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Elastic waveguides with time- and space-dependent material properties have received great attention as a
means to realize nonreciprocal propagation of small-amplitude mechanical waves in unbounded elastic media.
Previous works have shown that propagating waves in a modulated medium violate reciprocity by means of
asymmetric frequency and wave number conversion between two counterpropagating modes. In the present
study, we investigate nonreciprocal longitudinal and transverse vibrations in a finite elastic waveguide with
time- and space-dependent material properties. A semianalytical approach based on coupled mode theory is
derived, which makes use of the mode shapes of the nonmodulated beam subject to a set of imposed boundary
conditions. The modulation parameter space is explored for designs that yield a large degree of nonreciprocity for
low-frequency longitudinal and transverse vibrations. For the cases considered in this work, only a small subset
of modulation parameters displays strong nonreciprocity, which reveals a sparse and complex design space that
must be analyzed in order to create nonreciprocal wave devices.
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I. INTRODUCTION

Acoustic and elastic wave reciprocity is an important
fundamental property that details the characteristics of wave
propagation between two points. Namely, in a heterogeneous
linear time-invariant (LTI) medium, the propagation of acous-
tic or elastic waves from source to receiver will be identi-
cal in phase and magnitude if the source and receiver are
interchanged [1–3]. Breaking reciprocity can enable unique
wave phenomena, such as direction-dependent frequency [4]
and mode conversion [5], which yields directional band gaps
[6,7] for propagating waves. These effects may be exploited to
design novel devices, including acoustic circulators [8,9] and
topological insulators [10,11], which may be used to improve
energy harvesting, signal processing, vibration isolation, and
acoustic communication devices.

One key concept of realizing a nonreciprocal LTI sys-
tem is to violate time-reversal symmetry. This was initially
achieved by introducing a directional momentum bias for
mechanical systems, such as fluid flow [8,12,13], but was later
demonstrated in piezophononic media [14], moving media
[8,15,16], gyroscopic phononic crystals [17,18], and media
with modulated resonators [19,20], for example. The principle
of reciprocity can also be violated in media that are not LTI.
This includes nonlinear media, which have been used to create
one-way sound propagation in systems with geometric and
material stiffness nonlinearities, internal scale hierarchy, and
materials composed of unit cells with geometric asymmetry
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[21–24]. Another mechanism, which is central to the present
study, is modulation of the material properties in space and
time [6,7,25–30]. Nonreciprocal wave propagation has been
observed in media whose effective mechanical properties
have been externally modulated using electromagnetic ef-
fects [31–34], as well as external mechanical deformation
via “small-on-large” wave propagation in discrete [35] and
continuous [36] chains of geometrically nonlinear elements.

Although much research considers wave motion in infinite
media with spatiotemporal modulation of properties, properly
accounting for wave propagation in structures constructed
from constituents with time- and space-varying properties
introduces additional complexities. More specifically, the ma-
jority of current research has investigated only nonreciprocal
plane wave propagation in infinitely periodic simple systems,
such as one-dimensional mass-spring chains [27], longitudi-
nal and flexural waves in beams [6], locally resonant meta-
materials [7,37], and two-dimensional systems such as mem-
branes [38] and plates [39]. Nonreciprocity is demonstrated in
these works via the existence of directional band gaps in the
frequency-wave-number dispersion spectrum. However, these
concepts are difficult to apply to a bounded medium due to
the direction-dependent frequency conversion present when
each plane wave component of the total wave field is reflected
from the boundaries. A formulation that exactly incorporates
the boundary conditions, frequency conversions, and standing
wave patterns for steady-state vibrations is therefore needed in
order to properly design finite domains and structures whose
properties are modulated in time and space.

