
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019 4649

SAFFRON: A Fast, Efficient, and Robust Framework
for Group Testing Based on Sparse-Graph Codes

Kangwook Lee , Kabir Chandrasekher, Ramtin Pedarsani , and Kannan Ramchandran

Abstract—Group testing is the problem of identifying K de-
fective items among n items by pooling groups of items. In this
paper, we design group testing algorithms for approximate recov-
ery with order-optimal sample complexity by leveraging design
and analysis tools from modern sparse-graph coding theory. Our
algorithm, SAFFRON, recovers at least (1− ε)K defective items
w.p.1− K/nr withm = 2(1 + r)C(ε)K log2 n tests, whereε
is an arbitrarily small constant,C(ε) is a precisely characterizable
constant, and r is any positive integer. The decoding complexity
is Θ(K logn). We also propose variations of SAFFRON, which
are robust to noise and unknown offsets. For example, for n ≃
4.3× 109 and K = 128, our algorithm is observed to recover
all defective items with m ≃ 8.3× 105 tests, even in the presence
of noisy test results. Moreover, the decoding time takes less than 4
seconds on a laptop with a 2 GHz Intel Core i7 and 8 GB memory.

Index Terms—Group testing, compressed sensing, sparse-graph
codes, sub-linear decoding complexity.

I. INTRODUCTION

GROUP testing tackles the problem of identifying a pop-
ulation of K defective items from a set of n items by

pooling groups of items in order to reduce the number of tests
needed. The result of a pooled test is positive if any of the items
in the pool is defective and negative otherwise. The goal is to
judiciously group subsets of items such that defective items can
be reliably recovered using a small number of tests, while having
a low-complexity decoding procedure.

Group testing arose during the Second World War [3]: in order
to detect all soldiers infected with the syphilis virus without

Manuscript received July 30, 2018; revised December 3, 2018, March 19,
2019, and June 21, 2019; accepted June 25, 2019. Date of publication July
24, 2019; date of current version August 9, 2019. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Dr. Vaughan Clarkson. This work was supported by the National Science Foun-
dation under Grants CCF-1527767 and CCF-1755808. This paper was presented
in part at the IEEE International Symposium on Information Theory, Barcelona,
Spain, July 2016 [1] and in part at the IEEE International Conference on
Communications, Paris, France, May 2017. (Corresponding author: Kangwook
Lee.)

K. Lee is with the Department of Electronics and Communication Engi-
neering, University of Wisconsin–Madison, Madison, WI 53706 USA (e-mail:
kangwook.lee@wisc.edu).

K. Chandrasekher is with the Department of Electrical Engineering, Stan-
ford University, Stanford, CA 94305 USA (e-mail: kabirchandrasekher@
gmail.com).

R. Pedarsani is with the Department of Electronics and Communication
Engineering, University of California Santa Barbara, Santa Barbara, CA 93106
USA (e-mail: ramtin@ece.ucsb.edu).

K. Ramchandran is with the Department of Electrical Engineering and Com-
puter Science, University of California—Berkeley, Berkeley, CA 94720 USA
(e-mail: kannanr@eecs.berkeley.edu).

Digital Object Identifier 10.1109/TSP.2019.2929938

individually testing them, the blood samples of subsets of sol-
diers were pooled together and tested as groups. This testing
mechanism is cost-efficient since a negative test result can tell
that all the individuals in the tested group are not infected with
the virus. Since then, varied theoretical aspects of group testing
have been studied, and more applications of group testing have
been discovered in a variety of fields spanning across signal
processing [4]–[7], computer science [8], biology [9], machine
learning [10], [11], and medicine [12].

Among a variety of applications, group testing is particu-
larly relevant to compressed sensing (CS) [13], [14]. The main
difference between group testing and CS is that Boolean OR
over binary signals is assumed in group testing problems while
addition over real-valued or complex-valued signals is assumed
in CS. Except for that difference, the two problems are identical:
the goal is to recover a high-dimensional signal from the fewest
number of low-dimensional projections or measurements. In-
deed, quantitative group testing is one variant of group testing
that is even more relevant to CS: Each pool reveals the number
of defective items in the pool, i.e., the pool operator is addition
instead of Boolean OR [15, Part III]. Note that this problem is
essentially identical to a variant of CS called Binary CS (BCS),
where the input signal is binary-valued [16]. An adaptive version
of quantitative group testing problem has been also studied in [7],
[17]–[19].

A. Problem Formulation

We now formally define the problem. Consider n items,
among which exactlyK items are defective. The locations of the
defective items can be compactly written as a length-n binary
vector x = (x1, x2, . . . , xn)ᵀ ∈ {0, 1}n, where xi is 1 if and
only if item i is defective for 1 ≤ i ≤ n. Defining supp (·) as the
set of indices of non-zero elements, |supp (x) | = K.

A subset of items can be pooled and tested, and the test result
is either 1 (positive) if it includes at least one defective item,
or 0 (negative) otherwise. For notational simplicity, we denote
a subset by a binary vector, a = (a1, a2, . . . , an)ᵀ ∈ {0, 1}n,
where ai is 1 if and only if item i belongs to the subset. Following
the notation of [5], a group testing result y can be denoted by

y = aᵀx :=
n!

i=1

aixi =
!

ai=1

xi, (1)

where multiplication of 0’s and 1’s is the usual multiplication
but addition is replaced by the logical OR. We represent m
pools a1,a2, . . . ,am by a matrix A = (aᵀ1 ,a

ᵀ
2 , . . . ,a

ᵀ
m)

ᵀ ∈

1053-587X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4650 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

{0, 1}m×n. We call this matrix the group testing matrix. Then,
the group testing results can be compactly written as y := Ax.

The goal of group testing is to design a matrix A such that
1) the number of tests m is as low as possible, and at the
same time, 2) one can efficiently recover x from y. More
specifically, there should exist a decoding function, denoted
by gA : {0, 1}m → {0, 1}n, such that x̂ := gA(y) is efficiently
computable, and x̂ ≈ x with provable guarantees. In this work,
we focus on the non-adaptive setting, i.e.,A needs to be designed
before observing any test outcomes.

Depending on different applications, one can define differ-
ent recovery objectives. The most stringent objective is ex-
act recovery: x̂ = x. A slightly looser objective is ε-partial-
recovery without false detections: one wants to make sure that
|supp(x̂) \ supp(x)| = 0 and |supp(x) \ supp(x̂)| ≤ εK.

B. Our Contributions

Our goal is to design an efficient group testing matrix A
that allows for computationally efficient decoding algorithm for
partial recovery without false detections. More specifically, our
goal is to have a decoding complexity of sublinear in n.

In this work, we propose SAFFRON, a non-adaptive, approx-
imate group testing framework. Leveraging the tools of sparse-
graph coding theory and powerful tools like density evolution
techniques [20], we precisely characterize the measurement
complexity of SAFFRON. We also show that SAFFRON can be
made robust to noise in a modular method. Furthermore, we also
formulate the asynchronous group testing problem, targeting the
neighbor discovery application in the Internet of Things (IoT)
systems. We then propose a SAFFRON-based solution, dubbed
as A-SAFFRON, and show that it can reliably find the location
of defective items even when items are pooled with unknown
offsets, which will be formally described in Section V-A.

In particular, SAFFRON can achieve ε-partial-recovery with-
out false defectives with m = 2(1 + r)C(ε)K log2 n tests, w.p.
1−K/nr, where C(ε) is a precisely characterizable constant
(See Table II). Here, r is an arbitrary positive integer, so one
can easily trade off the measurement complexity with the error
probability. The decoding complexity is Θ(K log n).

To show the usefulness of SAFFRON, consider a case where
K = 128 defective items have to be recovered from a set of
n ≈ 4.3× 109 items. Let us also assume that each test re-
sult is randomly flipped with probability of 2%, i.e., noisy
group testing. Under this setting, our simulation results show
that SAFFRON recovers all the K = 128 defective items with
m ≈ 8.3× 105 tests in 3.8 seconds on average, when run on a
standard laptop. To the best of our knowledge, this is the first
group testing algorithm that can solve billion-scale noisy group
testing problems in seconds.

Remark 1 (Practical Impact of SAFFRON): While SAF-
FRON features efficient decoding (sublinear in n) algorithm,
it has a few limitations. First, though order-optimal for a fixed
value of ε, there exists a constant factor gap between the
number of tests required by SAFFRON and the fundamental
limit. (See Remark 6 for a detailed discussion.) On the other
hand, there exist other group testing algorithms that 1) run
‘linear’ in n and 2) closely match the fundamental limit in terms
of test complexity [21], [22]. When n is extremely large, the
decoding complexity will clearly become the bottleneck of the

entire group testing procedure in any cases, and this is when
SAFFRON can play a critical role.

Furthermore, under the SAFFRON scheme, the average num-
ber of items included in each pool is Θ(n/K)while the average
number of defective items in each pool isΘ(1). Thus, SAFFRON
is useful when even a single defective item pooled with a large
number of non-defective items can make the test result positive
without being diluted.

The neighbor discovery problem in IoT systems is a par-
ticular application that satisfy both conditions: n is large, and
non-defective items correspond to inactive IoT nodes, so they
do not dilute test results. Another critical application is digital
forensics [8]. In such applications,n is large since it corresponds
to the size of database. Furthermore, a pooled test corresponds to
an integrity check of concatenated data blocks (or concatenated
code blocks), so a single error alone makes the test result
positive.

C. Related Work

We briefly overview the existing work in the literature, fo-
cusing on the non-adaptive group testing problem. We refer the
readers to [9], [21], [23] for a more comprehensive survey.

1) Combinatorial Group Testing: For group testing algo-
rithms with zero-error reconstruction, i.e., combinatorial group
testing, the best asymptotic lower bound (for fixedK and asymp-
totic n) on the number of required tests is Θ(K2 log n/ logK),
and the best asymptotic upper bound is Θ(K2 log n) [24], [25].
Although the zero-error reconstruction property is definitely a
desired property, such group testing schemes typically involve
exhaustive table searches in their reconstruction procedures, and
hence require a high computational and memory complexity of
O(Kn log n) [26]. In [27], Cheraghchi develops a noisy group
testing matrix with O(K log n), allowing for O(Kn log n) de-
coding, which may yield up to O(K) false positive. In [28], the
authors propose a scheme that requires O(K2 log n) tests, while
having an efficient decoding algorithm of computational com-
plexity poly(K) log n log2 (K2 log n) +O(K4 log2 n), which
is sublinear in n if K is a sufficiently small power of n.

2) Probabilistic and Approximate Group Testing: Several
relaxations of the group testing problem have been studied in the
literature. One such relaxation is allowing a small error probabil-
ity as well as relaxing the requirement of perfect identification.
That is, the goal is to design a group testing scheme that identifies
an approximate answer with high probability. Many approaches
have been proposed to design group testing schemes that allow
an efficient decoding algorithm for these relaxed yet important
problems. One such approach is random pooling design based on
random bipartite graphs. For instance, randomized group testing
schemes based on constant test-per-item design and constant
items-per-test design are studied, respectively in [29] and [30].
Other lines of work have made use of existing pooling designs.
In [26], [31], the authors use randomly chosen pools from
carefully designed pools that are initially tailored for a zero-error
reconstruction setting. With certain success probabilities, these
schemes find a large fraction of the K defective items, while
wrongly identifying a small fraction of normal items as defective
items, which can be efficiently identified as false positive in a
subsequent round of trivial tests. Despite the simplicity of this
class of constructions, performance analysis is rather convoluted

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SAFFRON: A FAST, EFFICIENT, AND ROBUST FRAMEWORK FOR GROUP TESTING BASED ON SPARSE-GRAPH CODES 4651

and cumbersome. Further, these schemes are generally difficult
to make robust to noise.

Another line of work takes an information-theoretic approach.
That is, one assumes a prior distribution on the set of defec-
tive items, and designs a group testing scheme that succeeds
with probability approaching one. In [32], the authors study
the noisy group testing problem under this setup. Recently,
Atia and Saligrama show that Θ(K polylog n) tests is suffi-
cient [33]. Chan et al. propose novel group testing algorithms
and compare their performances with the fundamental lower
bounds [34]. Scarlett and Cevher precisely characterize the
phase transitions in group testing when K is a small power of
n [35], [36]. Mazumdar presents near-optimal explicit construc-
tions in [21]. Aldrige et al. propose two new algorithms that
are superior under certain regimes of sparsity [22] compared
to [34].

