Tree Gradient Coding

Saurav Prakash*
USC
Email: sauravpr@usc.edu

Amirhossein Reisizadeh™
UC Santa Barbara
Email: reisizadeh@ucsb.edu

Abstract—Scaling up distributed machine learning systems
face two major bottlenecks — delays due to stragglers and
limited communication bandwidth. Recently, a number of coding
theoretic strategies have been proposed for mitigating these
bottlenecks. In particular, the Gradient Coding (GC) scheme was
proposed to speed up distributed gradient descent algorithm in
a synchronous master-worker setting by providing robustness to
stragglers. A major drawback of the master-worker architecture
for distributed learning is however, the bandwidth contention at
the master, which can significantly deteriorate the performance
as the cluster size increases. In this paper, we propose a new
framework named Tree Gradient Coding (TGC) for distributed
gradient aggregation, which parallelizes communication over a
tree topology while providing straggler robustness. As our main
contribution, we characterize the minimum computation load
for TGC for a given tree topology and straggler resiliency,
and design a tree gradient coding algorithm that achieves this
optimal computation load. Furthermore, we provide results from
experiments over Amazon EC2, where TGC speeds up the
training time by up to 18.8x in comparison to GC.

I. INTRODUCTION

Modern machine learning problems comprise of large-
scale models trained over massive data sets. With increasing
availability of commodity hardware for computing, there has
been a growing interest towards developing scalable solutions
for carrying out distributed data processing in large-scale
computing clusters. These clusters, however, suffer from two
major bottlenecks — (1) slow computing nodes or stragglers,
(2) communication bandwidth due to large data transfers.

We focus on the commonly used synchronous gradient
descent (GD) paradigm, where parallelization can be achieved
by scaling out gradient computations to workers, and the
model is updated synchronously among all the workers. In the
common master-worker setting, the workers compute partial
gradients on their local data batches and upload their results to
the master, which aggregates the full gradient and updates the
model. This, however, is bottlenecked by the slowest workers,
which makes the master-worker setup prone to stragglers [1].

Recently, coding theoretic approaches have been proposed
for mitigating stragglers as well as reducing communication
load in distributed computation [2], [3]. Since then, the use of

* Authors have equal contribution.

This material is based upon work supported by Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR001117C0053, ARO award
WO11NF1810400, NSF grants CCF-1703575 and CCF-1755808, ONR Award
No. N00014-16-1-2189, and CCF-1763673. The views, opinions, and/or
findings expressed are those of the author(s) and should not be interpreted
as representing the official views or policies of the Department of Defense or
the U.S. Government.

Email: ramtin@ece.ucsb.edu

Amir Salman Avestimehr
USC
Email: avestimehr@ee.usc.edu

Ramtin Pedarsani
UC Santa Barbara

coding theory for speeding up distributed computation, also
known as “coded computation”, has been considered in a num-
ber of works, e.g. [4]-[17]. The most related work to this paper
is Gradient Coding (GC) [18], where the authors proposed a
straggler mitigation scheme for gradient aggregation in master-
worker setup. Particularly, for a given data set, N workers and
a straggler toleration parameter S, data is redundantly placed
among the workers such that the master needs to collect local
gradient computations from only N — S workers to aggregate
the full gradient, i.e. the scheme is robust to S stragglers.

There has, however, been a recent shift from the master-
worker setting for distributed machine learning to other ar-
chitectures and algorithms, such as AllReduce over rings and
trees [19]-[21] mainly for the following reason. As the cluster
size increases, the master-worker setup suffers from bandwidth
bottleneck, since all the workers need to communicate with
the master simultaneously. However, the alternate approaches
allow for multiple simultaneous communications to take place,
thus increasing the bandwidth utilization.

In this paper, we propose the use of a tree communication
topology, and focus on the optimal data allocation and coding
design for such topology that achieves a target straggler
resiliency. As our main contribution, we propose a Tree
Gradient Coding (TGC) framework for distributed gradient
aggregation that is both bandwidth efficient and straggler
tolerant. Specifically, the compute nodes are arranged in a
logical tree topology for communication, with master at the
root, which recovers the full gradient from the computation
results of the children. In this topology, each compute node
only interacts with its parent and children nodes. The tree
topology thus alleviates the communication bottleneck, as each
node only communicates with neighbours in the tree. During
execution, each worker uploads a coded partial gradient to its
parent, by combining the partial gradients obtained from its
local data batches with the coded partial gradients received
from the children.

