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Abstract—Molecular Dynamics (MD) simulations executed on
state-of-the-art supercomputers are producing data at rates faster
than it can be written out to disk. In situ and in transit analysis of
data generated by MD simulations reduce the original volume of
information by several orders of magnitude, thereby alleviating
the negative impact of I/O bottlenecks. This work focuses on
characterizing the impact of in situ and in transit analytics on
the overall MD workflow performance, and the capability for
capturing rapid, rare events in the simulated molecular system.
The MD simulation and analysis processes share data via remote
direct memory access (RDMA) using DataSpaces. Our metrics of
interest are time spent waiting in I/O by the MD simulation, lost
frames of the MD simulation, and idle time of the analysis. We
measure these metrics for a diverse set of molecular systems and
characterize their trends for in situ and in transit configurations.
We then model which frames are dropped and which ones are
analyzed for a real use case. The insights gained from this study
are generally applicable for in situ and in transit workflows that
require optimization of parameters to minimize loss in workflow
performance and analytic accuracy.

Index Terms—Scientific workflows, data analytics, perfor-
mance, workload modeling, remote direct memory access.

I. INTRODUCTION

This paper targets one of the most common simulation types

on petascale and, very likely, exascale machines: Molecular

Dynamics (MD) simulations studying the time evolution of a

molecular system at atomic resolution. The fields of chemistry,

material sciences, molecular biology, and drug design widely

utilize MD simulations. The system sizes and time-scales ac-

cessible to MD simulations have been steadily increasing [1].

Next-generation High-Performance Computing (HPC) systems

will have dramatically larger compute performance than do

current systems. The increase in computing capability directly

translates into the ability to execute an increasing number of

longer simulations and thus to expand the range of biomolec-

ular phenomena that can be studied by MD simulation. This

also means generating more data than needs to be analyzed in

terms of the number and length of MD trajectories. Because

of power constraints, however, the I/O bandwidth and parallel

file system capacity of next-generation HPC systems is not

likely to grow at the same pace.

In this paper, we address the challenges facing MD sim-

ulations on next generation supercomputers by transforming

the traditionally performed centralized MD analysis to a

distributed in situ or in transit analysis. We define a workflow

that analyzes data as it is generated. Note that we focus on the

analysis of MD-generated data (i.e., capturing rare events and

monitoring convergence of observables based on inherently

noisy and high-dimensional MD outputs) rather than on the

MD process (i.e., efficient computation of molecular interac-

tions, parallelization, GPU acceleration) itself. By leveraging

the standard formats of MD-generated outputs, we design our

workflow to be compatible with all of the most-used MD

codes. Our workflow does not require the recompilation of any

single MD code or the redesign of any MD script. Instead, it

captures outputs in memory at runtime as they are generated

and uploads the data into an in-memory staging area using

DataSpaces [2].

As a prototypical example of compute-intensive data anal-

ysis, we model a suite of collective variables that describe

molecular structures in terms of distance matrices and output

values from linear algebra operations. This type of analysis

represents a common workload in MD [3], [4]. The suite inte-

grates into our producer/consumer execution pattern workflow

(i.e., the simulation produces data, and the analytics consume

data). We model the pattern to demonstrate three pertinent

scenarios: (a) when simulations are idle waiting in I/O because

the analytics are not able to consume MD frames at the same

pace as simulation; (b) when the same simulations, rather

than waiting in I/O, drop frames subjected to I/O contention

causing loss of information; and (c) when the resources used

for the analytics are idle because the simulations are not able to
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produce MD frames at the same pace. While schedulers can

mitigate underutilized resources, losing a fraction of frames

may result in inaccurate MD solutions, opening the need to

model which frames may be analyzed and the impact on the

accuracy of the MD. To this end, we develop a 2-step model

that predicts which frames are dropped and which ones are

analyzed. We apply the model to study the consequences of

dropping frames on simulation accuracy for the real use case

of a protein exhibiting a rare event conformation change.

The rest of this paper presents background (Sec. II), the

setting of our modeling environment (Sec. III), our modeling

(Sec. IV), and its application to a 1BDD trajectory (Sec. V).