In [37], generalizing the definition of disjunct matrices, i.e.,
testing matrices that allow for efficient non-adaptive group
testing, the authors propose (K, ε)-disjunct matrices, and re-
veal their connection to error correcting codes. While most of
these works assume that the number of defectives is binomially
distributed, Emad and Milenkovic study the case where the
number of defective follows the Poisson distribution and propose
a near-optimal test matrix design [6].

3) Computationally-Efficient Group Testing: Several works
have proposed group testing schemes with efficient decoding
algorithms. In [5], the authors present a simple group testing
procedure that efficiently recovers a large fraction ofK defective
items with O(K log2 n) tests. While the proposed decoding
algorithm runs in time (K log n)O(1), the algorithm returns
O(K log n) false positives, which need to be double-checked
using a two-stage algorithm.

In [38], Cai et al. propose GROTESQUE, a class of efficient
group testing schemes, which is the first adaptive group testing
algorithm that achieves both an order-optimal number of tests
and an order-optimal decoding complexity, but at the cost of
using O(logK) adaptive stages. Their non-adaptive scheme re-
quiresO(K logK log n) tests, and has a decoding complexity of
O(K(log n+ log2 K)). When applied to the synchronous case,
our A-SAFFRON algorithm recovers the sample complexity
(up to a constant factor) and the computational complexity of
the GROTESQUE algorithm, and hence one can view it as an
asynchronous extension of the GROTESQUE algorithm.

D. Sparse-Graph Codes for Group Testing

Sparse-graph codes form the backbone of reliable modern
communication systems [20]. In [39], the authors analyze the
performance of a belief propagation algorithm for group testing
in a similar way one would analyze the belief propagation
decoding for Low-Density-Parity-Check (LDPC) codes [20].
As a result, the authors characterize the phase transition be-
haviors of certain algorithms. In [40], the author derives some
impossibility results for the group testing problem by leveraging
LDPC-inspired designs and proof techniques, but the results
were later retracted due to some errors. While the existing works
directly apply sparse-graph codes as a group testing matrix,
SAFFRON is based on a novel combination of a sparse-graph
code and efficient singleton/doubleton recovery codes, allowing
for efficient sublinear decoding complexity.

TABLE I
SUMMARY OF THE NOTATION

E. Paper Organization

The rest of the paper is organized as follows. We introduce our
SAFFRON framework in Section II, and provide its theoretical
guarantees in Section III. In Section IV, we robustify SAFFRON
so that they can reliably recover the defective items even with
noisy test results. In Section V, we formulate the asynchronous
group testing problem, targeting the neighbor discovery ap-
plication in IoT systems. We then propose A-SAFFRON and
analyze its performance. Lastly, we provide simulation results
in Section VI, corroborating our guarantees and demonstrating
the practicality of the SAFFRON framework.

F. Notations

For a positive integer n, [n] := {1, 2, . . . , n}. Following the
MATLAB notation, [A;B] := [Aᵀ, Bᵀ]ᵀ. We denote the set of
the indices of the non-zero elements by supp (·). The Hamming
weight or the number of ones of a binary vector is denoted
by w(·). The ith element of vector x is denoted by xi, and
the bit-wise complement vector of x is denoted by x. Table I
summarizes our notation, which will be defined throughout the
paper.

II. THE SAFFRON SCHEME

Before we describe our scheme, we first describe the high-
level difference between our approach and the existing ones.
Many of the efficient decoding algorithms proposed in the liter-
ature are designed to identify non-defective items. For instance,
Combinatorial Orthogonal Matching Pursuit (COMP), proposed
in [34], finds a set of definite non-defective items: If an item is
pooled in a test but the test result is negative, the item must
be non-defective. Definite Defectives (DD), proposed in [22],
first runs COMP, obtaining a set of items that are not marked as
non-defective. Note that if some positive test contains exactly
one item from this set, the item is definitely defective. DD finds
a list of such items, declaring them to be defective items. While
these algorithms are shown to succeed with a small number of
tests close to the lower bound, their computational complexities
are inevitably Ω(n). Particularly, if K = o(n), finding a list
of non-defective items takes at least Θ(n−K) = Θ(n) oper-
ations. Furthermore, these algorithms require a full scan of A,
so the computational complexities are linear in the number of
ones in it. Under a reliable recovery condition, this leads to

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4652 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

Ω(n log n) complexity. In order to have a sublinear decoding
time, we judiciously design our group testing matrix such that
1) a full scan ofA is not required while decoding and 2) defective
items can be identified without needing to find non-defective
items beforehand.

To achieve this properties, we rely on an architectural philoso-
phy that is similar to the ones in [41]–[47]. The key idea of SAF-
FRON is the adoption of a design principle called ‘sparse signal
recovery via sparse-graph codes’, which has been applied to a
varied class of problems such as computing a sparse Fast Fourier
Transform [48], a sparse Walsh Hadamard Transform [49], and
the design of systems for compressive sensing [50] and compres-
sive phase-retrieval [51]. In all these problems, one designs an
efficient way of sensing or measuring an unknown sparse signal
such that the decoder can estimate the unknown signal with a
low decoding complexity. The overarching design principle is to
1) design a sensing matrix based on a sparse bipartite graph and
to 2) decode the measurements using a simple peeling decoder.
Since the group testing problem can also be viewed as a sparse
signal recovery problem, we will follow this design principle to
design an efficient solution.

In our framework, the m tests are arranged into M groups of
size h, i.e., m =Mh. We then design a bipartite graph with n
left nodes and M right nodes, in which left nodes correspond
to items, and right nodes correspond to test groups. Particularly,
we will construct our bipartite graph based on left-regular con-
struction. That is, each left node is connected to constant number
d of right nodes uniformly at random. We note that left-regular
bipartite graphs have been shown useful for improving sample
efficiency in group testing [39], [52].

We denote the incidence matrix of a bipartite graph G by
TG ∈ {0, 1}M×n, or simply T if G is clear from the context.
Let ti be the ith row of TG . We associate each left node with
M signature (column) vectors of length h. We denote the M

signature vectors of item j by [u(i)
j]

M
i=1, where u(i)

j ∈ {0, 1}h.
We define M signature matrices [U (i)]Mi=1, where U (i) :=

[u(i)
1 ,u(i)

2 , . . . ,u(i)
n−1,u

(i)
n] ∈ {0, 1}h×n for all i. Here, U (i) is

called the signature matrix for the ith right node.
Given a graph G and signature matrices [U (i)]Mi=1, we

design our group testing matrix A to be [A1;A2; . . . ;AM] ∈
{0, 1}hM×n, where Ai = U (i)diag(ti) ∈ {0, 1}h×n, and
diag(·) is the diagonal matrix constructed by the input
vector. As an example, the signature matrix designed
with T = [0, 1, 0; 1, 1, 0; 0, 0, 1] and U (1) = U (2) = U (3) =
[1, 0, 1; 0, 1, 1] is

A =

⎡

⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1

⎤

⎥⎥⎥⎥⎥⎦
. (2)

For notational simplicity, we define the observation vector cor-
responding to right node i as zi := y(i−1)h+1:ih for 1 ≤ i ≤M .
Then,

zi = U (i) · diag(ti)x =
!

(ti)j=1,xj=1

u(i)
j , 1 ≤ i ≤M. (3)

That is, zi is the bitwise logical ORing of all the signatures of
the active left nodes that are connected to right node i.

Our decoding algorithm simply iterates through all the right
node measurement vectors {zi}Mi=1, and checks whether a right
node is resolvable or not. A right node is resolvable if exactly
one new defective item can be detected by processing the right
node, i.e., the location index of the defective item is found.
The decoding algorithm is terminated when there are no more
resolvable right nodes.

We now present the following terminologies. A right node
that is connected to one and only one defective item is called a
singleton. A right node that is connected to two defective items
is called a doubleton. Later, we show that with the aid of our
signature matrix, 1) a singleton is resolvable, and 2) a doubleton
is resolvable if one of the two defective items is already identified
(in the previous iterations of the algorithm).

A. Detecting and Resolving a Singleton

Consider the following signature matrix V where the ith

column is a vertical concatenation of bi and its complement
bi, where bi is the L-bits binary representation of an integer
i− 1, for i ∈ [n], where L = ⌈log2 n⌉.1

V =

(
b1 b2 · · · bn
b1 b2 · · · bn

)
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 1
0 0 . . . 1
...

...
. . .

...
0 0 . . . 1
0 1 . . . 1
1 1 . . . 0
1 1 . . . 0
...

...
. . .

...
1 1 . . . 0
1 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

We now show that a singleton can be detected and resolved with
the aid of this signature matrix. First, note that the sum of the
weight of any binary vector and the weight of its complement
is always the length of the vector. Thus, given a singleton,
the weight of the measurement vector is L. Further, one can
also read the first half of the measurement of the detected
singleton to find the index location of the defective item. We
refer to this procedure as the singleton recovery algorithm. The
following proposition characterizes the recovery guarantee of
the singleton recovery algorithm.

Proposition 1: Consider a fixed right node whose signature
matrix isV . The singleton recovery algorithm correctly detects a
singleton and identifies the defective item connected to the right
node w.p. 1. If the right node is not a singleton, the algorithm
does not declare a false defective item.

Proof: The first part of the statement is evident from the
algorithm description, and hence we focus on the case where
the right node is a zeroton or a multiton. If the node is a zeroton,
the weight of its vector will be 0, and hence the algorithm will not
declare a defective item. For the case of multiton, we will show
that the weight of a doubleton’s measurement vector is always

1For simplicity, the rest of paper will assume that n is a power of 2, and hence
L = log2 n.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SAFFRON: A FAST, EFFICIENT, AND ROBUST FRAMEWORK FOR GROUP TESTING BASED ON SPARSE-GRAPH CODES 4653

strictly larger thanL. To see this, consider a doubleton consisting
of item i and j, i ̸= j. Denote the set of 1’s locations in bi by Si.
Since i ̸= j, either Sj \ Si ̸= ∅ or Sj ! Si holds. If the former
holds, ∥bi + bj∥0 > ∥bi∥. If the latter holds, [L] \ Si ! [L] \
Sj , and hence ∥bi + bj∥0 > ∥bi∥. This proves that the weight
of a doubleton’s measurement vector is strictly larger than L.
Hence, the recovery algorithm does not declare a false defective
item when the right node is a doubleton. Since multitons with
degree larger than 2 will have at least the same weight as that of
a doubleton, the statement is proved. !

B. Detecting and Peeling Doubletons

We now design the full signature matrix Ur by expanding V
so that one can detect and resolve both singletons and resolvable
doubletons. Here, r denotes the number of extra check stages
used, determining the reliability of the doubleton decoding part.
A formal guarantee will be given in Lemma 2 later in this section.

We first define some useful notations. Given a mapping i :
[n]→ [n], we define

Vi :=

(
bi(1) bi(2) bi(3) . . . bi(n−1) bi(n)
bi(1) bi(2) bi(3) . . . bi(n−1) bi(n)

)
. (5)

That is, Vi is a column-permuted version of V as per i. We
are now ready to define the full signature matrix Ur. We first
randomly draw r random mappings: i1, i2, . . . , ir. Specifically,
for all j ∈ [r] and k ∈ [n], ij(k) is drawn uniformly at ran-
dom from [n], independently of others. Then, we define Ur :=
[V ;Vi1 ;Vi2 ; · · · ;Vir].

For illustrative purpose, let us consider U1.

U1=

(
V
Vi1

)
=

⎡

⎢⎢⎣

b1 b2 b3 . . . bn−1 bn
b1 b2 b3 . . . bn−1 bn
bi1(1) bi1(2) bi1(3) . . . bi1(n−1) bi1(n)
bi1(1) bi1(2) bi1(3) . . . bi1(n−1) bi1(n)

⎤

⎥⎥⎦

Then, the measurement vector for the kth right node, zk, is

zk = U1 · diag(tk)x =
(
V · diag(tk)x
Vi1 · diag(tk)x

)
=

(
z0k
z1k

)
, (6)

where we defined z0k := V · diag(tk)x and zjk := Vij ·
diag(tk)x. We call zjk the jth section of the kth right-node
measurement vector.

