d e is a p- n j u n cti o n r e v ers el y
bi as e d o v er its br e a k d o w n v olt a g e V B D b y V E X (t h e e x c ess bi as
v olt a g e).  U p o n a bs or pti o n of a p h ot o n, a s u bst a nti al a m o u nt of
c urr e nt is cr e at e d t hr o u g h i m p a ct i o ni z ati o n.  Wit h pr o p er c o n-
tr ol l o gi c, a di git al tr a nsiti o n e d g e is tri g g er e d at t h e o ns et of
br e a k d o w n.  T h e a v al a n c h e pr o c ess is t h e n q u e n c h e d t o all o w
d et e cti o n of t h e n e xt p h ot o n. I m p ort a nt p erf or m a n c e  m etri cs of
S P A Ds ar e d ar k c o u nt r at e ( D C R), p h ot o n d et e cti o n ef fi ci e n c y
( P D E) a n d i m p uls e r es p o ns e.  A hi g h er V E X i m pr o v es b ot h P D E
a n d i m p uls e r es p o ns e, t o t h e e xt e nt  w h er e t h e si m ult a n e o usl y
i n cr e as e d  D C R st arts i m p airi n g S N R. I n a d v a n c e d pr o c ess es,
tr a nsist or o xi d e br e a k d o w n v olt a g es li mit V E X a s  w ell.

Fi g. 8 s h o ws t h e cr oss-s e cti o n vi e w of t h e f a bri c at e d S P A D
i n 2 8 n m  C M O S.  T h e  m ulti pli c ati o n r e gi o n is f or m e d  wit h
p- w ell/ d e e p n- w ell, s urr o u n d e d b y a n ati v e p-s u bstr at e r e gi o n
as t h e g u ar d ri n g.  Hi g hl y d o p e d l a y ers s h o ul d b e a v oi d e d as
t h e y i n cr e as e  D C R a n d e v e n pr o m ot e t u n n elli n g br e a k d o w n
( n ot p h ot o n-s e nsiti v e) d u e t o t h e i n cr e as e d d ef e ct d e nsit y.  T h e
r el ati v el y str o n g er el e ctri c fi el d at t h e e d g e of t h e j u n cti o n c a n
c a us e pr e m at ur e br e a k d o w n [ 4 2],  w hi c h p us h es t h e p h ot o n-
s e nsiti v e r e gi o n b a c k t o t h e t hi n j u n cti o n b or d erli n e.  A l o w er-
d o p e d g u ar d ri n g is t h er e b y e m pl o y e d t o r e d u c e t h e e d g e fi el d.
T h e d e vi c e is cir c ul arl y s h a p e d f or t h e s a m e r e as o n t o pr e v e nt
str o n g c or n er fi el ds,  w hi c h f or ms a 6 × 6 µ m 2 m ulti pli c ati o n
r e gi o n.  T h e  m ulti pli c ati o n r e gi o n is fr e e of t h e p ol y- Si l a y er
(f a bri c at e d as Si G e or  m et al i n a d v a n c e d pr o c ess es) t o a v oi d
P D E r e d u cti o n,  w hi c h pr e v e nts  m a ki n g l ar g e- ar e a S P A Ds d u e
t o t h e stri ct p ol y- Si d e nsit y d esi g n r ul e.
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AG  C

Fi g. 8.  Cr oss-s e cti o n vi e w of t h e f a bri c at e d S P A D.  T h e t hr e e c o nt a cts ar e
A = a n o d e, e xt er n al n o d e t o a hi g h v olt a g e bi as ( n e g ati v e) V A , C = c at h o d e,
i nt er n al n o d e (V C i n Fi g. 9) t o t h e r e a d o ut cir c uit, a n d  G = gr o u n d.