For a given tree topology we characterize the minimum
computation load for TGC, as well as provide an achievable
task allocation and coding strategy. As we demonstrate, TGC
achieves significantly smaller computation load compared to
GC. Moreover, we conduct experiments over Amazon EC2
cluster, where we demonstrate up to 18.8x speedups for TGC
compared to GC.

Notation. For a natural number m, [m] represents the set
{1,2,...,m}. The all ones matrix with dimension u x v is
denoted by 1, ..

II. BACKGROUND

In many machine learning algorithms, a model § € RP*! is
estimated by minimizing an empirical loss function over the
training data set. Specifically, for the training data set D =
{x; e RPTYj =1,--. d}, the goal is to find the optimal 6
that minimizes the following loss function:

> £(6;%) + AR(0), (1)
xeD
where £(-) is the underlying loss function, R(-) denotes the
regularization function, and A is the regularization parameter.

In GD algorithm, the optimal model is estimated via
an iterative procedure that makes the following update at
each iteration t: 0t =) — (g + AVR(61)). Here
g = D iep VL(OW;x) is the gradient of the empirical loss
function in (1) on model at iteration ¢ and y denotes the step
size. We denote the partial gradient with respect to a subset
PCDbygp=> yep V(01 x). We also denote by g the
full gradient, i.e. g = gp.

At scale, the computations cannot be carried out at a single
computing node; thus, the data set needs to be distributed
across multiple nodes. Moreover, computation redundancy can
be introduced in order to provide robustness to stragglers in
the distributed setting. Recently, Gradient Coding (GC) was
proposed in [18] to robustify distributed gradient aggregation
against stragglers in a master-worker setup. Next we illustrate
the main ideas behind GC.

Example 1 (Illustration of GC). Consider the master-worker
setup with N = 3 workers in Fig. 1. The goal is to make
gradient aggregation robust to S = 1 straggler. Let D be
partitioned into three batches D1, Dy, D3. As depicted in Fig.
1, each worker computes partial gradients corresponding to
two data batches, and then communicates a linear combination
of them to the master. The master can recover the full gradient
gp = gp, + &p, + gp, from the results of any N — S = 2
workers. For instance if node 2 straggles, master recovers the
full gradient by adding the results of workers 1 and 3.

Uncoded

Fig. 1: GC handles stragglers by redundant computation allocation.

More generally, for a given data set D with k partitions
{D1,- -+, Dy} and maximum number of stragglers .S, the goal
of GC is to design gradient encoding and decoding matrices
B € RV*k and A € R/*N | such that the following holds:

AB = 15y 2)
Here, f = (%) denotes the number of combinations of non-
straggling workers. For the i’ row b; of B, ||b;||, denotes the

number of partitions assigned to i*" worker, supp(b;) denotes
the data partitions that are allocated to i*" worker, while the
values in b; denote the coding coefficients for combining the
corresponding partial gradients. After receiving coded partial
gradients from any N — S workers, the master finds the
corresponding row a; in A, and then linearly combines the
results to obtain the full gradient gp as follows:

Y aiu)(bug) =liag=gp. O
ue€supp(ai)
where & = [gp,;-..;8p,]- Optimal GC schemes for gen-
eral N and S are described in [18], which achieve optimal
computation load rgg = % Thus, each worker is allocated
[bill, = Lk partitions for processing. As demonstrated in
Example 1, the following matrices solve the GC problem for
N=3and S=1.

alBg =

0 1 2 /2 1 0
A=|1 0 1), B=|0 1 -1|. &
2 -1 0 /2 0 1

III. MOTIVATING EXAMPLE AND MAIN RESULT

We consider a general tree topology for distributed gradient

aggregation and describe a Tree Gradient Coding (TGC)
problem which generalizes GC. As we demonstrate via next
example, TGC achieves a much lower computation load
compared to GC for the same fraction of straggling children
per parent node.
Example 2 (TGC via a motivating example). Consider N =
12 nodes on a tree topology depicted in Figure 2(a). The goal
is to develop a data allocation and communication design such
that the gradient aggregation at master has a resiliency of 1/3
per parent, i.e. the master can recover the full gradient while
any of the 3 children per any parent straggle. Note that for
a classical master-worker setup, a resiliency of 1/3 implies
S = 4 and rgc = 5/12. As we illustrate here, using a tree
topology can significantly reduce the computation load.

