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Abstract—Molecular Dynamics (MD) simulations executed on
state-of-the-art supercomputers are producing data at rates faster
than it can be written out to disk. In situ and in transit analysis of
data generated by MD simulations reduce the original volume of
information by several orders of magnitude, thereby alleviating
the negative impact of I/0O bottlenecks. This work focuses on
characterizing the impact of in situ and in transit analytics on
the overall MD workflow performance, and the capability for
capturing rapid, rare events in the simulated molecular system.
The MD simulation and analysis processes share data via remote
direct memory access (RDMA) using DataSpaces. Our metrics of
interest are time spent waiting in I/O by the MD simulation, lost
frames of the MD simulation, and idle time of the analysis. We
measure these metrics for a diverse set of molecular systems and
characterize their trends for in situ and in transit configurations.
We then model which frames are dropped and which ones are
analyzed for a real use case. The insights gained from this study
are generally applicable for in situ and in transit workflows that
require optimization of parameters to minimize loss in workflow
performance and analytic accuracy.

Index Terms—Scientific workflows, data analytics, perfor-
mance, workload modeling, remote direct memory access.

I. INTRODUCTION

This paper targets one of the most common simulation types
on petascale and, very likely, exascale machines: Molecular
Dynamics (MD) simulations studying the time evolution of a
molecular system at atomic resolution. The fields of chemistry,
material sciences, molecular biology, and drug design widely
utilize MD simulations. The system sizes and time-scales ac-
cessible to MD simulations have been steadily increasing [1].
Next-generation High-Performance Computing (HPC) systems
will have dramatically larger compute performance than do
current systems. The increase in computing capability directly
translates into the ability to execute an increasing number of
longer simulations and thus to expand the range of biomolec-
ular phenomena that can be studied by MD simulation. This
also means generating more data than needs to be analyzed in

978-1-7281-2451-3/19/$31.00 ©2019 IEEE
DOI 10.1109/eScience.2019.00027

188

terms of the number and length of MD trajectories. Because
of power constraints, however, the I/O bandwidth and parallel
file system capacity of next-generation HPC systems is not
likely to grow at the same pace.

In this paper, we address the challenges facing MD sim-
ulations on next generation supercomputers by transforming
the traditionally performed centralized MD analysis to a
distributed in situ or in transit analysis. We define a workflow
that analyzes data as it is generated. Note that we focus on the
analysis of MD-generated data (i.e., capturing rare events and
monitoring convergence of observables based on inherently
noisy and high-dimensional MD outputs) rather than on the
MD process (i.e., efficient computation of molecular interac-
tions, parallelization, GPU acceleration) itself. By leveraging
the standard formats of MD-generated outputs, we design our
workflow to be compatible with all of the most-used MD
codes. Our workflow does not require the recompilation of any
single MD code or the redesign of any MD script. Instead, it
captures outputs in memory at runtime as they are generated
and uploads the data into an in-memory staging area using
DataSpaces [2].

As a prototypical example of compute-intensive data anal-
ysis, we model a suite of collective variables that describe
molecular structures in terms of distance matrices and output
values from linear algebra operations. This type of analysis
represents a common workload in MD [3], [4]. The suite inte-
grates into our producer/consumer execution pattern workflow
(i.e., the simulation produces data, and the analytics consume
data). We model the pattern to demonstrate three pertinent
scenarios: (a) when simulations are idle waiting in I/O because
the analytics are not able to consume MD frames at the same
pace as simulation; (b) when the same simulations, rather
than waiting in I/O, drop frames subjected to I/O contention
causing loss of information; and (c) when the resources used
for the analytics are idle because the simulations are not able to
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produce MD frames at the same pace. While schedulers can
mitigate underutilized resources, losing a fraction of frames
may result in inaccurate MD solutions, opening the need to
model which frames may be analyzed and the impact on the
accuracy of the MD. To this end, we develop a 2-step model
that predicts which frames are dropped and which ones are
analyzed. We apply the model to study the consequences of
dropping frames on simulation accuracy for the real use case
of a protein exhibiting a rare event conformation change.
The rest of this paper presents background (Sec. II), the
setting of our modeling environment (Sec. III), our modeling
(Sec. 1IV), and its application to a 1BDD trajectory (Sec. V).