In this work, we study longitudinal and transverse modes
in a finite elastic Euler-Bernoulli beam in which Young’s
modulus is modulated in space and time [6,19,40,41]. A
coupled-mode approach is utilized by representing the to-
tal displacement solution as a weighted sum of modes that
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FIG. 1. Schematic of the Euler-Bernoulli beam of length L. (a) Longitudinal wave configuration with fixed or free boundary conditions
applied at the ends of the beam. (b) Transverse wave configuration with fixed, pinned, free, or roller boundary conditions applied at the ends of
the beam. Both configurations include a continuous distribution of external reactive (elastic) and resistive (viscous) forces, represented above
by springs and dashpots.

are known a priori from the nonmodulated beam case. We
make no assumptions on the depth of modulation of Young’s
modulus relative to its mean value as well as the modulation
frequency relative to the drive frequency, which differs from
some previous works that required small modulation depths
and frequencies to enable perturbative approaches [7,9] and
allows for an extensive exploration of the design space. We
then seek material modulation parameters that yield a high
degree of nonreciprocity between a point force source and
receiver along the beam. This work shows that the spatiotem-
poral modulation of the material properties alone does not
guarantee strong nonreciprocity in finite continuous systems,
but instead introduces a sparse and complex design space that
must be thoroughly explored in order to create nonreciprocal
wave devices.

II. THEORETICAL MODEL

Consider longitudinal and transverse wave propagation in
a thin elastic Euler-Bernoulli beam of length L with constant
cross-sectional area A0 and constant second moment of inertia
I . The dynamic longitudinal displacement u(x, t ) and trans-
verse displacement w(x, t ) of the beam are uncoupled for this
case and are described by their respective partial differential
equations (PDEs),

∂

∂x

(
E (x, t )

∂u

∂x

)
− ρ0

∂2u

∂t2
= f

(
x, t, u,

∂u

∂t

)
, (1)

R2
g

∂2

∂x2

(
E (x, t )

∂2w

∂x2

)
+ ρ0

∂2w

∂t2
= g

(
x, t,w,

∂w

∂t

)
, (2)

where E (x, t ) is Young’s modulus, ρ0 is the density, Rg =√
I/A0 is the radius of gyration of the beam, and f (x, t, u, ∂u

∂t )
and g(x, t,w, ∂w

∂t ) are the exterior forcing per unit volume in
the x direction and orthogonal to the x direction, respectively,
which can contain linear reactive (elastic) and/or resistive
(viscous) forces, as well as prescribed driving forces. Only ho-
mogeneous boundary conditions are considered in this work,
which includes fixed or free boundaries for the longitudinal
wave case and clamped, pinned, roller, or free boundaries for
the transverse wave case.

The geometry is shown in Fig. 1(a) for the longitudinal
wave case and Fig. 1(b) for the transverse wave case. In both
cases we assume a continuous exterior distribution of elastic
and viscous forces, such that the exterior forcing functions for
longitudinal and transverse waves can be written as

f

(
x, t, u,

∂u

∂t

)
= F0

A0
fs(x, t ) + kL

A0
γL(x)u + ZL

A0
ζL(x)

∂u

∂t
,

(3)

g

(
x, t,w,

∂w

∂t

)
= G0

A0
gs(x, t ) + kT

A0
γT(x)u + ZT

A0
ζT(x)

∂w

∂t
,

(4)

where F0 (G0) is the exterior force amplitude and fs(x, t )
(gs(x, t )) is the exterior force density per unit length for the
longitudinal (transverse) case, k is the exterior elastic stiffness
with spatial density γ (x) per unit length, Z is the mechanical
impedance of the resistive forces with spatial density ζ (x) per
unit length, and the subscripts L and T refer to the longitudinal
and transverse wave cases, respectively.
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We further assume that Young’s modulus has the form

E (x, t ) = E0 + Emχ (x, t ), (5)

where E0 is the mean (static) Young’s modulus, Em is the mod-
ulation amplitude, and χ (x, t ) is the variation, or modulation,
of Young’s modulus about the mean value. Finally, we restrict
χ (x, t ) to be a periodic function of time,

χ (x, t ) = χ (x, t + Tm), (6)

where Tm is the characteristic modulation time and ωm =
2π/Tm is the modulation angular frequency.

In order to solve Eqs. (1) and (2), we require a set of
basis functions to represent the solution. However, the choice
of basis functions is nontrivial when material properties are
modulated in space and time since the separation by variables
method cannot be utilized. We therefore choose to use the
mode shapes of the nonmodulated beam that satisfy the given
boundary conditions as a basis set due to its simple analytical
form and the fact that they form a complete orthogonal set.
The spatiotemporal modulation of the material properties
along with the exterior elastic and viscous forces will then
introduce coupling between the modes of the nonmodulated
beam. In the following section, we derive the coupled-mode
formulation for the longitudinal modes, followed by the trans-
verse mode case.