Example 1: Assume x = e2 + e3 + en−1 and tk = e2 +
en−2 + en−1. That is, items 2, 3, and n− 1 are defective items,
and right node k is connected to items 2, n− 2, and n− 1.
Thus, this right node is a doubleton connected with items
2 and n− 1. Assuming U1, the measurement vector consists
of 2 sections: z0k = [b2 ∨ bn−1; b2 ∨ bn−1] and z1k = [bi1(2) ∨
bi1(n−1); bi1(2) ∨ bi1(n−1)].

We now describe how one can resolve a doubleton using Ur.
We first describe the doubleton recovery procedure assuming
r = 1. Assume that right node k is connected to exactly one
identified defective item, say ℓ. The decoder first assumes that
the right node is a resolvable doubleton that is connected to item
ℓ and an unidentified defective item ℓ′. Let us first consider the
first section: z0k = [bℓ ∨ bℓ′ ; bℓ ∨ bℓ′]. Note that one can always
recover every bit of bℓ′ from z0k as follows. Consider (bℓ′)1, the
first bit of bℓ′ . If (bℓ)1 = 0, then (bℓ′)1 = (z0k)1. If not, one can
read the first bit from the second half of the section: (bℓ0)1 =

(z0k)L+1 = 1− (z0k)L+1. This procedure can be applied to every
other bit of bℓ′ . Denote the result of this procedure by s0.

After the decoder recovers s0, it then computes bi(ℓ). By
applying the same procedure to the second section, the decoder
can obtain another index, which we call s1.

The decoder now checks whether i1(s0) = s1. If this is the
case, it claims that the assumption was correct, declaring a new
defective item s0. In general cases where r > 1, the doubleton
recovery algorithm declares a new defective item only when all
of the r additional check equations hold.

While this procedure always outputs a correct index when
applied to a resolvable doubletons, i.e., s0 = ℓ′ w.p. 1, it could
wrongly declare a defective item when applied to a right node
that is connected to more than 2 defective items. We now state
a formal performance guarantee.

Lemma 2: Consider a fixed right node whose signature ma-
trix is Ur, whose index mappings are drawn at random, inde-
pendently of others. Further assume that it is connected to one
identified defective item. If the right node is indeed a doubleton,
the doubleton recovery algorithm recovers the index of the other
defective item w.p. 1. If the right node is connected to more than
2 defective items, the doubleton recovery algorithm declares a
wrong defective item w.p. 1/nr.

Proof: The first half of the statement is shown in the above
decoding algorithm description, and hence we focus on proving
the second part. Consider a right node connected to more than
2 defective items. Assume that the index read from the jth

stage is sj for j ∈ {0, 1, . . . , r}. Note that s0 is not random:
It is a deterministic function of the indices of defective items
connected to the right node. We consider two cases. Assume that
item s0 is indeed one of those defective items connected to the
right node. In this case, the doubleton recovery algorithm may
declare item s0 as defective but this is a benign error. If item
s0 is not a defective item or not connected to the right node,
[si]ri=0 are mutually independent. Hence, all r check equations
hold w.p. 1/nr. !

C. SAFFRON: Algorithm Description and Complexities

Before we begin the description of our SAFFRON algorithm,
we first describe a simplified version of it, which we call
Singleton-Only-SAFFRON. While the main purpose of intro-
ducing Singleton-Only-SAFFRON is to help the readers better
understand the key idea behind the full SAFFRON algorithm,
we also note that this simplified version itself has its own value
due to its sheer simplicity. Indeed, the A-SAFFRON algorithm,
which we will present in Section V, is a variation of this
algorithm.

Consider the case where U (1) = · · · = U (M) = V , where V
is defined as in (4). By Proposition 1, a right node can detect a
singleton without making an error if the right node is a singleton.
Thus, as long as we design a graph such that most of the K
defective items are connected to at least one singleton, we can
have some recovery guarantee. We first pick positive integers
r and d and a positive real number C > 0. The number of
right nodes is set as M = CK. Fix a left node and consider
d right nodes that are connected to it. The probability that a
connected right node is a singleton is (1− d

CK)
K−1, which can

be approximated by e−d/C . Thus, the probability that all of them
are not a singleton is approximately (1− e−d/C)d. Thus, by the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4654 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

linearity of expectation, the expected number of defective items
that are not connected to any singleton isK(1− e−d/C)d. While
some approximation is made in this informal derivation, one
can formally show that the actual number of missed defective
items is concentrated around this expectation value by applying
McDiarmid’s inequality with high probability.

The full SAFFRON algorithm is an advanced version of the
Singleton-Only-SAFFRON algorithm as it not only recovers sin-
gletons but also recovers doubletons, which in turn improves the
number of tests by a constant factor. We now formally describe
the full SAFFRON algorithm. Again, we first pick positive inte-
gers r and d and a positive real number C > 0. To clearly show
the choice of these parameters, we will denote this algorithm by
SAFFRON(r, d, C). The number of right nodes is set as M =
CK. One then generates a random d-left-regular bipartite graph
TG and M signature matrix [U (i)

r]Mi=1. Then, we test items in
groups according to A = [U (1)

r diag(t1); . . . ;U
(M)
r diag(tM)].

Given the observation vector y of length m = hM , SAF-
FRON first obtains M right-node measurements of length h.
It then inspects the ith right-node measurement with the aid of
ti and U (i)

r for each i. Each right-node measurement maintains
a list of defective items that are declared to be connected to
the right node. If this list is empty, one applies the single
detection/recovery algorithm; If it has exactly one item, one
applies the doubleton recovery algorithm. If a new defective
item is identified, it is appended to d right node measurements
that are connected to this item. We do not append an item to lists
that already have two items. This is run for Niter iterations.

The total runtime of our decoding algorithm is Θ(K log n).
Each iteration consists of Θ(K) right-node decoding, and it is
run for a constant time. The singleton detection measures the
weight of the measurement vector, which runs in time Θ(log n).
The doubleton recovery also runs in time Θ(log n). Hence,
the right-node decoding procedures run in time Θ(K log n). In
between right-node decoding procedures, the algorithm updates
the list of identified items associated with each right node. When
a new defective item is identified, SAFFRON updates d lists. By
construction, the length of a list is no greater than 2, so appending
an item to a list takes a constant time, and this updates occurs
at most K times. Thus, the total complexity of updating lists is
Θ(K). As the total complexity is the sum of the two costs, it
becomes Θ(K log n) +Θ(K) = Θ(K log n).

D. An Example

In this section, we provide an illustrative example of the
decoding algorithm of SAFFRON. Assume n = 8 and K = 3,
and let x = (1, 0, 1, 0, 0, 0, 0, 1), i.e., item 1, item 3 and item 8
are defective items. Recall that A is a row tensor product of TG
and U . Assume that a bipartite graph G is randomly drawn as
follows.2

TG =

⎡

⎢⎣

0 1 1 1 0 1 0 0
1 1 1 1 0 0 1 1
1 0 0 0 1 0 1 1
0 1 1 0 1 1 0 1

⎤

⎥⎦∈ {0, 1}M×n

2In the interest of conceptual clarity of the toy example, here we present a
bipartite graph that is not left-regular. Furthermore, we note that the number of
tests m is larger than the number of items n in this artificial example.

We haveM = 4 right nodes, andn = 8 items are connected to
them according to TG . Assume r = 2 and U = U (1)

2 = U (2)
2 =

U (3)
2 = U (4)

2 for the ease of explanation. Consider the following
realizations of random mappings:

(i1(1), i1(2), . . . , i1(8)) = (5, 2, 4, 8, 7, 1, 3, 6),

(i2(1), i2(2), . . . , i2(8)) = (3, 1, 5, 6, 3, 8, 2, 7).

Then, the signature matrix of SAFFRON is as follows.

U =

⎡

⎣
V
Vi1
Vi2

⎤

⎦=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1
0 0 1 1 1 0 1 0
0 1 1 1 0 0 0 1
0 1 1 0 0 1 1 0
1 1 0 0 0 1 0 1
1 0 0 0 1 1 1 0

0 0 1 1 0 1 0 1
1 0 0 0 1 1 0 1
0 0 0 1 0 1 1 0
1 1 0 0 1 0 1 0
0 1 1 1 0 0 1 0
1 1 1 0 1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

= [u1,u2,u3,u4,u5,u6,u7,u8] (8)

Using (3), we have the following equations for the four right-
node measurement vectors.

z1 = u3

= (0, 1, 0, 1, 0, 1|0, 1, 1, 1, 0, 0|1, 0, 0, 0, 1, 1)ᵀ,

z2 = u1 ∨ u3 ∨ u8

= (1, 1, 1, 1, 1, 1|1, 1, 1, 1, 1, 1|1, 1, 0, 1, 1, 1)ᵀ,

z3 = u1 ∨ u8

= (1, 1, 1, 1, 1, 1|1, 0, 1, 0, 1, 1|1, 1, 0, 1, 0, 1)ᵀ,

z4 = u3 ∨ u8

= (1, 1, 1, 1, 0, 1|1, 1, 1, 1, 1, 0|1, 1, 0, 0, 1, 1)ᵀ,

where the 3 sections of each right node’s measurement vector
are separated by vertical bars. We are now ready to decode these
measurements. The decoding algorithm first finds all the sin-
gletons by finding right nodes whose weight of the first section
is L = log2 n. Since w(z01) = log2 n, the decoder declares that
right node 1 is a singleton. Then, it can read off the first 3 bits
of z1, declaring item 3 as defective.

In the second iteration, the algorithm inspects right nodes that
are potentially resolvable doubletons including defective item 3.
Since T2,3 = T4,3 = 1, the defective item 3 is connected to right
nodes 2 and 4. Hence, the decoder will inspect these two right
nodes, which are potentially resolvable.

Consider right node 2. We hypothesize that the right node is
a doubleton consisting of defective item 3 and exactly one other
unknown defective item. That is, we guess that z2 = u3 ∨ uℓ′ ,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SAFFRON: A FAST, EFFICIENT, AND ROBUST FRAMEWORK FOR GROUP TESTING BASED ON SPARSE-GRAPH CODES 4655

and recover the index as in Section II-B. Then, we get s0 =
6, s1 = 8, s2 = 3. By noticing that i1(s0) = 1 ̸= s1, i2(s0) =
8 ̸= s2, the decoder declares that the right node is not a resolv-
able doubleton.

Consider right node 4. The decoder again makes a guess
that z4 = u3 ∨ uℓ′ . Then, it obtains three indices as follows:
s0 = 8, s1 = 6, s2 = 7. Since i1(s0) = s1, i2(s0) = s2, the
decoder concludes that right node 4 is a resolvable doubleton,
and item 8 as a new defective item.

In the third iteration, the decoder knows that right node 2
is not resolvable anymore as it already includes two identified
defective items. However, right node 3 now has a possibility
of being a resolvable doubleton as the decoder found defective
item 8 in the previous iteration, and defective item 8 is also
connected to right node 3. The decoder hypothesizes that right
node 3 is a doubleton, i.e.,z3 = u8 ∨ uℓ1 . Similarly, the decoder
reads three indices, and the recovered three indices are as fol-
lows: s0 = 1, s1 = 5, s2 = 3. Because i1(s0) = s1, i2(s0) =
s2, the decoder will conclude that right node 3 also is a double-
ton, declaring item 1 as a new defective item.

The algorithm is terminated as there are no more resolvable
right nodes, declaring that items 1, 3 and 8 are defective.

III. MAIN RESULTS

In this section, we analyze the SAFFRON scheme. The main
theoretical result of this paper is the following theorem.

Theorem 3: Assume the noiseless group testing scenario. As
n,K →∞, for positive integers r ≥1 and d≥2 and a positive
constant C > 0, w.p. at least 1−O(Knr), SAFFRON(r, d, C)
recovers at least (1− ε)K defective items with m = 2(r +
1)CK log2 n tests, where ε is the unique solution of

p = [1− (ρ1 + ρ2(1− p))]d−1, 0 < p < 1, (9)

where ρi =
*K−1
i−1
+ *

d
M

+i−1 *
1− d

M

+K−i
.