II. BACKGROUND

MD simulations complement wet-lab experiments by pro-

viding molecular and atomic resolution information not di-

rectly accessible by experiment. Specifically, MD simulations

computationally replicate the behavior of a physical molecular

system by iterating a two-step algorithm. First, the interactions

between atoms are calculated by using a model called a

force field, which describes the total energy of the system

as a mathematical function of atomic positions and a set

of parameters calibrated to reproduce the inter-atomic forces

acting on each atom in the molecular structure. Second, based

on the calculated forces on each atom of the system, their

positions are advanced by solving Newtons equations on a

small time step. Calculating long-range forces in systems

composed of several hundreds of thousands of atoms is by far

the most compute-intensive part of the calculation. An MD

job reproduces the evolution of a molecular system under a

specified set of thermodynamic conditions (e.g., temperature,

volume, and pressure) and external forces (if needed) by com-

puting and writing to storage the systems atomic coordinates,

and other relevant properties, at regular intervals as the job

evolves. The sequence of molecular conformations (i.e., the

trajectory) follows the physics of Boltzmann ensembles of

particles and is written to disk. A large-scale MD simulation

would typically include an ensemble of MD jobs (as many

as hundreds or thousands) that can run on different compute

nodes and produce independent trajectories (replicas) [5], [6];

each replica simulates the same molecular system starting from

different initial conditions (e.g., positions, velocities) but with

the same system parameters (i.e., composition and external

forces). Different simulations of the same system or similar

systems under different conditions (e.g., temperature, protein

mutants, and drug variants) are analyzed comparatively from

separate ensemble runs of MD simulations. The ensemble-

based nature of MD simulations promises computational scal-

ability at exascale for relevant MD applications such as protein

structure prediction, protein folding, protein-protein interac-

tions, and protein-ligand interactions. In this paper, we do not

target the force field development, computational efficiency,

or parallelization aspects that have been extensively addressed

by the scientific community [7]–[9].

Given the rapid fluctuations of a molecular system at room

temperature, properties extracted from a single conformation

or single event are not relevant if considered in isolation.

Instead, measured properties correspond to ensemble averages

incorporating all molecular configurations that form local

states. MD simulations reproduce the thermal motions of the

molecules and produce ensembles of molecular conformations

compatible with a set of given thermodynamic conditions. In

general, MD simulations have been utilized to (1) classify

the dynamics and dynamic properties of molecular systems;

(2) reveal and characterize rare events and metastable states

of the molecules that have functional significance (multiple

realizations are required for statistical significance); and (3)

calculate and monitor the convergence of ensemble averages

of observables that can be compared with experiments and/or

predict new observations. Formally, a rare event is a transition

from one metastable region in conformational space to another,

such as a folding phase of a protein or conformational changes

of protein domains related to functions such as transport,

signaling, or catalysis. Rare events can be monitored efficiently

with the use of a small set of statistical metrics called

collective variables (CVs) that capture relevant molecular

motions [10]

III. SETTING THE MODELING ENVIRONMENT

A. Distance Matrices: Proxies for Structural Changes

At a given time, t, an MD simulation writes a snapshot or

frame of the molecular system to memory. The frame contains

all atomic coordinates and complete structural information on

the m amino acids (k1, k2, ..., km) comprised in the structure.

Trajectory analysis commonly measures the structural changes

of a frame with respect to past frames of the same trajectory

or frames in other trajectories, without directly comparing the

data contained in either frame. We want to capture two types of

structural changes: changes within single amino acid segments

and changes of two amino acid segments with respect to each

other. To this end, we simplify the molecular system made of

m amino acids by extracting the positions of the m α-Carbon

(Cα) backbone atoms (xi ,yi ,zi) for 1 ≤ i ≤ m amino acids

and using the backbone atoms to build distance matrices that,

together with the matrix eigenvalues, are proxies for structural

changes in the molecular system itself [11].

Given a frame, we build two types of distance matrices:

(1) Euclidean distance matrices from the positions of the

corresponding Cα, D = [dij ] with i, j = 1, ...,m and

dij =
√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (1)

to capture changes within single amino acid segments and (2)

bipartite distance matrices B = [bij ] to capture changes of two

amino acid segments S1 and S2 with respect to each other. B
is of size m×m, with elements defined by

bij =

{
dij , if i ∈ S1 and j ∈ S2

0, otherwise.
(2)

The Euclidean distance matrix D and the bipartite distance

matrix B have three fundamental properties: they are symmet-

ric, diagonal elements are zeros, and off-diagonal elements are
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strictly positive. Johnston and co-authors show how the larger

eigenvalues of each one of these matrices can be computed

in isolation (i.e., without keeping other frames in memory)

and can serve as a CV that, unlike other CVs, can identify

structural changes of substructures [11]. By computing these

CVs on each frame, we drop the requirement to keep frames

in memory as the simulation evolves.

