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Abstract—We study the performance of a wide class of
convex optimization-based estimators for recovering a signal
from corrupted one-bit measurements in high-dimensions. Our
general result predicts sharply the performance of such esti-
mators in the linear asymptotic regime when the measurement
vectors have entries iid Gaussian. This includes, as a special
case, the previously studied least-squares estimator and various
novel results for other popular estimators such as least-absolute
deviations, hinge-loss and logistic-loss. Importantly, the sharp
nature of our results allows for accurate comparisons between
these different estimators. Numerical simulations corroborate
our theoretical findings and suggest they are accurate even for
relatively small problem dimensions.

I. INTRODUCTION
A. Motivation

Classical statistical signal-processing theory studies esti-
mation problems in which the number of unknown parame-
ters n is small compared to the number of observations m.
In contrast, modern inference problems are typically high-
dimensional, that is n can be of the same order as m.
Examples are abundant in a wide range of signal-processing
applications such as medical imaging, wireless communica-
tions, recommendation systems and so on. Classical tools
and theories are not applicable in these modern inference
problems. As such, over the last two decades or so, the
study of high-dimensional estimation problems has received
significant attention. Despite the remarkable progress in
many directions, several important questions remain to be
explored.

This paper studies the fundamental problem of recovering
an unknown signal from (possibly corrupted) one-bit mea-
surements in high-dimensions. We focus on a rather rich
class of convex optimization-based estimators that includes,
for example, least-squares (LS), least-absolute deviations
(LAD), logistic regression and hinge-loss as special cases.
For such estimators and Gaussian measurement vectors,
we compute their asymptotic performance in the high-
dimensional linear regime in which m,n — 400 and
m/n — § € (1,4+00). Importantly, our results are sharp.
In contrast to existing related results which are order-wise
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(i.e., they involve unknown or loose constants) this allows us
to accurately compare the relative performance of different
methods (e.g., LS vs LAD). It is worth mentioning that while
our predictions are asymptotic, our numerical illustrations
suggest that they are valid for dimensions m and n that are
as small as a few hundreds.

B. Contributions

Our goal is to recover xg € R™ from measurements y; =
sign(alxg), i = 1,...,m, where a; € R" have entries
iid Gaussian. The results account for possible corruptions
by allowing each measurement y; to be sign-flipped with
constant probability € € [0,1/2] (see Section II for details).
We study the asymptotic performance of estimators X, that
are solutions to the following optimization problem for some
convex loss function £(-).

m

Xp := arg minZﬁ(yia?x). (D

i=1

When m,n — 400 and m/n — 0 > 0%, we show that the
correlation of X, to the true vector xg is sharply predicted by

W where the parameters v and g are the solutions
to a system of three non-linear equations in three unknowns.
We find that the system of equations (and thus, the value of
a/p) depends on the loss function #(-) through its Moreau
envelope function. We prove that 7 > 1 is necessary for the
equations to have a bounded solution, but, in general, the
value of the threshold ¢} depends both on the noise level €
and on the loss function.

We specialize our general result to specific loss functions
such as LS, LAD and hinge-loss. This allows us to numer-
ically compare the performance of these popular estimators
by simply evaluating the corresponding theoretical predic-
tions. Our numerical illustrations corroborate our theoretical
predictions. For LS, our equations can be solved in closed
form and recover the result of [29] (see Section I-C). For
the hinge-loss, we show that ¢% is a decreasing function of
€ that approaches +oco in the noiseless case and 2 when
€ = 1/2. We believe that our work opens the possibility for
addressing several important open questions, such as finding
the optimal choice of the loss function in (1) and the value
of §7 for general loss functions.
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C. Prior work

As mentioned, over the past two decades there has been a
very long list of works that derive statistical guarantees for
high-dimensional estimation problems. In particular, many
of these are concerned with convex optimization-based in-
ference methods. Our work is most closely related to the
following two lines of research.