Proof: We first provide a brief outline of the proof elements,
highlighting the main technical components needed to show that
SAFFRON recovers an arbitrarily-close-to-one fraction of non-
zero defective items with high probability.! Density evolution: We analyze the performance of SAF-

FRON on a random bipartite graph for a fixed number of
iterations, ℓ. First, we assume that a local neighborhood
of depth 2ℓ of every edge in the graph is tree-like, i.e.,
cycle-free. Under this assumption, which we refer to as
the tree-like assumption, all the messages between right
and left nodes, in the first ℓ iterations of the algorithm,
are independent. Using this assumption, we derive a recur-
sive equation that represents the evolution of the expected
number of unresolved components at each iteration.! Convergence to the cycle-free case: Using a Doob martin-
gale argument as in [53], we show that the 2ℓ neighborhood
of most of the edges of a randomly chosen graph from the
ensemble is cycle-free with high probability. This proves
that SAFFRON decodes all but a small fraction of the
left nodes with high probability in a constant number of
iterations. The main difference of our convergence analysis
compared to [53] is that the right edge degree distribution
in our graphs is binomial distributed, while the right degree
is regular in [53].

Fig. 1. A tree-like neighborhood of an edge between left node v and right node
c. At iteration j + 1, a ‘not-recovered’ message is passed through this edge if
and only if none of the other neighbors of v, {ci}d−1i=1 , have been identified as
either a singleton or a resolvable doubleton at iteration j.

Partial recovery guarantee: We need to show that with M =
CK right nodes, SAFFRON can recover (1− ε)K defective
items with high probability. Recall that by design, our bipartite
graph is a d-left-regular bipartite graph with n left nodes and M
right nodes. For the analysis, we focus on the pruned bipartite
graph constructed by the K defective left nodes and the M
right nodes. Denote the degree of a random right node by
D. Clearly, D is distributed as Bin(K, d

M), i.e., Pr(D = i) =*K
i

+
(d
M)

i(1− d
M)

K−i.
Denoting by ρi the probability that an edge is connected

to a right node of degree i, we have ρi =
iM
Kd Pr(D = i) =*K−1

i−1
+
(d
M)

i−1(1− d
M)

K−i. We now analyze the fraction of
defective items that cannot be resolved at the end of the iterative
decoding procedure via density evolution, a tool to analyze a
message-passing algorithm [20], [53], [54]. (For more details
about the density evolution technique, we refer the interested
readers to [53].) Note that if no error occurs during the entire
iterative decoding procedure, this fraction will be equal to the
fraction of unidentified defective items. At iteration j of the
algorithm, an unidentified defective item passes a message to its
neighbor right nodes that have not been recovered yet. Let pj be
the probability that a random defective item is not identified at
iteration j. Under the tree-like assumption, the density evolution
relates pj to pj+1 as follows.

pj+1 = [1− (ρ1 + ρ2(1− pj))]
d−1 . (10)

By defining η(p) := [1− (ρ1 + ρ2(1− p))]d−1, the update
equation can be compactly written as pj+1 = η(pj). To see the
above equation, consider the graph shown in Fig. 1. At iteration
j + 1, left node v passes a ‘not-recovered’ message to right
node c if none of its other neighbor right nodes {ci}d−1i=1 has
been identified as either a singleton or a resolvable doubleton at
iteration j. The probability that each neighborhood right node
has been resolved (either as a singleton or doubleton) at iteration
j is ρ1 + ρ2(1− pj). To see this, recall the definition of ρ’s. With
probability ρ1, a neighborhood right node is a singleton. With
probability ρ2, a neighborhood right node is a doubleton, and it is
a resolvable doubleton if the other connected left node is already
resolved. This happens with probability 1− pj . Thus, a neigh-
borhood right node is resolvable w.p. ρ1 + ρ2(1− pj). Since all
the messages are independent given the tree-like neighborhood
of v, the above equation follows.

We now state a property of a sequence {pj}∞j=1, deferring the
proof to the appendix.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4656 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

Corollary 4: Ifp0 = 1,{pj}∞j=1 is a decreasing sequence and
it converges to ε, which is the unique solution of p = η(p), 0 <
p < 1. Furthermore, for any ε′ > 0, there exists a constant ℓ(ε′)
such that pℓ ≤ ε+ ε′.

In the density evolution analysis so far, we have derived the
average fraction of defective items that cannot be recovered
after running j iterations of the algorithm is pj assuming the
tree-like neighborhood assumption. It remains to show that the
actual fraction of unidentified defective items is close to pj with
high probability without assuming the tree-like neighborhood
assumption. This can be proved in two steps. First, one can first
show that the tree-like neighborhood assumption indeed holds
with high probability. Given the tree-like neighborhood, one can
prove that the actual fraction is highly concentrated around pj
using Doob’s martingale inequality [53]. We provide a formal
guarantee in the following lemma, deferring the full proof to the
appendix.

Lemma 5: Over the probability space of the ensemble of d-
left-regular graphs, let Z be the number of unresolved items
after ℓ iterations of the SAFFRON algorithm. Then, there exists
a constant β > 0 such that for any ε′′ > 0,

|E[Z]−Kpℓ| < Kε′′/2, (11)

P (|Z −Kpℓ| > Kε′′) < 2e−βε
′′2K1/(4ℓ+1)

, (12)

for all K sufficiently large.
Remark 2: If the tree-like neighborhood assumption holds,

we have E[Z] = Kpℓ. In (11), we have E[Z] < K(pℓ + ε′′/2),
which has a small additional term. This comes from a small
probability of not having a tree-like neighborhood.

Remark 3: Combined with Corollary 4, this lemma asserts
that the number of unidentified defective items can be made
arbitrarily close to εK by running a constant number of iterations
of SAFFRON.

By applying this lemma, we obtain the partial recovery guar-
antee in the theorem.

Error probability: We now analyze the probability of error.
We fix the input signal x and analyze the error probability over
random testing matrix, which consists of a random bipartite
graph and random signatures. By Lemma 5, the concentration
does not hold with probability less than 2e−βε

′′2K1/(4ℓ+1)
, which

is asymptotically smaller than any polynomial in K. Denoting
the concentration event by C, Pr(C̄) ≤ 2e−βε′′2K1/(4ℓ+1)

.
Conditioned on the concentration event, we still need to

bound the probability of making any errors during the iterative
decoding, i.e., missing any defective items and the probability
of declaring any false defective items. Given a realization of
a random bipartite graph and assuming no error (missed de-
fective item or false defective item), the order of right-node
decoding procedures is fixed. According to this order, we in-
dex the error event associated with each right-node decoding
procedure as E1, E2, . . . , EℓM . By Proposition 1 and Lemma 2,
Pr(Ei|Ei−1, . . . , E1) ≤ 1/nr. Thus,

Pr(E) = Pr(E1) + Pr(E2, E1) + · · ·

+ Pr(EℓM , EℓM−1, . . . , E1)

≤ Pr(E1) + Pr(E2|E1) + · · ·

+ Pr(EℓM |EℓM−1, . . . , E1)

≤ ℓM

nr
.

Here, note that the above bound holds even though Ei’s are not
independent. The total error probability is bounded by ℓM

nr +

2e−βε
′′2K1/(4ℓ+1)

= O(K/nr). !
Remark 4 (Model Limitation): We note that our main the-

orem assumes a perfect Boolean ORing measurement. While
this perfect model holds in some digital applications (such as
digital forensic [8]), it may not be appropriate for a variety of
natural group testing applications, especially when n is large.
A more general way of modeling a measurement is based on
an absolute threshold, i.e., a test result is positive if and only if
the number of defective items in a pool is larger than a certain
threshold, which does not have to be one. Another way is based
on a relative threshold, i.e., a test result is positive if and only if
the fraction of defective items in a pool is larger than a critical
constant. It is not clear whether or not our “divide and conquer”
principle can be applied to these more general models. We
note a recent successful attempt [55]. In this work, the authors
apply the sparse-graph-code framework to design a group testing
algorithm for the absolute threshold model, where the threshold
can be larger than one.

A. Parameter Optimization

In Theorem 3, the recovery guarantee is given in terms of ε,
which is the solution of a high-order polynomial equation. In
this section, we show how one can approximately find the value
of ε, and then provide a method for choosing parameters.

By the definition of ρi, we have ρ1 =
*
1− d

M

+K−1
. Since d

is fixed and K,M →∞, ρ1 = (1− d
M)

K(1 + o(1)). Further-
more,
,
1− d

M

-K

=
.
e−d/M +O(d2/M2)

/K

=
.
e−d/M +O(1/K2)

/K
≤ e−dK/M +

K0

i=1

O(1/Ki)

≤ e−dK/M +O(1/K) = e−dK/M + o(1).

Here, the first equality holds since M = Θ(K) and d is con-
stant, and the last inequality holds since i = 1 term dominates
the summation. Thus, ρ1 = (e−dK/M + o(1))(1 + o(1)) =
e−dK/M (1 + o(1)). By defining λ := dK/M , ρ1 = e−λ(1 +

o(1)). Similarly, ρ2 = ρ1
(K−1) d

M

1− d
M

= ρ1(λ+ o(1))(1 + o(1)) =

λe−λ(1 + o(1)).
For the purpose of numerical evaluations of the required

number of tests for a targeted missed fraction ε, we next provide
an approximate optimization framework for designing the pa-
rameters of the algorithm given ε. First, we approximately find
ε by finding the solution of the following equation.

p = [1− ρ1 − ρ2(1− p))]d−1, 0 < p < 1.

Here, by approximating 1− p ≈ 1, we have

ε ≈ [1− ρ1 − ρ2)]
d−1 ≈ [1− e−λ − λe−λ]d−1. (13)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SAFFRON: A FAST, EFFICIENT, AND ROBUST FRAMEWORK FOR GROUP TESTING BASED ON SPARSE-GRAPH CODES 4657

TABLE II
PAIRS OF ε AND C(ε)

Using this approximation, we now find a pair of design param-
eters (d,M) that approximately minimizes the number of right
nodes M (thus the number of tests) given a targeted reliability
ε. By taking log of both sides in (13), we have

(d− 1) log (1− e−λ − λe−λ) = log ε. (14)

To minimize the number of right nodes while satisfying the
recovery guarantee, we formulate an optimization problem.

min
d∈N+,λ>0

C = d/λ (15)

subject to (d− 1) log (1− e−λ − λe−λ) = log ε. (16)

One can numerically solve the optimization problem and attain
the optimal λ⋆ and d⋆ as a function of ε. Some of the approxi-
mately optimal design parameters for different recovery targets
are shown in Table II.

B. Storage Cost

Our theoretical guarantee assumes that [U (i)
r]Mi=1 are mutually

independent, but storing rM random mappings incurs pro-
hibitive storage cost. In practice, one can reduce this storage cost
by setting U (1)

r = U (2)
r = · · · = U (M)

r . While the theoretical
guarantee may not hold anymore in this setting, no performance
degradation is observed in our simulation results. See Section VI
for more details. In this setting, A can be fully specified by stor-
ing TG and U (1)

r , which can be also fully specified by r random
mappings i1, i2, . . . , ir. Each column of an incidence matrix TG
can be efficiently stored since it can be represented a list of
d integers, which costs d log2 M bits. Hence, the total storage
cost for storing an incidence matrix is nd log2 M . Storing each
mapping costs n log2 n bits. Therefore, the total storage cost
is n(d log2 M + r log2 n). Compared to the worst-case storage
cost, which is nm bits, this is a significant storage saving.
For instance, when n = 232,K = 27,M = 1454, d = 12 and
r = 2, the worst-case storage cost is 409.2TB while our storage
cost is 93 GB.

C. Comparison With Other Methods

Remark 5 (Comparison with the Non-adaptive GROTESQU
E Algorithm): SAFFRON is closely related to the non-adaptive
GROTESQUE algorithm [38]. Particularly, when the non-
adaptive GROTESQUE algorithm is used with a fixed number of
stages, it requiresΘ(K log n) tests, matching the order of the test
complexity of SAFFRON. The non-adaptive GROTESQUE al-
gorithm is similar to SAFFRON since its testing matrix consists
of a random bipartite graph combined with Bernoulli random
signatures. However, GROTESQUE identifies singletons only,
and its singleton detection is based on a randomized algorithm
with Bernoulli(1/2) tests, which is subject to false positives. On

the other hand, SAFFRON does not make any false positives
while performing singleton detections (for the noiseless case).
Furthermore, SAFFRON detects and resolves both singletons
and doubletons, achieving a lower number of tests. Lastly, our
signature design allows us to robustify SAFFRON to unknown
offsets, which cannot be easily handled with the GROTESQUE
algorithm.