A. Longitudinal modes

To solve Eq. (1), we seek a solution of the form

u(x, t ) =
∞∑
i=1

ui(t )ψi(x), (7)

where ui(t ) are the time-dependent modal amplitudes, and
ψi(x) are the mode shapes that satisfy the homogeneous
constant-coefficient Helmholtz equation provided in Eq. (8)
subject to the boundary conditions imposed at the ends of
the beam,

E0
d2ψi

dx2
+ ρ0ω

2
i ψi = 0, (8)

where ωi are the natural frequencies of the modes. Conse-
quently, the modes satisfy the orthogonality relation

∫ L

0
ψiψ j dx =

{
0 if i �= j,
β if i = j,

(9)

where β is the mode normalization constant [42]. Substitution
of Eq. (7) into Eq. (1) gives the following expression for
forced longitudinal wave motion in the beam:

∞∑
i=1

[
ui(t )

∂

∂x

(
E (x, t )

∂ψi

∂x

)
− ρ0

∂2ui
∂t2

ψi

]

= f

(
x, t, u,

∂u

∂t

)
. (10)

Multiplying Eq. (10) on both sides by ψ j , integrating the
expression over the length of the beam L, and utilizing the
orthogonality of the modes, Eq. (9), yields the following
system of coupled ordinary differential equations (ODEs) for

the modal amplitudes:

ρ0β
∂2ui
∂t2

=
∞∑
j=1

u j (t )
∫ L

0

∂

∂x

(
E (x, t )

∂ψ j

∂x

)
ψi dx

−
∫ L

0
f

(
x, t, u,

∂u

∂t

)
ψi dx. (11)

The first integral on the right-hand side of Eq. (11) is rewritten
using integration by parts:

∫ L

0

∂

∂x

(
E (x, t )

∂ψ j

∂x

)
ψi dx =E (x, t )

∂ψ j

∂x
ψi

∣∣∣∣
L

0

−
∫ L

0
E (x, t )

∂ψi

∂x

∂ψ j

∂x
dx.

(12)

Note that the boundary terms in Eq. (12) vanish if the nor-
mal modes satisfy clamped (Dirichlet) or free (Neumann)
boundary conditions. For these cases, Eq. (11) reduces to the
expression

ρ0β
∂2ui
∂t2

= −
∞∑
j=1

u j

∫ L

0
E (x, t )

∂ψi

∂x

∂ψ j

∂x
dx

−
∫ L

0
f

(
x, t, u,

∂u

∂t

)
ψi dx. (13)

The last integral in Eq. (13) can be rewritten using Eq. (3) to
explicitly account for external, elastic, and viscous forces∫ L

0
f

(
x, t, u,

∂u

∂t

)
ψi dx = F0

A0

∫ L

0
fs(x, t )ψi dx

+
∞∑
j=1

(
uj

kL
A0

∫ L

0
γL(x)ψiψ j dx

+ ∂u j

∂t

ZL
A0

∫ L

0
ζL(x)ψiψ j dx

)
.

(14)

To reduce the complexity of the parameter space, Eq. (13) is
then nondimensionalized by defining the normalizations ū =
u/u0, x̄ = x/L, t̄ = ω0t , α = Em/E0, ζ̄L(x) = LζL(x), and
γ̄L(x) = LγL(x), where u0 is a reference displacement that is
defined below and ω0 is the angular frequency of the source.
This yields the following dimensionless equations for the
modal amplitudes, written as a matrix-vector system:

Ü (t̄ ) + Z̄LCU̇ (t̄ ) + [K + k̄L� + αKm(t̄ )]U (t̄ ) = −F(t̄ ),
(15)

where U = [ū1, ū2, . . . , ūN ]T, N is the number of modes
considered in Eq. (7), Z̄L = ZL/(A0ρ0c0) is the ratio of the
specific acoustic impedance of the exterior viscous load over
the longitudinal wave characteristic acoustic impedance of the
beam, k̄L = kLL/(E0A0) is the ratio of the stiffness of the
elastic foundation over the effective stiffness of the beam, and
α = EM/E0 is the dimensionless modulation amplitude. The
components of the matrices in Eq. (15) are