II. BACKGROUND

MD simulations complement wet-lab experiments by pro-
viding molecular and atomic resolution information not di-
rectly accessible by experiment. Specifically, MD simulations
computationally replicate the behavior of a physical molecular
system by iterating a two-step algorithm. First, the interactions
between atoms are calculated by using a model called a
force field, which describes the total energy of the system
as a mathematical function of atomic positions and a set
of parameters calibrated to reproduce the inter-atomic forces
acting on each atom in the molecular structure. Second, based
on the calculated forces on each atom of the system, their
positions are advanced by solving Newtons equations on a
small time step. Calculating long-range forces in systems
composed of several hundreds of thousands of atoms is by far
the most compute-intensive part of the calculation. An MD
job reproduces the evolution of a molecular system under a
specified set of thermodynamic conditions (e.g., temperature,
volume, and pressure) and external forces (if needed) by com-
puting and writing to storage the systems atomic coordinates,
and other relevant properties, at regular intervals as the job
evolves. The sequence of molecular conformations (i.e., the
trajectory) follows the physics of Boltzmann ensembles of
particles and is written to disk. A large-scale MD simulation
would typically include an ensemble of MD jobs (as many
as hundreds or thousands) that can run on different compute
nodes and produce independent trajectories (replicas) [5], [6];
each replica simulates the same molecular system starting from
different initial conditions (e.g., positions, velocities) but with
the same system parameters (i.e., composition and external
forces). Different simulations of the same system or similar
systems under different conditions (e.g., temperature, protein
mutants, and drug variants) are analyzed comparatively from
separate ensemble runs of MD simulations. The ensemble-
based nature of MD simulations promises computational scal-
ability at exascale for relevant MD applications such as protein
structure prediction, protein folding, protein-protein interac-
tions, and protein-ligand interactions. In this paper, we do not
target the force field development, computational efficiency,
or parallelization aspects that have been extensively addressed
by the scientific community [7]-[9].

Given the rapid fluctuations of a molecular system at room
temperature, properties extracted from a single conformation
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or single event are not relevant if considered in isolation.
Instead, measured properties correspond to ensemble averages
incorporating all molecular configurations that form local
states. MD simulations reproduce the thermal motions of the
molecules and produce ensembles of molecular conformations
compatible with a set of given thermodynamic conditions. In
general, MD simulations have been utilized to (1) classify
the dynamics and dynamic properties of molecular systems;
(2) reveal and characterize rare events and metastable states
of the molecules that have functional significance (multiple
realizations are required for statistical significance); and (3)
calculate and monitor the convergence of ensemble averages
of observables that can be compared with experiments and/or
predict new observations. Formally, a rare event is a transition
from one metastable region in conformational space to another,
such as a folding phase of a protein or conformational changes
of protein domains related to functions such as transport,
signaling, or catalysis. Rare events can be monitored efficiently
with the use of a small set of statistical metrics called
collective variables (CVs) that capture relevant molecular
motions [10]

III. SETTING THE MODELING ENVIRONMENT
A. Distance Matrices: Proxies for Structural Changes

At a given time, ¢, an MD simulation writes a snapshot or
frame of the molecular system to memory. The frame contains
all atomic coordinates and complete structural information on
the m amino acids (kq, ko, ..., ky,) comprised in the structure.
Trajectory analysis commonly measures the structural changes
of a frame with respect to past frames of the same trajectory
or frames in other trajectories, without directly comparing the
data contained in either frame. We want to capture two types of
structural changes: changes within single amino acid segments
and changes of two amino acid segments with respect to each
other. To this end, we simplify the molecular system made of
m amino acids by extracting the positions of the m a-Carbon
(Ca) backbone atoms (z; ,y; ,2;) for 1 <7 < m amino acids
and using the backbone atoms to build distance matrices that,
together with the matrix eigenvalues, are proxies for structural
changes in the molecular system itself [11].

