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GAUSSIAN FLUCTUATIONS FOR LINEAR EIGENVALUE
STATISTICS OF PRODUCTS OF INDEPENDENT IID RANDOM

MATRICES

NATALIE COSTON AND SEAN O’'ROURKE

ABSTRACT. Consider the product X = Xj--- Xy, of m independent n X n
iid random matrices. When m is fixed and the dimension n tends to infinity,
we prove Gaussian limits for the centered linear spectral statistics of X for
analytic test functions. We show that the limiting variance is universal in the
sense that it does not depend on m (the number of factor matrices) or on the
distribution of the entries of the matrices. The main result generalizes and
improves upon previous limit statements for the linear spectral statistics of a
single iid matrix by Rider and Silverstein as well as Renfrew and the second
author.
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2 N. COSTON AND S. O’'ROURKE

1. INTRODUCTION AND BACKGROUND MATERIAL

This paper is concerned with fluctuations of linear eigenvalue statistics for prod-
ucts of random matrices with independent and identically distributed (iid) entries.

Definition 1.1 (iid random matrix). Let £ be a complex-valued random variable.
We say X, is an n x n #d random matriz with atom variable £ if X,, isan n x n
matrix whose entries are iid copies of &.

Recall that the eigenvalues of an n x n matrix M,, are the roots in C of the
characteristic polynomial det(zI — M,), where I is the identity matrix. We let
AM(My), ..., A\ (M,) denote the eigenvalues of M,, counted with (algebraic) multi-
plicity. The empirical spectral measure iy, of My, is given by

1 n
==Y b\
n 4
Jj=1

If M, is a random n X n matrix, then pys, is also random. In this case, we say
L, converges weakly in probability (resp. weakly almost surely) to another Borel
probability measure p on the complex plane C if, for every bounded and continuous

function f: C — C,
/ Fdusr, — / fdy

in probability (resp. almost surely) as n — co.

For iid random matrices whose atom variable has finite variance, the limiting
behavior of the empirical spectral measure is described by the circular law. Recall
that the Hilbert-Schmidt norm ||M || of a matrix M is defined by the formula

|M2 := /(M) = \/ex(M* D). (1)

Theorem 1.2 (Circular law; Corollary 1.12 from [65]). Let & be a complez-valued
random variable with mean zero and unit variance. For each n > 1, let X,, be an
n X n ud random matriz with atom variable &, and let A, be a deterministic n X n
matriz. If rank(A,) = o(n) and sup, >, +||A,||3 < oo, then the empirical measure
I X, tA, of ﬁXn + A, converges weakly almost surely to the uniform probability

measure on the unit disk centered at the origin in the complex plane as n — oco.

This result appears as [65, Corollary 1.12], but is the culmination of work by
many authors including [10, 13, 27, 30, 31, 32, 35, 46, 47, 55, 63, 64, 65]. We refer
the interested reader to the survey [18] for further details.

1.1. Products of Independent iid Matrices. The result presented in this paper
focuses not on a single iid random matrix, but instead on the product of several
independent iid matrices. The analogue of the circular law (Theorem 1.2) in this
case has been derived by several authors [36, 53, 54] under various assumptions on
the factor matrices; the version presented below is from [53]. Similar results are
stated in [33].

Theorem 1.3 (Theorem 2.4 from [53]). Let m > 1 be an integer and 7 > 0. Let
&1, ..., &m be real-valued random variables with mean zero, and assume, for each
1 <k <m, & has nonzero variance 0,3 and satisfies E|§k|2+'r < 00. For eachn > 1
and 1 <k <m, let X,, 1, be an n x n iid random matriz with atom variable &, and
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FIGURE 1. The leftmost figure shows the eigenvalues, denoted by
the small circles, of a single 500 x 500 iid random matrix \/ﬁX 500
with Gaussian entries. The rightmost figure shows the eigenvalues,
denoted by small circles, of a product of four independent 500 x 500
random matrices, each scaled by \/ﬁ, where the entries in each
random matrix are independent iid Gaussian random variables.

let Ay, 1 be a deterministic n x n matriz. Assume Xy, 1,...,Xn m are independent.

If

k(A, ) = O(n'=¢ d ~A
1I§r}%xmran( nk) =0Mm ~%) an Sup max || nkll3 < 00

for some € > 0, then the empirical spectral measure pp, of the product

1 1 1
(ﬁ o ’1)<ﬁ 2t ’2> <ﬁ ot >

converges weakly almost surely to a (non-random) probability measure p,, asn —
oo. Here, the probability measure ., s absolutely continuous with respect to
Lebesgue measure on C with density

Lom2/m2[% 72, if|2] <o,

pm(2) = { " 0: if 2| > o, (2)

where o := 01+ Oy

Remark 1.4. When o = 1, the density in (2) is easily related to the circular law
(Theorem 1.2). Indeed, in this case, ¢,, is the density of ¥, where 1) is a complex-
valued random variable uniformly distributed on the unit disk centered at the origin
in the complex plane.

Theorem 1.3 can be viewed as a generalization of the circular law (Theorem
1.2). Indeed, p; is simply the uniform measure on a disk of radius o centered
at the origin. We emphasis here that the limiting empirical spectral measure p,,
depends on m and is different for each integer m. Figure 1 provides a numerical
illustration of Theorem 1.3.

The random matrix theory literature contains many papers concerning products
of independent matrices with Gaussian entries; we refer the reader to [1, 2, 3, 4,
5, 6, 7, 19, 21, 22, 20, 28, 29, 39, 40, 44, 61] and references therein. Some other
models of products and sums of random matrices have also been considered in [17].
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Recently in [49], Nemish proved a local law version of Theorem 1.3 up to the
optimal scale, under the assumption that the entries of each iid matrix have subex-
ponential decay. Nemish’s local law has also been extended by Go6tze, Naumov, and
Tikhomirov [34] to include the case where the entries do not have subexponential
decay but instead have finite 4 + 7 moment for some fixed 7 > 0. The universality
of the local correlation functions for the eigenvalues of such product matrices was
recently established in [43].

1.2. Fluctuations of Linear Eigenvalue Statistics. The linear eigenvalue sta-
tistics of a random matrix describe the fluctuations of the spectrum about its limit-
ing distribution. The uncentered linear eigenvalue statistics for an n x n matrix M
and sufficiently smooth test function f (whose smoothness depends on the matrix
ensemble under consideration) is defined by

trf(M) = f((M)) 3)

where A1 (M), ..., A\, (M) denote the eigenvalues of M.

In the classical central limit theorem, sums of n iid random variables have vari-
ance on the order of v/n. In contrast, the variance of linear spectral statistics for
many ensembles of random matrices is often on the order of a constant. There are
many results regarding the fluctuations of linear eigenvalue statistics for various en-
sembles of random matrices (and under various assumptions on the test functions
f). Because the subject is so well studied, we do not give a full treatment here. We
refer the reader to [9, 11, 25, 26, 41, 42, 43, 45, 50, 51, 56, 57, 58, 59, 60] and the
references therein for further details. In the discussion below, we will only focus on
linear statistics for iid random matrices and their products.

Rider and Silverstein, in the seminal paper [56], established Gaussian fluctua-
tions for the linear eigenvalue statistics of iid random matrices with analytic test
functions.

Theorem 1.5 (Theorem 1.1 from [56]). Let & be a complex-valued random variable
which satisfies the following conditions.

(i) E] =0, and E[|(]] =1,

(i) E[¢’] =0,

(iii) E[|€[*] < k°* for every k > 2 and some a > 0,

(iv) Re(§) and Im(&) possesses a bounded joint density.
For eachn > 1, let X,, be an nxn iid random matrix with atom variable £. Consider
test functions fi, fa, ..., fx analytic in a neighborhood of the disk {z € C : |z| < 4}
and otherwise bounded. Then as n — oo, the vector

o () ).

converges in distribution to a mean-zero multivariate Gaussian vector (F(f1), F(f2),. ..

with covariances
— d d ..
E [F(fz)F(fm)] = %/U%fl(z)%fm(z)dzz,

in which U is the unit disk centered at the origin and d*z = dRe(z)dIm(z).
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Theorem 1.5 was later generalized and extended by Renfrew and the second
author in [51]. The results in [51] remove several technical assumptions present
in Theorem 1.5. Specifically, for the results in [51] to hold, conditions (%) and
(iv) from Theorem 1.5 are no longer required, and condition (%) is replaced by
the finiteness of E|£[577. In addition, the functions fi,..., fi are only required to
be analytic in a neighborhood of the disk {z € C : |z| < 1}. More generally, the
results in [51] also hold for an ensemble of elliptic random matrices which include
iid random matrices as a special case.

For products of independent iid random matrices, much less in known. To the
best of the authors’ knowledge, the only result for fluctuations of linear eigenvalue
statistics for products of iid random matrices is [43, Theorem 3], which requires the
factor matrices to match moments with the complex Ginibre ensemble; we state
this result from [43] below.

Theorem 1.6 (Theorem 3 from [43]). Let f : C — R be a test function with at least
two continuous derivatives, supported in the region {z € C : 19 < |z| <1—1} for
some fized 79 > 0. Let m > 1 be an integer and let

Pn = nim/QXn,l e Xn,m

be a matriz product such that each X, ; is an n x n iid random matriz (which are
all jointly independent) with an atom variable & which satisfies the following:

e & has mean zero and unit variance,

e & has independent real and imaginary parts,

o &, satisfies the subgaussian decay condition that there exist constants C,c >
0 (independent of n) such that for each t > 0, P(|&;] > t) < Ce™", and

o & matches moments with a standard complex Gaussian random variable to
four moments: for all a,b > 0 such that a +b < 4, E [Re(@;)alm(fi)b] =
E [Re(¢)* Im(¢)°] where ¢ is a standard complex Gaussian random variable.

Then the centered linear statistic
trf(Pn) _E[trf(Pn)]

converges in distribution as n — oo to the mean-zero Gaussian distribution with
limiting variance

1
= [V P
T Ju
where U is the unit disk centered at the origin.

Acknowledgments. The paper is based on a chapter from N. Coston’s doctoral
thesis, and she would like to thank her thesis committee for their feedback and
support. The authors would also like to thank Philip Wood for providing useful
feedback on an earlier draft of the manuscript. S. O’Rourke has been supported in
part by NSF grants ECCS-1610003 and DMS-1810500.

2. MAIN RESULTS

2.1. Fluctuations of Linear Eigenvalue Statistics for Product Matrices.
The main result of this paper is the analogue of Theorem 1.5 (and its generalization
in [51]) for the product of independent iid random matrices.