We leverage this work to build a suite of analysis scenarios

with different numbers of matrices and different matrix sizes.

The number of matrices and matrix sizes are dependent on the

system size and non-overlapping segment lengths in which

we cut the molecular system into strings of amino acids.

The scenarios range from the fine-grained study of as many

substructures as possible (with segment length as small as

two amino acids) in which we generate many small matrices,

to the coarse-grained study of the entire molecular system

through one single matrix with a size matching the number

of amino acids in the system. Figure 1 shows the number

of matrices (dotted line) and matrix size (solid line) when

bipartite matrices are generated with different segment lengths.

In this figure, we use Nα=1266 as an example, where the

minimum segment length applicable to the analysis is 2 and

the maximum segment length is Nα/2 = 633. The number

of matrices and matrix size impact the computational cost of

the analytics (i.e., the larger the number of the matrices, the

larger the number of eigenvalues computed) and the memory

use (i.e., the larger the matrices, the larger the memory use).

The eigenvalues of the matrices generated from a given frame

are computed sequentially in this study.

Fig. 1: Number of distance matrices and their size as a function

of the non-overlapping segment lengths in which a molecular

system with Nα = 1266 can be divided.

B. Molecular Systems: From Small to Large Systems

We consider three different molecular systems of increasing

size (i.e., number of atoms). Figure 2 depicts the three molec-

ular systems. Table I provides details about the individual

molecular systems: the size described in terms of small,

medium, and large; the name of the molecular system (MD

system); the number of atoms, N ; the number of carbon atoms,

Fig. 2: Visualization of the three molecular systems consid-

ered for this study. Table I provides more details about the

individual molecular systems.

Nα; and the estimated number of steps that the simulation can

perform per second wall clock time (TPS). For the estimations,

we run NAMD benchmarks [12] on GPUs of high-end clusters

and interpolate the output of the benchmarks for our three

molecular systems.

TABLE I: Our three molecular systems and characteristics.

Size MD System N Nα TPS
Small Trp cage 12,619 20 511
Medium T cell receptor 81,092 605 460
Large Gltph 270,088 1,266 318

C. MD Workflow: Example of Producer-consumer Patterns

Our workflow integrates MD simulations with in situ or

in transit analytics. The workflow is structured as a pro-

ducer/consumer pattern with the MD simulation producing

snapshots (xi(t), yi(t), zi(t)) (i.e., frames) output at a regular

interval of steps (i.e., strides), and one or more analytics mod-

ules serving as the consumer. Figure 3 illustrates the workflow

used in this study. We assume as the system size decreases, the

possible structural changes become faster, requiring the stride

of the associated MD simulation to become smaller in order

to capture all the changes. Thus, the rate at which frames are

generated for the analysis depends on the molecular system

size. For each molecular system, we select four strides that

scale to system size and follow the ratio of 1 : 5 : 10 : 50.

For example, for the large system, the stride values are 100,

500, 1000 and 5000; a frame is output every 100 ∗ Δt,
500 ∗ Δt, 1000 ∗ Δt, and 5000 ∗ Δt, where Δt is the time

step size and is computed as the inverse of the TPS. We use

elements of Plumed, a plug-in software package compatible

with many state-of-the-art CV calculation packages [13], to

capture a frame when generated by the MD code. Plumed is

implemented as a plug-in and thus no changes to the MD code

are needed: we engineer a Plumed function to read a frame
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Fig. 3: Our workflow integrating in situ or in transit analytics.

from the MD simulation memory space and transfer it to the

DataSpaces shared memory via an ingestor module.

DataSpaces [2], a memory-to-memory framework using

remote direct memory access (RDMA), serves as our data

transport layer (DTL). It enables efficient and scalable data

sharing (i.e., the sharing of trajectory frames) between the MD

simulations and the analytics modules. It uses a client/server

architecture: the server is a virtual shared memory space that

can be concurrently queried by multiple clients. The use of

RDMA offers scalable communications between the server

and each client. The DataSpaces shared memory is accessed

by the ingestor fed by Plumed; a retriever module passes the

frame to the analytics modules. The ingestor and retriever

use a simple key-value representation to coordinate the data

movement, where the key is the time step and the value is the

data. The size of the shared memory buffer is fixed. In this

work, a DataSpaces buffer size corresponding to the size of a

single frame is considered. DataSpaces supports both a default

setting, which blocks the producer from writing data from the

next time step until the consumer finishes reading the current

time step frame and an asynchronous setting, which allows

for managing the synchronization between the producer and

consumer by the user. We use both mechanisms in this study.