Remark 6 (Comparison with Maximum Likelihood De-
coder): The low decoding complexity of SAFFRON comes at
the cost of increased sample complexity. In [35], the authors ana-
lyze the performance of maximum likelihood decoder assuming
a Bernoulli random test matrix. As a result, they show that
(1 + o(1))K log2 (n/K) tests are sufficient for partial recovery.
Compared to this, the sample complexity of SAFFRON requires
2(r + 1)C(ε) times more measurements. Since C(ε) diverges
as ε→ 0 (as proved in the appendix), this constant factor hit
increases as ε→ 0.

It is an interesting open question whether or not one can
reduce this constant factor hit in the number of tests. The main
reason behind this overhead is due to the suboptimality of un-
derlying signature matrices. Our current signature design allows
for identifying and resolving only up to doubletons, and this
limits the performance of our iterative decoding procedure. More
specifically, recall that ε ≈ (1− e−λ − λe−λ)d−1, in which the
term e−λ is due the fact that we can identify/resolve singletons
and the other term λe−λ is due to doubleton recovery. Therefore,
if we could have identified and resolved right nodes with larger
degrees, we would achieve a lower value of ε, or equivalently
a lower measurement cost for the same value of ε. One natural
way of achieving this goal is to combine the overall structure
of SAFFRON with efficient disjunct matrices for designing a
signature matrix.

Remark 7 (Exact recovery guarantee): It is clear that one
can arbitrarily reduce the error fraction by concatenating more
than one i.i.d. SAFFRON testing matrices. More specifically, if
one concatenates SAFFRON matrices r times, the probability of
missing a defective item becomes εr, so the average number of
missed defective items isKεr. Thus, by setting r = C ′ logK for
some C ′ > 1/ log (1/ε), one can make the average number of
missed defective items vanish asKεr < K1−C ′ log (1/ε) = o(1).
That is, with Θ(K logK log n) tests, one can recover all K
defective items with high probability.

IV. ROBUST-SAFFRON FOR NOISY GROUP TESTING

In this section, we robustify SAFFRON such that it can
recover the set of K defective items with erroneous or noisy
test results. Assuming an i.i.d. noise model, each test result is
‘wrong’ with probability q, i.e.,

y = Ax+w, (17)

where the addition is over binary field, and w is an i.i.d. noise
vector whose components are 1 with probability 0 < q < 1

2 and
0 otherwise.3

3If q > 1
2 , one can always take the complement of all the test results, and

redefine the crossover probability as q̃ = 1− q < 1
2 .

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4658 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

Our approach is simple: we design a robust signature matrix
Vrobust with the aid of error correction code, treating each index
vector bi as a message that needs to be transmitted over a noisy
memoryless communication channel. Given an efficient channel
code of rate R < 1, we map bi (of length L) to a codeword of
length L/R. By appropriately choosing a code, this redundancy
makes sure that the index vector can be reliably transmitted over
a noisy channel.

Particularly, spatially-coupled LDPC codes have the follow-
ing properties [56].! It has an encoding function f(·) : {0, 1}L → {0, 1}L/R

and a decoding function g(·) : {0, 1}L/R → {0, 1}L, and
its decoding complexity is O(L).! If R satisfies

R < 1−H(q)− δ = q log2 q + (1− q) log2 (1− q)− δ,

for an arbitrarily small constant δ > 0, then there exists a
constant ζ > 0 such that Pr(g(x+w) ̸= x) < 2−ζL as L
approaches infinity.

Given such an error-correcting code, we design the signature
matrix V ′ ∈ {0, 1}L/R×n for the robust SAFFRON scheme as
follows:

V ′ =

(
f(b1) f(b2) · · · f(bn)
f(b1) f(b2) · · · f(bn)

)
(18)

For a positive integer r, the full robust signature matrix U ′r is
defined similar to the full signature matrix Ur. With r random
mappings i1, i2, . . . , ir, U ′r := [V

′;V ′i1 ;V
′
i2 ; . . . ;V

′
ir].

We now describe how the robustified SAFFRON resolves
singletons and doubletons. For illustration purpose, assume a
robust signature matrix U ′1. Consider a singleton right node
k. Assume that left node ℓ is connected to this singleton. The
right-node measurement vector consists of two sections: z0k and
z2k. Let us consider the first section, which is of the following
form: z0k = [f(bℓ); f(bℓ)] +w

0
k, where w0

k is a slice of w
corresponding to z0k. Since the first half of each z0k is f(bℓ)
corrupted by some noise, one can apply the decoding function
to estimate the index. Denote this estimate by s0. Similarly, one
can apply the decoding function to the other section, obtaining
another estimate s1. If i1(s0) = s1, then the decoder declares
that item s0 is defective. The doubleton recovery algorithm
proposed in Section II can be easily modified to the robust
signature matrix.

Lemma 6: Assume a random robust signature matrix U ′r,
whose index mappings are drawn at random, independently of
others. The robust singleton recovery algorithm (or doubleton
recovery algorithm) 1) fails to identify a singleton (or a resolv-
able doubleton) w.p. no greater than r+1

nζ and 2) declares a wrong
defective item w.p. no greater than 1

nr .
Proof: The first error event (missed detection) happens if any

of the r + 1 decoding attempts fails, so the error probability is
upper bounded by r+1

nζ by the union bound. Note that this is not
a critical error since we can compensate this error by slightly
increasing the number of measurements. (See below for more
details.) The second error event (false positive) is critical since
we do not allow for any false defective items. Denote the decoded
index from z0 by s0, and denote the index of the defective item
connected to the right node by ℓ. If s0 = ℓ, then this is a benign

error. If s0 ̸= ℓ, then ii(s0) is independent of the decoding
results from z1, z2, . . . ,zr. Thus, the r check equations hold
w.p. 1/nr. !

Lemma 6 implies that the robustified SAFFRON scheme
will miss a fraction of singletons that is fewer than r+1

nζ . We
compensate this loss by increasing the number of right nodes:
instead of using M right nodes, we use M

*
1 + r+1

nζ

+
right

nodes, so that the effective number of right nodes becomes
M
*
1 + r+1

nζ

+ *
1− r+1

nζ

+
≈M .

Using these lemmas, we now present our guarantee for noisy
group testing. We omit the proof since it is essentially identical
to that of Theorem 3.

Theorem 7: Assume the noisy group testing scenario with
noise parameter q. AsK →∞, for a positive integer r ≥1, w.p.
at least 1−O(Knr), Robust-SAFFRON(r) recovers at least (1−
ε)K defective items with m = 2(r + 1)β(q)C(ε)K log2 n
tests, where ε is an arbitrarily-close-to-zero constant, β(q) =
1
R > 1

1−H(q)−δ for an arbitrarily small constant δ > 0, and C(ε)
is a constant that depends only on ε. Table II shows some pairs
of ε and C(ε).

V. A-SAFFRON FOR NEIGHBOR DISCOVERY

The goal of neighbor discovery problem is to identify K
active neighbors among n total nodes in the network through m
bits of communication. During the discovery period, each active
neighbor broadcasts a length-m binary signal, while every node
is listening to the others’ transmissions. For power efficiency
and design simplicity, each node simply measures whether or
not at least one neighbor node is transmitting a signal in each
time slot, obtaining a binary received signal. After the discovery
period, each distributed node decodes the received signal, which
is a super-imposed (binary ORed) signal of all the neighbors’
signals.

In this section, observing an implicit connection between the
neighbor discovery problem and the group testing problem, we
view the neighbor discovery problem as an asynchronous group
testing problem and propose A-SAFFRON. Although group
testing algorithms have been shown useful for neighbor dis-
covery [57], our asynchronous formulation and solution, which
were originally presented in our earlier conference paper [2],
have not been proposed before.

A. Neighbor Discovery and Asynchronous Group Testing

Let ck = [ck(i)]mi=1 ∈ {0, 1}m be the signal of user k. Let
S = {i1, i2, . . . , iK}be the set of active users. Suppose that each
bit corresponds to a time sub-slot. An active node transmits its
signal in m sub-slots.

Due to the different locations of transmitters, active user k’s
signal is received with a delay of δk bits. Assume that δk is
uniformly distributed in the set {0, 1, . . . ,∆}, where ∆ is the
maximum delay offset between the users.

The receiver performs a simple energy-based non-coherent
detection at each sub-slot, and detects whether at least one
user has transmitted signal (bit 1) in that sub-slot or not (bit
0). This corresponds to a bit-level OR channel as follows:
the ith component of the received signal y ∈ {0, 1}m+∆ is

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SAFFRON: A FAST, EFFICIENT, AND ROBUST FRAMEWORK FOR GROUP TESTING BASED ON SPARSE-GRAPH CODES 4659

yi =
1

k∈S ck(i− δk), where ∨ is the Boolean OR operator.
Note that ∆+m is the maximum transmission length.

The goal of neighbor discovery problem is to judiciously
design the signals {ck}nk=1 such that the receiver is able to
recover any K active neighbors using as few number of bits,
m, as possible, and the receiver has low decoding complexity.
Here, δi’s are not known to the receiver, i.e., the decoder needs
to decode the signal without knowing the delays.

Note that the neighbor discovery problem can be viewed as
an asynchronous group testing problem, where yi, 1 ≤ i ≤ m is
the result of each test, and the K active neighbors correspond to
the K defective items in group testing. Furthermore, the design
of transmission signals can be viewed as the design of pools.
Based on this equivalence, we will design an efficient algorithm
for the asynchronous group testing problem.

B. A-SAFFRON: Algorithm Description and Analysis

We now propose our solution A-SAFFRON. A key observa-
tion about how a variation of the SAFFRON scheme can be used
for the asynchronous case is as follows. When the SAFFRON
algorithm determines whether a right node of the bipartite graph
is a singleton or not, it does not use any information about the
structure of the graph. Instead, it simply checks whether the
weight of the right-node is h/2 or not. In the asynchronous
case, the only difference is that there is no clear boundaries
between the right nodes as signals are shifted by arbitrary bits. To
resolve this issue, A-SAFFRON makes use of a sliding window,
which continuously moves along the received signal to find the
signatures.

We now explain the details of the A-SAFFRON scheme.
The A-SAFFRON scheme attempts at detecting and resolving
singletons only, and hence we may design our signature matrix
as in (4). However, with this signature design, the boundaries
of a signature cannot be uniquely determined in the asyn-
chronous setting. For instance, consider the received signal
y = (0, 0, 0, 1, 1, 0, 0, 0) and assume that n = 4 and K = 1. If
the signature matrix in (4) is used, the received signal can be
decoded in three different ways. For instance, if the index of
the defective item is 1, its signature is (0, 0|1, 1), and one can
interpret the received signal as y = (0|0,0,1,1|0, 0, 0), where
| denotes the boundaries of the signature. Similarly, if the index
of the defective item is 2, its signature is (0, 1|1, 0), and one can
interpret the received signal as y = (0, 0|0,1,1,0|0, 0). If the
index of the defective item is 4, its signature is (1, 1|0, 0), and the
received signal can be interpreted as y = (0, 0, 0|1,1,0,0|0).

To resolve this issue, we first interleave the bits from the two
sections and then prepend 1 to each signature so that one can
uniquely determine the boundaries.4 For instance, the signature
vector (0, 0|1, 1) becomes (1|0, 1|0, 1), and (0, 1|1, 0) becomes
(1|0, 1|1, 0). In the previous example, the received signal with
this signature matrix would be y = (0|1,0,1,0,1|0, 0), y =
(0, 0|1,0,1,1,0|0), or y = (0, 0, 0|1,1,0,1,0|), depending
on which the index of the defective item. Another advantage of
using interleaved signatures is that one can uniquely determine

4This increases the signature length by 1, and the length of signature vectors
is now 2 log2 n+ 1. For the ease of presentation, we will simply ignore this
increment.

Fig. 2. A-SAFFRON and its decoding algorithm. Each of the colored nodes
represents an active node, whose signature is transmitted at the indicated slot
on the right. The receiving node sees the concatenation of the right nodes a
contiguous bit string.

the boundaries of a transmitted signature (or a connected se-
quence of signatures). By design, three consecutive zeros occur
only outside the region of signatures.