Ci j = c0
ω0β

∫ 1

0
ζ̄L(x̄)ψiψ j dx̄, (16a)
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Ki j =
(

ωi

ω0

)2

δi j, (16b)


i j = c20
ω2
0βL

∫ 1

0
γ̄L(x̄)ψiψ j dx̄, (16c)

(Km)i j (t̄ ) = c20
ω2
0βL

∫ 1

0
χ (x̄, t̄ )

∂ψi

∂ x̄

∂ψ j

∂ x̄
dx̄, (16d)

Fi(t̄ ) =
∫ 1

0
fs(x̄, t̄ )ψi dx̄, (16e)

where c0 = √
E0/ρ0 is the longitudinal wave speed in the

beam and u0 is chosen such that the coefficient in front of the
exterior forcing term is unity. The matrices C and � in general
have off-diagonal components that couple the modes of the
nonmodulated beam unless the elastic and viscous forces are
constant throughout the beam. In addition, the matrix Km can
couple modes at other frequencies, which is further discussed
in Sec. II B. Perturbation methods could also be used if α and
ν are assumed to be small [7,9]. However, we solve Eq. (15)
directly in order to find cases of large nonreciprocity for any
modulation and material properties of interest.

The initial conditions for Eq. (15) are derived from Eq. (7)
and are given by the integral expressions:

Ui(0) =
∫ L

0
u(x, 0)ψi dx, (17)

U̇i(0) =
∫ L

0
u̇(x, 0)ψi dx. (18)

Given the system properties, source function, and modulation,
Eq. (15) can be solved in the time domain using an ODE
solver (e.g., ODE45 solver in MATLAB). However, steady-state
solutions can also be sought if the exterior forcing is assumed
to be time harmonic, which is detailed in the following
section.

B. Steady-state solutions

Due to the periodicity of χ (x, t ) in time, it can be expanded
as a Fourier series,

χ (x̄, t̄ ) =
∞∑

p = −∞
p �= 0

χ̂ p(x̄)e−ipνt̄ , (19)

where ν = ωm/ω0 and i = √−1. In the remainder of this
work, the symbol i refers to the imaginary unit when not
used as a subscripted index. We note that the static term
(p = 0) in Eq. (19) has already been separated in Eq. (5), i.e.,
χ̂0(x̄) = 0. We also assume that the source term in Eq. (3) is
time harmonic, e.g., fs(x, t ) = fs(x)e−it̄ . As in previous works
[35,36], temporal modulation of the waveguide gives rise to
harmonics, which are Fourier components of the response that
differ from the drive frequency ω0 by integer multiples of the
modulation frequency ωm (or dimensionless frequencies 1 and
ν, respectively). Thus, we expand the modal amplitudes in the
following Fourier series:

ū j (t̄ ) =
∞∑

q=−∞
ûqj e

−i(1+qν )t̄ , (20)

where the harmonic mode coefficient ûqj is the ampli-
tude of the jth mode at the qth harmonic frequency.
Substitution of Eq. (20) into Eq. (7) gives the complete
solution in terms of the harmonic mode amplitudes,

ū(x̄, t̄ ) =
∞∑

p=−∞

⎛
⎝ ∞∑

j=1

ûpjψ j (x̄)

⎞
⎠e−i(1+pν )t̄ . (21)

Substituting Eqs. (19) and (20) into Eq. (15) and utilizing the
orthogonality of the Fourier series yields a system of algebraic
equations for the harmonic mode amplitudes,

(1 + pν)2Û
p + i(1 + pν)Z̄LCÛ

p − (K + k̄L�)Û
p

− α

P∑
q=−P

K̂p−qÛ
q = F, p ∈ [−P,P], (22)

where we have truncated the outer summation in Eq. (21) at
p = ±P, such that the total number of retained harmonics is
2P + 1, Û

p = [ûp1, . . . , û
p
N ]

T, and

K̂p−q
i j = c20

ω2
0βL

∫ 1

0
χ̂ p−q(x̄)

∂ψi

∂ x̄

∂ψ j

∂ x̄
dx̄. (23)

C. Transverse modes

The derivation of the coupled-mode equations for trans-
verse modes follows an approach similar to what was pre-
sented in Secs. II A and II B for the longitudinal mode case.
For brevity, only the final equations from the derivation are
presented, and the differences between the two approaches are
highlighted.