The analytics modules used in this study are python
modules, but can easily be extended to use modules imple-

mented in other languages. The modules generate one or more

matrices per frame; for each matrix, we compute eigenvalues

as described in Section III-A.

D. In Situ and In Transit Configurations

We run two workflow configurations that represent an

example of in situ and in transit analytics on Haswell nodes

of NERSC’s Cori. Each Haswell node has two 16-core Intel

Xeon processors, 128GB memory, and are connected by a

Cray Aries interconnect. The configuration in Figure 4a is

representative of the in situ analytics workflow, where data

generation and data consumption share the same resources

(in this case the same node). Figure 4b, with its collocated

analyzer and DataSpaces server (DS) on dedicated resources

(in this case Node 2), is representative of an in transit analytic

workflows. In this latter configuration, data produced by an

MD simulation on one node must be transferred to another

node where it is analyzed.

(a) in situ

(b) in transit

Fig. 4: In situ (a) and in transit (b) analytic workflows.
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E. Execution Patterns and Metrics

We classify our workflows in terms of their execution

patterns into: (a) workflows with fast production of MD frames

and slow analytic processing of the frames by the analytic

modules; (b) workflows with slow production of MD frames

and fast analytic processing of the frames by the analytic

modules; and (c) balanced workflows with MD frames that

are analyzed at the same rate as they are produced.

In the first type of workflow, because the analysis is not

able to consume the frame in a timely manner, the MD

simulation either waits in I/O to write new frames to the

in-memory staging area of DataSpaces (idle simulation time

or IS in Figures 5a) or discards any frame that cannot be

ingested into the staging area (lost frame in Figures 5b). Both

scenarios negatively impact the scientific throughput delivered

by the MD workflow: the first with a lower number of frames

over the total simulation time and the second with a loss of

MD information (and possible loss of accuracy for the MD

simulation).

(a) with simulation idle time

(b) with lost frame

Fig. 5: Two execution patterns associated with fast MD simu-

lations and slow analytics with S1, S2, and S3 referring to MD

simulation times; W1, W2, and W3 referring to write times to

DataSpaces; R1, R2, and R3 to read times from DataSpaces;

A1, A2, and A3 to analytics times; and IS to simulation idle

times. Note how in (b) the frame associated to W2 is discarded.

In the second type of workflow, because the MD simulation

generates a new frame with large strides (larger than the time

needed to analyze the frame), the analytics are waiting in

I/O and the associated resources are idle (and thus, may be

available for other analyses or for the MD simulation itself).

Figure 6 shows this scenario. We characterized this scenario

as analysis idle time or IA. While there is not direct negative

impact on the science delivered, this scenario can result in

under-utilized resources.

IV. MODELING DATA ANALYTIC

A. Modeling Waiting in I/O and Analysis Idle Time

We measure and observe trends for the time spent waiting

in I/O for the simulation and idle time for the analytics under

Fig. 6: Execution pattern associated to slow MD simulations

and fast analytics with S1, S2, and S3 referring to MD

simulation times; W1 and W2 referring to write times to

DataSpaces; R1 and R2 to read times from DataSpaces; A1

and A2 to analytics times; and IA to analysis idle times due

to waiting for the MD simulation.

different MD workflow settings (i.e., in situ vs. in transit,

different strides, and different segment lengths). We cut the

molecular systems into equal sized segments; the segment

lengths considered are m=[2, 13, 25, Nα/8, Nα/4, Nα/2]

where Nα is the total number of Cα backbone atoms, one

per amino acid, in the system. For each segment length,

we build bipartite matrices for every (Nα

m )
(Nα

m −1)

2 pairs of

segments. We then compute the largest eigenvalues for each of

the generated bipartite matrices. Figure 7 shows the measured

time spent by the MD simulation waiting in I/O (simulation

idle time) and analytics idle time for each stride size of

the large molecular system. Similar outcomes are observed

for the other medium and small systems. The first row in

Figure 7 (7a-7d) shows the measurements obtained with the

in situ configuration and the second row of Figures 7 (7e-

7h) shows the in transit configuration. In Figure 7, from left

to right, the columns indicate stride sizes of 100 (7a,7e), 500

(7b,7f), 1000 (7c,7g), and 5000 (7d,7h) The dots in the figures

show the measured times (i.e., squares are the simulation

idle times and the circles are the analysis idle times). The

error bars show the standard deviation of the measured times

for five independent trajectories, each with 1000 frames. To

identify the three execution patterns defined in Section III-E,

we assume a threshold marked by the dashed horizontal line.