B.  Cir c uit I m pl e m e nt ati o n

S P A Ds ar e bi as e d at a hi g h n e g ati v e v olt a g e V A t hr o u g h
t h e a n o d es t o o p er at e i n t h e  G ei g er  m o d e.  T h e s c h e m ati c of
t h e pi x el-l e v el c o ntr ol l o gi c a n d t h e si g n al ti mi n g di a gr a m ar e
s h o w n i n Fi g. 9. V E X i s d e fi n e d t hr o u g h V D D − V A − V B D .  T hi c k-
o xi d e tr a nsist ors ar e us e d t o i nt erf a c e  wit h S P A Ds t o e xt e n d
t h e a v ail a bl e V E X t o 1. 8  V.  A n e xt er n al cl o c k C K is f e d t o t h e
c hi p a n d g e n er at es t w o n o n- o v erl a p pi n g p h as es φ 1 a n d φ 2 t o
a cti v at e/ d e a cti v at e t h e S P A D p eri o di c all y.  T his C K c a n als o b e
s y n c hr o ni z e d t o a p uls e d l as er t o p erf or m fl u or es c e nt lif eti m e
m e as ur e m e nts.  A n 8- bit d el a y u nit ( ∆ t = 3 0 0 ps) is i ns ert e d
t o all o w fi n er ti mi n g ali g n m e nt.

T h e pi x el c o ntr ol cir c uit c o nt ai ns t hr e e k e y u nits: a n  N M O S
q u e n c h er M N , a P M O S pr e- c h ar g er M P a n d a n e d g e-tri g g er e d
p ositi v e f e e d b a c k l o o p.  T h e o p er ati o n pri n ci pl e is as f oll o ws.
As s h o w n i n Fi g. 9( b, i), aft er φ 1 t ur ns off M N , t h e S P A D is
a cti v at e d b y φ 2 t hr o u g h M P .  W h e n a n a v al a n c h e e v e nt st arts,
t h e c urr e nt s pi k e b e gi ns t o dis c h ar g e t h e c at h o d e V C ,  w hi c h
r e d u c es t h e S P A D b uilt-i n el e ctri c fi el d, a v al a n c h e c urr e nt, a n d
e v e nt u all y q u e n c h es t h e d e vi c e.  M e a n w hil e, t hr o u g h t h e  D F F,
t h e f alli n g e d g e of V C tri g g ers t h e p ositi v e f e e d b a c k t o t ur n off
M P a n d t ur n o n M N ,  w hi c h e x p e dit es t h e q u e n c hi n g pr o c ess t o
s h ar p e n t h e tr a nsiti o n e d g es.  M or e o v er, t h e S P A D is k e pt off
u ntil t h e n e xt a cti v ati o n c y cl e t o pr e v e nt aft er p ulsi n g ( w hi c h
w ors e ns  D C R). If n o e v e nt o c c urs d uri n g a pr es et d et e cti o n
wi n d o w [ Fi g. 9( b, ii)], φ 1 will d e a cti v at e t h e S P A D t hr o u g h
M N .  B ot h V C d a n d V T c a n b e c o n fi g ur e d f or p h ot o n c o u nti n g
a n d p h ot o n ti mi n g [ Fi g. 9( b, iii a n d i v)]. V C d c o m p ar es
wit h its l e a di n g risi n g e d g e t o  m e as ur e p h ot o n arri v al ti m es,
w hil e V T u s es its tr aili n g risi n g e d g e ( cr e at e d b y t h e  D F F
as y n c hr o n o us s et S ) as t h e r ef er e n c e.  T o r e d u c e t h e c o u nti n g
wi n d o w si z e, V C d i s pr ef err e d  w h e n  m ost p h ot o ns arri v e cl os er
t o t h e b e gi n ni n g of t h e d et e cti o n  wi n d o w  w h er e as V T i s b ett er
s uit a bl e f or l at e p h ot o ns.

V. S E N S O R E L E C T R I C A L C H A R A C T E R I Z A T I O N

T h e c hi p is f a bri c at e d i n t h e  T S M C 2 8 n m b ul k  C M O S
pr o c ess, a n d o c c u pi es 1. 2 × 1. 0  m m 2 .  T h e pr ot ot y p e c o nt ai ns
o n e  Q V C O- di el e ctri c s e ns or a n d ei g ht S P A D- o pti c al s e ns ors.
T h e s e nsi n g c a p a cit ors ar e c o n fi g ur e d as p art of t h e i n d u ct or
f e e ds usi n g t o p  m et al l a y ers ( M 1 0 a n d  A P).  A bi o- c a vit y
is cr e at e d b y ali g ni n g a sl a b of drill e d P ol y di m et h ylsil o x a n e
( P D M S) t o t h e s e ns or c hi p o n t h e P C B.  A d h esi o n b o n di n g
a n d  m e c h a ni c al pr ess ur e ar e us e d t o pr e v e nt  m e di u m l e a k a g e.
Fi g. 1 0 s h o ws t h e c hi p p h ot o a n d p a c k a gi n g.
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f e e d b a c k

d e a cti v at e
S P A D

T 2

[i] [ii] [iii] [i v]