For 1 < k < m, let & be a random variable which satisfies the following condi-
tions.
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Assumption 2.1. The real-valued random variables &1, ...,&,, (not necessarily
defined on the same probability space) are said to satisfy Assumption 2.1 if, for
each 1 <k <m,

e {5 has mean zero,
e ¢ has nonzero variance 0’,%, and
e there exists 7 > 0 such that E|&,|*T™ < co.

The following theorem is the main result of the paper.

Theorem 2.2 (Fluctuations of linear statistics for products of iid random matri-
ces). Let m > 1 be a fized integer, and assume &1, ...,&, are real-valued random
variables which satisfy Assumption 2.1. For each n > 1, let Xy 1,..., Xp m be in-
dependent n X n iid random matrices with atom variables &1, ..., &, respectively.
Define the products

Pyi=n""2X, 1 Xpm (4)
and
O:=01""0Opm.

Let 6 > 0, s > 1 be a fized integer, and fi, fa,..., fs be test functions analytic
in some neighborhood containing the disk Ds := {z € C : |z| < 1+ 6} and
bounded otherwise. Then there exist deterministic sequences Apn(f1),..., An(fx)
(with A, (f;) depending only n, f;, and the distribution of &1, ...&m) such that the
random vector

(tr fi(Pn/0) = An(fi))iy ()

converges in distribution to a mean-zero multivariate Gaussian random vector

(F(fl)vvF(fs))

with variance and covariance terms defined by

EFGIFU)] = =455 §, § 51 0) (= 1) 2dzdo (6
and

E [F(fi)F(fj)] = ﬁiifi(z)fj(w)(zw —1)"2dzdw (7)
where C is the contour around the boundary of the disk Dyg.

A few remarks concerning Theorem 2.2 are in order. Heuristically, we may
think of A, (f;) as the centering term, and subtracting this quantity is similar to
subtracting the expectation (as was done in Theorem 1.6) or nf;(0) (as was done in
Theorem 1.5). For technical reasons, defining this term requires some notation and
concepts which will be introduced in the forthcoming sections; see (28) for details.

While the limiting empirical spectral measure for the product of m iid matrices
does depend on m (Theorem 1.3), the variance and covariance terms, (6) and (7),
for the fluctuations of the linear eigenvalue statistics do not depend on m. In other
words, the variance and covariance terms are the same as in the case of a single iid
matrix (m = 1); indeed, (6) and (7) match the analogous terms appearing in [51]
for a single iid matrix. In this sense, the fluctuations of the linear statistics appear
to be more universal than the global distribution of the eigenvalues. In certain
cases, these covariance terms can be rewritten in terms of an iterated integral over
the real and imaginary parts of z as was done in [56, Theorem 1.1].
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FIGURE 2. This figure provides an illustration of Theorem 2.2.
All plots show 1000 observations of the linear statistic in (3). The
leftmost plot shows linear statistics computed with a product of
three Bernoulli(—1,1) 300 x 300 matrices scaled by 300~3/2, and
with f(2) = 22+2y/—12. The second plot from the left shows linear
statistics for a product of ten Bernoulli(—1, 1) 300 x 300 matrices
scaled by 300~1°/2 and with f(z) = 22+ 2v/—1z. The second plot
from the right shows linear statistics for a product of three mean-
zero Gaussian 300 x 300 matrices scaled by 30073/2, and g(z) =
/=123 4 22. Finally, the rightmost plot shows linear statistics for
a product of ten mean-zero Gaussian 300 x 300 matrices scaled by
30071972 and with g(z) = /=12 + 22.

We also remark that Theorem 2.2 can be extended to the case where each atom
variable is complex-valued under the assumption that the real and imaginary parts
of each atom variable are independent. In this case, the covariance terms in The-
orem 2.2 would change slightly. The changes required for the complex case can
easily be found by inspecting the proof; we refer the reader to Remarks 4.2, 4.4,
6.2, and 6.16 for the details.

While Theorem 1.6 holds for a more general class of test functions than Theorem
2.2, it also requires subgaussian decay and a moment matching condition on the
entries. In particular, Theorem 1.6 does not apply to iid matrices with real-valued
entries. Thus, Theorem 2.2, while restricted to analytic functions, does apply to a
much larger class of iid random matrices (such as the real Ginibre ensemble and
Bernoulli matrices, whose entries take the values 1 with equal probability).

Even for the case of a single iid matrix (m = 1), Theorem 2.2 improves upon the
existing results in the literature. Compared to the main results of [51] (which were
already an improvement over Theorem 1.5), Theorem 2.2 applies to a more general
class of iid matrices while still applying to the same class of test functions.

Figure 2 provides a numerical illustration of Theorem 2.2 for various test func-
tions and values of m.

Since the covariance formulas, (6) and (7), do not depend on m, it is an inter-
esting open question to consider the case when the number of product matrices is
allowed to depend on n, e.g., when m grows (slowly) with n. The proof given below
requires m to be fixed, and there are several key bounds which depend on m. If this
dependence could be tracked carefully, it may be possible that parts of the proof
could be adapted to the case where m grows with n.

2.2. Outline and Overview. The remainder of the paper is devoted to the proof
of Theorem 2.2. Roughly speaking, the proof follows the main ideas from [56, 51]
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for studying the linear eigenvalue statistics of a single iid matrix. However, the
product structure of the matrix P, introduces substantial new difficulties. For
instance, when m > 1, the entries of P, are no longer independent. To get around
this issue, we use a linearization technique. That is, instead of studying the product
matrix P,,, we introduce the linearized matrix ), which is a mn x mn block matrix
defined as follows:

0 Xpp O 0
B U 0
Y= o= ' ]
n .
f 0 0 0 Xn,m—l

where any block not specified above is assumed to be zero. As has been observed
previously [19, 23, 53, 54|, the eigenvalues of Y™ are the same as the eigenvalues of
P,,, up to some multiplicity factor. Thus, the problem can be reduced to studying
the linear eigenvalue statistics of ).

The main challenge in studying the linear statistics of non-Hermitian random
matrices is often computing the limiting variance. For example, in [56, 51|, for a
single iid matrix the variance is computed by deriving a recursive equation, which
then must be solved in the limit as n tends to infinity to obtain the limiting variance.
In the case of analyzing the limiting variance for the linear statistics of ), the block
structure of ) itself introduces new difficulties. In this case, it does not seem
possible to derive a single recursive equation as was done in [56, 51] due to the
prescience of so many deterministic zero blocks in ). To get around this issue,
we instead derive a system of m recursive equations and then solve the system of
equations simultaneously. The derivation and solution of this system of recursive
equations for the variance is the main technical advance of the present article and
occupies the bulk of the proof. Interestingly, the limiting variance we derive for the
linear statistics of ) does depend on m and appears to have a form not encountered
before in random matrix theory. When this limiting variance is translated back to
the variance for the product matrix P,, the dependence on m vanishes.

The paper is organized as follows. In Section 3, we present some preliminary
results, tools, and notation that will be used throughout the paper. In Section
4, we make some preliminary reductions and reduce the problem to the study of
the linear statistics of the linearized matrix ). Section 5 begins the proof of the
main result, which by Cauchy’s integral formula, involves studying a sequence of
stochastic processes involving the trace of the resolvent matrix. Section 6 proves the
finite dimensional convergence of this sequence of stochastic processes, and Section
7 shows that this sequence of stochastic processes is tight, concluding the proof.
These last two sections are based on [56, 51]. We warn the reader that the last two
sections appear to inherit many of the technical challenges present in [56, 51] along
with several additional challenges (based on the block structure of the linearized
matrix ), as discussed above). As such, the material presented in these two sections
is rather technical and some of the calculations are tedious. Some appendices follow
with auxiliary results.
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3. PRELIMINARY TOOLS AND NOTATION

This section is devoted to introducing some additional concepts and notation
required for the proofs of our main results.

3.1. Notation. We use asymptotic notation (such as O, o, ) under the assumption
that n — co. In particular, X = O(Y), Y = Q(X), X < Y, and Y > X denote the
estimate |X| < CY, for some constant C' > 0 independent of n and for all n > C.
If we need the constant C' to depend on a parameter k, e.g. C' = C}, we indicate
this with subscripts, e.g. X = Ox(Y), Y = Q(X), X < YV, and Y >, X. We
write X = o(Y) if | X| < ¢(n)Y for some sequence ¢(n) that goes to zero as n — co.
Specifically, o(1) denotes a term which tends to zero as n — oo. If we need the
sequence c¢(n) to depend on a parameter k, e.g. ¢(n) = cx(n), we indicate this with
subscripts, e.g. X = ox(Y).

Throughout the paper, we view m as a fixed integer. Thus, when using asymp-
totic notation, we will allow the implicit constants (and implicit rates of conver-
gence) to depend on m without including m as a subscript (i.e., we will not write
Oy, OF 0py).

An event E, which depends on n, is said to hold with overwhelming probability
if P(E) > 1— O¢c(n=C) for every constant C > 0. We let 15 denote the indicator
function of the event E. E° denotes the complement of the event E. For § > 0, Dy
denotes the disk {z € C: |z| <1+ d}.

For a matrix M, we let | M|| denote the spectral norm of M. || M|z denotes the
Hilbert-Schmidt norm of M (defined in (1)). We let I,, denote the n x n identity
matrix. Often we will just write I for the identity matrix when the size can be
deduced from context.

The singular values of a matrix M are the square roots of the eigenvalues of the
matrix M*M. For an n x n matrix, we will denote these s1(M,,), ..., s,(M,). Note
that all singular values real and non-negative, so we let s1(M,) > -+ > s, (M,) by
convention.

We write a.s., a.a., and a.e. for almost surely, Lebesgue almost all, and Lebesgue
almost everywhere respectively. We use v/—1 to denote the imaginary unit and
reserve ¢ as an index.

We let C and K denote constants that are non-random and may take on different
values from one appearance to the next. The notation K, means that the constant
K depends on another parameter p. We allow these constants to depend on the
fixed integer m without explicitly denoting or mentioning this dependence.