To solve Eq. (2), we seek a solution of the form

w(x, t ) =
∞∑
i=1

wi(t )φi(x), (24)

where wi(t ) are the time-dependent modal amplitudes for
transverse motion and φi(x) are the transverse mode shapes of
the nonmodulated beam that satisfy the boundary conditions
at each end (clamped, pinned, roller, or free). Following the
same procedure as outlined in Secs. II A and II B for the
longitudinal wave motion, we find the following equations for
the transverse harmonic mode amplitudes:

(1 + pν)2Ŵ
p + i(1 + pν)Z̄TCŴ

p − (K + k̄T�)Ŵ
p

− α

P∑
q=−P

K̂p−qŴ
q = G, p ∈ [−P,P], (25)

where Ŵ
p = [ŵp

1 , . . . , ŵ
p
N ]

T, Z̄T = ZTL/(ρ0c0A0Rg), k̄T =
kTL3/(E0A0R2

g), and

Ci j = c0Rg

ω0βL

∫ 1

0
ζ̄T(x̄)φiφ j dx̄, (26a)

Ki j =
(

ωi

ω0

)2

δi j, (26b)


i j = c20R
2
g

ω2
0βL

3

∫ 1

0
γ̄T(x̄)φiφ j dx̄, (26c)
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K̂ p−q
i j = c20R

2
g

ω2
0βL

3

∫ 1

0
χ̂ p−q(x̄)

∂2φi

∂ x̄2
∂2φ j

∂ x̄2
dx̄, (26d)

Gi =
∫ 1

0
gs(x̄)φi dx̄. (26e)

Note that since Eq. (2) is a fourth-order PDE, integration
by parts is performed twice to yield Eq. (26d). The resulting
boundary terms from the integration by parts vanish if the
transverse normal modes satisfy clamped, free, pinned, or
roller conditions at the boundaries.

III. EXAMPLE CASE

The system of equations for the longitudinal and transverse
harmonic mode amplitudes, Eqs. (22) and (25), respectively,
are general for any modulation forms of χ (x, t ) and any
boundary conditions described in Sec. II. Without loss of
generality, the present analysis is greatly simplified by consid-
ering a fixed-fixed beam for longitudinal modes and a pinned-
pinned beam for transverse modes. The mode shapes for
longitudinal and transverse vibrations are therefore identical
and are written as

ψn(x) = φn(x) = sin
(nπx

L

)
n = 1, 2, . . . ,N, (27)

and the natural frequencies are

ωn = c0nπ

L
(28)

for longitudinal modes and

ωn = c0Rgn2π2

L2
(29)

for transverse modes. Consequently, the normalization factor
β in Eq. (9) is β = L/2.

To demonstrate the utility of the models derived in Sec. II,
we seek to identify modulation parameters that yield a large
degree of nonreciprocity at a point on the beam, xout, given a
point force source located at point xs at the drive frequency
ω0. Since the total solution, Eq. (21), is generally aperiodic in
time, we focus on only the drive frequency component of the
total solution (p = 0) in order to investigate the steady-state
nonreciprocal energy distribution along the beam. For the
present case, we investigate the response of the beam near
the resonance frequency of the third mode, n = 3, which is
the lowest frequency that exhibits large nonreciprocity for the
modulation parameters considered in Sec. III A. The model
geometry is shown in Fig. 2(a) for the longitudinal mode case
and Fig. 2(b) for the transverse mode case. A point force is
located at xs = L/6, and the displacement of the beam uout and
wout is probed at xout = 5L/6. It is also assumed that there are
no exterior elastic forces and the viscous forces are constant
throughout the beam, such that mode coupling is induced
only by the spatiotemporal modulation of Young’s modu-
lus. The exterior forcing functions in Eqs. (3) and (4) then