Fi g. 9. ( a) S P A D cir c uit bl o c k di a gr a m a n d ( b) o p er ati o n ti mi n g di a gr a m.

3 0 μ m

2
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μ
m

S
P
A

D
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3 4 0 μ m

2
0
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μ
m

B uff er-I B uff er- Q

Q V C O

S e n si n g 
C a p a cit or s

V C O-I 
S e n si n g C a p

V C O-I V C O- Q

Fi g. 1 0.  C hi p  mi cr o gr a p h a n d P C B p a c k a gi n g f or bi o- e x p eri m e nts.

A.  Q V C O  El e ctri c al  C h ar a ct eriz ati o n

All t h e el e ctri c al c h ar a ct eri z ati o ns ar e p erf or m e d i n b ot h air
a n d P B S c o n diti o ns.  T h e fr e q u e n c y t u ni n g r a n g e [ Fi g. 1 1( a)]
a n d l o c k r a n g e [ Fi g. 1 1( b)] ar e c h ar a ct eri z e d b y c o u pli n g t h e
os cill at or n e ar- fi el d t o a S G pr o b e ( C as c a d e  Mi cr ot e c h  A C P 4 0-
W- S G- 1 5 0).  T h e si g n al is t h e n a m pli fi e d a n d  m e as ur e d usi n g
a s p e ctr u m a n al y z er ( A gil e nt  N 9 0 3 0 A).  W h e n  m e as uri n g t h e
l o c k r a n g e, t h e v ar a ct or c o ntr ol v olt a g es of I Q os cill at ors ar e
offs et diff er e nti all y fr o m V V A R, C M b y V V A R, D M .  T h e v al u e of
V V A R, D M w h e n p ulli n g is o bs er v e d d e n ot es t h e l o c k r a n g e.

T o v ali d at e t h e n ois e a n al ysis a n d pr o v e t h e n e c essit y of
m o d ul ati o n, t h e  m aj or fli c k er s o ur c e is s ort e d o ut b y i ns p e cti n g
t h e s e ns or o ut p ut n ois e s p e ctr u ms as f oll o ws. First, t h e n ois e
s p e ctr u ms ar e  m e as ur e d  w h e n t h e  V G A c h o p p er p air ( Fi g. 7)
is e n a bl e d ( at 1 0  M H z) a n d dis a bl e d ( b ot h  wit h V V A R, D M = 0).
As s h o w n i n t h e t o p s u b pl ot of Fi g. 1 2, t h e c o ntri b uti o n of t h e
V G A fli c k er n ois e is i m p er c e pti bl e. F or f urt h er v eri fi c ati o n,
t h e n ois e s p e ctr u m of t h e  V G A al o n e  w as als o  m e as ur e d a n d
s h o w n i n t h e b ott o m s u b pl ot of Fi g. 1 2,  w hi c h is i n d e e d  m u c h
l o w er t h a n t h e o v er all s e ns or n ois e l e v el.  H o w e v er, o n c e t h e
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Fi g. 1 1.  M e as ur e d  Q V C O ( a) fr e q u e n c y t u ni n g r a n g e a n d ( b) l o c k r a n g e, d e n ot e d b y (t o p) v ar a ct or c o ntr ol v olt a g e diff er e n c e at t h e e d g e of l o c k, a n d ( b ott o m)
t h e c orr es p o n d e nt fr e q u e n c y r e d u cti o n fr o m t h e n o mi n al os cill ati o n fr e q u e n c y, as pr e di ct e d b y ( 5).
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Fi g. 1 2.  M e as ur e d o ut p ut n ois e s p e ctr u ms: (t o p) t h e e ntir e p er mitti vit y s e ns or,
w h e n ( bl u e) i n l o c k  & c h o p p er o n, ( gr e e n) i n l o c k  & c h o p p er off a n d (r e d)
o ut of l o c k; a n d ( b ott o m)  V G A o nl y,  w h er e t h e r esi d u al fli c k er n ois e c o m es
fr o m t h e off- c hi p d at a a c q uisiti o n t o ol ( D A Q).