Consider the data set D of size d partitioned to D =
{D1,D2,Ds}. To recover gp = gp, + &p, + Ep, at the
master from any two of its three children, it suffices to ensure
that the partial gradients uploaded from the three nodes in
the first layer to the master are m(;) = %ng + 8D,>
m(; 5) = 8p, — 8Dy, and m(; 3) = 1gp, + &p,.

Next, we explain how TGC ensures such recovery guar-
antees. Consider the sub-tree consisting of the parent node
(1,1) and its three children denoted by T°(1,1). To construct
mg) = %gpl + gp, from the results of its local partial
gradient computation and those of any two of its children,
we assign DT(WY = 1D U D, to sub-tree T(1,1)!. Node
(1,1) then picks rrgcd = 1rd data points from D71 as
D(1,1). To do so, DT is partitioned to 5 sub-sets as
pT(.1) = pTEY ...y DI'™Y and node (1,1) picks the
first two sub-sets, i.e. D(1,1) = DlT(l’l) UDQT(M) and the rest
Dray = Dg(l’l)UDZ(l’l)UDg(l’l) is passed to layer 2. Note

ITo ease the notations, we associate a real scalar b to all the data points in
a generic data set D, denoting it by bD, and define the gradient over bD as
gp = bgp = b Y cp VE(OD;x).

that data points in D(1,1) carry on the linear combination
coefficients associated with DT(1:1) = 3Dy U D;. Figure 2(b)
demonstrates each node in sub-tree 7'(1,1) with its allocated
data set along with the encoding coefficients. Moving to layer
2, Dp(1,1) is partitioned to 3 subsets and according to B in
(4), the allocations to nodes (2,1), (2,2) and (2,3) are as
follows:

1
D(2,1) = 505" DY,
D(2,2) =Dy U (-1)D5 Y,
1
D(2,3) = ;D5 uDg Y.

Similarly for other sub-trees, each node now is allocated with
a data set for which each data point is associated with a
scalar. For instance, node (2,1) uploads mz 1) = gp(2,1) =
%ng(l,l) + gpram to its parent (1,1). Node (1,1) can
recover from any 2 surviving children, e.g. from (2,1) and
(2,1) and using the first row in A, it uploads

m; 1y = [2,—1,0][m21); m29); M2 3)] + Sp(1,1)

1
=2my 1) —M22) + &p(1,1) = 58D +gp,
to the master. Similarly for other nodes, the master can recover
the full gradient from any two children, e.g. using the second
row of decoding matrix A and surviving children (1,1) and

(1,3):

(1,0, 1][myy 1y; mq 2); M1 3)] = Mg 1) +myq 3

1 1
= (2gD1 +g92> + <2g91 +gD3> = 8D-

More generally, we consider an (n, L)-regular tree topology
for communication defined as follows:

In an (n, L)-regular tree topology 7', the computing nodes
are arranged in a multi-level tree architecture for commu-
nication, where the master is at the root node and the N
workers are arranged in L layers of the tree with each parent
node having n children nodes, i.e. N = n 4 --- + nl. We
identify each node with a pair (I, j), where [€ [L] denotes the
corresponding layer, and j € [n!] denotes the node’s index in
that layer. We also let (0, 1) denote the root node. Furthermore,
T(l,j) denotes the sub-tree with the root node (I, 5).

Definition 1. For a given (n,L)-regular tree topology, a
distributed gradient aggregation strategy is «—resilient for a
given 0 < o < 1 if the master can recover the full gradient
while any s = an children per any parent may straggle.