3.2. Linearization. Let My,..., M,, be n X n matrices, and suppose we wish to
study the product M - - - M,,. A useful trick is to linearize this product and instead
consider the mn x mn block matrix

o My 0O - 0
0 0 My ... 0
M=1 1 ] 8)
0 0 0 - My
M, 0 0o ... 0

The following proposition relates the eigenvalues of M to the eigenvalues of the
product M --- M,,. We note that similar linearization tricks have been used pre-
viously; see, for example, [8, 19, 23, 53, 54] and references therein.
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Proposition 3.1 (Proposition 4.1 from [23]). Let My, ..., My, be n x n matrices.
Let P := My -+ M,,, and assume M is the mn x mn block matriz defined in (8).
Then

det(M™ — zI) = [det(P — =I)|™
for every z € C. In other words, the eigenvalues of M™ are the eigenvalues of P,
each with multiplicity m.

3.3. Matrix Notation. Here and in the sequel, we will deal with matrices of
various sizes. The most common dimensions are n X n and N x N, where we take
N := mn. Unless otherwise noted, we denote n x n matrices by capital letters (such
as M, X) and larger N x N matrices using calligraphic symbols (such as M, }).

If M is an n x n matrix and 1 < 4,5 < n, we let M;; and M(; ;) denote the
(i,7)-entry of M. Similarly, if M is an N x N matrix, we let M;; and M j
denote the (i, j)-entry of M for 1 < i,5 < N. Sometimes we will deal with n x n
matrices notated with a subscript such as M,,. In this case, for 1 < i,j < n, we
write (My);; or M, (; ;) to denote the (i, j)-entry of M,.

3.4. Singular Value Inequalities and Useful Identities. Let M denote an
n X n matrix. We often want to know about the smallest and largest singular
values of a matrix. Recall s;(M) > --- > s,(M) denote the singular values of the
matrix M.

Proposition 3.2. Let M be an n x n matriz, and assume that E C C and ¢ > 0.

If
inf s, (M —zI) > ¢,
zeE

then no eigenvalue of M is contained in E and

1
sup [|G(2)[| < —
zeE c

where G(z) = (M — zI)~! is the resolvent of M.

The proof of Proposition 3.2 follows easily by observing that the operator norm
of the resolvent can be bounded above by 1/s,,(M — zI); similar bounds were used
in [51).

We will make use of the Sherman—Morrison rank one perturbation formula (see
[37, Section 0.7.4]). Suppose A is an invertible square matrix, and let u, v be
vectors. If 1+ v*A~1u # 0, then

A ypr AL
A *\—1 — A*l s e
(A +uT) 1+vA-1y )
and
N A~y
(At o) = e (10)

Also recall the Sherman—Morrison-Woodbury formula (for example, [24, Theorem
1.1]), which states that for an invertible N x N matrix A and a x N matrices V,U
for some fixed a < N,
(A+UuvhH~'u =AU, +VvTAlU) ! (11)
provided I, + VT A~1U is invertible.
Another identity we will make use of is the Resolvent Identity, which states that

ATl —B ' =A"Y(B-A)B! (12)



GAUSSIAN FLUCTUATIONS FOR LINEAR EIGENVALUE STATISTICS 11

whenever A and B are invertible.
We also use Weyl’s inequality for the singular values (see, for example, [14,
Problem IIL.6.5]), which states that for n x n matrices A and B,
max |s;(A) —s;(B)| < ||]A—B]. (13)

1<i<n
4. REDUCTIONS

In order to prove Theorem 2.2, we will make a series of reductions by truncating
the entries in each factor matrix and applying the linearization techniques discussed
above. Theorem 2.2 will follow from the following result.

Theorem 4.1. Let m > 1 be a fized integer, and assume &1, ..., &y, are real-valued
random variables which satisfy Assumption 2.1. For eachn > 1, let Xy 1,..., Xnm
be independent n X n iid random matrices with atom variables &1, ...,&n, Tespec-
tively. Define the products

P, = n_m/2Xn,1 o Xpm and 0 =01 0O

Let 6 > 0, and let f be analytic in some neighborhood containing the disk Dg :=
{z € C : |z| <1+ 8} and bounded otherwise. Then, there exists a constant ¢ > 0
and a deterministic sequence A, (f) (depending on n, f, and the distribution of
&1y, &m) such that the event

E, = inf n(Pnjo—zI)> 14
o0 (Plo = =D > 09

holds with probability 1 — o(1) and as n — oo,
tr f(Pn/o)1s, — An(f) (15)

converges in distribution to a mean zero Gaussian random variable F(f) with co-
variance structure

B[(FU)?] =~ §, § £ )0 = 1) Pdzdu (16)
and
B[PUVFD] = 1 §, §, /)0 — 1) dzds (1)

where C is the contour around the boundary of the disk Ds. In addition, the function
f = A.(f) is continuous and linear with the property that if f(z) € R for all
z € RN D, then A, (f) is real-valued.

We will now prove Theorem 2.2 assuming Theorem 4.1.

Proof of Theorem 2.2. Assume Theorem 4.1. It follows from standard least singular
value bounds that there exists a constant ¢ > 0 such that E,, holds with probability
1 — o(1); the details are presented as Lemma B.3 from Appendix B. Thus, the
prescience (or lack thereof) of the indicator function in (15) does not affect the
limiting distribution.

To prove Theorem 2.2, we will invoke the Cramer—Wold device, but we will
need to be careful as we are dealing with complex-valued random variables. If f is
analytic in a neighborhood containing the disk Dg, we can express f as the power
series

f(z)= Z a; 2"
i=0
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in the same disk. We then define
Rf(z) = ZRe(ai)zi and Jf(z) = Zlm(ai)zi,
i=0 i=0

which are both analytic in Ds. (Notice that these are not the real and imaginary
parts of f, which would not be analytic in Dy.)

In order to invoke the Cramer—Wold device and prove Theorem 2.2, we consider

F(2) = (uRfi(z) + B3 fi(2))
1=0

for some real-valued constants aq, 51, ..., as, Bs.

As f(z) € R for all z € RN Ds and since the non-real eigenvalues of P, /o
come in complex conjugate pairs, it follows that tr f(P,/o) — A, (f) is real-valued.
Applying the Cramer—Wold device and the convergence of (15), we conclude that

(tr fi(Pa/o) — An(fi))i=1
converges to a multivariate Gaussian vector. The limiting covariances can now be
extrapolated from (16) and (17). O

Remark 4.2. The proof above exploits the fact that the non-real eigenvalues come in
complex conjugate pairs since the entries of the product matrix are real. In the case
where the entries in each matrix are allowed to be complex-valued, this approach
would no longer hold. In this case, one may apply a complex-valued version of the
Cramer—Wold Theorem.

It remains to prove Theorem 4.1. By a simple rescaling, it is sufficient to prove
Theorem 4.1 when o; = 1 for 1 < i < k. For this reason, for the remainder of the
paper we assume all atom variables have unit variance unless stated otherwise.

4.1. Truncation of iid Matrices. Since & is assumed to have finite 4 + 7 finite
moments for 1 < k < m, there exists € > 0 such that for all 1 < k < m,

. 4
Tim R [|6* 1 /2y | = 0. (18)

Next, for a real-valued random variable ¢ with mean zero, variance one, and
finite (4 + 7)th moment, define
) : 3
g = 51{‘§‘Sn1/275} —E [51{‘§‘Sn1/275}] and f = (19)

Var(§)

Note that 5 and é depend on n, but this dependence is not expressed in the notation.

Lemma 4.3. Let £ be a real-valued random wvariable which satisfies Assumption
2.1 with unit variance and define é andéC as in (19). Then the following statements
hold:
(i) 11 = Var(§)| = o(n™"7)
(ii) There exists an No > 0 such that for any n > Ny, é has zero mean and
unit variance, and almost surely

|§A| < 4n1/276.
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(iii) There exists Ng > 0 such that for any n > Ny,
EI¢[* < 2°El¢]*.

The proof of this lemma is a standard truncation argument and can be found in
Appendix A.

Remark 4.4. In the case where ¢ is complex-valued, this truncation will need to be
modified in order to preserve independence between the real and imaginary parts
of & (see, for example, [23, Lemma 7.1]).

Next, we define various truncated matrices and prove a number of lemmas in-
volving operator norms and Hilbert-Schmidt norms of these truncated matrices.
The following lemmas will be used later in the proof.

Let X be an n x n random matrix filled with iid copies of a random variable &
which satisfies Assumption 2.1. Define the n x n matrices X, X, and X to be the
matrices with entries given by

Xig) = X Hixg,;)<nt/2=< (20)

Xig) = X L)X pl<nr/z-<} — B [X(i,ﬁl{lx(i,j)\Snl/H} ) (21)

N X

Rigy = —— (22)
Var(X(m))

for 1 <i,5 <n.

Lemma 4.5. Let X,, be an n X n iid random matriz with atom variable £ which

satisfies Assumption 2.1 with unit variance and let X, be the truncated matriz as
defined in (22). Then

2 1

1 - <H 1 A
=o(n and Pl |—=X,, — —=X,
, =00 NN

| e

> n) = o(1).

Proof. By Markov’s inequality,

1 2

1 N
7Xn - 7Xn
‘\/ﬁ Vi

> n_5> < n25E’

1 1 .
P(|l—=X, - —X,

2

1 1 4
<n*E||—=X, - =X,
=" H N/ 2
L2
oy . 1 _ 1 — —2e i i -
so it is sufficient to prove E H ﬁXn ﬁXn , =0 (n ) By the triangle inequal

ity,
2 2
1 1 1 1 1 - 1 .
El|—X,——=X, —X, - — + HXn - —X,
e | e FE
and we may deal with the two terms on the right hand side of the above expression
separately. First, since |E [51{|§|>n1/276}]| = {E[é‘l{‘&‘gnl/Q—a}H and by (18), we

Xn

2
< E
2
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have
|l Llx - 1x Q—EE X, - X ’
1 & - 2
<= 3 E|(Xa)gm — (Kndon)
G k=1
< 4 - E 2 |§|2 1
s .Z €] (ni/2=ey2 Higln/a)
7,k=1
4n25
< B € gs ey
= o(n"%).