(a) Sharp asymptotic predictions for noisy linear mea-
surements. Most of the results in the literature of high-
dimensional statistics are order-wise in nature. Sharp asymp-
totic predictions have only recently appeared in the literature
for the case of noisy linear measurements with Gaussian
measurement vectors. There are by now three different
approaches that have been used (to different extent each)
towards asymptotic analysis of convex regularized estima-
tors: (a) the one that is based on the approximate message
passing (AMP) algorithm and its state-evolution analysis;
[11], [12], [2], [3], [10] (b) the one that is based on Gaussian
process (GP) inequalities, specifically the convex Gaussian
min-max Theorem (CGMT); [26], [8], [27], [20], [31], [30]
(c) and the “leave-one-out” approach [19], [13]. The three
approaches are quite different to each other and each comes
with its unique distinguishing features and disadvantages. A
detailed comparison is beyond our scope. In this paper, we
follow the GP approach and build upon the CGMT. Since
concerned with linear measurements, these previous works
consider estimators that solve minimization problems of the
form

X = arg m)in Z Z(yl — aZTX) + )\R(X) 2)
i=1

Specifically, the loss function Z() penalizes the residual.
In this paper, we extend the applicability of the CGMT
to optimization problems in the form of (1). For our case
of signed measurements, (1) is more general' than (2). To
see this, note that for y; € £1 and popular symmetric loss

functions £(t) = £(—t) (e.g., LS, LAD), (1) results in (2) by
choosing £(t) = ¢(t—1) in the former. Moreover, (1) includes
several other popular loss functions such as the logistic loss

and the hinge-loss which cannot be expressed by (2).

(b) One-bit compressed sensing. Our works naturally relates
to the literature of one-bit compressed sensing (CS) [5]. The
vast majority of performance guarantees for one-bit CS are
order-wise in nature, e.g., [18], [22], [21], [23]. To the best of
our knowledge, the only existing sharp results are presented
in [29] for Gaussian measurement vectors. Specifically, the
paper [29] derives the asymptotic performance of regularized
LS for generalized nonlinear measurements, which include
signed measurements as a special case. Our work can be
seen as a direct extension of [29] to loss functions beyond
least-squares, such as the hinge-loss. In fact, the result of

I'This is modulo the regularization term R(-) in (2), which is beyond our
scope of this paper.
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[29] for our setting is a direct corollary of our main theorem
(see Section I'V-A). As in [29], our proof technique is based
on the CGMT. There are few works that consider general

convex loss functions for estimating a signal from noisy mea-
surements in high dimensions. In [33], the general estimator
£({a;,x),y;) for estimating a structured signal in the non-
asymptotic case has been studied. However it is assumed
that the loss function satisfies some conditions including
restricted strong convexity, continuously differentiability in
the first argument and derivative of loss function being
Lipschitz-continuous with respect to the second argument.
The author furthermore derives some sufficient conditions
for the loss function ensuring the restricted strong convexity
condition. Our result in Theorem III.1 is comparable to
[34] in which the authors have also proposed a method
for deriving optimal loss function and measuring its per-
formance. However their results hold for measurements of
the form y; = al'xq + ¢;, where {¢;}™, are random errors
independent of a;’s. Finally, our paper is closely related to

[71, [28], in which the authors study the high-dimensional
performance of maximum-likelihood (ML) estimation for the
logistic model. The ML estimator is a special case of (1) but
their measurement model differs from the one considered in
this paper. Also, their analysis is based on the AMP. While
this paper was being prepared, we became aware of [25], in
which the authors extend the results of [28] to regularized
ML by using the CGMT. While we do not account for
regularization in this paper, we present results for general
loss functions and a different measurement model.

D. Organization and notation

The rest of the paper is organized as follows. Section II
formally introduces the problem that this paper is concerned
with. We present our main result Theorem III.1 in Section III,
where we also discuss some of its implications. In Section
IV, we specialize the general result of Theorem IIL.1 to
the LS, LAD and hinge-loss estimators. We also present
numerical simulations to validate our theoretical predictions.
We conclude in Section V with several possible directions
for future research.