The line represents 5% of the largest idle time observed in

all the tests. Specifically, when analysis idle time is above the

threshold and larger than the simulation idle time, we observe

the execution pattern (a) in Section III-E. Execution pattern (b)

is observed when simulation idle time is above the threshold

and larger than the analysis idle time. Execution pattern (c) is

observed when both simulation idle time and analysis idle time

are below the threshold. The execution pattern (a), (b), and (c)

are shown by the blue, yellow, and green shaded regions in

the figure.

We do not observe a significant difference in the measured

idle times, for simulation or analysis, between the in situ

and in transit configurations. This due to low communication

overhead: the two nodes of the in transit configuration are

located within close proximity to each other and the size of

the frames being transferred are small ( 7MB).

We observe several trends across Figure 7: At the smallest
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(a) in situ, stride 100 (b) in situ, stride 500 (c) in situ, stride 1000 (d) in situ, stride 5000

(e) in transit, stride 100 (f) in transit, stride 500 (g) in transit, stride 1000 (h) in transit, stride 5000

Fig. 7: The observed analysis idle times and simulation idle time with the in situ configurations and in transit configurations.

segment length, simulation idle time is always larger than

analysis idle time. As stride size increases (moving left to

right from Figures 7a to 7d) the simulation idle time decreases

for all segment lengths (e.g., for segment length two we see

an 85% reduction from stride 100 to 5000). In contrast, the

analysis idle time is 0 for segment length two and all strides,

exhibiting the inverse of the simulation idle time trends. As

stride increases, analysis idle time increases significantly (e.g.,

for segment length Nα/2 we see a 99.99% increases from

stride 100 to 500). We also observe regions in the different

parameter settings where the producer/consumer execution

pattern is balanced (i.e., small simulation idle time and analy-

sis idle time). Such regions are predominant for small strides

and shrink as stride increases.
Rather than allow the MD simulation to wait in I/O,

the simulation may instead discard frames that cannot be

consumed in a timely fashion by the analytics module. In

the next section, we study the workflow when the execution

pattern allows discarding frames, as defined in Section III-E.

B. Modeling Frames Analyzed vs. Frames Lost
To study the consequences of dropping frames on simulation

accuracy, we develop a 2-step model that predicts which

frames are dropped and which ones are analyzed. Our model

is applicable for both in situ and in transit analytics as

no major differences were observed in the patterns outlined

in the previous section. Additionally, based on observations

in Section IV, we focus the modeling in the region with

significant simulation idle times and we use small segment

lengths (i.e., 2, 4, 6, 8, 10, 12, and 14).
The first step of the model predicts the fraction of frames an-

alyzed for a given MD simulation, starting from the produced

frames. The production of frames is dictated by the stride. The

consumption of each frame is dictated by the number of ma-

trices and size of matrices, which are determined by segment

length and system size. We define a new term, matrix period,

which is the amortized time for production of each matrix and

is calculated by dividing the time for a frame to be produced by

the number of matrices produced by that frame. We combine

the parameters dictating the production and consumption of

frames into our model in terms of matrix period and size. To

this end, we measure the relationship between the fraction of

frames analyzed, f , and the matrix period and matrix size by

(a) collecting data from MD simulations with stride length

of 100, 500, 1000, and 5000 and the small segment lengths

described above, as seen in Figure 8a, and (b) fitting a degree

2 polynomial surface to the data. The surface fitted is defined

by:
f = −0.25X1 − 0.24X2 + 0.01X2

1+

0.02X1X2 + 0.002X2
2 + 3.48,

(3)

where the independent variables X1 and X2 are the matrix

period and the size of individual matrices being produced. The

smaller coefficients for X2 indicate that the rate of production

of matrices (i.e., matrix period) is more important to the

fraction of frames analyzed than the size of matrices.