Tree Gradient Coding (TGC) Problem: For a given (n, L)-
regular tree topology, data set D and resiliency «a, the TGC
problem is to design a—resilient gradient aggregation strate-
gies, while uniformly loading each node with r fraction of the
total data set D (named as computation load). In the following,
we formally formulate the TGC problem:

o Starting from the master node, let DT(17) denote the
collective data set assigned to sub-tree T'(1,j) according
to encoding vectors bg" € R for j € [n]. That is, the
total data set D is partitioned to {Dj,--- , Dy} and DT (1)

Dy Dy Dy
2, D

(a) Illustration of the partial gradients communicated to the master from the
sub-trees attached to it.

Dy 12 1/2
prt1) =

T(1,1) 1/4
D(Q,l): DS 1/2
1

T(1,1) 1/4
D(Z, 3): D.‘} 1/2

D
D(2,2) =
oy

(b) Ilustration of the task allocation and communication components of TGC
for the sub-tree 7°(1,1).

Fig. 2: The task allocation and communication for TGC.

collects the partitions with non-zero corresponding elements
in bg", i.e. for all j € [n]
DTD) = Uk 1{b}(k) # 0}D,.. ©)
To recover the full gradient at the master from any n—s of its
sub-trees, the design vectors {b!,--- bM} should satisfy
the following property for every subset I C [n], |I| =n—s:
11 € span{bM|i € I}. (6)
e For layer I = 1, consider the node (1,j), j € [n],
with local data set D(1,j) C DT(4) corresponding to
the local encoding vector bol’]). To satisfy the compu-
tation load constraint, b(()l’j) should impose computation
load |D(1,5)] < rd. Let Dy ;) denote the collective
data set for the sub-trees of the children of node (1,7),
ie. T(2,n(j —1)+1),---,T(2,n4). Treating Dr(y ;) as
a data set over a sub-tree with (1,7) as its master, data
sets DT(nU=1+9) are determined by the encoding vec-
tors bgl’j), i € [n]. That is, Dy ;) is partitioned to
{Dr@jyas- s Prag)kt and
DT(Q,n(j—l)"ri) — Uﬁ:l:ﬂ-{bgld) (:‘i) # O}DT(l,j),K' (7)
Straggler resiliency condition requires the encoding vectors

{bgl’j),bgl’”, e 7b5}’”} to satisfy:

b’j\-/I € span{b(()l’]), bgl’J)|i e}, (8)
for every subset I C [n], |I| = n — s. This also implies that
each parent will recover from its non-straggling children and
combine with its local gradient with the proposed decoding
vectors determined by (8).

o Similar spanning conditions should be satisfied for the rest
of the layers. For the last layer, the following condition must
be satisfied for all j € [n~!] and i € [n]:

b(()L,n(j—l)—Hi) _ bz(L—l,j)‘)

The goal of TGC problem is therefore to design encoding
and decoding vectors satisfying the conditions (6), (8) and (9).
These vectors specify both data allocation and communication
strategy to aggregate the gradient while being robust.

As our main contribution, we solve the TGC problem
by proposing a resilient gradient aggregation scheme (also
named as TGC) which consists of data allocation and cod-
ing/communication strategy. We characterize the computation
load of the proposed scheme and show its optimality. This is
formally stated as follows.

Theorem 1. For a given (n,L)-regular tree topology, re-
siliency 0 < o« < 1 and s = an, the minimum computation
load for the TGC problem is

1

() ++ ()

Remark 1. Theorem 1 implies a significant improvement over
GC in computation load. To attain resiliency «, GC loads each
worker with rgc & « fraction of the total data set, while this is
greatly reduced to rrac ~ 1/(L + L +.. .+ L) m ol <«
o for sufficiently large L. For example, for « = 0.5 and L = 4,
r1gg is less than 10% of rgg. Moreover, Theorem 1 states that
TGC scheme achieves any target resiliency o« = s/n over a
fix (n, L)-regular tree topology by the minimum computation
load on each node (as in (10)).

(10)

rTGC =

Remark 2. TGC makes the distributed GD strategy robust to
stragglers patterned according to Definition 1, i.e. any s = an
stragglers per any parent node which sums up to a total of
(at least) S = aN stragglers — the same as the worst case
number of stragglers in GC. In our experiments over Amazon
EC2, stragglers are found to be randomly distributed over the
tree (and not adversarially picked), which is aligned with the
random stragglers pattern considered in this paper.