FIG. 2. Example beam configuration for (a) longitudinal modes
with fixed-fixed boundary conditions and (b) transverse modes with
pinned-pinned boundary conditions. (c) Plot of Young’s modulus
at time t = 0. Nonreciprocity is measured by comparing the dis-
placements uout and wout due to time-harmonic sources F0e−iω0t and
G0e−iω0t when the modulation is traveling in the (i) “forward”, or+x,
direction and (ii) “backward”, or −x, direction.

become

f

(
x, t,

∂u

∂t

)
= F0

A0
δ(x − xs) + ZL

A0

∂u

∂t
, (30)

g

(
x, t,

∂w

∂t

)
= G0

A0
δ(x − xs) + ZT

A0

∂w

∂t
, (31)

which leads to simplified expressions for the integrals in
Eqs. (16a) and (26a),∫ 1

0
ζ̄Lψiψ j dx̄ =

∫ 1

0
ζ̄Tφiφ j dx̄ = 1

2
δi j, (32)

and the exterior forcing vectors in Eqs. (22) and (25),

Fi = ψi(xs), (33)

Gi = φi(xs). (34)

Young’s modulus is modulated with the form

E (x, t ) = E0 + Em cos(2πx/L − ωmt ), (35)

as shown in Fig. 2(c), which can be rewritten using complex
exponentials such that the mode coupling matrix for longitu-
dinal modes, Eq. (23), becomes

K̂s
mn = c20π

2mn

ω2
0L

2

×
⎧⎨
⎩

∫ 1
0 ei2π x̄ cos(mπ x̄) cos(nπ x̄) dx̄, s = 1,∫ 1
0 e−i2π x̄ cos(mπ x̄) cos(nπ x̄) dx̄, s = −1,
0, elsewhere,

(36)
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FIG. 3. (a) Nonreciprocity metric � as a function of α and ν

for longitudinal modes at ω0 = 3.4πc0/L and Z̄L = 0.5. The red
circle highlights the point (ν, α) = (0.44, 0.3), which corresponds
to the special case considered for (b) and Figs. 4 and 5. (b) Absolute
square of the harmonic modal amplitudes, |ûp

i |2, normalized by
the absolute square of the maximum harmonic modal amplitude
in decibels for the forward and backward modulation directions at
α = 0.3 and ν = 0.44.

and the coupling matrix for transverse modes, Eq. (26d),
becomes

K̂s
mn = c20R

2
gπ

4m2n2

ω2
0L

4

×
⎧⎨
⎩

∫ 1
0 ei2π x̄ sin(mπ x̄) sin(nπ x̄) dx̄, s = 1,∫ 1
0 e−i2π x̄ sin(mπ x̄) sin(nπ x̄) dx̄, s = −1,
0, elsewhere.

(37)

Since the assumed modulation form in Eq. (35) contains
only one harmonic term in Eq. (19), only the s = ±1 terms
contribute in Eqs. (36) and (37).

Nonreciprocal vibrations

The dimensionless parameters in Eqs. (22) and (25) that
define the modulation parameter space are the dimensionless
modulation amplitude α and the dimensionless modulation
frequency ν. Modulation parameters that yield a large degree
of nonreciprocity are sought by performing a grid search
within the parameter space with bounds α ∈ [0.01, 0.8] and
ν ∈ [0.01, 0.8]. Due to the geometric symmetry about x =
L/2 in Figs. 2(a) and 2(b), reciprocity calculations are car-
ried out by fixing the source and receiver and reversing the
direction of the modulation. We first assemble Eqs. (22) and

FIG. 4. Magnitude of the normalized longitudinal mode dis-
placement along the beam at the drive frequency ω0 for the forward
(blue solid curve) and backward (orange dashed curve) modulation
directions at α = 0.3 and ν = 0.44. The vertical dashed lines at
x̄ = 1/6 and x̄ = 5/6 are the locations of the source and output,
respectively.