Observe that by Lemma 4.3, one has

1o 1P o1& e 2 . ?
E H\/HX" -l < ﬁj,%::lE L | |V Var(Zn ) 1
< n|Var(€) - 1\2
= o(n~17%)
which concludes the proof. [

Lemma 4.6. Let X, be an nxn iid random matriz with atom variable { which sat-
isfies Assumption 2.1 with unit variance. Let X, and X,, be the truncated matrices
as defined in (20) and (22) respectively. Then

~ . 2
IEHXH—X,L = o(1).
2

Proof. Let € be as defined in (19) and observe that by the proof of Lemma 4.3 (i),
(Var(€))~/2 < 2 for n sufficiently large. Therefore

N -2 LI . 2
E HXn - X, .= E Z ’Xn,(i,j) = Xon,(4,5)
ij=1
~ 2
o | ELtteizny/zoy (1= (Var(§)'2) — B [€1gg<nrz—y
- (Var(g))/2

. 2
< an ‘51{|£|Sn1/2—5}(1 - (Var(&))l/Q) —E [51{|§|§n1/2*5}] ‘

-2 2
< n? |1 = Var(®)| E [€*1e<mra-oy] + 12 [E [€L g cnnsy]|

for n sufficiently large. By Lemma 4.3 (i), we have

~ 12
n? ‘1 - Var(f)‘ E [|€21 ¢ j<ntomcy] = o(n™).
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Next, observe that since |E [€1¢¢j<p1/2-21]| = |E [€1(j¢/sn1/2-21] |, we have

n? |B [€1gcn/a—ey]|* = 02 B [E1qgmmieey]
<07 (E [ gomrne)])”
=o(1).
0

Lemma 4.7. Let X,, be an n x n #d random matriz with atom variable é which
has mean zero, variance one, E|E[* = O(1), and satisfies |€| < n'/?>~¢ almost surely

2
for some € > 0. Then E || X, || = O(n) where ||| denotes the operator norm.

Proof. Observe that, for any constant C' > 0

~ 112 ~
IEHXn < 1EHX,,1

2 . 2
—HEHan ‘

{||Xn||<Ccvn}
> C\/ﬁ)

where the power of n came from bounding the operator norm by the Frobenious

norm. By [13, Theorem 5.9], there exists C' > 0 sufficiently large so that P (HX" > C\/ﬁ) =

Oq(n™?) for any a > 0. By selecting « sufficiently large, we arrive at the desired
result. O

xall>cvm)
< n+n3"%P (HX"

Lemma 4.8. Let X,, be an n X n iid random matriz with atom variable & which
has mean zero, variance one, and finite 4 + 7 moment for some T > 0 and define

. .2
X, as in (20). Then E HX” = O(n) where ||-|| denotes the operator norm.

Proof. Let X, be the truncated n x n iid random matrix with entries as defined in
(22) and observe that

. 2 . R 2 R 2
]EHXn <<IEHX,L—XH +E[X,

The proof follows by Lemmas 4.7 and 4.6. (]

Lemma 4.9. Let X,, be an n x n iid random matriz with atom variable & which
has mean zero, variance one, and finite 4 + T moment for some T > 0. Then
E || X,]|* = O(n) where ||-|| denotes the operator norm.

Proof. Let X,, be the truncated n x n iid random matrix with entries defined by
(22) and observe that by the triangle inequality we have
2

~ 112 .
E|Xa)?* <E|X, - | +E| %, (23)
Both terms in the right hand side of (23) are O(n) by Lemmas 4.5 and 4.7 as
desired. 0

Lemma 4.10. Let X,,; be as defined in Theorem 2.2 with o; = 1, and for each
1 <i<m, define X,.; as in (22). Define the product P, as in (4) and define the
truncated product

Pn = n_m/QXn,l co Xn,m- (24)

Then )
E ‘ P, — P, P, - P,

=o(n"*) and P (‘

, > n_e) = o(1).
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Proof. By Markov’s inequality,

(| £ o) <o

so it is sufficient to prove the first bound. To this end, note that by the triangle
inequality, independence, and Lemma C.5, we have

2
| <n

2 2
—m/2 —-m/2 v %
n 9 =K Hn / Xn,l e Xn,m —-n / Xn,l e Xn,’m 9

LB Xt | B (| X

N 2
<n™m (E X1 = % | EN1X,

.

2 ~ 2 ~ 2
o] a2~ ).

. 2
By Lemmas 4.7 and 4.9, E HXn’kH =0O(n) and E ||Xn,k||2 =O0(n) forall 1 <k <

m. Therefore, by this observation and Lemma 4.5,

2 . 2 X ?
o (et = £ B = £ )
2 2 ?
= 0(’]1726).
[l

Lemma 4.11. Let X,,; be as defined in Theorem 2.2 with o; = 1, and for each
1 <i<m, define an and X,” as in (20) and (22) respectively. Define P, as in
(24) and define the product

Py=n""2X,1 - Xpm. (25)

Then
2

, = o(n™1).

E‘Pn—f)n

Proof. By the triangle inequality, independence, and Lemma C.5, we have

2 2
—-m/2 vy ¥ —m/2 v
n QZEHTL / Xni- - Xnm—n / Xn,l"'Xn,mH2

. N 2 . 2 . 2 . 2
e LTI e Y o o
2

+E HXn,l

2 " 2 " 2 . ~ 2
R ]
2

A 2 . 2
By Lemmas 4.7 and 4.8, E HkaH =0O(n) and E HkaH =O0(n) forall 1 <k <
m. By this observation and Lemma 4.6,

2 ; o 12 ¢ X ’
o (e = o B = £ )
2 2 ?

=o(n™").
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With the preceding norm lemmas complete, we now show it is sufficient to con-
sider a version of Theorem 4.1 in which all entries in the matrices are truncated.
We now reduce to the case where we can consider the truncated product P,.

Theorem 4.12. Let X,, ; be as defined in Theorem 2.2 with o; =1, )A(m as defined

n (19), and P, as in (24). Let 6 > 0, and let f be a function which is analytic
in some neighborhood containing the disk Ds and bounded otherwise. Then there
exists a constant ¢ > 0 such that the event

E, = { inf s, (P, —2I) > c} (26)

|2|>1+5/2

holds with overwhelming probability and
trf(Pn)lEn - E[trf(pn)lé‘n] (27)

converges in distribution to a mean-zero Gaussian random variable F'(f) with co-
variance structure

E {(F( - Mij{ )ew — 1)"2dzdw

E[F()F()] = ﬁ jifif(z)m(zw D) 2dzdw.

We now prove Theorem 4.1 assuming Theorem 4.12.

and

Proof of Theorem 4.1. Suppose the conclusion of Theorem 4.12 holds. We define
An(f) =B [tr (P15, ] (28)

There exists ¢ > 0 such that E, holds with overwhelming probability by Lemma
B.2, and E,, holds with probability 1 — o(1) by Lemma B.3. Thus, we may work
on the intersection of these events, and in order to show that tr f(P,)1g, — A,(f)
converges to a mean-zero Gaussian random variable with variance as in (16) and
(17), it is sufficient to show that for any n > 0,

P(|tr f(P)tp, i, =t (P)1g, 05, | > 1) = o(L).

To this end, define X,, 5 as in (20) for each 1 < k < m and P, as in (25). Observe
that for any 1 < k < m, by (18)

P(Xo # Xnk) =P [ {1 (Xnn)isl > n'/27¢}
0,J
< W°E [Ljg s mive-sy]
S Tl4€E [|§k|41{|€|>n1/2—€}}
=o(1).
By a union bound over all 1 < k < m, we have that P (Pn #+ P) = o(1) as well.
Therefore, it is sufficient to show that

P( tr f(P,)1 1 5, trf(Pn)lEmEn

> n) = o(1). (29)
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Define the event E, := {P, = P,}NE, and observe that E,, holds with probability
1 — o(1). By this fact and (29), it is sufficient to prove

P([tr (P, i, — 00 S (P) 0, | > ) = 0(1). (30)

On the events En and E’n, the eigenvalues of ]5” and Pn are contained in the interior
of the contour C, which is defined as the boundary of the disk Ds. Therefore, on
E,, for any z € C, the least singular values of P, — zI is bounded away from zero.
Thus, by Cauchy’s integral formula,

E ‘(tr f(pn) —tr f(pn))lEnmEn :

2

1 ~ .
_ 11«:’—. 7( 1) (B = D) (B = 21) ) 1 de
211 C " "
A h 2
< E {sup tr(Py — 217! = te(Py — zl)‘l‘ lini ] :
Zec n n

Since f is assumed to be analytic on the disk and bounded otherwise, by applying
Markov’s inequality to the left-hand side of (29), it is sufficient to show that

~ . 2
tr(P, — 2I)~t —tr(P, — ZI)_I’

E [sup

1EnﬂEn,:| = 0(1).
zeC

By the resolvent identity, Lemma C.5, and Lemma 4.11, we have

1

. ) 2
E {sup ’(tr(Pn — 2z —tr(P, — 21)71)‘
zeC

E.NE, }

~ . ~ . 2
=E {sup tr ((Pn*zf)il(Pn*Pn)(Pn*ZI)il)‘ 1; ng }
zeC " "
) 2
2

= o(1)

since the spectral norms of the resolvents are bounded uniformly by a constant
(Proposition 3.2) on their respective events. O

4.2. Linearization of the Product. We now wish to linearize the product matrix
P,, so that we can work with an mn x mn block matrix instead. Define the mn x mn
matrix

0 X,1 0 0
0 0 Xno 0
Al A (31)
0 0 0 Xnmo1
Xom O 0o ... 0

Recall that by Proposition 3.1, V] has the same eigenvalues as 15” = n*m/Q)A(ml . )A(nym,
each with multiplicity m. Therefore, the eigenvalues of the product P, are com-
pletely determined by the eigenvalues of the linearized matrix }),.

Theorem 4.13. Let Y, be the linearized matriz defined in (31) where X, ; are
under the assumptions of Theorem 2.2 with o; = 1 and the entries of X’nl are
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truncated as defined in (22). For every 6 > 0, there exists ¢ > 0 such that the
following holds. The event

Q, = { inf sV — 21) > c} (32)

|2|>1+6/2

holds with overwhelming probability, and for any function g which is analytic in a
neighborhood of the disk Ds and bounded otherwise, the random variable

trg(Vn)lo, — Eftrg(On)lo,]

converges to a mean zero Gaussian random variable F'(g) with covariance structure

B Zw)m 1
E[(F(9))*] = 4F2j{f cw)m — 172 ————dzdw (33)

E[F(g ff ﬂ()) o)™ )1 dzdw, (34)

where C is the contour around the boundary of D5.

and

Note that the convergence in (33) and (34) depend on m. We prove Theorem
4.12 assuming Theorem 4.13.