We now describe the A-SAFFRON algorithm in details. We
first design the bipartite graph (matrix T) of size n×M , whose
entry is i.i.d. Bernoulli random variables with parameter p (to
be determined). For decoding, we use a simple sliding-window
decoder to detect the active users (as illustrated in Fig. 2). The
decoder checks all the 2L+ 7 consecutive received bits. It first
checks whether the first three bits and last three bits are 0,
ensuring that it is an isolated singleton. It then checks whether
the fourth bit is 1, indicating the start of a signature. Finally, it
looks at the weight of the remaining 2L bits. If the weight of the
2L-bits binary string is L, the decoder declares a singleton and
finds the corresponding active user by observing the L bits at
location1, 3, . . . , 2L− 1 to obtainbi. This procedure is repeated
until the sliding window reaches the end of the signal. We now
analyze the performance of A-SAFFRON.

Theorem 8: Let k0 := ⌈ ∆
2 logn⌉. For any α > 0, if m =

4e1+k0/2(1 + α)K logK log2 n, then A-SAFFRON recovers
all of the K active users with zero false positives, with prob-
ability at least 1− 1

Kα . The computational complexity of the
decoding algorithm is linear in the length of the signals, i.e., it
is Θ(K logK log2 n).

Proof: The A-SAFFRON algorithm can make sure that there
exists an isolated singleton within a window by checking the
first four bits and the last three bits. Detecting and resolving a
singleton reduces to the synchronous case, so no error occurs by
Proposition 1.

We now prove that the A-SAFFRON scheme correctly recov-
ers all of the K active users with probability at least 1− 1

Kα .
Consider an edge of an active left node. This edge corresponds
to a signature superimposed at some location in the received
signal. In general, this signature spans two consecutive right
nodes. In order to avoid collision, no signature of the other
active users should reside in these right nodes. However, due
to random delays, every signature can be shifted (rightward)
by at ∆ bits. By the definition of k0, this maximum shift
corresponds to k0 right nodes. Therefore, if 2 + k0 right nodes
are not chosen by any of the other active users, this signature
is guaranteed to be isolated. Since each entry of our incidence
matrix is an i.i.d. Bernoulli random variable with parameter p,
this happens with probability (1− p)(2+k0)(K−1). By choosing

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4660 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

p = c1
K , we have p0 := (1− p)(2+k0)(K−1) = (1 + o(1))(1−

p)(2+k0)K = (1 + o(1))e−c1(2+k0). Now, conditioning on the
degree of an active left node being i, the probability that the
corresponding active user is not detected is at most (1− p0)i.
Thus, the probability of missing a certain defective item is:

M0

i=0

,
M

i

-
pi(1− p)M−i(1− p0)

i = (p(1− p0) + (1− p))M

= (1− pp0)
M

= (1 + o(1))e−ppoM .

If M = c2K logK, then e−ppoM = K−c1c2p0 . By choosing
c1 = 1/2 and c2 = 2(1 + α)e1+k0/2, we have K−c1c2p0 =
K−(1+α). Union bounding over K defective items gives us the
error probability of 1/K−α.

As for the decoding complexity, the A-SAFFRON decoding
algorithm processes the received signal of length m+∆ in one
pass. Since ∆ = o(m), the decoding cost is Θ(m). !

Remark 8 (Counting Bound): One may derive a counting
bound for the asynchronous group testing problem. Consider
a situation one wants to detect all defective items as well as their
offsets. Since the decoder receives m+∆ bits, this gives us
m+∆≥log2

**n
K

+
∆K

+
≈ K log2 (n/K) +K log2 ∆. This

implies that having unknown offsets does not increase the lower
bound if ∆ does not scale as fast as n/K. Our theorem as-
serts that the measurement complexity of A-SAFFRON remains
constant if ∆ = o(log n) or k0 = o(1). When ∆ = Θ(log n),
k0 = Θ(1), and the cost of asynchrony is a constant factor,
which could be still large if k0 is large. When ∆ = ω(log n),
k0 = ω(1), the sample complexity increases by a scaling factor
of ek0/2.

C. The Robustified A-SAFFRON

The A-SAFFRON scheme can be also made robust by re-
placing the signature matrix with a robust one. For robust prefix
detection, we prepend t log2 nmany 1’s to each signature vector,
for some constant t > 0. The rest of the signature matrix is
encoded via an efficient error-correcting code of rate R. The
decoding algorithm of the robustified A-SAFFRON scheme is
described as follows. The decoder slides a window of length*
t+ 6

R

+
log2 n and checks the energy of the first t log2 n bits. If

this energy is greater than an energy threshold Te =
t log2 n

2 , the
following 6 log2 n

R bits are added as a hypothesis, and the window
keeps sliding. We now note that in order to ensure the singleton
is isolated, the decoder skips the following 6 log2 n

R bits, only
adding them to the hypothesis list. It keeps track of how many
bits are left to “restart”, and resets this counter once it sees a
set of t log2 n bits which pass the energy test. The decoder only
marks a hypothesis when the “restart” counter hits 0 and it sees a
set of contiguous t log2 n bits that pass the energy test. Now, note
that since we are still using the complement of each codeword,
a valid singleton will still have approximately constant weight.
This allows the decoder to iterate through the decoding map and
check for an approximately constant weight of 3

* log2 n
R

+
. In this

way, just as in the noiseless decoder, it may take one pass through
the received bit string, and then carefully check the remaining

Fig. 3. Performance of SAFFRON with noiseless test results. For different
pairs of (d,M), we run SAFFRON 1000 times and run the average fraction of
unidentified defective items. We set n = 216, K = 100, d ∈ {3 , 5 , 7 , 9} and
K ≤M ≤ 7K.

hypotheses in the following manner. We first use the decoding
map g(·) to find the hypothetical active node corresponding to
the first

* log2 n
R

+
bits. Then, using the two random checks in the

following two
* log2 n

R

+
length sections, the decoder checks the

initial hypothesis. If the checks were inconsistent, it does not
declare a resolved singleton, and continues decoding. Note that
one can easily bound the number of hypotheses by O(K logK)
using Hoeffding’s inequalities. By applying Lemma 6 along with
this, we have the following corollary.

Corollary 9: The sample and decoding complexity of
Robust-A-SAFFRON are both Θ(K log (K) log2 (n)).

VI. SIMULATION RESULTS

We now evaluate the performance of the SAFFRON scheme
and its variations via simulations.5 The SAFFRON scheme
recovers with high probability an arbitrarily-close-to-one frac-
tion of K defective items with Θ(K log n) tests, as stated in
Theorem. 3. The theorem also characterizes the optimal pairs
of (d⋆ ,λ⋆) for a target recovery performance ε: as the fraction
of unidentified defective items ε decreases, the corresponding
optimal left-degree d⋆ increases. For different pairs of (d,M),
we run SAFFRON 1000 times and measure the average fraction
of unidentified defective items: we choose n = 216, K = 100,
d ∈ {3, 5, 7, 9} and K ≤M ≤ 7K. Plotted in Fig. 3 are the
average fractions of unidentified defective items obtained via
simulations for different values of d. As expected, we can ob-
serve that ifM is close toK, the average fraction of unidentified
defective items can be minimized by setting d = 3, and if M is
close to 7K, higher values of d perform better.

We now observe how computationally-efficient SAFFRON’s
decoding algorithm is. We measure the average runtime of SAF-
FRON withn = 232, while increasing the value ofK. In Fig. 4a,
we plot the simulation results, and they clearly demonstrate the
Θ(K) factor of the computational complexity. Similarly, we re-
peat simulations with K = 25 = 32, while increasing the value
of n. In Fig. 4b, we plot the average runtime with a logarithmic
x-axis: we can clearly observe that the computational complexity
is linear in log n.

5Simulators are written in Python and run on a laptop with 2 GHz Intel Core
i7 and 8 GB memory.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SAFFRON: A FAST, EFFICIENT, AND ROBUST FRAMEWORK FOR GROUP TESTING BASED ON SPARSE-GRAPH CODES 4661

Fig. 4. Time complexity of SAFFRON. The run-time of SAFFRON for n =
232 (left) and for K = 25 (right).

Fig. 5. Performance of Robust-SAFFRON with noisy test results. The average
fraction of missed defective items for varying (q, cn).

We also evaluate the robustified SAFFRON scheme. In our
setting, we choose n = 232 ≈ 4.3× 109 and K = 27 = 128.
For random bipartite graphs, we use d = 12 and M = 11.36K.
The noise model is the one we described in Section IV. We vary
the probability of error q from 0.03 to 0.05: a test result is flipped
with probability from 3% to 5%.

While we made use of capacity-achieving codes in Theo-
rem. 7, we use Reed-Solomon codes for simulations for simplic-
ity [58]. A Reed-Solomon code takes a message of ck symbols
from a finite field of size cq ≥cn, for a prime power cq , and then
encodes the message into cn symbols. This code can correct upto
any ⌊ cn−ck2 ⌋ symbol errors. By using a field of size cq = 28, a
binary representation of length L (= log2 n) can be viewed as
a 4-symbol message, i.e., ck = 4. Thus, the overall number of
tests is as follows:

m = 11.36K2 34 5
Number of right nodes

× cn/ck2 34 5
Code redundancy

× 6 log2 n2 34 5
Size of message

. (19)

By having cn = ck + 2t, the robustified SAFFRON scheme can
correct upto t symbol errors within each section of the right-
node measurement vector. Thus, we evaluate the performance
of the robustified SAFFRON scheme with cn ∈ {6, 8, . . . , 16}
for various noise levels. We measure the average fraction of
unidentified defective items over 1000 runs for each setup. Fig. 5
shows the simulation results; the x-axis is the block-length of
the used code, and the logarithmic y-axis is the average fraction
of unidentified defective items. We can observe that for a higher
noise level q, the minimum block length required to achieve a
certain value of ε increases.

Fig. 6. Performance of Robust-A-SAFFRON with noisy test results. The
average fraction of unidentified defective items.

We also observe that the robustified SAFFRON perfectly
recovers all defective items even with the presence of erroneous
test results with certain parameters. For instance, with q = 0.02,
we test the robustified SAFFRON 1000 times with cn = 12.
For all the test cases, it successfully recovers all K = 128
defective items from the population ofn ≈ 4.3× 109 items with
m = 838080 ≈ 2

10000n tests. Further, the decoding time takes
only about 3.8 seconds on average. Similarly, we observe the
perfect recovery with q = 0.01 and cn ≥12 and with q = 0.005
and cn ≥6.

Lastly, we report the experimental results for the A-
SAFFRON algorithm. Shown in Fig. 6 is the average fraction
of unidentified items when n = 224, K = 25, and ∆ = 200.
We test the performance of A-SAFFRON with different noise
levels (bit flip probabilities): q ∈ {0.03, 0.04, 0.05}. Observe
that as long as a large enough block length is chosen, i.e., suf-
ficient error-correcting capability is provisioned, the Robust-A-
SAFFRON algorithm can recover a large fraction of the defective
items even when items are pooled with unknown offsets and test
results are randomly flipped.

VII. CONCLUSION

In this paper, we have described the design and analysis
of SAFFRON based on the modern coding-theoretic tools of
sparse-graph coding and density evolution. We show that 1)
SAFFRON recovers a (1− ε)-fraction of K defective items
w.h.p. with Θ(K log2 n) tests, and 2) its decoding complexity
is Θ(K log n). We also robusitifed SAFFRON to noisy and
asynchronous tests.

APPENDIX

A. Proofs

1) Proof of Corollary 4:
Proof: Let us define f(x) := η(x)− x = (1− ρ1 − ρ2 +

ρ2x)d−1 − x. Note that f(0) = (1− ρ1 − ρ2)d−1 > 0 and
f(1) = (1− ρ1)d−1 − 1 < 0. Thus, there exists at least one
solution of f(x) = 0 in x ∈ (0, 1).

In order to show the uniqueness of the solution, consider its
derivative f ′(x) = ρ2(d− 1)(1− ρ1 − ρ2 + ρ2x)d−2 − 1. We
first show that f(x) = 0 has a unique solution in x ∈ (0, 1) if
f ′(x) = 0occurs at most once inx ∈ (0, 1). To see this, we prove
the contrapositive statement. That is, we show that if f(x) =

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4662 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

0 has more than one solution in x ∈ (0, 1), f ′(x) = 0 occurs
more than once in x ∈ (0, 1). Assume that f(x1) = f(x2) =
0 for 0 < x1 < x2 < 1. Since f(0) > 0, f(x1) = 0, we have
f ′(x′1) < 0 for some 0 < x′1 < x1 by the mean value theorem.
Similarly, since f(x2) = 0 and f(1) < 0, we have f ′(x′2) < 0
for somex2 < x′2 < 1. Thus, if f ′(x1) > 0 or f ′(x2) > 0 is true,
f ′(x) = 0 must hold true at least twice in x ∈ (x′1, x′2) by the
continuity of f ′. Consider the other case where f ′(x1) ≤ 0 and
f ′(x2) ≤ 0. Since f(x1) = f(x2) = 0, this clearly implies that
f ′(x) = 0 occurs at least twice in x ∈ [x1, x2]. This proves the
contrapositive statement.