Given a frame, we build two types of distance matrices:
(1) Euclidean distance matrices from the positions of the
corresponding C'or, D = [d;;] with 4,j =1,...,m and

\/(!Uz‘ =2+ (Y — )2+ (2 —2)? (D)

to capture changes within single amino acid segments and (2)
bipartite distance matrices B = [b;;] to capture changes of two
amino acid segments S; and S with respect to each other. B
is of size m x m, with elements defined by

The Euclidean distance matrix D and the bipartite distance
matrix B have three fundamental properties: they are symmet-
ric, diagonal elements are zeros, and off-diagonal elements are

if i € Sy and j € Sy
otherwise.
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strictly positive. Johnston and co-authors show how the larger
eigenvalues of each one of these matrices can be computed
in isolation (i.e., without keeping other frames in memory)
and can serve as a CV that, unlike other CVs, can identify
structural changes of substructures [11]. By computing these
CVs on each frame, we drop the requirement to keep frames
in memory as the simulation evolves.

We leverage this work to build a suite of analysis scenarios
with different numbers of matrices and different matrix sizes.
The number of matrices and matrix sizes are dependent on the
system size and non-overlapping segment lengths in which
we cut the molecular system into strings of amino acids.
The scenarios range from the fine-grained study of as many
substructures as possible (with segment length as small as
two amino acids) in which we generate many small matrices,
to the coarse-grained study of the entire molecular system
through one single matrix with a size matching the number
of amino acids in the system. Figure 1 shows the number
of matrices (dotted line) and matrix size (solid line) when
bipartite matrices are generated with different segment lengths.
In this figure, we use N,=1266 as an example, where the
minimum segment length applicable to the analysis is 2 and
the maximum segment length is Na/2 = 633. The number
of matrices and matrix size impact the computational cost of
the analytics (i.e., the larger the number of the matrices, the
larger the number of eigenvalues computed) and the memory
use (i.e., the larger the matrices, the larger the memory use).
The eigenvalues of the matrices generated from a given frame
are computed sequentially in this study.
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Fig. 1: Number of distance matrices and their size as a function
of the non-overlapping segment lengths in which a molecular
system with N, = 1266 can be divided.

B. Molecular Systems: From Small to Large Systems

We consider three different molecular systems of increasing
size (i.e., number of atoms). Figure 2 depicts the three molec-
ular systems. Table I provides details about the individual
molecular systems: the size described in terms of small,
medium, and large; the name of the molecular system (MD
system); the number of atoms, N; the number of carbon atoms,
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Fig. 2: Visualization of the three molecular systems consid-
ered for this study. Table I provides more details about the
individual molecular systems.

N,; and the estimated number of steps that the simulation can
perform per second wall clock time (TPS). For the estimations,
we run NAMD benchmarks [12] on GPUs of high-end clusters
and interpolate the output of the benchmarks for our three
molecular systems.

TABLE I: Our three molecular systems and characteristics.

Size MD System N Nq TPS
Small Trp cage 12,619 20 511
Medium | T cell receptor | 81,092 605 460
Large Gltph 270,088 | 1,266 | 318

C. MD Workflow: Example of Producer-consumer Patterns

Our workflow integrates MD simulations with in situ or
in transit analytics. The workflow is structured as a pro-
ducer/consumer pattern with the MD simulation producing
snapshots (x;(t), y;(t), z;(t)) (i.e., frames) output at a regular
interval of steps (i.e., strides), and one or more analytics mod-
ules serving as the consumer. Figure 3 illustrates the workflow
used in this study. We assume as the system size decreases, the
possible structural changes become faster, requiring the stride
of the associated MD simulation to become smaller in order
to capture all the changes. Thus, the rate at which frames are
generated for the analysis depends on the molecular system
size. For each molecular system, we select four strides that
scale to system size and follow the ratio of 1 : 5 : 10 : 50.
For example, for the large system, the stride values are 100,
500, 1000 and 5000; a frame is output every 100 % At,
500 = At, 1000 * At, and 5000 * At, where At is the time
step size and is computed as the inverse of the TPS. We use
elements of Plumed, a plug-in software package compatible
with many state-of-the-art CV calculation packages [13], to
capture a frame when generated by the MD code. Plumed is
implemented as a plug-in and thus no changes to the MD code
are needed: we engineer a Plumed function to read a frame
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Fig. 3: Our workflow integrating in situ or in transit analytics.

from the MD simulation memory space and transfer it to the
DataSpaces shared memory via an ingestor module.