Proof of Theorem 4.12. First begin by observing that by assumption, there exists a
¢ > 0 such that €,, holds with overwhelming probability and by Lemma B.2, there
exists another constant ¢/ > 0 such that F,, holds with overwhelming probability as
well. Let f be any function which is analytic on the disk Ds and bounded otherwise.
Define the function g(z) := L f(2™) and note that this function g is analytic on
the disk {z € C : |z| < (1+6)"/™} = Ds for some &' > 0 and bounded otherwise.
By Proposition 3.1,

R n R mn 1 - mn
tr f(Pa) = Fa(P)) = Y —F) = D 9(NiDn) = trg(Dn).
i=1 i=1 i=1
By assumption, trg(¥,)1q, — E[trg(Vn)1q, ] converges to a mean-zero Gaussian
with covariance structure given in (33) and (34). We will show that

E[trgu)ta, — Eltrgu)la,] = (trf(Pa)1g, — E [tr f(P)15, ] )] = o(D).
To this end, observe that

E |trg(Qn)la, —ElrgOn)ta,] — (1 f(P)15, —E [ (21 ]|
trg(Vn)la, —tr f(Py)1; —E [trg(yn)lgn - trf(ﬁ’n)lgnﬂ
< 28 |(trg(V) = tr f(P0) 1, e,

+2E

=K

+ 2E ’trf )1 Bange

trg(Vn)lg, nEe
<1 0+ 0P (20 Eg) + 0P (B, 005)
=o(1)
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since €, and E, both hold with overwhelming probability by assumption and
Lemma B.2 respectively. To see that the variance follows as claimed, observe that
by letting z = re?1V=1 and w = re?2V=1 where r = 1 + §, we have

2 b f el T ;(;::)m ) dedw

27 2m m ,mbi1/—1,—mba/—
= 72/ f(rmemal\/jl)f(rmemeg\/jl) 7’2 e lﬁ@ v/ —1
47T 0

(r2mem01 \/77167777492\/?1 _ ]_)2

df,do,.

Next by the substitution m#; = 7 and mfs = 7, and by noting that this substi-
tution wraps around the contour m times,

,,,2m€m01 \/716777192 V-1
(7/.2mem91 \/7167777,92\/71 _ 1)2

27 27 2m 11/ —1 ,—T2/—1
m 7' V-1 m T \/7 r ¢ €
4ﬂ—2 / 'f ' )f(’/‘ e )(r2me7’1\/jlef7'2\/jl _ 1)2d7-1d7—2

d6,dos

1 2m 2m
e [ [ e e
7

and finally, by letting 2’ = rmemV=T and w’ = r™e™V=1 we have the claimed
variance. u

5. PROOF OF THEOREM 4.13

It remains to prove Theorem 4.13. Define the resolvent

Gn(2) == (Y — 1) (35)
where Y, is defined in (31) and for z not an eigenvalue of }),,. Also define
En(z) :=trG,(2)1q, —E[trG,(2)1q,]. (36)

By Lemma B.1, Q,, holds with overwhelming probability. On the event €,,, the
eigenvalues of ), are contained in the interior of the disk Ds, and so, by Cauchy’s
integral formula, we have

trg(Vn)la, —E[trg(Vn)la,]

lgn
271'1%/\ yn d _E[Z 27T2f>\ yn ‘|

= *2% ) 9(2) (1:.(2)1a, ~ EltrGu(2)1a,) d=
= 7% 9(2)=2,(2)dz

where for the remainder of the paper we let C denote the contour on the boundary
of D(;.

We will reduce the proof of Theorem 4.13 to showing the convergence of the re-
solvent process (Z,(2)).ec to the limiting Gaussian process defined in the following
lemma.
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Lemma 5.1. Let {Z(2)}.cc denote the mean-zero Gaussian process with covariance
structure defined by

mQ(Zw)m—l

E[2()EW)] = 37
and with the property that Z(z) = Z(z) for all z € C. If g be a function which is
analytic on some neighborhood of the disk Ds and bounded otherwise, then

— QLTF’L 9(2)2(2)dz (38)

is a mean-zero Gaussian mndom variable with covariance structure

E|(-L 4 g2)5()dz) | =——5 (Z“”ni O e (39)
2mi Je 4r zw)™ — 1)?

and

Eb;ﬁwﬁ@w2m o(2)E(2 @y%ﬂff (ﬁijm.
(40)

Proof. The proof follows by a number of standard techniques. For instance, one
can deduce the conclusion by computing moments (with an application of Fubini’s
theorem); we omit the details. O

The following result shows that {Z(2)}.ec is indeed the limiting distribution of
the resolvent process {E,(z)}.ec-

Theorem 5.2. Let {E,,(2)}.ec be the sequence of stochastic processes defied in
(36) for z on the contour C around the boundary of the disk Ds. Then {E,(2)}.ec
converges in distribution to the mean-zero Gaussian process {E(z)}.cc defined in
Lemma 5.1.

The bulk of the paper is devoted to the proof of Theorem 5.2. Before doing so,
let us complete the proof of Theorem 4.13 assuming Theorem 5.2.

First note that by Lemma B.1, there exists ¢ > 0 such that €2, holds with
overwhelming probability. Next, observe that Z,,(z) and Z(z) are random elements
in the space of continuous functions on the contour C, which is a metric space with
respect to the supremum norm. Since the map

_ 1
Zn = —
(2) 211

CQ(Z)En(Z)dZ (41)
is continuous in this metric space, the continuous mapping theorem (see [15, The-
orem 25.7]) and Lemma 5.1 show that Theorem 5.2 implies Theorem 4.13. Indeed,
if {Z,,(2)}.ec converges in distribution to {Z(2)}zec, then 5= §, g(2)En(2)dz con-
verges in distribution to 51 ¢, g(2)Z(z)dz as desired.

In order to prove Theorem 5. 2 we will use the following characterization of
convergence, which is a result of Theorems 7.5 and 12.3 from [16].

Theorem 5.3. Suppose that {E(z)}.cc, {En(2)}zec for n > 1 are stochastic pro-
cesses on the contour C = {z € C : |z| = 1+ §}. Suppose Z(z), (E,(2))52,
satisfy

(En(21),En(22), -+, Enl(2n)) — (B(21), E(22), .. -, E(2L)) (42)



22 N. COSTON AND S. O’'ROURKE

in distribution as n — oo for any fized positive integer L and any z1,...,z1 € C,
and suppose that there exists a constant ¢ > 0 such that

Zn(2) — Ep(w) |2

zZ—w

sup E
z,weC,z#w

<c (43)

for all n. Then {Z,,(2)}.cc converges in distribution to {Z(2)}.cc as n — oo.

The proof of Theorem 5.2 reduces to showing that the two conditions from
Theorem 5.3 are satisfied. In Section 6 we prove the convergence of the finite
dimensional distributions (42). Section 7 contains the proof of the tightness of the
sequence of stochastic processes (43).

6. CONVERGENCE OF FINITE DIMENSIONAL DISTRIBUTIONS

This section is devoted to proving the convergence of the finite dimensional
distributions of the stochastic process {E,(z)}.cc. In particular, this section will
be devoted to the proof of the following theorem.

Theorem 6.1. For a fized positive integer L and any collection (21,22, ...,21) such
that |z;| = 146 for 1 <i < L, the random vector (E,(21), Zn(22), ..., Zn(zL)) con-
verges in distribution to the random vector (E(z1),Z(z2), ..., =2(z1)) where {E(2)}.ec
is defined in Lemma 5.1.

To prove Theorem 6.1, we first make a sequence of reductions inspired by the
proofs in [56, 51]. First, recall that by the Cramer—Wold theorem, it is sufficient
to prove the convergence of an arbitrary linear combination of the components of
the vector in question. Ergo, by the Cramer—Wold theorem, it is sufficient to show
that

L
> (En(2) + BiEa(2)) (44)
1=1
converges in distribution to

L
S (E() + BEE) (45)
=1
for ay, B; € C such that (44) is real. As stated in Lemma 5.1, since Z(z) = Z(Z), it is
sufficient to compute E[=(z;)=(z;)] in order to characterize the covariance structure
of (2(z1),E(22), .. E(er)).

Remark 6.2. In the case where the atom random variables are complex-valued, we
would need to compute E[=(z;)=(z;)], and E[Z(z;)=(#;)] in order to characterize
the covariance.

In order to prove Theorem 6.1, we will express the sum in (44) as a martingale
difference sequence. Let ¢; denote the kth column of ), and define the o-algebras

Fre = 0(Cly-yChs Crtly -+ o5 Cuths -+ o5 Clm—1)nt1s - + > Cm—1)n+k) (46)

for 1 < k < n. Note that Fj is the o-algebra generated by the first & columns of
each of the n x n blocks of V,,. Define Fy to be the trivial og-algebra and note that
Fo € F1p € --- C F,. Then define the conditional expectation Ex[ - | := E[ - |F]
and observe that by definition of the o-algebras, Eo[ - | = E[ - | and E,,[V,.] = V.
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Also define y,(f) to be the matrix },, with the columns ¢y, ¢n ik, Contks - -5 Cm—1)ntk

replaced with zeros. Note that yﬁ’” can be viewed as the matrix ),, with the kth
column in each block replaced by zeros. By Corollary B.5, for every 6 > 0, there
exists some ¢ > 0 such that the event

Qg = { inf s (y,(ﬁ> — ZI) > c} (47)

|2|>1+48/2
holds with overwhelming probability. Finally, define the resolvent

-1
G0 (=) = (VP —21) . (48)
The following lemma follows from an application of Proposition 3.2.

Lemma 6.3. Define the events ), and Qy, . as in (32) and (47) respectively. Then
there exist a constant C' > 0 such that, for all z € C, ||Gn(2)]] < C surely on Qy

and Hg,(ﬁ)(z) < C surely on Sy, k.

With these definitions, we may write

En(z) =trG,(2)lq, —E[trG,(2)1q,]

= 3 (BaltrGu(2)1a,] - Exoaltr Gu(2)10,)

k=1
= Z Zn k(%)
k=1
where we define
ka(z) = (Ek — Ekfl)[tr gn(z)].gn]. (49)
With this notation, we can rewrite the linear combination from (44) as
L n L
D (En(z) + BiEn() =D (alZn,k'(Zl) + ﬂlZn,k(Zz)) :
I=1 k=11=1

Let My, 1, == Elel (qumk(zl) + ﬂlka(zl)) for any fixed integer L > 0, and z; € C,
and any a;, 3; € C such that M, ; is real and denote

M, =" M. (50)
k=1

In order to simplify computations, it will be beneficial to work with a slightly
different expression in which some reductions are made.

Lemma 6.4. Define M,, as in (50), define Uy, to be the mn x m matriz which con-
tains as its columns Cg, Cniky -+ Ctm—1)n+k, and define Vi to be the mn x m matriz
which contains as its columns ey, €nik,-- -, €(m-1)n+k Whereei,...,emn denote the
standard basis elements of C™™. Define the martingale difference sequence

n n L

TR SR o (z i Zon (1) + @zn,m)) ,
k=1 k=1 =1

and

Zni(2) =~y [tr (VkT((],(L’“)(z))ZUk> 19] . (51)
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Then, as n — oo, if M, converges in distribution, then M, also converges to the
same distributional limit.