The symbols P () and E[] denote the probability of an
event and the expectation of a random variable, respectively.
We use boldface notation for vectors. ||v|l2 denotes the
Euclidean norm of a vector v. We write ¢ € [m] for
i = 1,2,...,m. When writing z, = argmin, f(z), we
let the operator argmin return any one of the possible
minimizers of f.

II. PROBLEM STATEMENT

The goal is to recover the unknown vector xo € R™ from
m noisy signed measurements y;. Let 7;, ¢ € [m] denote the
noiseless signed measurements 7, = sign(alxg), i € [m],
where a; € R” are the measurement vectors. We assume
the following noise model in which each measurement is
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corrupted (i.e., sign flipped) with some constant probability
e€0,1/2]:

T

sign(a; xg) ,w.p. 1—g¢,

yi = BSC.(¥;) := { 3

—sign(alxg) ,wp. e

We remark that all our results remain valid in the case
of (potentially) adversarial noise in which € m number of
noiseless measurements ¥, are flipped. Nevertheless, for the
rest of the paper, we focus on the measurement model in
(3).

This paper studies the recovery performance of estimates
X, of xq that are obtained by solving the following convex
optimization program,

m
-~ . T
X, € argmin ; L(y;a; x). @
Here, ¢ : R — R is a convex loss function and the subscript £
on the estimate X, emphasizes its dependence on the choice
of the loss function in (4). Different choices lead to popular
specific estimators. For example, these include the following:

o Least-squares (LS): £(t) = 1(t — 1),

o Least-absolute deviations (LAD): ¢(t) = |t — 1],

o Logistic maximum-likelihood: £(t) = log(1 + e7t),

o Ada-boost: £(t) = e~ ¢,

 Hinge-loss: 4(t) = max{1 — ¢, 0}.

Since we only observe sign-information, any information
about the magnitude ||x¢||2 of the signal x is lost. Thus, we
can only hope to obtain an accurate estimate of the direction
of xg. We measure performance of the estimate X, by its
(absolute) correlation value to xq, i.e.,

corr (Xp; Xg ) 1= 7|A<XZ’XO> |

[1%ell2I%0ll2
Of course, we seek estimates that maximize correlation.

Our main result characterizes the asymptotic value of
corr (Xy; Xo ) in the linear high-dimensional regime in
which the problem dimensions m and n grow proportionally
to infinity with m/n — § € (1,00). All our results are
valid under the assumption that the measurement vectors
have entries IID Gaussian.

€ [0,1]. 5)

Assumption 1 (Gaussian measurement vectors). The vectors
a;, © € [m] have entries IID standard normal N (0, 1).

We make no further assumptions on the distribution of the
true vector Xg.
ITI. GENERAL RESULT
A. Moreau Envelopes
Before presenting our main result, we need a few defini-
tions. We write

M (z;7) := min %(x —v)? 4+ £(v),
v 2T

for the Moreau envelope function of the loss ¢ : R — R at
z with parameter 7 > 0. Note that the objective function
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in the minimization above is strongly convex. Thus, for all
values of x and 7, there exists a unique minimizer which
we denote by prox, (z;7). This is known as the proximal
operator of ¢ at x with parameter 7. One of the important
and useful properties of the Moreau envelope function is that
it is continuously differentiable with respect to x. both x and
7 [24]. We denote these derivatives as follows

/ oMy (z;7
M (as) o= PALET)

/ oMy (x;7
My (a7 = 2LET)

The following is a well-known result involves that is useful
for our purposes.

Proposition III.1 (Derivatives of M, [24]). For a function
{:R = R, and all x € R and A > 0, the following
properties are true

= —W(ac — prox, (z;\))2.