Remark 3. While Theorem 1 illustrates the theoretical gains
of TGC over GC, we also run experiments over Amazon
EC2, where we show speedups of up to 18.8x in comparison
to GC. These results demonstrate that TGC can provide
significant gains in the overall training time of distributed
learning algorithms by optimizing the computation load and
improving the bandwidth efficiency.

The proof for Theorem 1 can be concluded from Lemma 1
(Achievability) and Lemma 2 (Converse) in Section IV.

IV. ACHIEVABILITY AND CONVERSE

In this section, we describe our proposed distributed gra-
dient aggregation strategy TGC and prove its achievability
and optimality as stated in Theorem 1. In particular, we first
describe our proposed TGC scheme. Then, in Lemma 1 we
characterize the computation load induced by the proposed
TGC scheme and conclude the section with proving the
scheme’s optimality in Lemma 2.

Consider a data set D, an (n, L)-regular tree and resiliency

a = s/n. Our proposed TGC scheme has two main compo-
nents:
Task Allocation: The goal of the master is to recover the total
gradient g = gp from any of its n — s out of n children’s
uploaded computation results. In order to ensure this, the data
set is allocated in a recursive manner as follows:

1) The encoding matrix B is generated using the GC
algorithm for the master-worker setup with n nodes and
straggling parameter s (Algorithm 2 in [18]).

2) The data set Dry(q,1) = D is partitioned to k batches and
redundantly assigned to sub-trees T'(1,1),...,7(1,n)
such that each batch is placed in s + 1 sub-trees (for
k = n). We let DT(9) denote the collective data set
assigned to sub-tree T'(l,). This task allocation algo-
rithm is formally defined as sub-routine TASKALLOC
(Algorithm 1) in [22].

3) At each sub-tree T'(1, §), the root node (1, j) picks rrgcd
data points from DT (1) as its local data set D(1,) and
assigns the remaining data Dy ;) == D719\ D(1, j)
to its children similar to GC by calling the subroutine
TASKALLOC.

4) The previous step is carried out at each node layer-wise
till reaching the leaf nodes in layer L where DT (5:3) =
D(L, j).

After the local computations are assigned to each node, the
distributed gradient aggregation is carried out as follows:
Distributed Gradient Aggregation: The following tasks are
executed at the workers:

1) The decoding matrix A corresponding to B is transmitted
to each parent node (Algorithm 1 in [18]).

2) Each worker (I, j) computes the partial gradient gp(; ;)
from its local data set D(I, 7).

3) Each worker (L, j) in the last layer sends gp(z ;) to its
parent.

4) Every node (l,j) in layer [€ {1,---,L — 1} waits for
results from any n—s of its children, and then recovers the
partial gradient corresponding to D7 (7), This is formally
explained in Algorithm 2 in [22] as the communication
module. Specifically, depending on which children nodes
are the stragglers, node (I, j) picks the corresponding row
in decoding matrix A so that together with gp(; ;) it can
recover the required partial gradient and send it to its
parent.

5) Previous step is repeated till reaching the master, where
it waits for results from any n — s children and recovers
the full gradient gp.

Next, we derive the computation load of the proposed
TGC scheme which corresponds to the achievability part of
Theorem 1 (Proof is provided in [22]).

Lemma 1 (Achievability). For an (n, L)-regular tree topology
and resiliency 0 < «a < 1, the computation load of the
proposed TGC scheme is as follows:

1

(&) ++ ()

We conclude this section by proving the optimality of the

proposed TGC scheme by providing the converse of Theorem
1 (Proof is provided in [22]).
Lemma 2 (Converse). For any distributed gradient aggrega-
tion strategy over a regular (n, L)-regular tree topology with
resiliency 0 < a < 1, the computation load is lower bounded
as follow:

an

TTGC =

1
r> = r1GC-

() ++ (&)

V. EXPERIMENTS OVER AMAZON CLUSTER

(12)