We first develop some results we will need in the proof of Lemma 6.4. Define
the event

Qui(z) = { [V aP (=)Uk10,. .|| <172} (52)
We will also need the following lemma.

Lemma 6.5. Define the event Qn (2) as in (52). Then, uniformly for any z € C,
Qn i holds with overwhelming probability

Proof. Let o > 0 be arbitrary. We will prove that the complementary event holds
with probability at most O, (n~%) uniformly for any z € C. By Markov’s inequality
and the forthcoming Lemma 6.9, uniformly for any z € C and for any p > 2,

T o(k) E HVknglk)(z)Uklszn,k N
F (HV’* Gn (Z)U’“IQ"”CH = 1/2> = (1/2)2
<<p n—25p+45—2-
Selecting p sufficiently large completes the proof. O

Lemma 6.6. Let A be an mn X mn Hermitian positive semidefinite matrix with
rank at most d for some positive constant d. Suppose that & is a complex-valued
random variable with mean zero, unit variance, E|¢|* = O(1), and which satisfies
€| < n'/27¢ almost surely for some constant 0 < € < 1/2. Let S C [mn], and let
w = (W)™ be a vector with the following properties:

(i) {w; :i € S} is a collection of iid copies of &,

(i) w; =0 for i ¢ S.
Then for any p > 2,

E ‘w*AwVJ <dp n(172e)p+4572 ||A||P (53)

Proof. Let wg denote the |S|-vector which contains entries w; for i € S, and let
Asxs denote the |S| x |S| matrix which has entries A; ;) for i,j € S. Then we
observe

w*Aw = E ’lI}iA(i,j)wj = wgvAsxst.
2]

By Lemma C.3, we get
E|lw* Aw|’ <, (tr Agxs)? + E|E]*P tr AL, o
= (tr Asxs)” + E [[¢]*¢1*P7*] trAL, o
< (tr Asxs)’ + n(1_2a)p+48_2E|§|4trAgXS.

Since the rank of Agy g is at most d, tr Agxs <4 ||A]| and tr A% o <4 [|A|P, where
we used the fact that the operator norm of a matrix bounds the operator norm of
any sub-matrix. We conclude that

E |w* Aw|? <qp [|A||P + n(2OPHE2R G AP <q, n2PH2E )4 AP,
as desired. O
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Lemma 6.7. Let A be a deterministic complex mn X mn matrixz for some fixed
m > 0. Suppose that € is a complez-valued random variable with mean zero, unit
variance, finite moments of all orders. Let S,R C [mn], and let w = (w;)™" and
t = ()% be independent vectors with the following properties:

(1) {w; : 1€ S} and {t; : j € R} are independent collections of iid copies of &,
(1) w; =0 fori &S, andt; =0 for j & R.
Then for any p > 1,
E |w* At|* <, E|¢[*? (tr(A* A))P. (54)

Proof. Let wg denote the |S|-vector which contains entries w; for i € S, and let tg
denote the |R|-vector which contains entries ¢; for j € R. For an N x N matrix B,
we let Bgyg denote the [S| x |S| matrix with entries B, ;) for i, j € S. Similarly,
we let Brxr denote the |R| x |R| matrix with entries By; ;) for i,j € R.

Since w is independent of ¢, Lemma C.3 implies that

E|w* At|* = E|w* Att* A*w|?
= E |wi(Att* A*) gx sws]”
<p B [(tr(Att* A%)sx5)" + B¢ tr(Att* A*)g, o] -

Recall that for any matrix B, tr(B*B)? < (tr(B*B))?. By this and the fact that
for a Hermitian positive semidefinite matrix, the partial trace is less than or equal
to the full trace, we observe that

E [(tr(Att" A)s5)” + EJE[? tr( A" A")5, ] <, BIEPPE [(tr(Ate A7))P)
By a cyclic permutation of the trace, we have
E[(tr(Att* A*))P] = E[(t* A* At)P] < E|t*A*At|".
By Lemma C.3, and a similar argument as above, we have
E|t*A*At|" = E |th(A*A)rurtrl’

<y (t0(A" A) pocr)” + EIE tr(A” AV,

<p Eg[2(tr(A" A)),
and thus by Jensen’s inequality, we have

Ehw* At <, BI¢[27E [(tr(Att* A%))7] <, EJE[*(tr(A* A))7

completing the proof. O
Remark 6.8. Note that if p > 1 and we also assume that E|¢[* = O(1) and [¢] <

n'/2=¢ surely for some & > 0, then we may write
E|lw* At|*P <, E|¢|*P (tr(A* A))P
= E [|¢"¢]" 1] (tx(A*A))P
< nPAPHAE 2R 4 (tr(A* A))P.
Lemma 6.9. Let U, be the mn x m matrix which contains as its columns the

columns Cr, Cpiks- -5 Clm—1)ntk Of Yn and define Vi to be the mn X m matriz
which contains as its columns ey, enik, .-, €(m-1)n+k Whereei, ..., emy denote the

standard basis elements of C™". Let QT(Lk)(z) be defined as in (48). Then

2
E HVkTg,(LkMZ)Ulen’k <nt
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and for any p > 2,

2p
E HVkTgr(Lk)(Z)Uk]'an <<p n725p+4572.

Proof. Begin by observing that

E [V Gu(2)Uila, ||

2p
< max E (VkTgr(Lk)(Z)Uk)(iJ)lﬂnvk

1<i,j<m

2p

k
= lgfg?%(m]E 6(1—1)n+kgﬁ )(Z)C(j—l)n-l-klgn,k

@

In the case when p = 1, since the rank of ( (z))*e(i,l)nije%’;fl)nJrkg,(Lk)(z) is at

most 1, for any 1 < j < m we have
2p

k
1%2?%{771 E e(i_l)”+kg7(L : (Z)C(j—l)n-i-k lq,,

<E |:cz<j—1)n+k(g7(Lk)(Z))*e(i—l)n-i-keg;—l)n—i-kgn(Z)c(j—l)n+k19n,k:|

<n! H(g,(#)(Z))*e(¢71)n+ke%;_1)n+kgn(z)lﬂn,k

<n!
by Lemma 6.3. In the case where p > 2, we have
k) 2
1%51,?%(17@1}3 ei—1)n+k9n  (2)CG—1n+kla, .
p
= lgr??%(mE C(j—l)n+k(gr(tk)(z)) e(i—l)n-‘!‘ke,(l;—l)n-‘,-kgf(tk)(Z)C(j—l)n-‘rk?lgn,k

Note that by definition of }),, in (31), each entry in c(;_1),4s has been scaled by
n~1/2. By this observation, Lemma 6.3, and Lemma 6.6,
P

E ‘ijq)mk(gfzk)(2))*e(i—l)n+k€€71)n+kg§k)(Z)C(j—l)n+k19n,k

p
<, nPp(i-2)p e ‘ (gflk)(z))*e(iil)n+kea_1)n+kg7(lk)(z)lQ",k

< n—25p+4a—2

for any 1 < j < m since the rank of (gy(Lk)(z))*e(i,l)n+k6571)n+kg£k)(2) is at most

1. d
Remark 6.10. The same argument as in Lemma 6.9 also shows that

2 2p
E VTGP ()2 Uta,.| < ntandE|VEGP ()2 Ukta,, | <pn2ertie,

We now proceed with the proof of Lemma 6.4.

Proof of Lemma 6.4. To begin, note that the result will follow if we prove that
E|M,, — M,|?> = o(1). Since the only difference between these two expressions is the
difference between Z, x(z) and Z, x(z), it will be sufficient to prove that for any
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o 2 o
z on the contour, E ‘22:1 (an(z) — an(z))’ = o(1). Since Z,  and Z, ; are
martingale difference sequences, we will prove

2
: |

Znii(2) = Znio(2)

= o(n_l)

uniformly for any 0 < k£ < n and any z on the contour C. To do so, we will
make a sequence of comparisons, each of which differs from the previous expression

by error terms which is o(n~!). To begin, observe that since yfj‘) has columns
k,n+k, ..., (m—1)n+k replaced with zeros, we have (Ex —Ej_1)[tr g (2)1q, ] =
0. Thus, we can rewrite

Zni(2) = (B —Ep_1)[tr Gn(2)1q,,]
= (Ey — Ex—1)[tr Gn(2)1q, — tr G (2)1q, ]
= (Bx — Bx—1)[(tr Gn(2) — tr G (2))1a,n0, ]
+ (Ex — Ex—1)[tr Gn(2) 10,00z, ]
— (B, — Bx1)[tr 67 (2) 10, ,nas -

Note that, uniformly for z with |2| = 1 4+ §, by Lemma 6.3 and since €, 5 holds
with overwhelming probability,

2 2
E |(Ex — Bx_1)[tr Gn(2) 10, 00 ,k]’ <E ‘u« Gu(2)1a,n0:

< n?E [[G2(2) 10,00z, |

Lqni e

for any o > 0. Since £, ;, holds with overwhelming probability, the same argument

shows that E|(Ex — Ex-1)[tr 61" (=)0, o]
have reduced from working with Z,, ;(z) to working with (Ey — E;_1)[(tr G, (2) —

2
<o 2@ for any a > 0. Ergo, we

tr Q,(Lk)(z))lgnmgn)k]. Next, observe that by linearity and cyclic permutation of the
trace, and by the resolvent identity (12),

trGu(2) = tr G (2) = tr (Gu(2) (V) = 3) G(2))
=~ tr (Gu()UVIGP(2))
= —tr (WM ()G ()0 ) (55)
To guarantee that I,,, + VkTgy(Lk)Uk is invertible, we wish to work on the event Q,, j

defined in (52). By Lemma 6.5, @, ; hold with overwhelming probability so that
by Lemma 6.3, the Cauchy—Schwarz inequality, and bounding the spectral norm by



28 N. COSTON AND S. O’'ROURKE

the Frobenius norm, we have

E ‘(Ek — B 1) [tr (VT G (2) G (2)Uk) 1, e,

2
—(Er — Er—1)[tr(ViL G (2)Gn (2)Un) e, 000 1@ )

2
1Q;,k]

<E {HV,CTQ,Q’“)(z)gn(z)Ukman
< niE [||Uk\|2 1%&
<4 nb
for any « > 0. By selecting « sufficiently large, we can justify working with
—(Bx — Ep—1) [tr(ViT G (2)Gn (2)Uk) a0, o)
instead of Z, 1(2). By the Sherman-Morrison-Woodbury formula (11), we have

— (g, — Exe ) [tr(ViE G ()G (2)Uk) 10, n02n 0@ i)
= —(Bx — Eee) [tr(ViF (G (2))2Uk (T + VTGP U) ™ 10,000 10Qu -

Since G,(z) is no longer present, we may drop the event 2,, gaining a sufficiently
small error, and the same argument justifies working with

—(Br — Ep-1)[tr(Vi (G ()2 Uk (I + Vi G UK) )10, 1000

instead of Z,, ;(z). At this point, we wish to replace (I,,, + V,CTQf«Lk)Uk)_1 with I,,.
To justify this, observe that

E ’(Ek — EBe—n)[tr(ViE (G (2))2Un (I + Vi G UR) )10, i)

(Bl — B[V (@0 ()2 Uk L, ]|
< B[V (@ ()2 V(i + VGOV ~ L) lasrans|| - (56)
Note that by the resolvent identity (12),
(I + VISP U™ = Iy — Iy + VIGP U WVIGH (2)U. (57)

By iterating this twice, we have
I + ViFGPUR) ™ = L = =V G (2)Uy, + (L + Vi GPUR) T (VTG (2)U) 2.