DataSpaces [2], a memory-to-memory framework using
remote direct memory access (RDMA), serves as our data
transport layer (DTL). It enables efficient and scalable data
sharing (i.e., the sharing of trajectory frames) between the MD
simulations and the analytics modules. It uses a client/server
architecture: the server is a virtual shared memory space that
can be concurrently queried by multiple clients. The use of
RDMA offers scalable communications between the server
and each client. The DataSpaces shared memory is accessed
by the ingestor fed by Plumed; a retriever module passes the
frame to the analytics modules. The ingestor and retriever
use a simple key-value representation to coordinate the data
movement, where the key is the time step and the value is the
data. The size of the shared memory buffer is fixed. In this
work, a DataSpaces buffer size corresponding to the size of a
single frame is considered. DataSpaces supports both a default
setting, which blocks the producer from writing data from the
next time step until the consumer finishes reading the current
time step frame and an asynchronous setting, which allows
for managing the synchronization between the producer and
consumer by the user. We use both mechanisms in this study.

The analytics modules used in this study are python
modules, but can easily be extended to use modules imple-
mented in other languages. The modules generate one or more
matrices per frame; for each matrix, we compute eigenvalues
as described in Section III-A.

D. In Situ and In Transit Configurations

We run two workflow configurations that represent an
example of in situ and in transit analytics on Haswell nodes
of NERSC’s Cori. Each Haswell node has two 16-core Intel
Xeon processors, 128GB memory, and are connected by a
Cray Aries interconnect. The configuration in Figure 4a is
representative of the in situ analytics workflow, where data
generation and data consumption share the same resources

(in this case the same node). Figure 4b, with its collocated
analyzer and DataSpaces server (DS) on dedicated resources
(in this case Node 2), is representative of an in transit analytic
workflows. In this latter configuration, data produced by an
MD simulation on one node must be transferred to another

node where it is analyzed.

Single Node (In Situ)

Dataspaces Data
Slmulatlon Server Analyms

Dataspaces
Shared Memory Region

Main Memory

J

Node

(a) in situ
Collocated Analyzer and DS (In Transit)

Dataspaces
Slmulahon — Server Analyhcs

Dataspaces
Shared Memory Region

Main Memory

/

Fig. 4: In situ (a) and in transit (b) analytic workflows.

Node 2

Node 1

(b) in transit
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E. Execution Patterns and Metrics

We classify our workflows in terms of their execution
patterns into: (a) workflows with fast production of MD frames
and slow analytic processing of the frames by the analytic
modules; (b) workflows with slow production of MD frames
and fast analytic processing of the frames by the analytic
modules; and (c) balanced workflows with MD frames that
are analyzed at the same rate as they are produced.

In the first type of workflow, because the analysis is not
able to consume the frame in a timely manner, the MD
simulation either waits in I/O to write new frames to the
in-memory staging area of DataSpaces (idle simulation time
or IS in Figures 5a) or discards any frame that cannot be
ingested into the staging area (lost frame in Figures 5b). Both
scenarios negatively impact the scientific throughput delivered
by the MD workflow: the first with a lower number of frames
over the total simulation time and the second with a loss of
MD information (and possible loss of accuracy for the MD
simulation).

EXZEY s [T
Rz| A2

Time

(a) with simulation idle time

Lost Frame \

(b) with lost frame

Fig. 5: Two execution patterns associated with fast MD simu-
lations and slow analytics with S1, S2, and S3 referring to MD
simulation times; W1, W2, and W3 referring to write times to
DataSpaces; R1, R2, and R3 to read times from DataSpaces;
Al, A2, and A3 to analytics times; and IS to simulation idle
times. Note how in (b) the frame associated to W2 is discarded.