We validate the first step of our 2-step model by measuring

the error between our surface-predicted and observed values of

f . Figure 8b shows the predicted f given a matrix period and

matrix size using our fitted surface. The top-left and bottom-

right regions shown in white are regions in the parameter

space which are excluded in this study. These regions represent

unlikely scenarios for MD systems (i.e., parameter spaces that

are not seen with typical MD workloads). Figure 8c shows the
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absolute error between our data and the fitted surface is small.

We further validate our work and calculate a R2 value of 0.88

for the fitted surface.
The second step of our 2-step model takes the output of

the first step (i.e., predicted f ) and models the distribution

of frames analyzed for a given trajectory. We start with the

experimentally observed data for analyzed frames of MD

simulations in the bottom row of Figure 9 (i.e., 9e,9f,9g and

9h). Due to space constraints, we show only four of the eight

MD simulations, each with a different segment length (i.e., 2,

6, 10, and 14). The fraction of analyzed frames are 0.07, 0.41,

0.69, and 0.86 for e, f, g, and h respectively. The histograms

depict the discrete distribution for the number of frames lost

between analyzed frames in each simulation. For example, e

shows that for a segment length of 2, there are either 14 or

15 frames lost between each frame that is analyzed. We note

that there at most two values (i.e., period of analyzed frames)

that are populated in each histogram and that these values

are dependent on the fraction of frames analyzed. We refer to

these two periods as k and k + 1.
To model the trend in the bottom row of Figure 9, we deter-

mine the relationship between f and the discrete distribution

of analyzed frame periodicity. We assume that every frame has

a period of either k or k + 1 for a given value of f , where k
is a positive integer. From these definitions we can write

1

k + 1
< f ≤ 1

k
(4)

and from that derive

1

f
− 1 < k ≤ 1

f
. (5)

Because k ∈ N, k is given by:

k =

⌊
1

f

⌋
, (6)

where the � � symbol indicates the “floor” function. Next, we

let P and Q be total number of analyzed frames with periods

k and k + 1. T the total number of analyzed frames. We can

write:

f =
analyzed frames

all frames
=

P +Q

P ∗ k +Q ∗ (k + 1)
. (7)

We then define p = P/T and q = Q/T , the proportion of

analyzed frames with period k and period k + 1. Since every

analyzed frames has either a period of k or k+1, then p+q =
1. Dividing the numerator and denominator for the right side

of Equation 7 by T gives us Equation 8.

f =
p+ q

pk + q(k + 1)
(8)

By applying the relation p + q = 1 in Equation 8, we arrive

at the simple expression for q,

q =
1

f
− k, (9)

where we can use Equation 6 to define q in terms of f :

q =
1

f
−
⌊
1

f

⌋
. (10)

Finally, the probability of analyzing frames with a period of

k is given by

p =

⌊
1

f

⌋
− 1

f
(11)

Given a value of f , the proportion p and q of frames

analyzed with periods k and k + 1, respectively, can be

obtained using this model. These values are used to generate

the discrete distribution of analyzed frames shown in the top

row of Figure 9a - 9d. The similarity between the modeled

periods and actual data shown in Figure 9e - 9h qualitatively

validates the second step in our 2-step model.

We quantitatively validate the second step of our 2-step

model by plotting the observed and modeled probability, p,

of period k for all experimentally observed f in Figure 10.

Figure 10 shows the experimentally observed p as plotted

points and modeled p as a solid line. We see an oscillating

pattern for p as f tends toward 0. We observe that all data

points fall along the line of expected p values and measure an

R2 of 0.995. This confirms the accuracy of the second step in

our model.

Our 2-step model, while initially defined with data from

our molecular systems (from Section III-B), is general to any

system. To demonstrate its generality, we apply our 2-step

model to a real use case in the next section.

V. USE CASE: 1BDD PROTEIN

As an example of the impact of lost frames on the capability

of capturing rare events in an actual MD simulation, we

measure the relative change between three substructures over

time in a trajectory of the B domain of staphylococcal protein

A, whose NMR structure is available under entry 1BDD of

the protein data bank [14]. The protein has three alpha-helical

substructures (i.e., Helix 1, Helix 2, and Helix 3) that form

relatively quickly (within the first 1,000 frames) of an MD

simulation and exhibit a rare event conformational change

immediately after. Initially the protein is compact (Frame

1300), then Helix 3 swings away from the other helices (i.e.,

Helix 1 and Helix 2), rendering the protein temporarily much

less compact (Frame 1330). By Frame 1390, Helix 3 returns

and the protein is once again compact, as shown in Figure 11.