If in addition { is differentiable and 0 denotes its derivative,
then

My (z57) = € (prox, (z;\),
, 1
My (z57) = —5(5 (prox, (3 )2

B. A system of equations

It turns out, that the asymptotic performance of (4)
depends on the loss function ¢ via its Moreau envelope.
Specifically, let random variables G, S and Y defined as
follows (recall the definition of BSC;. in (3))

G, M9 N(0,1) and Y = BSC.(sign(S)),  (6)
and consider the following system of non-linear equations in
three unknowns (u, a > 0, \):

0=E [Y S M, (aG + pSY; A)} : (7a)

o2 = \25E [(M’m (aG + MSY;A)H . (7b)

a=\0E [G M, (aG+u5Y;A)}. (7c)
The expectations above are with respect to the randomness
of the random variables G, S and Y.

As we show shortly, the solution to these equations is
tightly connected to the asymptotic behavior of the optimiza-
tion in (4).

We remark that the equations are well defined even if the
loss function / is not differentiable. If / is differentiable then,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2020 at 23:25:02 UTC from IEEE Xplore. Restrictions apply.



using Proposition II1.1 the Equations (7) can be equivalently
written as follows:

0=E [Y S ¢ (prox, (aG + uSY; )x))] (8a)

a? = \2SE {(ﬁl (prox, (aG + pSY; )\)))2} , (8b)

a=\E [G -0 (prox, (aG + uSY; A))] . (80

Finally, if ¢ is two times differentiable then applying inte-
gration by parts in Equation (8c) results in the following
reformulation of (7c¢):

" (prox, (aG + pSY; \))

1=X0E
A 14 X7 (prox, (aG + pSY; N))

)

C. Asymptotic prediction

We are now ready to state the main result of this paper.

Theorem III.1 (General loss function). Let Assumption 1
hold and fix some ¢ € [0,1/2] in (3). Assume § > 1 such
that the set of minimizers in (4) is bounded and the system
of Equations (7) has a unique solution (u,«, ), such that
u # 0. Let Xy be as in (4). Then, in the limit of m,n — +oo,
m/n — 0, it holds with probability one that

. ~ 1
nlgr;ocorr(x[, Xg) = T (/i) (10)
Moreover,
2
lim Hﬁg—u- X0 H — (11)
n—»00 Ixo]|2 12

Theorem III.1 holds for general loss functions. In Section
IV we specialize the result to specific popular choices. We
also present numerical simulations that confirm the validity
of the predictions of Theorem III.1 (see Figures 2—4). Before
that, in Section III-D we present a few remarks on the
conditions, interpretation and implications of the theorem.

D. Discussion

Remark 1 (The role of p and «). The theorem evaluates
the asymptotic performance of the estimator X, for a convex
loss function ¢ in (4). According to (10), the prediction for
the limiting behavior of the correlation value is given in
terms of oy := a/u, where p and « are unique solutions
of (7). The smaller the value of oy is, the larger becomes
the correlation value. Thus, the correlation value is fully
determined by the ratio of the parameters o and p. Their
individual role is clarified in (11). Specifically, according to
(11), X is a biased estimate of the true xo and . represents
exactly that bias term. In other words, solving (4) returns an
estimator that is close to a pu—scaled version of xy. When x
and X are scaled appropriately, then the L2 squared norm of

their different converges to o2.

Remark 2 (On the existence of a solution to (4)). While
0 > 1is a necessary condition for the equations in (4) to have
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a solution, it is not sufficient in general. This depends on the
specific choice of the loss function. For example, in Section
IV-A, we show that for the squared loss £(t) = (t — 1)2,
the equations have a unique solution iff § > 1. On the other
hand, for logistic regression and hinge-loss, it is argued in
Remark 3 that there exists a threshold value 07 := §*(g) > 2
such that the set of minimizers in (4) is unbounded if
0 > J.. Hence, the theorem does not hold for § < d7.
We conjecture that for these choices of loss, the equations
(4) are solvable iff & > J.. Justifying this conjecture is
an interesting direction for future work. More generally, we
leave the study of sufficient and necessary conditions under
which the equations (4) admit a unique solution to future
work.