t w o os cill at ors ar e u nl o c k e d  wit h a l ar g e V V A R, D M , t h e o ut p ut
n ois e s p e ctr u m, d o w n- c o n v ert e d fr o m t h e os cill at or f ar- o ut f 0

p h as e n ois e [ 4 3], is fl att e n e d o ut, i n di c ati n g t h at t h e  Q V C O
virt u all y c o ntri b ut es all t h e fli c k er n ois e.  T his is e x p e ct e d si n c e
t h e  Q V C O tr a nsist or si z e is  m u c h s m all er t h a n t h e  V G A.

C h o p pi n g is p erf or m e d b y  m o d ul ati n g t h e v ar a ct or c o ntr ol
v olt a g es diff er e nti all y  wit h δ m · c os (ω m t) ar o u n d a c o m m o n
bi as V V A R, C M = 1. 3 5  V.  T h e  m o d ul ati o n fr e q u e n c y is 1  M H z,
a b o v e t h e fli c k er n ois e c or n er ( a b o ut 9 0 0 k H z, Fi g. 1 2).  T h e
o pti m al  m o d ul ati o n d e pt h s h o ul d b e t h e l ar g est δ m t h at s atis fi es
s h all o w  m o d ul ati o n r e q uir e m e nts t o e ns ur e g o o d li n e arit y a n d
cl os e-i n n ois e p erf or m a n c e. S p e ci fi c all y, a c c or di n g t o ( 6), a
l ar g e δ m (l ar g e δ C V A R ) is d esir a bl e f or a hi g h er si g n al g ai n.
H o w e v er, as δ m i n cr e as es, t h e s e c o n d- or d er n o nli n e ar t er m

−
ω 2

∆

ω 0
c o s 2 ( ω m t) i n ( 5) b e c o m es a p pr e ci a bl e,  w hi c h c a us es t h e

os cill ati o n fr e q u e n c y t o dr o p [s e e Fi g. 1 3( a)].  M or e o v er, it

als o  m o d ul at es t h e l o c ki n g fr e q u e n c y at 2 ω m a n d dist orts t h e
o ut p ut  w a v ef or m s e v er el y [ Fi g. 1 3( b)], as t h e t w o os cill at ors
c a n n ot l o c k t o a fi x e d fr e q u e n c y b ut a v ari a bl e o n e.  A n ot h er
i m p e di m e nt t h at aris es fr o m t h e  m o d ul ati o n of t h e l o c ki n g
fr e q u e n c y is fli c k er n ois e u p- c o n v ersi o n.  As s h o w n i n Fi g. 1 4,
w h e n δ m = 5 0  m V, alt h o u g h t h e o v er all n ois e s p e ctr u m s e e ms
u n alt er e d, t h e cl os e-i n b a n d (s h a d e d ar e a) i n c urs cl e ar fli c k er
n ois e u p- c o n v ersi o n,  w hi c h c o u nt er a cts t h e b e n e fits of a hi g h er
si g n al g ai n a n d d e gr a d es t h e S N R. δ m = 1 0  m V is s el e ct e d as
a g o o d c o m pr o mis e.