In the second type of workflow, because the MD simulation
generates a new frame with large strides (larger than the time
needed to analyze the frame), the analytics are waiting in
I/O and the associated resources are idle (and thus, may be
available for other analyses or for the MD simulation itself).
Figure 6 shows this scenario. We characterized this scenario
as analysis idle time or IA. While there is not direct negative
impact on the science delivered, this scenario can result in
under-utilized resources.

IV. MODELING DATA ANALYTIC

A. Modeling Waiting in I/0 and Analysis Idle Time

We measure and observe trends for the time spent waiting
in I/O for the simulation and idle time for the analytics under
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Fig. 6: Execution pattern associated to slow MD simulations
and fast analytics with S1, S2, and S3 referring to MD
simulation times; W1 and W2 referring to write times to
DataSpaces; R1 and R2 to read times from DataSpaces; Al
and A2 to analytics times; and IA to analysis idle times due
to waiting for the MD simulation.

different MD workflow settings (i.e., in situ vs. in transit,
different strides, and different segment lengths). We cut the
molecular systems into equal sized segments; the segment
lengths considered are m=[2, 13, 25, N, /8, N,/4, N, /2]
where N, is the total number of C, backbone atoms, one
per amino acid, in the system. For each segment length,

we build bipartite matrices for every (%)(A’r” L) pairs of
segments. We then compute the largest eigenvalues for each of
the generated bipartite matrices. Figure 7 shows the measured
time spent by the MD simulation waiting in I/O (simulation
idle time) and analytics idle time for each stride size of
the large molecular system. Similar outcomes are observed
for the other medium and small systems. The first row in
Figure 7 (7a-7d) shows the measurements obtained with the
in situ configuration and the second row of Figures 7 (7e-
7h) shows the in transit configuration. In Figure 7, from left
to right, the columns indicate stride sizes of 100 (7a,7e), 500
(7b,7f), 1000 (7¢,7g), and 5000 (7d,7h) The dots in the figures
show the measured times (i.e., squares are the simulation
idle times and the circles are the analysis idle times). The
error bars show the standard deviation of the measured times
for five independent trajectories, each with 1000 frames. To
identify the three execution patterns defined in Section III-E,
we assume a threshold marked by the dashed horizontal line.
The line represents 5% of the largest idle time observed in
all the tests. Specifically, when analysis idle time is above the
threshold and larger than the simulation idle time, we observe
the execution pattern (a) in Section III-E. Execution pattern (b)
is observed when simulation idle time is above the threshold
and larger than the analysis idle time. Execution pattern (c) is
observed when both simulation idle time and analysis idle time
are below the threshold. The execution pattern (a), (b), and (c)
are shown by the blue, yellow, and green shaded regions in
the figure.

We do not observe a significant difference in the measured
idle times, for simulation or analysis, between the in situ
and in transit configurations. This due to low communication
overhead: the two nodes of the in transit configuration are
located within close proximity to each other and the size of
the frames being transferred are small ( 7MB).

We observe several trends across Figure 7: At the smallest
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Fig. 7: The observed analysis idle times and simulation idle time with the in situ configurations and in transit configurations.

segment length, simulation idle time is always larger than
analysis idle time. As stride size increases (moving left to
right from Figures 7a to 7d) the simulation idle time decreases
for all segment lengths (e.g., for segment length two we see
an 85% reduction from stride 100 to 5000). In contrast, the
analysis idle time is O for segment length two and all strides,
exhibiting the inverse of the simulation idle time trends. As
stride increases, analysis idle time increases significantly (e.g.,
for segment length N,/2 we see a 99.99% increases from
stride 100 to 500). We also observe regions in the different
parameter settings where the producer/consumer execution
pattern is balanced (i.e., small simulation idle time and analy-
sis idle time). Such regions are predominant for small strides
and shrink as stride increases.

Rather than allow the MD simulation to wait in I/O,
the simulation may instead discard frames that cannot be
consumed in a timely fashion by the analytics module. In
the next section, we study the workflow when the execution
pattern allows discarding frames, as defined in Section III-E.