Remark 3 (Bounded minimizers). Theorem III.1 only holds
in regimes for which the set of minimizers of (4) is
bounded.As we show here, this is not always the case.
Specifically, consider non-negative loss functions ¢(¢) > 0
with the property lim; , . ¢(t) = 0. For example, the
hinge-loss, Ada-boost and logistic loss all satisfy this prop-
erty. Now, we show that for such loss functions the set of
minimizers is unbounded if § < 0} for some appropriate
0 > 2. First, note that the set of minimizers is unbounded
if the following condition holds:

Ix, €RP suchthat yalx,>1, Viec[m]. (12)

Indeed, if (12) holds then x = ¢ - x4 with ¢ — +00, attains
zero cost in (4); thus, it is optimal and the set of minimizers
is unbounded. To proceed, we rely on a recent result by
Candes and Sur [7] who prove that (12) holds iff >

5 <8 =minE[(G+esY)?],

ceR

13)

where (G, S and Y are random variables as in (6) and
(t)— := min{0,t}. It can be checked analytically that 6*(¢)
is a decreasing function of ¢ with §*(0") = +oo and
0*(1/2) = 2. In Figure 1, we have numerically evaluated
the threshold value % as a function of the corruption level
€. For 6 < 07, the set of minimizers of the (4) with logistic or
hinge loss is unbounded. An interesting direction for future
investigations is to consider regularized versions of (4). The
addition of a regularization term (e.g. ridge-regularization)
will improve the range of ¢’s for which the set of minimizers
in (4) is bounded and an analogue of theorem III.1 can be
established.

Remark 4 (Solving the equations). Evaluating the perfor-
mance of X, requires solving the system of non-linear
equations in (4). We empirically observe (see also [30] for
similar observation) that if a solution exists, then it can
be efficiently found by the following fixed-point iteration
method. Let v := [p, @, A\]T and F : R?® — R? be such that

2To be precise, [7] prove the statement for measurements y;, i € [m)]
that follow a logistic model. Close inspection of their proof shows that this
requirement can be relaxed by appropriately defining the random variable
Y in (13).
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Fig. 1. The value of the threshold 7 in (13) as a function of probability
of error € € [0,1/2]. For logistic and hinge-loss, the set of minimizers in
(4) is bounded (as required by Theorem IIL.1) iff § > §%. See Remark 3
and [7].

(4) is equivalent to v = F(v). With this notation, initialize
v = vo and for k > 1 repeat the iterations vi; = F(vy)
until convergence.

IV. SPECIAL CASES

In this section, we apply the general result of Theorem
III.1 to specific popular choices of the loss function.

A. Least-squares

By choosing 4(t) = (t—1)? in (4), we obtain the standard
least squares estimate. To see this, note that since y; = *1,
it holds for all i that (y;alx — 1)% = (y; — al x)2.

Thus, the estimator X is minimizing the sum of squares
of the residuals:

X = argmln E

For the choice £(t) = (t — 1)2, it turns out that we can
solve the equations in (7) in closed form. The final result is
summarized in the corollary below.

(14)

—ax

Corollary IV.1 (Least-squares). Let Assumption I hold and
0 > 1. Let X be as in (20). Then, in the limit of m,n — +oo,
m/n — 0, Equations (10) and (11) hold with probability one
with o« and p given as follows:

u=(1—26)\/z,
a? = (1 - (1 —26)272T) 5%1'

Proof. In order to get the values of a and y as in the state-
ment of the corollary, we show how to simplify Equations

5)

(16)
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(7) for £(t) = (t — 1)2. In this case, the proximal operator
admits a simple expression:

prox, (x;A) = (z + 2/\)/(1 +2)).

Also, ¢'(t) = 2(t — 1). Substituting these in (8a) gives the
formula for 4 as follows:

E[YS(aG + uSY —1)] = pnE[S?]

= p = \/2(1—26)7

where we have also used from (6) that E[S?] = 1, E[Y'S] =

0= —E[YS]

(1 —25)\/2 and G is independent of S. Also, since ¢ (t) =
2, direct application of (9) gives
2 1
1=M—=A=—.
1+2X 2(6 — 1)

Finally, substituting the value of X\ in (8b) we obtain the
desired value for a as follows

o® = 4N*SE [(prox, (oG + pSY;A) — 1)°]

42 )

:méE[(aGJruSY—l) ]

(W(S)( 2+1—%(1—2e)2)
%( +1—3(1—26)2) = (16).