The rare event is captured by the larger eigenvalues of the

three bipartite matrices for Helices 1-2, Helices 1-3, and He-

lices 2-3). Figure 12 shows the sudden spike in the eigenvalues

in Helices 1-3 and Helices 2-3 but lack of corresponding

change in Helices 1-2, indicating Helix 3 moves relative to

the other two. The frequency of the collected eigenvalues is

at each MD step (stride = 1). For small systems such as this

one with abrupt changes, such a high sampling frequency is

recommended. Consequently, loss of frames, especially during

critical phases in the structural evolution of such systems

can result in the failure to detect important and rare events,

or to compute accurate ensemble averages on trajectories

containing short-lived transient states. To observe the effect

of loss of frames, we calculate the largest eigenvalue from

the Helix 1-2, 1-3 and 2-3 bipartite matrices between time
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(a) (b) (c)

Fig. 8: The polynomial model (Equation 3) for predicting fraction of analyzed frames (b) is obtained by least-square fitting to

the dataset shown in (a). The error of the model prediction with respect to the dataset is shown in (c).

(a) predicted, stride 2 (b) predicted, stride 6 (c) predicted, stride 10 (d) predicted, stride 12

(e) observed, stride 2 (f) observed, stride 6 (g) observed, stride 10 (h) observed, stride 12

Fig. 9: Predicted (a)-(d) and observed (e)-(h) periods at which frames are analyzed.

steps 1000 and 2000 for all fractions of frames analyzed. We

use the 2-step model described in Section IV-B to generate

the periodic indices of the analyzed frames. To model the

random occurrence of the abrupt transition in the 1BDD

protein conformations, we also randomize the first value of

the analyzed frame index selected by the 2-step model, using

a uniform distribution in the interval [1, k]. This introduces a

randomized shift in the phase of the periodic pattern without

changing the periodic pattern itself. In order to quantify the

expected loss of information due to loss of periodic frames in

time series data, we introduce the concept of effective number

of frames, neff , in a correlated time series, defined as [15]

neff � n

1 + 2
∑n−1

k=1
n−k
n ρk

. (12)

Here, the total number of samples (frames captured by anal-

ysis) is denoted by n and ρk represents the k-th point of

the empirical autocorrelation function. In practice, since the

accuracy of ρk decreases for long autocorrelation times, we

truncate the sum at the first passage through zero [16]. For

uncorrelated time series data, neff is equal to n. For autocorre-

lated time series data, decreasing the number of samples down

to neff = n is not expected to increase the standard expected

error on the mean, sa(x). The unbiased sample estimator [17]

for sa(x) is:

sa(x) =

√
(n− 1)

n(neff − 1)
s. (13)

Alternatively, we can quantify the empirical error on the

mean, se, taking as reference the full-sample mean value,

x(f = 1), i.e. the mean value of the observable (largest

eigenvalue) when 100% of the frames are analyzed,

se(x, f) =
1

M

√√√√ M∑
m=1

(xm(f)− x(f = 1))2. (14)

Here, xm(f) is the empirical error on mean in trial k when a

fraction f of the frames are analyzed, and M is the number

of trials.
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Fig. 10: The dots shows observed probability p for analyzed

frame period k given different fraction of frames analyzed, f ,

in the large system. The solid line shows the modeled trend

from our 2-step model, Equation 11, describing this behavior.

The excellent quality of fit validates the model.

(a) Frame 1330 (b) Frame 1360 (c) Frame 1390

Fig. 11: Three helices of the 1BDD protein referred as Helix

1, Helix2, and Helix 3 are shown here in blue green and red.

This is observed for the largest eigenvalues data when

low fractions of frames are analyzed. The fractions at which

neff = n is observed for Helices 1-2, 1-3 and 2-3 are 0.09, 0.06

and 0.03. Figure 13 shows the neff values estimated from the

largest eigenvalue data as a function of the fraction of frames

analyzed. For all three helix pairs, the neff is observed not

to increase after 20% of the frames are analyzed. For Helix

1-2, 1-3 and 2-3 neff is observed to be roughly 66, 30 and 15,

respectively. Based on the observation in Figure 14, both sa
and se increase substantially when large fractions of frames

are lost, thereby increasing the uncertainty in the observables.