B. Modeling Frames Analyzed vs. Frames Lost

To study the consequences of dropping frames on simulation
accuracy, we develop a 2-step model that predicts which
frames are dropped and which ones are analyzed. Our model
is applicable for both in situ and in transit analytics as
no major differences were observed in the patterns outlined
in the previous section. Additionally, based on observations
in Section IV, we focus the modeling in the region with
significant simulation idle times and we use small segment
lengths (i.e., 2, 4, 6, 8, 10, 12, and 14).

The first step of the model predicts the fraction of frames an-
alyzed for a given MD simulation, starting from the produced
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frames. The production of frames is dictated by the stride. The
consumption of each frame is dictated by the number of ma-
trices and size of matrices, which are determined by segment
length and system size. We define a new term, matrix period,
which is the amortized time for production of each matrix and
is calculated by dividing the time for a frame to be produced by
the number of matrices produced by that frame. We combine
the parameters dictating the production and consumption of
frames into our model in terms of matrix period and size. To
this end, we measure the relationship between the fraction of
frames analyzed, f, and the matrix period and matrix size by
(a) collecting data from MD simulations with stride length
of 100, 500, 1000, and 5000 and the small segment lengths
described above, as seen in Figure 8a, and (b) fitting a degree
2 polynomial surface to the data. The surface fitted is defined

by:
’ f=-025X; —0.24X5 + 0.01 X7+
0.02X; X5 + 0.002X3 + 3.48,

where the independent variables X; and X» are the matrix
period and the size of individual matrices being produced. The
smaller coefficients for X5 indicate that the rate of production
of matrices (i.e., matrix period) is more important to the
fraction of frames analyzed than the size of matrices.

We validate the first step of our 2-step model by measuring
the error between our surface-predicted and observed values of
f. Figure 8b shows the predicted f given a matrix period and
matrix size using our fitted surface. The top-left and bottom-
right regions shown in white are regions in the parameter
space which are excluded in this study. These regions represent
unlikely scenarios for MD systems (i.e., parameter spaces that
are not seen with typical MD workloads). Figure 8c shows the

3)
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absolute error between our data and the fitted surface is small.
We further validate our work and calculate a R? value of 0.88
for the fitted surface.

The second step of our 2-step model takes the output of
the first step (i.e., predicted f) and models the distribution
of frames analyzed for a given trajectory. We start with the
experimentally observed data for analyzed frames of MD
simulations in the bottom row of Figure 9 (i.e., 9¢,9f9g and
9h). Due to space constraints, we show only four of the eight
MD simulations, each with a different segment length (i.e., 2,
6, 10, and 14). The fraction of analyzed frames are 0.07, 0.41,
0.69, and 0.86 for e, f, g, and h respectively. The histograms
depict the discrete distribution for the number of frames lost
between analyzed frames in each simulation. For example, e
shows that for a segment length of 2, there are either 14 or
15 frames lost between each frame that is analyzed. We note
that there at most two values (i.e., period of analyzed frames)
that are populated in each histogram and that these values
are dependent on the fraction of frames analyzed. We refer to
these two periods as k and k + 1.

To model the trend in the bottom row of Figure 9, we deter-
mine the relationship between f and the discrete distribution
of analyzed frame periodicity. We assume that every frame has
a period of either k or k + 1 for a given value of f, where k
is a positive integer. From these definitions we can write

1 1
— <= 4
k+1 <= k @)
and from that derive
1 1
—-—1<k< - ®)
f f
Because k € N, k is given by:
1
k = |7 ) (6)
bJ

where the | | symbol indicates the “floor” function. Next, we
let P and @ be total number of analyzed frames with periods
k and k + 1. T the total number of analyzed frames. We can
write:

__analyzed frames P+Q

= T Pxk+Qx(k+1)°

We then define p = /7 and ¢ = Q/r, the proportion of
analyzed frames with period k and period k 4+ 1. Since every
analyzed frames has either a period of k or k+1, then p+q =
1. Dividing the numerator and denominator for the right side
of Equation 7 by T gives us Equation 8.

e p+q

~ pk+q(k+1)
By applying the relation p + ¢ = 1 in Equation 8, we arrive
at the simple expression for g,

(M

all frames

®)

1
q=-—k, €))
f
where we can use Equation 6 to define ¢ in terms of f:
1 1
g=-—1=1. (10)
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Finally, the probability of analyzing frames with a period of

k is given by
1 1
P=1\=%|—7%
bJ f

Given a value of f, the proportion p and ¢ of frames
analyzed with periods k£ and k£ + 1, respectively, can be
obtained using this model. These values are used to generate
the discrete distribution of analyzed frames shown in the top
row of Figure 9a - 9d. The similarity between the modeled
periods and actual data shown in Figure 9e - 9h qualitatively
validates the second step in our 2-step model.