O

Remark 5 (Least-squares: One-bit vs signed measurements).
On the one hand, Corollary IV.l1 shows that least-squares
for (noisy) one-bit measurements lead to an estimator that
satisfies

2 1
R
nooo 10 Jxollz Tl =7 -1 {17
where 4 is as in (15) and 72 := 1 — (1 — 2¢)2. On the

other hand, it is well-known (e.g., see references in [30,
Sec. 5.1]) that least-squares for (scaled) linear measurements
with additive Gaussian noise (i.e., y; = palxo + 0z,
z; ~ N(0,1)) leads to an estimator that satisfies

lim %, —p- Xo||3= o2 - 5_#1 (18)
Direct comparison of (17) to (18) suggests that least-squares
with one-bit measurements performs the same as if mea-
surements were linear with scaling factor p = p1/]|x¢]|2 and
noise variance 02 = 72 = o?(§ — 1). This worth-mentioning
conclusion is not new; it was proved in [6], [23], [29]. We
elaborate on the relation to this prior work in the following

remark.

Remark 6 (Prior work). There is a lot of recent work on the
use of least-squares-type estimators for recovering signals
from nonlinear measurements of the form y; = f(alxg)
with Gaussian vectors a;. The original work that suggests
least-squares as a reasonable estimator in this setting is due
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LAD, Theory
O LAD, Simulation

0.65 LS, Theory ]
x LS, Simulation

0.6 - i

0.55 . . . . . . .
2 3 4 5 6 7 8 9
d

Fig. 2. Comparisons between theoretical and simulated results for the least-
squares (LS) and least-absolute deviations (LAD) estimators as a function
of 4, for noiseless measurements (¢ = 0). The LS estimator significantly
outperforms the LAD for all values of ¢.

to Brillinger [6]. In his 1982 paper, Brillinger studied the
problem in the classical statistics regime (aka n is fixed not
scaling with m — +o00) and he proved for the least-squares
solution satisfies
Lo H 2_ 2
m —|X¢— 77— -Xo|[a=7",
m—>+oom|| ||X()||2 OHQ

where

7]
2 = E[(f(5) — uS)?]. (19)

and the expectations are with respect to S and possible ran-
domness of f. Evaluating (19) for f(S) = BSC,(sign(5))
leads to the same values for x and 72 in (17). In other
works, (17) for 6 — oo indeed recovers Brillinger’s
result. The extension of Brillinger’s original work to the
high-dimensional setting (both m, n large) was first studied
by Plan and Vershynin [23], who derived (non-sharp) non-
asymptotic upper bounds on the performance of constrained
least-squares (such as the Lasso). Shortly after, [29] extended
this result to sharp asymtpotic predictions and to regularized
least-squares. In particular, Corollary I'V.1 is a special case of
the main theorem in [29]. Several other interesting extensions
of the result by Plan and Vershynin have recently appeared
in the literature, e.g., [14], [16], [15], [32]. However, [29] is
the only one to give results that are sharp in the flavor of this
paper. Our work, extends the result of [29] to general loss
functions beyond least-squares. The techniques of [29] that
have guided the use of the CGMT in our context have also
been recently applied in [9] in the context of phase-retrieval.

B. Least-absolute deviations

By choosing £(t) = |[t—1| in (4), we obtain a least-absolute
deviations estimate. Again, since y; = =1, it holds for all
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0.9 -

0.8 -

06+ /9

LAD, Theory
a LAD, Simulations

0.5 LS, Theory B
X LS, Simulations

Hinge Loss, Theory

O Hinge Loss, Simulation

0.4 : 1
2 3 4 5 6 7 8 9

Fig. 3. Comparison between theoretical and simulated results for LAD,
LS and Hinge-Loss estimators as a function of § for probability of error
€ = 0.1. The dashed line represents the value of the threshold §7 for
€ = 0.1 (see Figure 1). For small values of § LS outperforms the other two
estimators, but the hinge-loss becomes better as  in increases.