We now conclude the uniqueness proof by showing that
f ′(x) = 0 occurs at most once in x ∈ (0, 1).

(d− 1)ρ2(1− (ρ1 + ρ2(1− x)))d−2 = 1

⇒ 1− (ρ1 + ρ2(1− x)) = ±
,

1

ρ2(d− 1)

-1/(d−2)

⇒ x

ρ1
=
1

ρ1
+
1

ρ2
− 1

ρ1ρ2
± 1

ρ1ρ2

,
1

ρ2(d− 1)

-1/(d−2)
.

Here, f ′(x) = 0 has only one solution if d is odd and has two
solutions if d is even, corresponding to the ± above.

We now lower bound the distance between two solu-
tions, say x1 and x2: |x1 − x2| = 2

ρ2
(1
ρ2 (d−1))

1/(d−2). Here, I)
2
ρ2

> e since ρ2 = (1 + o(1))λe−λ ≤ 2maxt>0 te−t = 2/e, II)
(1/ρ2)1/(d−2) > 1, and III) (1/(d− 1))1/(d−2) ≥1/2 for all
d≥3. The last inequality holds as (1/(d− 1))1/(d−2) is an
increasing function for d > 0 and the value of this function
at d = 3 is 1/2. Thus, |x1 − x2| > e/2 > 1. Hence, f ′(x) = 0
cannot have more than one solution in x ∈ (0, 1), implying the
uniqueness of the solution.

Since ε is the unique solution of f(x) = 0, f(1) < 0, and η(x)
is an increasing function for all 0 ≤ x ≤ 1, we have f(x) < 0
for all x ∈ (ε, 1], i.e., η(x) < x for all x ∈ (ε, 1]. This proves
that the sequence is strictly decreasing.

We now show that one can get arbitrarily close to
ε in a constant number of iterations. Define ξ(ε′) :=
minp∈[ε+ε′,1] [p− η(p)]. Since η(p) < p for all p ∈ (ε, 1], ξ >
0. Since pj+1 − pj = η(pj)− pj ≤ −ξ(ε′), it takes at most
1/ξ(ε′) iterations to reach ε+ ε′. This also implies the con-
vergence of the sequence to the fixed point. !

2) Proof of C(ε)→∞ as ε→ 0:
Proof: From the constraint of the optimization problem, we

have d = 1 + log ε

log (1−e−λ−λe−λ)
. Thus,

C(ε) = min
λ>0

d

λ
> min

λ>0

log ε

λ(log (1− e−λ − λe−λ)

= log ε · 1

minλ>0 λ(log (1− e−λ − λe−λ)
>
log (1/ε)

2
.

Here, the last inequality is due to

min
λ>0

λ(log (1− e−λ − λe−λ)) ≈ −1.33301 > −2.

Hence, as ε→ 0, C(ε)→∞. !

3) Proof of Lemma 5:
Proof: Note that the proof is nearly identical to that of [51].

We provide the proof of this lemma (with slight modification)
for the sake of self-containedness. Consider a directed edge e⃗ =
(v, c) from a left-node v to a right-node c. We call an edge
identified if the right-node c is resolved. Define the directed
neighborhood of depth ℓ of e⃗ as N ℓ

e⃗ , that is the subgraph of all
the edges and nodes on paths having length less than or equal
to ℓ, that start from v and the first edge of the path is not e⃗. We
now prove the following lemma.

Lemma 10: For a fixed ℓ∗, N 2ℓ∗
e⃗ is a tree-like neighborhood

with probability at least 1−O(log(K)ℓ
∗
/K).

Proof: Let Cℓ be the number of right-nodes and Vℓ be the
number of left-nodes in N 2ℓ

e⃗ . Since the ensemble of the graphs
we consider is left-regular, we cannot immediately use the
result of [53]. Note that the degree distribution of right nodes
is binomial distribution. The key idea is to show that the size
of the tree is bounded by O(log(K)ℓ) with high probability.
This is intuitively clear since binomial distribution has a tail
decaying faster than exponential decay. To formally show this,
we keep unfolding the tree up to level ℓ∗, and at each level ℓ
we upper bound the probability that the size of the tree grows
larger than (log(K)ℓ). Fix some constant c1. We upper bound
the probability of not having a tree as follows.

Pr(N 2ℓ∗
e⃗ is not a tree) ≤ Pr(Vℓ∗ > c1 log(K)

ℓ∗)

+ Pr(Cℓ∗ > c1 log(K)
ℓ∗)

+ Pr(N 2ℓ∗
e⃗ is not a tree|Vℓ∗ < c1 log(K)

ℓ∗ ,

Cℓ∗ < c1 log(K)
ℓ∗).

Note that since the left degree is a constant, d, if Vℓ∗ is of order
log(K)ℓ

∗
or less, Cℓ∗ is also of order log(K)ℓ

∗
or less. Let αℓ =

Pr(Vℓ > c1 log(K)ℓ). Then,

αℓ ≤ αℓ−1 + Pr(Vℓ > c1 log(K)
ℓ|Vℓ−1 < c1 log(K)

ℓ−1)

≤ αℓ−1 + Pr(Vℓ > c1 log(K)
ℓ|Cℓ < c2 log(K)

ℓ−1),

where the second inequality is due to the fact that every
left node has exactly d edges connected to right nodes so if
Vℓ−1 < c1 log(K)ℓ−1, there exists some constant c2 such that
Cℓ < c2 log(K)ℓ−1. To count the number of left nodes in depth
ℓ, let nℓ < Cℓ be the number of right nodes exactly at depth
ℓ after unfolding the tree. Let Xi, 1 ≤ i ≤ nℓ be the degree
of these right nodes. Given that Vℓ−1 < c1 log(K)ℓ−1, one has
Vℓ > c1 log(K)ℓ, only ifX =

6nℓ
i=1 Xi > c3 log(K)ℓ for some

constant c3. While the original distribution of X is binomial
distribution with parameters (nℓK, d/M), we will bound the
tail probability of a Poisson random variable with parameter
nℓKd/M . Since the total variation between a Poisson random
variable with parameter np and a binomial random variable
with parameter (n, p) is bounded above by p [59], the dif-
ference between the Poisson(nℓKd/M) tail probability and
the binomial(nℓK, d/M) tail probability is bounded above by
2d/M = O(1/K).

We know that the tail probability of a Poisson random Y
variable with parameter λ can be upper bounded as follows:

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SAFFRON: A FAST, EFFICIENT, AND ROBUST FRAMEWORK FOR GROUP TESTING BASED ON SPARSE-GRAPH CODES 4663

Pr(Y ≥y) ≤ (eλy)
y [60, Theorem 5.4]. Thus,

Pr(X > c3 log(K)
ℓ) ≤

,
c4

log(K)

-c3 log(K)ℓ

≤ O(1/K).

Thus, αℓ ≤ αℓ−1 +
c5
K , for some constant c5. Now since ℓ∗ is a

constant, summing up these inequalities, we show that

αℓ∗ = Pr(Vℓ∗ > c1 log(K)
ℓ∗) ≤ O(1/K).

Similarly one can show Pr(Cℓ∗ > c1 log(K)ℓ
∗
) ≤ O(1/K).

To complete the proof, we need to show that with high prob-
ability, we have a tree-like neighborhood, given that the number
of nodes is bounded by order of log(K)ℓ

∗
. First, we find a lower

bound on the probability thatN 2ℓ+1
e⃗ is a tree-like neighborhood

if N 2ℓ
e⃗ is a tree-like neighborhood, when ℓ < ℓ∗. Assume that t

additional edges have been revealed at this stage without forming
a cycle. The probability that the next edge from a left node
does not create a cycle is the probability that it is connected
to one of the right nodes that is not already in the subgraph
which is lower bounded by 1− Cℓ∗

m . Thus, the probability that
N 2ℓ+1

e⃗ is a tree-like neighborhood if N 2ℓ
e⃗ is a tree-like neigh-

borhood, is lower-bounded by (1− Cℓ∗
M)Cℓ+1−Cℓ . Similarly, the

probability thatN 2ℓ+2
e⃗ is a tree-like neighborhood ifN 2ℓ+1

e⃗ is a
tree-like neighborhood, is lower-bounded by (1− Vℓ∗

K)
Vℓ+1−Vℓ .

Thus, the probability that N 2ℓ∗
e⃗ is a tree-like neighborhood is

lower-bounded by (1− Vℓ∗
K)

Vℓ∗ (1− Cℓ∗
M)Cℓ∗ , which is lower

bounded by 1− (V 2
ℓ∗/K + C2

ℓ∗/M) + o(1). Since Vℓ∗ and Cℓ∗
are upper-bounded by Θ(log(K)ℓ

∗
), the probability of having a

tree-like neighborhood is at least 1−O(log(K)ℓ
∗
/K). !

We are now ready to prove the lemma. The proof follows
similar steps as in [53], with the difference that the right de-
gree is irregular and binomial-distributed. First, we prove (11).
Let Zi = 1{e⃗i is identified}, 1 ≤ i ≤ Kd be the indicator that e⃗i is
identified after ℓ iterations of the algorithm. Let B be the event
that N 2ℓ

e⃗1
is tree-like. Then,

E[Z1] = E[Z1|B] Pr(B) + E[Z1|B̄] Pr(B̄)

≤ E[Z1|B] + Pr(B̄) ≤ pℓ +
γ log(K)ℓ

K
,

for some constant γ, where the last inequality is by Lemma 10.
Since |E[Z1|B]| ≤ 1, E[Z] = KdE[Z1]. Hence,

Kd

,
1− γ log(K)ℓ

K

-
< E[Z] < Kd

,
pℓ +

γ log(K)ℓ

K

-
.

Then, (11) follows from choosing K large enough such that
K

log(K)ℓ > 2γ
ε .

Second, we prove that

Pr(|Z −Kdpℓ| > Kdε/2) < 2e−βε
2K1/(2ℓ+1)

. (20)

Then, (12) follows from (11) and (20). To prove (20), we use the
standard Martingale argument and Azuma’s inequality provided
in [53] with some modifications to account for the right irregular
degree. Suppose that we expose the Kd edges of the graph one
at a time. Let Yi = E[Z|ei1]. By definition, Y0, Y1, . . . , YKd is a
Doob’s martingale process, where Y0 = E[Z] and YKd = Z. To
use Azuma’s inequality, we find the appropriate upper bound:
|Yi+1 − Yi| ≤ αi. If the right-degree is regular and equal to dc,

it is shown in [53] that αi can be chosen as 8(dvdc)ℓ. We show
that when the right degree has binomial distribution, the degree
of all of the right nodes can be upper bounded by K

1
2ℓ+0 .5 with

probability K(e−β1K
1

2ℓ+0 .5) for some constants β1.
To show this, letX be a binomial random variable with param-

eters (K, d/M). By applying the standard Chernoff bound, we
know that the tail probability of a binomial random Y variable
with parameter (n, p) can be upper bounded as follows:Pr(Y ≥
y) ≤ exp(−nD

* y
n ∥ p

+
), where D

*
p ∥ q

+
= p log p/q + (1−

p) log (1− p)/(1− q), i.e., the Kullback–Leibler divergence
between Bern(p) and Bern(q). When p = o(1) and q = o(1),
the first term dominates, and hence D

*
p ∥ q

+
≥β1p log p/q for

some constant 0 < β1 < 1. Thus,

Pr
.
X > K

1
2ℓ+0 .5

/
≤ e

−KD

(
K

1
2ℓ+0 .5

−1 ∥ d
M

)

≤ e
−K

(
β1K

1
2ℓ+0 .5

−1
log C

d K
1

2ℓ+0 .5

)

= e−β1K
1

2ℓ+0 .5 log C
d K

1
2ℓ+0 .5 ≤ e−β1K

1
2ℓ+0 .5

.