In this section, we present the results from our experiments
conducted over Amazon EC2, demonstrating the practical
gains of the proposed TGC scheme over two baseline ap-
proaches: (1) Uncoded distributed gradient aggregation, in
which the machines are arranged in the master-worker setup
and the data set is uniformly partitioned among the workers,
and (2) GC scheme. We consider the problem of training a
logistic regression model via gradient descent on GISETTE
data set, where the task is to differentiate between the two
often confused digits of ‘4’ and ‘9’. For training, we chose
d = 6552 samples, while the model size is p = 5001. Next
we evaluate the convergence speeds of the three schemes by
plotting the relative error rate as a function of the wall-clock
time for each algorithm:

Hg(t) N 9<t—1)H2

Relative Error Rate =

b

o=

where #(*) represents the current model at iteration .

10°

——Uncoded
—GC

—TGC

Relative Error Rate

0 20 40 60 80
Run-time (in seconds)

100

Fig. 3: Convergence plots for relative error rate for the three schemes
— Uncoded, GC, TGC. As demonstrated here, TGC achieves a
speedup of up to 31.4x and 18.8x over Uncoded and GC ap-
proaches.

We used a cluster of a master and N = 156 worker
instances. For the proposed TGC scheme, we considered a
regular tree with L = 2 layers and n = 12 children per
parent. Furthermore, we empirically optimized the straggling
parameters for both GC and TGC.

Remark 4. Compared to benchmarks Uncoded and GC,
the proposed TGC achieves speedups of 31.4x and 18.8x,
respectively. Moreover, while GC improves upon Uncoded
by resolving the straggler issue, TGC improves over GC via
efficient bandwidth utilization as well as computation load
reduction by a factor of 11x.

REFERENCES

[11 G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones.,” NSDI, 2013.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, 2017.

[3] S.Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed com-

puting,” IEEE Transactions on Information Theory, 2017.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” NIPS, 2016.

[5] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” NIPS, 2017.

[6] M. A. Attia and R. Tandon, “Information theoretic limits of data
shuffling for distributed learning,” GLOBECOM, 2016.

[71 A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, 2019.

[81 Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs

distributed computation: an alternative trade-off curve,” 2017.

K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix

multiplication,” ISIT, 2017.

Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an

optimal design for high-dimensional coded matrix multiplication,” NIPS,

2017.

J. Kosaian, K. Rashmi, and S. Venkataraman, “Learning a code: Machine

learning for approximate non-linear coded computation,” arXiv preprint

arXiv:1806.01259, 2018.

M. Ye and E. Abbe, “Communication-computation efficient gradient

coding,” ICML, 2018.

Q. Yu, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and A. S.

Avestimehr, “Lagrange coded computing: Optimal design for resiliency,

security and privacy,” in AISTATS, 2019.

W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed

gradient descent using reed-solomon codes,” ISIT, 2018.

S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr, “Coded

computing for distributed graph analytics,” ISIT, 2018.

C.-S. Yang, R. Pedarsani, and A. S. Avestimehr, “Timely-throughput

optimal coded computing over cloud networks,” in ACM MobiHoc, 2019.

A. Reisizadeh and R. Pedarsani, “Latency analysis of coded computation

schemes over wireless networks,” in Communication, Control, and Com-

puting (Allerton), 2017 55th Annual Allerton Conference on, pp. 1256—

1263, IEEE, 2017.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient

coding: Avoiding stragglers in distributed learning,” ICML, 2017.

T. Hoefler and D. Moor, “Energy, memory, and runtime tradeoffs for

implementing collective communication operations,” Supercomputing

Frontiers and Innovations, 2014.

H. Zhao and J. Canny, “Kylix: A sparse allreduce for commodity

clusters,” ICPP, 2014.

Y. Li, M. Yu, S. Li, S. Avestimehr, N. S. Kim, and A. Schwing, “Pipe-

SGD: A Decentralized Pipelined SGD Framework for Distributed Deep

Net Training,” NIPS 2018, 2018.

A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Cod-

edreduce: A fast and robust framework for gradient aggregation in

distributed learning,” arXiv preprint arXiv:1902.01981, 2019.

[4

=

[9

—

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