i that |y;alx — 1|= |y; — al x|. Thus, this choice of loss
function leads to residuals:

X = arg min Z|yz —al'x|. (20)

As in Section IV-A, for £(t) = |¢t—1| the proximal operator
admits a simple expression, as follows:

prox, (z;A\) =1+ H (z —1;\) (21)
where
t—A, ift> A,
H(tAN) =qt+ A, ift< =)\
0, otherwise.

is the standard soft-thresholding function.

C. Hinge-loss

We obtain the hinge-loss estimator in by setting £(t) =
max(1 —¢,0) in (4). Similar to Section IV-B, the proximal
operator of the hinge-loss can be expressed in terms of the
soft-thresholding function as follows:

prox, (z; A) —1+’H(x+;\1;;\> .
As already mentioned in Remark 3, the set of minimizers
of the hinge-loss is bounded (required by Theorem III.1)
only for § > 7 where ¢} is the value of the threshold in
(13). Our numerical simulations in Figures 3 and 4 suggest
that hinge-loss is robust to measurement corruptions, as for
moderate to large values of § it outperforms the LS and the
LAD estimators. Theorem III.1 opens the way to analytically
confirm such conclusions, which is an interesting future
direction.
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Fig. 4. Comparison between theoretical and simulated results for LAD,

LS and Hinge-Loss estimators as a function of ¢ for probability of error
e = 0.25. As in Figure 3, the dashed line represents the value of the
threshold 9 for e = 0.25.

D. Numerical simulations

We present numerical simulations that validate the pre-
dictions of Theorem III.1. For the numerical experiments,
we generate random measurements according to (3) and As-
sumption 1. Without loss of generality (due to rotational in-
variance of the Gaussian measure) we set xo = [1,0, ..., 0]7.
We then obtain estimates X, of xy by numerically solv-
ing (4). We measure performance by the correlation value
corr (X¢; Xo ). Throughout the experiments, we set n = 128
and the recorded values of correlation in Figures 2—4 are
averages over 25 independent realizations. The theoretical
curves for the correlation are computed based on Theorem
III.1. We solve the system of equations in (7) by the
fixed-point iteration method described in Remark 4. The
expectations involved in (7) are evaluated with Monte-Carlo
estimation using 10° independent samples.

Comparisons between theoretical and simulated values for

LAD and LS estimators are presented in Figure 2 for the
noiseless case. Note that for ¢ = 0, the hinge-loss has
an unbounded set of minimizers for all values of § (thus,
Theorem III.1 is not applicable). In Figure 3, the probability
of error € is increased to 0.1. Note that in this setting hinge-
loss estimator exists for 6 > 5 ; ~ 3 and that it outperforms
LAD and LS estimators for large values of 6.
In Figure 4 we present similar results for e = 0.25. As it is
evident from Figures 3 and 4, the best estimator is varying
based on the value of § and . This further emphasizes the
impact of studying the accuracy of estimators while we do
not restrict ourselves to a specific loss function.

V. CONCLUSION

This paper derives sharp asymptotic performance guaran-
tees for a wide class of convex optimization based estimators
for recovering a signal from corrupted one-bit measurements.
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Our general result includes as a special case the least-squares
estimator that was previously studied in [29]. Beyond that, it
applies to other popular estimators such as the LAD, Hinge-
loss, logistic loss, etc. One natural and interesting research
direction is finding the optimal loss function £(-) in (4). In
view of Theorem III.1, this boils down to finding £(-) that
minimizes the ratio o/ of the parameters « and p that solve
the system of equations in (7). For this purpose, it might also
be important to derive necessary and sufficient conditions
that guarantee (7) has a unique solution. Finally, it is possible
to extend the results of this paper to (i) other measurement
models (as it is indicated in the proof of Theorem III.1); (ii)
structured signal recovery (e.g., sparse signals by including
{1 -regularization in (4)).
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