T o c h ar a ct eri z e t h e s e ns or s e nsiti vit y i n t er ms of δ f / f 0

fr o m t h e  m e as ur e d n ois e s p e ctr u m, V V A R, C M i s e m pl o y e d as a n
i nt er m e di at e v ari a bl e, as a d a pt e d fr o m [ 1 1].  D e n ot e t h e  V G A
o ut p ut as V O D = S m · c os (ω m t) .  T h e f oll o wi n g t w o q u a ntiti es,

K V C O =
∂ f 0

∂ V V A R, C M
, KT R =

1

δ m

∂ S m

∂ V V A R, C M
( 1 0)

ar e  m e as ur a bl e fr o m t h e fr e q u e n c y t u ni n g c ur v e [ Fi g. 1 1( a)]
a n d t h e  m o d ul ati o n g ai n pl ot [ Fi g. 1 5( a)].  T h e  m e as ur e d n ois e
v n i n S m c a n t h er e b y b e c o n v ert e d t o t h e fr e q u e n c y n ois e f n

t hr o u g h a si m pl e di visi o n,

f n =
K V C O

K T R

v n

δ m /
√

2
( 1 1)

N or m ali zi n g f n b y f 0 gi v es t h e fr e q u e n c y s e nsiti vit y.  As s h o w n
i n Fi g. 1 5( b), t h e t h er m al n ois e li mit e d  M D S is 0. 2 p p m/

√
H z

f or air a n d P B S.  T his c orr es p o n ds t o a  mi ni m al d et e ct a bl e
c a p a cit a n c e c h a n g e of 0. 0 2 1 6 a F /

√
H z i n P B S at 4 2  G H z.

D es pit e a l o w er t a n k  Q i n P B S, its i nt e gr at e d n ois e is si mil ar
t o air, si n c e t h e  Q V C O 1 / f 2 n ois e is filt er e d o ut.

T h e d y n a mi c r a n g e of a n i nj e cti o n-l o c k e d- os cill at or b as e d
r e a ct a n c e s e ns or is d et er mi n e d b y t h e l o c k r a n g e [ 1 5], [ 4 4],
w hi c h is g e n er all y n arr o w.  A f e e d b a c k- ar o u n d-s e ns or str u ct ur e
w as utili z e d i n [ 1 5] t o e xt e n d t h e d y n a mi c r a n g e  wit h el e v at e d
s yst e m c o m pl e xit y.  H er e b ot h s e nsi n g os cill at ors ar e e q u all y
e x p os e d t o t h e bi o m e di u m, s o t h at t h eir os cill ati o n fr e q u e n ci es
s hift t o g et h er  w h e n t h er e is a di el e ctri c c h a n g e.  T h e d y n a mi c
r a n g e is t h er e b y d e c o u pl e d fr o m t h e l o c k r a n g e.  W h e n t h e
m e as ur e m e nt c o n diti o n c h a n g es fr o m air  & V V A R,  C M = 1. 7  V
t o P B S  & V V A R,  C M = 0. 1  V [ Fi g. 1 1( a)], a fr e q u e n c y s hift of
4. 7  G H z is s u p p ort e d b y t h e s e nsi n g t o p ol o g y, c orr es p o n di n g
t o a d y n a mi c r a n g e of  m or e t h a n 1 1 5 d B.
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Fi g. 1 5.  M e as ur e d ( a)  m o d ul ati o n g ai n S m / δ m , a n d ( b) fr e q u e n c y n ois e P S D, i nt e gr at e d n ois e o v er diff er e nt filt er b a n d wi dt hs.

B. S P A D  El e ctri c al  C h ar a ct eriz ati o n

T h e I- V c ur v e of t h e f a bri c at e d S P A Ds  w as c h ar a ct eri z e d
usi n g a s e mi c o n d u ct or a n al y z er ( K e ysi g ht  B 1 5 0 0 A), s h o wi n g
a br e a k d o w n v olt a g e of 1 5. 3  V at r o o m t e m p er at ur e.

T h e d ar k c o u nt r at e ( D C R) is  m e as ur e d at diff er e nt e x c ess
bi as es V E X b y v ar yi n g t h e a n o d e v olt a g e V A .  T h e S P A D is
g at e d  wit h 7 0 % o n- c y cl e b y a 1  M H z C K si g n al [ Fi g. 9( a)]
a n d a n a c c u m ul at e d 1 0-s e c o n d  m e as ur e m e nt is p erf or m e d t o
all o w a r eli a bl e e xtr a cti o n of  D C R.  T h e r e p ort e d  D C R i n
Fi g. 1 6( a) c orr es p o n ds t o t h e  m e as ur e d c o u nt r at e di vi d e d b y
7 0 % t o c ali br at e o ut t h e d e a d ti m e.  Usi n g t h e s a m e s et u p,
t h e p h ot o n d et e cti o n ef fi ci e n c y ( P D E) is  m e as ur e d u n d er t hr e e