(25) into a global system of equations and then solve for
the case of a Young’s modulus that travels in the (i) “for-
ward”, or +x, direction and (ii) “backward,” or −x, direction.
The displacements ξ+ = uout,wout at the drive frequency ω0

[the p = 0 terms in Eq. (21)] for the modulation traveling in
the forward direction and the displacements ξ− = uout,wout

FIG. 5. (a) Nonreciprocity measure ϒ as a function of the drive
frequency ω0 for the longitudinal mode case at α = 0.3 and ν =
0.44. (b) |uout| as a function of frequency. Blue solid curve: ξ1.
Orange dashed curve: ξ2. Black dotted curve: homogeneous beam
with no modulation. The vertical dashed lines in (a) and (b) highlight
the drive frequency used in Figs. 3 and 4.
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FIG. 6. (a) Nonreciprocity metric � as a function of α and ν

for transverse modes at ω0 = 9.288c0Rgπ
2/L2 and Z̄T = 5. The red

circle highlights the point (ν, α) = (0.582, 0.6), which corresponds
to the special case considered for (b) and Figs. 7 and 8. (b) Absolute
square of the harmonic modal amplitudes, |ŵp

i |2, normalized by
the absolute square of the maximum harmonic modal amplitude in
decibels for the forward and backward modulation at α = 0.6 and
ν = 0.582.

at the drive frequency ω0 for the modulation traveling in the
backward direction are then compared using the following
nonreciprocity metric:

� =
∣∣∣∣20 log10

(∣∣∣∣ξ
+

ξ−

∣∣∣∣
)∣∣∣∣, (38)

which is zero if the displacements ξ+, ξ− are identical (recip-
rocal) and is nonzero if the system is nonreciprocal.

We first examine the degree of nonreciprocity for longitu-
dinal modes by solving Eq. (22) with the truncation N = 21
and P = 4, which was found to be sufficient to resolve the
solution at the drive frequency. We set the dimensionless
impedance to Z̄L = 0.5 to sufficiently damp any strong res-
onances and harmonic generation effects. The nonreciprocity
metric � is plotted in Fig. 3(a) as a function of α and ν for
frequency ω0 = 3.4πc0/L. The modulation parameters that
yield a large value of � form a small subset of the entire
parameter space. In addition, this set of modulation param-
eters contains values of α and ν that are not small, which is
out of the region of validity for standard coupled-mode per-
turbation approaches [7,9]. One set of modulation parameters
that yields a large � is (ν, α) = (0.44, 0.3), which is shown in
Fig. 3(a) and is used in the longitudinal results detailed below.
The absolute square of the harmonic modal amplitudes, |ûpi |2,
normalized by the absolute square of the maximum harmonic
mode amplitude in decibels, is shown in Fig. 3(b) for the
forward and backward modulation directions. The harmonic

FIG. 7. Magnitude of the normalized transverse mode displace-
ment along the beam at the drive frequency ω0 for the forward
(blue solid curve) and backward (orange dashed curve) modulation
directions at α = 0.6 and ν = 0.582. The vertical dashed lines at
x̄ = 1/6 and x̄ = 5/6 are the locations of the source and output,
respectively.

modal amplitudes at p = 0 are different between the forward
and backward modulation directions, which yields distinct
and therefore nonreciprocal displacement fields between the
two modulation directions.

The magnitude of the normalized displacement at the drive
frequency ω0 along the beam for the forward and backward

FIG. 8. (a) Nonreciprocity measure ϒ as a function of the drive
frequency ω0 for the transverse mode case with modulation param-
eters α = 0.6 and ν = 0.582. (b) |wout| as a function of frequency.
Blue solid curve: ξ1. Orange dashed curve: ξ2. Black dotted curve:
homogeneous beam with no modulation. The vertical dashed lines in
(a) and (b) highlight the drive frequency used in Figs. 6 and 7.
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modulation directions is plotted in Fig. 4 using the p = 0
terms in Eq. (21). A null in the displacement field is present
for the forward modulation direction at the receiver location,
while a large displacement is observed at the receiver location
for the backward modulation direction, indicating a very high
degree of vibrational nonreciprocity.