It is evident from the neff data in Figure 13 and the sa
and se data in Figure 14 that two regions exist where the

fraction of frames analyzed has different implications. Above

a threshold fraction of frames analyzed, ft, whose value we

expect to be close to neff/n, loss of frames does not affect

the analytics. Below ft, the analytics enter a regime where

uncertainty increases. To further understand the effect of lost

frames on the ability to detect abrupt structural transformations

in the protein system, we closely examine at the region below

ft (f = 0.01) for the Helix 1-3 largest eigenvalue data. The

error bars on the data point near the abrupt transition around

time step 1390 indicate that the rare event can be lost at low

fractions (f < ft).

VI. RELATED WORK

The use of traditional relational databases for trajectory

analysis requires a posteriori trajectory upload and analysis of

data using database functions (e.g., PostgreSQL [18], [19]).

For finding similarities across datasets, many clustering meth-

ods have been applied to molecular structures and to MD

trajectories in particular. For example, Shao et al. outline

how there is not a one-size-fits-all clustering method [20].

Li and Dong describe the effect of clustering algorithms

such as Bayesian clustering, k-means clustering, and kinetic

clustering on establishing Markov state models for MD simu-

lations [21]. Rodriguez presents a method for fast searches and

identification of density peaks in trajectories [22]; the method

requires the scientist to pick visually the number of peaks

thought to be correct. Such clustering strategies are used with

a post-simulation perspective but are not scalable on exascale

machines. On the other hand, another class of methods, the

data-streaming algorithms, are designed to analyze data on

the fly. A framework for clustering evolving data streams [23]

and data-streaming methods for high-quality clustering [24]

are good resources regarding clustering of time series data.

Some aspects of these methods, originally not developed for

MD data, will be integrated in our framework. For classifying

molecular structures in MD simulations, work has been done

based on knowledge of the protein states a priori [25]–[27].

Software tools are available for comparing metrics in a

distributed fashion. One such method is dynamic tensor anal-

ysis [28]. Efforts were undertaken to make the computation as

light as possible, but the method still requires that a sequence

of distance matrices from the amino acids of the entire

protein be stored in memory, resulting in a larger memory

footprint than with our technique. Centralized algorithms [29],

[30] make metrics analyses inefficient when dealing with

large proteins and long trajectories; assessments rely only on

synthetic folding trajectories. Hybrid approaches have been

introduced to handle big data analysis problems in the HPC

context [31], [32]. These approaches combine in situ and in

transit processing for extreme-scale scientific analysis such as

topological analysis, descriptive statistics, and visualization.

We note some recent efforts to manage ensembles of trajec-

tories on large distributed infrastructures. Such a framework

has been developed for NAMD using the parallel programming

system Charm++, on which NAMD is built, and imple-

menting some of the enhanced sampling methods outlined

above [6]. A similar platform has been proposed for Gromacs,

based on the distributed high-performance computing platform

Copernicus [33]. The high-throughput MD [34] framework

developed around the program ACEMD is a Python interface

that supervises MD data generation and a posteriori analysis.

At this point, none of these frameworks is tightly integrated

with in situ trajectory analysis.
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(a) Helices 1-2 (b) Helices 1-3 (c) Helices 2-3

Fig. 12: Largest eigenvalue for Helices 1-2, 1-3, and 2-3.

Fig. 13: Effective number of frames for given fractions of

frame analyzed.

VII. CONCLUSIONS

This paper presents the characterization of in situ and in

transit analytics of MD simulations for supercomputers and

the modeling of MD workloads, including simulations that

are idle waiting in I/O because the analytics are not able to

consume MD frames at the same pace that simulations produce

frames; or that, rather than waiting in I/O, simulations drop

frames subjected to I/O contention causing loss in information.

We develop a novel 2-step model to predict the fraction of

analyzed frames and the exact frames that are lost in a given

MD trajectory. We show that our model fits observed data with

R2 values of 0.88 and 0.99 for Step 1 and Step 2 respectively.

We apply our model to a real use case, a 1BDD protein

trajectory, to assess the impact of lost frames on capturing

the swing of one helix away from the other two helices in the

protein. Future work includes the study of our modeling for a

diverse set of MD trajectories and the study of the impact of

more complex analytics on a diverse set of molecular systems.
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