diff er e nt  w a v el e n gt hs.  T h e l as er p o w er is h e a vil y att e n u at e d
b y a n e utr al d e nsit y filt er b ef or e r e a c hi n g t h e S P A D.  T h e r es ult
is s u m m ari z e d i n Fi g. 1 6( b).  At V E X = 1  V, t h e S P A D h as a
D C R of 5 0 0/s e c o n d a n d a P D E of 1 1. 5 % at λ = 5 2 0 n m.

T h e ti mi n g jitt er of S P A Ds is q u a nti fi e d b y t h e F W H M
of its i nstr u m e nt ati o n r es p o ns e f u n cti o n (I R F),  w hi c h c a n b e
c h ar a ct eri z e d b y r e p e at e dl y ill u mi n ati n g t h e d e vi c e  wit h a δ -
li k e pi c os e c o n d l as er p uls e.  T h e ti m e i nt er v al b et w e e n t h e
l as er e x cit ati o n a n d t h e S P A D o ut p ut tri g g eri n g e d g e (V C d , s e e
Fi g. 9) is r e c or d e d, a n d t h e r es ulti n g hist o gr a m is s h o w n i n
Fi g. 1 6( c) as t h e d e vi c e I R F.  T h e  m e as ur e m e nt  w as p erf or m e d
usi n g a 3 0 0-fs l as er s o ur c e (I M R A F C P A µ J e w el  D- 4 0 0,
fr e q u e n c y d o u bl e d t o 5 2 2 n m) at 1  M H z r e p etiti o n r at e.  T h e
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I R F s h o ws a F W H M = 3 0 0 ps, r e pr es e nti n g a c o n v ol v e d
ti mi n g u n c ert ai nt y of t h e S P A D, r e a d o ut cir c uits a n d t h e l as er
s y n c hr o ni z ati o n e q ui p m e nts.

VI.  B I O M O L E C U L A R E X P E R I M E N T

T o p erf or m i n vitr o e x p eri m e nts, s a m pl es ar e dis p e ns e d fr o m
a pi p ett e o nt o t h e c hi p.  B o n d wir es ar e pr ot e ct e d  wit h a bi o-
c o m p ati bl e  U V c ur a bl e e p o x y ( E P O- T E K  O G 1 1 6- 3 1).  A s m all
a m o u nt of t h e a d h esi v e is di p p e d fr o m t h e P C B si d e,  w hi c h
will fl o w t o w ar ds t h e b o n d wir es a n d c ur e i n 3 0 s e c o n ds u n d er
U V li g ht e x p os ur e t o a v oi d c o nt a mi n ati n g t h e s e ns ors.

As d e pi ct e d i n Fi g. 1, b ot h di el e ctri c a n d o pti c al si g n als
of t h e s a m e s a m pl e ar e c oll e ct e d si m ult a n e o usl y,  w hi c h h el ps
t o i m pr o v e t h e s e ns or s el e cti vit y b y c o m bi ni n g r es ults fr o m
b ot h s e nsi n g  m o d aliti es.  T h e di el e ctri c si g n al a n d t h e p h ot o n
ti mi n g i nf or m ati o n  w er e e xtr a ct e d t hr o u g h off- c hi p a n al o g-
t o- di git al a n d ti m e-t o- di git al c o n v ersi o n.  All t h e e x p eri m e nts
w er e p erf or m e d i n t h e a m bi e nt e n vir o n m e nt  wit h a n e xt er n al
v olt a g e r e g ul at or.  Gi v e n t h at t h e  m at eri al di el e ctri c c o nst a nt
is t e m p er at ur e- d e p e n d e nt, t e m p er at ur e c o ntr ol  will b e n e e d e d
i n a l o n g-t er m e x p eri m e nt t o r ul e o ut t h e t e m p er at ur e i n d u c e d
di el e ctri c drift a n d a c hi e v e t h e s a m e s e nsiti vit y l e v el as a s h ort-
t er m e x p eri m e nt.