Inserting this into the last line of (56), we get

2
E [V (61 ()2 Ul + VG0 ™ = In)1a, 00

<E HVE(Q,&’“)(2))2Uk(VkTQ£’“) (2)Uk)1q, :

(58)

2
+ ||V (G0 ()20 + Vi 6L UN) (VG0 (2)U0) 10,

(59)
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We will bound each of the above terms separately. First, we begin with term (58).
Note that by Cauchy—Schwarz inequality, Lemma 6.9, and Remark 6.10, we have
< (B0 @rvaa.,

4)1/2
— o(n~ ).

It remains to show that term (59) is also o(n~!). To this end, observe that by the
Cauchy—Schwarz inequality, Lemma 6.9, and Remark 6.10,

2
E |V (G (2)2Un(ViE G (2)Ui) 1,0

4
E HVkTgr(Lk)(Z)Uklnn,k

2
E [V (01 (202U + Vi 600 T (VI GH (2)00) 10,

8

8>1/4

8
< (E HVkT(gv(Lk) (Z))2Uk19n,kﬁQn,k E H(Im + Vknglk)Uk/)il]‘Qn.kan,k

% E||( 90 (2)00) 10, 100,
8) 1/4
16) 1/4

8
< (E VI G20, .| BT 9P )00 0,

8
< (E VE @R )20, .| E|VEGR ()01, ,

< (n—25~4+4a—2 'n—2s-8+4s—2)1/4

_ (n716574)1/4

< nie1,

Since the above term is also o(n~!), we may proceed working with the term
—(Ex — B ) [r(ViT (G (2))°Uk) e, @i

Next, we will justify removing the event @, . Observe that by Remark 6.10 and
repeating the same argument as above,

E |[(Ex — Ex—1)[tr(Vi (G (2))°Uk)1a, ]

—(Ex — B 1) [tr(ViT (G (2))°Uk) e, n@u ] T om0,
By selecting « sufficiently large in the above expression, we can proceed with
—(Ex — Er-)[tr(V (G (2))°Up)1a, )
Finally, note that U}, is independent of gﬁf)(z) and €2, x, so that
Ex—1[tr(Vi (G (2))?Uk)1q, ]

m mn

=30 3 WDiaBrot [(60 ()2 10, .| Beea (U)o
i=1 a,b=1
=0.

This completes the proof. O
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To prove that M,, converges to a mean-zero Gaussian, we will use the following
martingale difference sequence central limit theorem.

Theorem 6.11 (Theorem 35.12 of [15]). For each N, suppose Zn,, ZNy,---+ZN

r

is a real martingale difference sequence with respect to the increasing o-field { Fy;, }
having second moments. Suppose, for any n > 0 and a positive constant V2,

TN
Jim P S E(Z3)FN, ) - >0 | =0 (60)
j=1
and
TN
. 2
=

Then as N — oo, the distribution of Z;Zl Zn; converges weakly to a Gaussian

distribution with mean zero and variance v>.

We will apply this result to {Mn,k}Zﬂ and the corresponding o-algebras are
{Fi}. Verifying (60) for {M,, x}7_, is lengthy and will require new notation, so we
begin with verifying (61) for {]\ank}zzl Let n > 0 and observe that by Remark
6.10, we have

2
> E {Mn»kl{ll\?fn,kbn}] <) E
k=1 k=1

o

4
My

7’]2 1{M71,k|>7]}‘|

n L 4
<o Y E|W 0P Uita,,
k=1 I=1
<y,L nL.
Condition (60) will follow from the following lemma.
Lemma 6.12. The martingale difference sequence
L —
{My,x}= {Z o Zn i (z1) + 5lZn,k:(Zl)}
=1
has finite second moments and satisfies
= y m2(z;z;)m 1 m?2(z; ;)™ 1
Ekfl[Ms } — aia-—] +C¥i5'—7 J
;; . 19‘%‘:g T (zizg)m = 1)? T((zig)m = 1)?
+ Bioj 2 + BiBj (62)
T ((Zizj)m — 1) T ((zigy)m — 1)

in probability as n — oo.

To prove Lemma 6.12, we will need some definitions and results. We develop
these now before proceeding to the proof.

Define M(«Lk’s) to be the matrix ), with columns ¢y, Chik,- -+, C(m—1)n+k> and cs

1
filled with zeros and define the resolvent G{**) () := (y,S’”) — zI) . By Corollary
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B.6, for any § > 0 there exists a constant ¢ > 0 depending only on § such that the
event

Qn,k,s = {l inf Smn (y?skvs) _ ZI) > C} (63)

z|>146/2
holds with overwhelming probability. By the Sherman-Morrison formula (10), pro-
vided 1 + ezggk’s)(z)cs is not zero, we may write

-1
(J/fzk’s) — zI) Cs

G (2)es = —— = G (2)esbrs(2) (64)
1+eT ( flk’s) — zI) Cs
where
Ors(2) = (14 efgHF)e )L, (65)
By the same formula,
(G (w))* = (O, (w)) "5 (G (w))*. (66)

To ensure that these quantities exist, we introduce the event
Qia(2) = { [T 41 (e 10, .| < 1/2}. (67)

Lemma 6.13. Define the event Q! . .(z) asin (67). Then uniformly for any z € C,

n,k,s
ks (2) holds with overwhelming probability

n.,k,s

Proof. Let o« > 0 be arbitrary. We will show the complement event holds with
probability at most O, (n~*) uniformly for any z € C. Observe that by Markov’s
inequality and by Lemma 6.6, uniformly for any z € C and for any p > 2,

P (|Gl (2)esa,,.] 2 1/2)
TG (e, .

ci(GV) () esel G (2)esla, .

—2ep+4e—2

2p
<, E

P
=E

Lpa N

Selecting p sufficiently large concludes the proof. O
The next Lemma follows by an application of Proposition 3.2.

Lemma 6.14. On the event Q, 1, there exists a constant C > 0 such that

a1 (z)

ists a constant C' > 0 such that 5;675(2)162:L .| < C almost surely uniformly for

< C almost surely uniformly for any z on the contour C. There ex-

any z on the contour C.

With these definitions and results in hand, we proceed with the proof of Lemma
6.12. In the proof of Lemma 6.12, we make some reductions, each of which produces
error terms which are sufficiently small in L?-norm. In particular, the proof of
Lemma 6.12 uses techniques of expanding using a resolvent identity and invoking
Vitali’s Theorem to get a self consistent equation, allowing us to solve for the
variance. Unlike the proof for a single matrix (see [56, Lemma 3.2] or [51, Theorem
5.2]), we iterate the process m times before recovering a system of self consistent
equations.
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Proof of Lemma 6.12. We may begin by expanding

2
Ep_1[M?2,] = Ey_y ( k(21 +ﬁzZn/c(Zz)>

L L

=Ep_1 Z ) Zng(2;) | +Er1 Zaiﬂjzmk(zi)én,k(zj)

L
ij=1 ij=1
L

+]Ek1[

where Zumk(z) was defined in (51), and therefore

L —
Zni(2i) Z ne(25) | + Ero1 Z BiBi Zn i (2i) Zn i (25)

ij=1

En:Ekfl [Mgk}
= Z Z By { nk(zz)Zn,k(zj)} (68)

k=11,7=1

+ Z Z a;B;E, 4 [ Z ke (2) Zon 1 ( j)} (69)
k=114,7=1
n L

+> > BiyBry Zn,k(zi)Zn,k(zj)] (70)
h=1ij=1
n L

+ Z Z BiBiBr—1 | Zn (1) Zno(25) | - (71)
k=14,j=1

We analyze each of these terms separately. Note that since the entries in the matrix

Y, are real, Zl,k(zj) = an(Z) so the calculations for all terms will be the same.
Therefore it suffices to show that

Z Z ZBJ]EIC 1{ nk( )Z ,k(w)} - Z aiﬁj(ﬂlw)mﬁ

k=114,j=1 1<ij,<L
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in probability for fixed z,w € C. For now, we focus on the sum over k. Observe
that

n

> Byt [ Zuk(2) Zas(w) (72)

k=1
:Z k-1 |Eg Z Z (Vi) (i,a)(G ())(a,b)(Uk)(bai)lﬂn,k
k=1 i=1 a,b=1
X Br [ DY (UG (08 )i o (Vi) ey 1a,,
j=1c,d=1

=>. Z Er—1 [(Vk )G,0) B [(g(k)( 2)) a1, k} (Uk)v,1)

% (UGB [ (0) oy Lo ] (W] -
(73)

At this point, we may exploit the block structure of these matrices in order to
reduce the number of terms in the above sums. First, since Vj is a mn x m matrix
which contains columns e, €n1k - - - €(m—1)n+k> (VkT)(iya) =Ounlessa = (i—1)n+k.
The same argument shows that (Vi) ;) = 0 unless ¢ = (j — 1)n + k. Since Uy, is

independent of g,(f)(z), we can factor this out of the expectation and rewrite (73)
as