We quantitatively validate the second step of our 2-step
model by plotting the observed and modeled probability, p,
of period k for all experimentally observed f in Figure 10.
Figure 10 shows the experimentally observed p as plotted
points and modeled p as a solid line. We see an oscillating
pattern for p as f tends toward 0. We observe that all data
points fall along the line of expected p values and measure an
R? of 0.995. This confirms the accuracy of the second step in
our model.

Our 2-step model, while initially defined with data from
our molecular systems (from Section III-B), is general to any
system. To demonstrate its generality, we apply our 2-step
model to a real use case in the next section.

V. USE CASE: 1BDD PROTEIN

As an example of the impact of lost frames on the capability
of capturing rare events in an actual MD simulation, we
measure the relative change between three substructures over
time in a trajectory of the B domain of staphylococcal protein
A, whose NMR structure is available under entry 1BDD of
the protein data bank [14]. The protein has three alpha-helical
substructures (i.e., Helix 1, Helix 2, and Helix 3) that form
relatively quickly (within the first 1,000 frames) of an MD
simulation and exhibit a rare event conformational change
immediately after. Initially the protein is compact (Frame
1300), then Helix 3 swings away from the other helices (i.e.,
Helix 1 and Helix 2), rendering the protein temporarily much
less compact (Frame 1330). By Frame 1390, Helix 3 returns
and the protein is once again compact, as shown in Figure 11.

)

The rare event is captured by the larger eigenvalues of the
three bipartite matrices for Helices 1-2, Helices 1-3, and He-
lices 2-3). Figure 12 shows the sudden spike in the eigenvalues
in Helices 1-3 and Helices 2-3 but lack of corresponding
change in Helices 1-2, indicating Helix 3 moves relative to
the other two. The frequency of the collected eigenvalues is
at each MD step (stride = 1). For small systems such as this
one with abrupt changes, such a high sampling frequency is
recommended. Consequently, loss of frames, especially during
critical phases in the structural evolution of such systems
can result in the failure to detect important and rare events,
or to compute accurate ensemble averages on trajectories
containing short-lived transient states. To observe the effect
of loss of frames, we calculate the largest eigenvalue from
the Helix 1-2, 1-3 and 2-3 bipartite matrices between time
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Fig. 9: Predicted (a)-(d) and observed (e)-(h) periods at which frames are analyzed.

steps 1000 and 2000 for all fractions of frames analyzed. We
use the 2-step model described in Section IV-B to generate
the periodic indices of the analyzed frames. To model the
random occurrence of the abrupt transition in the 1BDD
protein conformations, we also randomize the first value of
the analyzed frame index selected by the 2-step model, using
a uniform distribution in the interval [1, k]. This introduces a
randomized shift in the phase of the periodic pattern without
changing the periodic pattern itself. In order to quantify the
expected loss of information due to loss of periodic frames in
time series data, we introduce the concept of effective number
of frames, neg, in a correlated time series, defined as [15]

= " . 12

1+230) =k p, .
Here, the total number of samples (frames captured by anal-
ysis) is denoted by n and p; represents the k-th point of
the empirical autocorrelation function. In practice, since the
accuracy of pj decreases for long autocorrelation times, we
truncate the sum at the first passage through zero [16]. For

Neff

195

uncorrelated time series data, neg is equal to n. For autocorre-
lated time series data, decreasing the number of samples down
to neg = M is not expected to increase the standard expected
error on the mean, s,(Z). The unbiased sample estimator [17]
for s,(T) is:

s. (13)