We can also characterize the degree of nonreciprocity at all
spatial locations along the beam with the following metric:

ϒ =
∫ L
0 |u+(x, ω0) − u−(x, ω0)|2 dx∫ L

0 |u+(x, ω0)|2 dx + ∫ L
0 |u−(x, ω0)|2 dx

, (39)

where u±(x, ω0) are the two solutions of Eq. (21) for the
forward and backward modulation directions at the drive
frequency ω0, respectively. The metric ϒ is zero if the system
is reciprocal everywhere along the beam and increases in
value as more locations along the beam exhibit nonreciprocity.
This metric is shown as a function of drive frequency in
Fig. 5(a), and the displacements ξ+ and ξ− along with the
displacement of the nonmodulated beam at xout as a reference
case are shown in Fig. 5(b). A small degree of nonreciproc-
ity is observed for frequencies near the first and second
modes and increases for frequencies near the third and fourth
modes.

Finally, the degree of nonreciprocity for transverse modes
is explored by plotting � in Fig. 6(a) as a function of α

and ν for ω0 = 9.288c0Rgπ
2/L2 and Z̄T = 5. Note that, for

this drive frequency, larger values of α and ν are needed to
obtain large values of � compared to the longitudinal case
in Fig. 3(a). A modulation parameter set that obtains a large
value of � is highlighted in Fig. 6(a) with the values (ν, α) =
(0.582, 0.6) and is used in the transverse mode results detailed
below. The absolute square of the harmonic modal amplitudes
|ŵp

i |2 normalized by the absolute square of the maximum
harmonic modal amplitude in decibels is shown in Fig. 6(b)
for the forward and backward modulation directions. Note
that this case exhibits stronger harmonic generation than in
the longitudinal case. The magnitude of the transverse dis-
placement at the drive frequency along the beam for both
the forward and backward modulation directions is plotted
in Fig. 7. As in the longitudinal mode case, a null in the
transverse displacement is present at the receiver location for
the forward modulation direction, while a large displacement
is observed at the receiver location for the backward mod-
ulation case. Finally, we plot ϒ as a function of the drive
frequency in Fig. 8(a) and the displacements ξ+ and ξ− along
with the transverse displacement of the nonmodulated beam
at xout as a reference solution in Fig. 8(b). While the degree of

nonreciprocity is less than in the case of longitudinal modes
in Fig. 5(a), nonreciprocity can still be observed at drive
frequencies near the resonance frequency of the third and
fourth modes.

IV. CONCLUSION

We have developed a semianalytical coupled-mode model
to study nonreciprocal longitudinal and transverse vibrations
in a finite Euler-Bernoulli beam with a Young’s modulus that
is modulated in space and time. The method presented in this
work exactly satisfies the boundary conditions by using the
mode shapes of the nonmodulated beam as a basis set and
converges to the exact solution when sufficient numbers of
modes and frequency harmonics are retained in the solution
for the harmonic modal amplitudes. No assumptions were
made about the magnitudes of the values of the modulation
strength and frequency, which enabled a complete exploration
of the modulation parameter space for designs that yield a
high degree of nonreciprocity. To facilitate the exploration of
the design space, we identified a small set of dimensionless
parameters that characterize the relative strengths of the mod-
ulation and dissipation.

For the cases considered in this work, we have demon-
strated that this system displays a large degree of nonreciproc-
ity for a small subset of modulation parameters for both low-
frequency longitudinal and transverse modes, most of which
contain values of the modulation parameters that are outside
the region of applicability for perturbation theory approaches.
The present coupled-mode approach can be generalized to
more complex systems, such as coupled waveguides and mul-
tiple spatial dimensions. In this case, a numerical technique
such as the finite-element method (FEM) [43] can be utilized
to generate a complete orthogonal set of basis functions via
the associated eigenvalue problem. Additionally, the integral
statements in Eqs. (16a)–(16e) provide a natural setting for
using the mode shapes obtained from FEM.Modeling, design,
and experimental efforts should be explored to find optimized
modulation and system parameters that yield a large degree
of nonreciprocity; to elucidate the role of material losses
in the degree of nonreciprocity; and to generate broadband
nonreciprocal behavior, rather than at the drive frequency
only.
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