A.  Pr ot ei n  D e n at ur ati o n

D e n at ur ati o n of pr ot ei ns i n v ol v es t h e c h a n g e of t h eir t hr e e-
di m e nsi o n al str u ct ur es a n d t h e l oss of f u n cti o n aliti es.  A n i n
vitr o e x p eri m e nt is p erf or m e d t o d e m o nstr at e t h at t h e s e ns or
h as (i) a g o o d s e nsiti vit y c a p a bl e of d et e cti n g pr ot ei n str u ct ur al
c h a n g es, a n d (ii) a n e n h a n c e d s el e cti vit y t h a n ks t o t h e us e
of t h e d u al- m o d alit y s e nsi n g s c h e m e.  B o vi n e s er u m al b u mi n
( B S A, 6 6 k D a) is diss ol v e d i n P B S t o 1 0 %  w ei g ht c o n c e n-
tr ati o n a n d h e at-i n a cti v at e d at 9 0◦ C i n a s e al e d c o nt ai n er.  T h e
pr ot ei n s ol uti o n is l o a d e d o nt o t h e s e ns or b ef or e a n d aft er
h e ati n g t o t a k e  m e as ur e m e nts ( b ot h at r o o m t e m p er at ur e).  As
s h o w n i n Fi g. 1 7, a fr e q u e n c y s hift of 4 4 4. 7 8 p p m is i n d u c e d
d u e t o  B S A u nf ol di n g.  O n t h e ot h er h a n d, t h e u nf ol di n g
of t h e e n z y m e l u cif er as e ( L U C, 6 1 k D a) is n ot o bs er v a bl e
b e c a us e of its e xtr e m el y l o w  w or ki n g c o n c e ntr ati o n ( 0. 0 2 %
w ei g ht c o n c e ntr ati o n i n t his e x p eri m e nt).  Alt er n ati v el y,  L U C
c at al y z es l u cif eri n o xi d ati o n t o e mit li g ht at its n ati v e st at e
o nl y,  w hi c h all o ws i d e ntif yi n g t h e d e n at ur e d  L U C  wit h t h e

5. 5 5. 6 5. 7 5. 8 5. 9 6. 0

Mi cr o w a v e S e n s or: S m /δ m

1 0
2

1 0
3

1 0
4

O
pti

c
al 

S
e
ns

or
: 

C
o
u
nt

s n ati v e B S A
d e n at ur e d B S A
n ati v e L U C
d e n at ur e d L U C

df/f = 4 4 4. 7 8 p p mdf/f = 4 4 4. 7 8 p p mdf/f = 4 4 4. 7 8 p p mdf/f = 4 4 4. 7 8 p p mdf/f = 4 4 4. 7 8 p p m

D C R 

Fi g. 1 7. Pr ot ei n t h er m al d e n at ur ati o n,  B S A ( x- a xis) a n d  L U C ( x y- a x es).

0 5 1 0 1 5 2 0

Ti m e [ n s]

1 0
− 4

1 0
− 3

1 0
− 2

1 0
− 1

1 0
0

N
or

m
ali

z
e
d 

C
o
u
nt

I R F
τ = 4. 3 8 n s
τ = 2. 4 9 n s

0. 0 0 0 0. 0 2 5 0. 0 5 0

I o di d e C o n c n. [ M]

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

1/
τ 

[
ns

−
1
]

R ef er e n c e
M e a s ur e d
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o pti c al s e ns or b y  m e as uri n g t h e l u mi n es c e n c e i nt e nsit y c h a n g e
( Fi g. 1 7).  T h e a b o v e e x p eri m e nt is r e p e at e d fi v e ti m es a n d
s h o ws c o nsist e nt r es ults.  As d e pi ct e d b y t h e f o ur cl ust ers
i n Fi g. 1 7, c o m p ar e d  wit h usi n g a si n gl e s e nsi n g  m o d alit y,
t h e f o ur t y p es of pr ot ei ns ( n ati v e/ d e n at ur e d  B S A/ L U C) c a n
b e c o m pl et el y disti n g uis h e d fr o m o n e a n ot h er b y c o m bi ni n g
t h e e x p eri m e nt al d at a fr o m b ot h  m o d aliti es. I n ot h er  w or ds, a
m ulti m o d al str at e g y i m pr o v es t h e o v er all s e ns or s el e cti vit y.