Now considering M = Θ(K) right nodes and using union
bound, one can see that the probability that all the right nodes

have degree less than K
1

2ℓ+0 .5 is at least 1−K(e−β1K
1

2ℓ+0 .5).
Let E be the event that at least one right node has degree larger

thanK(e−β1K
1

2ℓ+0 .5). GivenE has not happened, one can upper
bound α2

i by K
2ℓ

2ℓ+0 .5 . Then,

Pr(|Z −Kdpℓ| > Kdε/2)

≤ Pr(|Z −Kdpℓ| > Kdε/2|Ē) + Pr(E)

≤ 2e
−K2 d2 ε2 /4

2
6

i
α2
i +K(e−β1K

1
2ℓ+0 .5

) ≤ 2e−βε2K1/(4ℓ+1)

.

!

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
providing us with invaluable comments. The authors would also
like to thank P. Kairouz for discussions on the formulation of
A-SAFFRON.

REFERENCES

[1] K. Lee, R. Pedarsani, and K. Ramchandran, “Saffron: A fast, efficient, and
robust framework for group testing based on sparse-graph codes,” in Proc.
IEEE Int. Symp. Inf. Theory, Jul. 2016, pp. 2873–2877.

[2] K. Chandrasekher, K. Lee, P. Kairouz, R. Pedarsani, and K. Ramchandran,
“Asynchronous and noncoherent neighbor discovery for the IoT using
sparse-graph codes,” in Proc. IEEE Int. Conf. Commun., May 2017,
pp. 1–6.

[3] R. Dorfman, “The detection of defective members of large populations,”
Ann. Math. Statist., vol. 14, no. 4, pp. 436–440, 1943.

[4] L. Tong, V. Naware, and P. Venkitasubramaniam, “Signal processing in
random access,” IEEE Signal Process. Mag., vol. 21, no. 5, pp. 29–39,
Sep. 2004.

[5] A. C. Gilbert, M. A. Iwen, and M. J. Strauss, “Group testing and sparse
signal recovery,” in Proc. 42nd Asilomar Conf. Signals, Syst. Comput.,
Oct. 2008, pp. 1059–1063.

[6] A. Emad and O. Milenkovic, “Poisson group testing: A probabilistic model
for Boolean compressed sensing,” IEEE Trans. Signal Process., vol. 63,
no. 16, pp. 4396–4410, Aug. 2015.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

4664 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 17, SEPTEMBER 1, 2019

[7] C. Wang, Q. Zhao, and C. N. Chuah, “Optimal nested test plan for
combinatorial quantitative group testing,” IEEE Trans. Signal Process.,
vol. 66, no. 4, pp. 992–1006, Feb. 2018.

[8] M. Goodrich, M. Atallah, and R. Tamassia, “Indexing information for
data forensics,” in Applied Cryptography and Network Security (Series
Lecture Notes in Computer Science), J. Ioannidis, A. Keromytis, and M.
Yung, Eds., vol. 3531. Berlin, Germany: Springer, 2005, pp. 206–221.

[9] H.-B. Chen and F. Hwang, “A survey on nonadaptive group testing algo-
rithms through the angle of decoding,” J. Combinatorial Optim., vol. 15,
no. 1, pp. 49–59, 2008.

[10] D. Malioutov and K. Varshney, “Exact rule learning via Boolean com-
pressed sensing,” in Proc. 30th Int. Conf. Mach. Learn., Feb. 2013,
pp. 765–773.

[11] S. Ubaru and A. Mazumdar, “Multilabel classification with group testing
and codes,” in Proc. 34th Int. Conf. Mach. Learn., Aug. 2017, vol. 70,
pp. 3492–3501.

[12] A. Ganesan, S. Jaggi, and V. Saligrama, “Learning immune-defectives
graph through group tests,” IEEE Trans. Inf. Theory, vol. 63, no. 5,
pp. 3010–3028, 2017.

[13] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[14] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[15] F. K. Hwang et al., Combinatorial Group Testing and its Applications.
Singapore: World Scientific, 2000.

[16] U. Nakarmi and N. Rahnavard, “BCS: Compressive sensing for binary
sparse signals,” in Proc. IEEE Military Commun. Conf., Oct. 2012, pp. 1–5.

[17] S.-S. Choi and J. H. Kim, “Optimal query complexity bounds for find-
ing graphs,” in Proc. 40th Annu. ACM Symp. Theory Comput., 2008,
pp. 749–758.

[18] F. H. Hao, “The optimal procedures for quantitative group testing,” Dis-
crete Appl. Math., vol. 26, no. 1, pp. 79–86, Dec. 1989.

[19] M. Aigner and M. Schughart, “Determining defectives in a linear order,”
J. Statistical Planning Inference, vol. 12, pp. 359–368, 1985.

[20] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

[21] A. Mazumdar, “Nonadaptive group testing with random set of defectives,”
IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7522–7531, 2016.

[22] M. Aldridge, L. Baldassini, and O. Johnson, “Group testing algorithms:
Bounds and simulations,” IEEE Trans. Inf. Theory, vol. 60, no. 6,
pp. 3671–3687, 2014.

[23] H. Q. Ngo and D.-Z. Du, “A survey on combinatorial group testing
algorithms with applications to DNA library screening,” Discrete Math.
Problems Med. Appl., vol. 55, pp. 171–182, 2000.

[24] A. G. D’yachkov and V. V. Rykov, “Bounds on the length of disjunctive
codes,” Problemy Peredachi Informatsii, vol. 18, no. 3, pp. 7–13, 1982.

[25] A. G. D’yachkov and V. V. Rykov, “Superimposed distance codes,” Prob-
lems Control Inform. Theory/Problemy Upravlen. Teor. Inf., vol. 18, no. 4,
pp. 273–250, 1989.

[26] H. Q. Ngo and D.-Z. Du, “New constructions of non-adaptive and error-
tolerance pooling designs,” Discrete Math., vol. 243, no. 1–3, pp. 161–170,
2002.

[27] M. Cheraghchi, “Noise-resilient group testing: Limitations and construc-
tions,” in Proc. Int. Symp. Fundam. Comput. Theory, 2009, pp. 62–73.

[28] P. Indyk, H. Q. Ngo, and A. Rudra, “Efficiently decodable non-adaptive
group testing,” in Proc. 21st Annu. ACM-SIAM Symp. Discrete Algorithms,
2010, pp 1126–1142.

[29] W. J. Bruno et al., “Efficient pooling designs for library screening,”
Genomics, vol. 26, no. 1, pp. 21–30, 1995.

[30] F. K. Hwang, “Random k-set pool designs with distinct columns,” Proba-
bility. Eng. Inf. Sci., vol. 14, no. 1, pp. 49–56, Jan. 2000.

[31] A. Macula, “Probabilistic nonadaptive group testing in the presence of
errors and dna library screening,” Ann. Combinatorics, vol. 3, no. 1,
pp. 61–69, 1999.

[32] M. B. Malyutov, “The separating property of random matrices,” Math.
Notes Acad. Sci. USSR, vol. 23, no. 1, pp. 84–91, 1978.

[33] G. K. Atia and V. Saligrama, “Boolean compressed sensing and noisy
group testing,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1880–1901,
Mar. 2012.

[34] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri, “Non-adaptive group
testing: Explicit bounds and novel algorithms,” IEEE Trans. Inf. Theory,
vol. 60, no. 5, pp. 3019–3035, 2014.

[35] J. Scarlett and V. Cevher, “Phase transitions in group testing,” in Proc.
27th Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2016, pp. 40–53.

[36] J. Scarlett and V. Cevher, “Limits on support recovery with probabilistic
models: An information-theoretic framework,” IEEE Trans. Inf. Theory,
vol. 63, no. 1, pp. 593–620, Jan. 2017.

[37] A. Barg and A. Mazumdar, “Group testing schemes from codes and
designs,” IEEE Trans. Inf. Theory, vol. 63, no. 11, pp. 7131–7141,
Nov. 2017.

[38] S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi, “GROTESQUE: Noisy
group testing (quick and efficient),” in Proc. 51st Annu. Allerton Conf.
Commun., Control, Comput., Oct. 2013, pp. 1234–1241.

[39] M. Mézard, M. Tarzia, and C. Toninelli, “Group testing with random
pools: Phase transitions and optimal strategy,” J. Statistical Phys., vol. 131,
no. 5, pp. 783–801, Jun. 2008.

[40] T. Wadayama, “Nonadaptive group testing based on sparse pooling
graphs,” IEEE Trans. Inf. Theory, vol. 63, no. 3, pp. 1525–1534,
Mar. 2017.

[41] S. Pawar and K. Ramchandran, “FFAST: An algorithm for computing
an exactly k-sparse DFT in O(k log k) time,” IEEE Trans. Inf. Theory,
vol. 64, no. 1, pp. 429–450, 2017.

[42] S. Pawar and K. Ramchandran, “R-FFAST: A robust sub-linear time
algorithm for computing a sparse DFT,” IEEE Trans. Inf. Theory, vol. 64,
no. 1, pp. 451–466, 2017.

[43] X. Li, J. Bradley, S. Pawar, and K. Ramchandran, “The SPRIGHT algo-
rithm for robust sparse Hadamard Transforms,” in Proc. IEEE Int. Symp.
Inf. Theory, Jun. 2014, pp. 1857–1861.

[44] X. Li, D. Yin, S. Pawar, R. Pedarsani, and K. Ramchandran, “Sub-linear
time support recovery for compressed sensing using sparse-graph codes,”
IEEE Trans. Inf. Theory, 2019.

[45] R. Pedarsani, K. Lee, and K. Ramchandran, “Phasecode: Fast and efficient
compressive phase retrieval based on sparse-graph-codes,” IEEE Trans.
Inf. Theory, vol. 63, no. 6, pp. 3663–3691, 2017.

[46] R. Pedarsani, K. Lee, and K. Ramchandran, “Capacity-approaching
phasecode for low-complexity compressive phase retrieval,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun. 2015, pp. 989–993.

[47] D. Yin, K. Lee, R. Pedarsani, and K. Ramchandran, “Fast and robust
compressive phase retrieval with sparse-graph codes,” in Proc. IEEE Int.
Symp. Inf. Theory, Jun. 2015, pp. 2583–2587.

[48] S. Pawar and K. Ramchandran, “Ffast: An algorithm for computing an
exactly k -sparse dft in o(k log k) time,” IEEE Trans. Inf. Theory, vol. 64,
no. 1, pp. 429–450, Jan. 2018.

[49] X. Li and K. Ramchandran, “An active learning framework using sparse-
graph codes for sparse polynomials and graph sketching,” in Proc. Adv.
Neural Inf. Process. Syst., 2015, pp. 2170–2178.

[50] X. Li and K. Ramchandran, “Recovering k-sparse n-length vectors in o(k
log n) time: Compressed sensing using sparse-graph codes,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., Mar. 2016, pp. 4049–4053.

[51] R. Pedarsani, D. Yin, K. Lee, and K. Ramchandran, “Phasecode: Fast and
efficient compressive phase retrieval based on sparse-graph codes,” IEEE
Trans. Inf. Theory, vol. 63, no. 6, pp. 3663–3691, Jun. 2017.

[52] O. Johnson, M. Aldridge, and J. Scarlett, “Performance of group testing
algorithms with near-constant tests per item,” IEEE Trans. Inf. Theory,
vol. 65, no. 2, pp. 707–723, Feb. 2019.

[53] T. Richardson and R. Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 599–618, Feb. 2001.

[54] A. Shokrollahi, “LDPC codes: An introduction,” in Coding, Cryptography
and Combinatorics. Berlin, Germany: Springer, 2004, pp. 85–110.

[55] A. Reisizadeh, P. Abdalla, and R. Pedarsani, “Sub-linear time stochastic
threshold group testing via sparse-graph codes,” in Proc. IEEE Inf. Theory
Workshop, Nov. 2018, pp. 1–5.

[56] S. Kudekar, T. Richardson, and R. Urbanke, “Threshold saturation via
spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834,
Feb. 2011.

[57] J. Wolf, “Born again group testing: Multiaccess communications,” IEEE
Trans. Inf. Theory, vol. 31, no. 2, pp. 185–191, Mar. 1985.

[58] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. London, U.K.:
Pearson, 2004.

[59] A. D. Barbour and P. Hall, “On the rate of Poisson convergence,” Math.
Proc. Cambridge Philosophical Soc., vol. 95, no. 3, pp. 473–480, May
1984.

[60] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:22 UTC from IEEE Xplore. Restrictions apply.