Alternatively, we can quantify the empirical error on the
mean, S., taking as reference the full-sample mean value,
Z(f = 1), i.e. the mean value of the observable (largest
eigenvalue) when 100% of the frames are analyzed,

1 M
se(@ f) = 3\ 2_ @) =2(f =12 (14)

Here, Z,,(f) is the empirical error on mean in trial £ when a
fraction f of the frames are analyzed, and M is the number
of trials.
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This is observed for the largest eigenvalues data when
low fractions of frames are analyzed. The fractions at which
neg = n is observed for Helices 1-2, 1-3 and 2-3 are 0.09, 0.06
and 0.03. Figure 13 shows the n.g values estimated from the
largest eigenvalue data as a function of the fraction of frames
analyzed. For all three helix pairs, the n.g is observed not
to increase after 20% of the frames are analyzed. For Helix
1-2, 1-3 and 2-3 n.g is observed to be roughly 66, 30 and 15,
respectively. Based on the observation in Figure 14, both s,
and s, increase substantially when large fractions of frames
are lost, thereby increasing the uncertainty in the observables.

It is evident from the nes data in Figure 13 and the s,
and s. data in Figure 14 that two regions exist where the
fraction of frames analyzed has different implications. Above
a threshold fraction of frames analyzed, f;, whose value we
expect to be close to neg/n, loss of frames does not affect
the analytics. Below f;, the analytics enter a regime where
uncertainty increases. To further understand the effect of lost
frames on the ability to detect abrupt structural transformations
in the protein system, we closely examine at the region below
ft (f = 0.01) for the Helix 1-3 largest eigenvalue data. The
error bars on the data point near the abrupt transition around

196

time step 1390 indicate that the rare event can be lost at low
fractions (f < fp).

VI. RELATED WORK

The use of traditional relational databases for trajectory
analysis requires a posteriori trajectory upload and analysis of
data using database functions (e.g., PostgreSQL [18], [19]).
For finding similarities across datasets, many clustering meth-
ods have been applied to molecular structures and to MD
trajectories in particular. For example, Shao et al. outline
how there is not a one-size-fits-all clustering method [20].
Li and Dong describe the effect of clustering algorithms
such as Bayesian clustering, k-means clustering, and kinetic
clustering on establishing Markov state models for MD simu-
lations [21]. Rodriguez presents a method for fast searches and
identification of density peaks in trajectories [22]; the method
requires the scientist to pick visually the number of peaks
thought to be correct. Such clustering strategies are used with
a post-simulation perspective but are not scalable on exascale
machines. On the other hand, another class of methods, the
data-streaming algorithms, are designed to analyze data on
the fly. A framework for clustering evolving data streams [23]
and data-streaming methods for high-quality clustering [24]
are good resources regarding clustering of time series data.
Some aspects of these methods, originally not developed for
MD data, will be integrated in our framework. For classifying
molecular structures in MD simulations, work has been done
based on knowledge of the protein states a priori [25]-[27].

Software tools are available for comparing metrics in a
distributed fashion. One such method is dynamic tensor anal-
ysis [28]. Efforts were undertaken to make the computation as
light as possible, but the method still requires that a sequence
of distance matrices from the amino acids of the entire
protein be stored in memory, resulting in a larger memory
footprint than with our technique. Centralized algorithms [29],
[30] make metrics analyses inefficient when dealing with
large proteins and long trajectories; assessments rely only on
synthetic folding trajectories. Hybrid approaches have been
introduced to handle big data analysis problems in the HPC
context [31], [32]. These approaches combine in situ and in
transit processing for extreme-scale scientific analysis such as
topological analysis, descriptive statistics, and visualization.

We note some recent efforts to manage ensembles of trajec-
tories on large distributed infrastructures. Such a framework
has been developed for NAMD using the parallel programming
system Charm++, on which NAMD is built, and imple-
menting some of the enhanced sampling methods outlined
above [6]. A similar platform has been proposed for Gromacs,
based on the distributed high-performance computing platform
Copernicus [33]. The high-throughput MD [34] framework
developed around the program ACEMD is a Python interface
that supervises MD data generation and a posteriori analysis.
At this point, none of these frameworks is tightly integrated
with in situ trajectory analysis.
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