B.  Fl u or es c e n c e Lif eti m e  M e as ur e m e nt

I n a d diti o n t o d et e cti n g t h e r el ati v e bi ol u mi n es c e nt li g ht
i nt e nsit y, t h e S P A D s e ns or als o  m e as ur es t h e a bs ol ut e fl u o-
r es c e n c e lif eti m e t o f urt h er i m pr o v e t h e s e ns or s el e cti vit y.  A
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TABLE II
COMPARISON WITH OSCILLATOR-BASED REACTANCE SENSORS

Reference
Freq.
[GHz]

Type
CMOS
Tech.

Approach
Sensitivity

[ppm]
Dynamic Range

[dB]
Bandwidth

[Hz]
Power
[mW]

[14]’12 7-9 Dielectric 90 nm PLL 222∗ 49.1 - 16.5
[31]’13 10.4 Dielectric 90 nm PLL 15 72.3 1000 22

[15]’16 16 Dielectric 65 nm
Unilateral Injection +

Phase/Field Modulation
0.57 99.3 10 16

[16]’16 60/120 Complex Dielectric 65 nm Freq. Counting 2.67/2.87 - 100 12.2/34.8
[41]’17 0.98-6 Complex Dielectric 180 nm Freq. Counting + CDS 2.1 - 4 10 - 24
[18]’18 1.4/3.7 Magnetic 65 nm Freq. Counting 0.35 >62 1 5

This Work 42 Dielectric 28 nm Mutual Injection +
Varactor Modulation 0.2 115 1 11.5

*Calculated from reported ∆fmin = 2 MHz.

TABLE III
COMPARISON WITH SPAD IN SUB-100 NM CMOS PROCESS

Reference Technology Device Layer Diameter Breakdown voltage DCR [cps] (VEX) PDE (VEX) IRF [ps]
[46]’11 90 nm Bulk Ndiff−Psub 8 µm 10.4 V 8100 (0.13 V) 12% (0.15 V) 435
[47]’13 65 nm Bulk Ndiff−Pwell 8 µm 9.1 V 500k (0.25 V) 5.5% (0.25 V) 235
[48]’17 40 nm Bulk∗ Pwell−Deep Nwell 5.4 µm 15.5 V 50 (1 V) 30% (1 V) 170
[49]’18 28 nm FD-SOI Pwell−Deep Nwell 25 µm 9.6 V 28k (0.3 V) - -

This Work 28 nm Bulk Pwell−Deep Nwell 6 µm 15.3 V 500 (1V) 11.5% (1 V) 300

*Process tailored for SPAD performance, microlenses included.

fluorescence lifetime standard, rhodamine 6G (Rh6G) iodide
solution, is used to characterize the sensor timing accuracy.
Rh6G lifetime is varied from 1 to 5 ns with different potassium
iodide concentrations (the overall ionic strength maintained at
0.2 M by adjusting the potassium chloride concentration). The
measured lifetime values at different iodide concentrations are
shown in Fig. 18, which closely match the literature standards
in [45], since the device IRF is much narrower compared with
the fluorescence exponential decay.

VII. CONCLUSION

Given the predominant role of sensitivity and selectivity in
the biosensing applications, this work presents a dual-modality
microwave-optical biosensor, which measures the permittivity
change, bioluminescence intensity and fluorescence lifetime.
A new QVCO-based permittivity sensing architecture is pro-
posed, accompanied by a novel chopping technique to achieve
a sensitivity level of 0.2 ppm/

√
Hz. Table II summaries its

performance metrics and compares them with the state-of-the-
art oscillator-based reactance sensors. The SPAD-based optical
sensor is a first time demonstration in the 28 nm bulk CMOS
process. Compared with the prior art, it exhibits better DCR,
equivalent PDE and jitter performance without any process
modifications, as shown in Table III.
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