Z Z Z Er_1 [Ek |:(g7(Lk)(z))?(i—l)n—&-k,b)lﬂn,k}
d—

x Ey, [(Qﬁf“) (w))?;‘,(j_1>n+k>1m,kﬂ E[(Uk) @0 (Ug) G-

Now, if i # j or b # d, then (Ux) s,y and (Uy)(;,q) come from different columns or
are different entries in the same column of ,, and hence are independent. Therefore,
the only non-zero terms are those in which 4 = j and b = d. Thus the sum in (73)
can be further reduced to

mn

n m

* 2
S B [ (G (N 1k, b)lﬂnk] Ey [(g(k)(w))%b,(i—l)n-l—k)lgn,k} E|(Uk)b,0)] -
k=1 1i=1

S
=

Now, since Uy, is filled with columns ck,Cnik; .- Cm—1)n+k, We may analyze the
structure of these columns to evaluate E |(Uk)(b,i) |2. Since column ¢(;_1)p 4, comes
from the ith block of ¥, (Uk) 5,5y = 0 unless (i —2)n—1 < b < (i —1)n where these
subscripts are reduced modulo m and we use the convention that —1n = (m — 1)n
and On = mn. For b in such a range, we have E|U,;)|> = +. Therefore we can
simplify the sum in (73) further as

n m —1)n

(i
£ 3 DI DS (11161 PG AR b ([T TC) M T

)
k=1 i=1 b=(i—2)n+1
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Define the diagonal mn x mn matrix D, with entries

1 ifi=j (p—1n+1<i<pn
( )(m) ':{ (74)

0 otherwise

for 1 <p<mand 1 <14,j <mn. Note that D, is nonzero only on the diagonal of
the pth block. Then we have

1 n m .
= =3 Y el B (G0 ()10, | DicaBi (G (@) L0, , | ek
k=11i=1
(75)
where the subscript on D;_; is reduced modulo m and in the range {1,...,m}.

Next, if we can show that

*Zze(l 1)n+kEk[ M (2)1q, k} D 1Ky [(gﬁk)(w))*lszn,k eti-nn+k  (76)

k=11i=1
(i),
(zw)™

in probability as n — oo, then by Vitali’s theorem (see for instance [13, Lemma
2.14]), it will follow that

n m
% DD elitynasEr [(gﬁk)(Z))lezn,k] D;_1Ey [(gv(f)(w))%lﬂn,k} €(i-1)n-+k
k=11:=1

m )ml

*(z
((zw)™ —1)2°

— (77)
Vitali’s theorem is justified because (76) is bounded and analytic in the region
where |z|, |w| > 1+ §/2 and this region has an accumulation point. Note that here
we apply Vitali’s theorem twice, once in the variable z and once in the variable w.
To analyze the limit of (76), we will focus on a fixed term in the sum. Define

(z,0) = Z n+k]Ek [g( )( )1Qn,ki| Di1Eg [(gv(zk)(w))*lﬂn,k €(i—1)n+k-

(78)
Provided the resolvent is defined, we have the matrix identity (see for example,
[56, Equation (3.15)]),

6P =T+ 2 Y GPG)acd (79)

t;ﬁ*n-&-k

where the notation ¢ # *n + k indicates that the sum is over all 1 < ¢ < mn such
that ¢t # k,n+k,...,(m—1)n+k. We may use this to expand the term 7, 1 (2, @).
If we expand a generic term in the sum (78), we can show the following lemma
holds.
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Lemma 6.15. Define all quantities as in Lemma 6.12. Let b be fived with 1 < b <
m. Then under the assumptions of Lemma 6.12,

1 n m .
B >0 (eg;—l)n+kEk [gr(f)(z)lnn‘k} Di—pEp [(gﬁk) (w)) 1szn,k} €(i-1)n+k
k=1 i=1
1 k-1
i eli-1yn+ Bk [Qék)(z)lﬂn,k} Di—p-1
2
XEy (01 () 10, ] evnir)| = o(1)
where i —b and i —b— 1 are reduced modulo m with representatives in {1,...,m}.

The use of Lemma 6.15 is one of the main technical components of this paper.
This lemma allows us to iterate the techniques used in previous results (see for
example [51, 56]) which results in a system of self consistent equations. Due to the
iterative process used in the proof, the two terms in the difference in Lemma 6.15
differ from 7, 1 (2, @) defined in (78) because of the subscripts on D,. We prove
Lemma 6.15 now, but several of the technical calculations are done separately for
clarity. These calculations are presented in lemmas at the end of Section 6.

Proof of Lemma 6.15. To begin, we may use the matrix identity from equation
(79) to expand eafl)nJrkEk gw({Lk)<Z)1anki| D;_Eg [(gr(bk) (w))*lﬂnk:| €(i—1)n+k- DO-
ing so, we have that

el 1k BrlG (2) 10, JDi b ER (G () 1a, e 1ynik

1
= eg;fl)nJrk,Di*bﬁ(Pk(Qn,k))Qe(i—l)n—i-k (80)
1 * *
—6571)%1@% Z D;—pEp [escs(gﬁk)(w)) 1Qn,k} Pr(Qnk)eii—1ynr  (81)
s#*sn—+k
1
~ ik > E {%“(Z)Ct@flm,k}Dz'bek(Qn,k)e(i—l)nM (82)
t#xn+k

1
el > 2 B {gf(f?)(z)ctezwlgmk]pi_b
s#*sn+k t#xn+k

X Ex [e,ci (01 () 1a, ] e (83)

where Py denotes the conditional probability with respect to Fi and we assume
that the subscript on D;_j is reduced modulo m. We simplify each term separately.
For any 1 < i < m, assuming b < m, term (80) equals zero since the only nonzero
elements in D;_; are in block ¢ — b, and (80) selects an element from the ith block.
For terms (81) and (82), since s # jn + k for any 0 < j < m — 1, we have the
expression 65—1) ntk Di—bes, which results in an off diagonal element of D; . Ergo,

1 * *
- e{iﬂ)w%% Z D;—pEr [escs(gr(zk)(w)) 1Qn,k:| Pr(Qnk)ei—1yntk

s#xn+k
1 * *
——— Y el pu DB [ (G () L, | Pe(@ur)eintn
s#*xn+k

=0
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since (D;j—p) s,y =0unless (i —b—1)n+1< f,g < (i —b)n and f = g. Similarly,
since t # jn+k for any 1 < j < m, we have €tTDz‘—b€(i—1)n+k = 0. Thus terms (81)
and (82) are zero. Note that e] D;_yes = (Di—p)(t,5)- This is zero unless ¢ = s and
(t—b—1)n+1<s < (i —b)n. Therefore term (83) can be simplified to

1 * *
3571)%1@% Z Z Ey [gr(f) (Z)CtetTlQn,k} D; s, {escs(gff) (w)) 1Qn,k} €(i-1)n+k
s#*xn+k t#xn+k
1 (i—b)n
= €a71)n+k% Z ]Ek |:g7(lk)(2>cslgn,k:| ]Ek [C:(gr(f) (w))*]_Qn’k:| €(i—1)n+k-

s=(i—b—1)n+1
s#*xn+k

Ergo, we have

el 1k Bi[G (2)1a, IDi B (G (W) 1q, , Je—1ynsk
1 (i—b)n
=— Y elnanE 9Bt ] B[00 @) Ta, ] ek
s=(i—b—1)n-+1,
sFExn+k ( )
84

We now remove the sth column from the resolvent. In order to remove this column,
we need to work on the appropriate events. Since Q,, ;s defined in (63) holds
with overwhelming probability by Corollary B.6, we may insert the event with as
sufficiently small L? norm error. This is verified in Lemma, 6.17. Since Lemma 6.13
proves that @, ; ((z) (defined in (67)) also holds with overwhelming probability, a
very similar argument shows this event can be inserted as well. For ease of notation,
we will drop the dependence on 2 in @, ;. .(2) and write Q;, , .. We proceed with

eg’;—l)n—‘rk]}zk |:g7(lk) (Z)cslgn,kngn,k,st/ :|

n.k,s

X B [ (0 (@) 0, wrnan@y | €6 1k

n,k,s

Then by (64) and (66), we have

€l 1yntkEx {gff)(Z)Cslﬂn,mﬂn,k,smcz' }

n,k,s

X Eg [C:(gﬁk) ()" 1, A 4 .NQ! } €(i—1)n+k

n.,k,s

= 65—1)n+kEk [gy(lk’s)(Z)Cs5k,s(z)1Qn,mﬂn,k,sﬂQ’ }

n,k,s

X B [(01.0(0))" ¢4 (G0 (@) Lo, 0 ] ot

n,k,s

Since G%k)(z) is no longer present in the expression, the same argument as above
shows that we can now remove the event ), , and work with

el Br (985D (2)esds(2) 10, 4y,

X Ei [ (0o (w)) €2 (G () Lo, 4 0e | € tnen
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with a sufficiently small L?norm error. Next, we wish to replace dj s(2) and
(0k,s(w))* with 1. Observe that

I 1 &
E=-Y — T ( [ (k,s) ) ]
PO B Z Yo elinurn (Br |95 (e s(2)1a, 0,
k=1 i=1 s=(i—b—1)n+1,
s#xn+k
x B [(6,0 ()"} (G55 () e, nar, ] €t
2
— Eg |:g7(lk78) (Z)CS]‘Qn,k,sﬂQ;hk’J E; |:c:<g»,(ﬁ7s)(w))*]‘ﬂmk«SmQ/n,k.J) €(i—1)n+k
(i—b)n
T k,s
< 1211?%(71]E Z €(i—1)n+k (Ek |:g7(z )(Z)Cs(slc,s(Z)lﬂn,k,sﬂQ;,k,J
1<i<m s=(i—b—1)n+1,
s#xn+k
x Eg {(%,s(w))*cz(gr(Lk’S)(w))*lﬂn,k,st;’kJ E(i—1)n+k
2

— Ey [g;lk“q)(Z)Cslﬂn,k,sﬂQ;l,k,J Ey [c:(gr(Lk,s)(w))*lﬂmk,st;L’k‘J) €(i—1)n+k

Therefore, it is sufficient to show that
E ‘65—1)n+kEk [QSIIQS)(Z)cs(skvs(Z)lﬂn,k»sﬂQ;l,k,s}
KB [(0k,0 ()€1 (G (@) T, o, | €t 1men

*65—1)n+kEk [ggﬂ’s) (z)esla, 4 nqr }

n,k,s
* (k,s) * 2 -2
xEg, [Cs(gn #H(w)) 19"»k‘st;1,k,s:| e(i—l)n-s-k}‘ =o(n"")
uniformly in 4, k, and s. This is done in Lemma 6.18. Since §,,  is no longer
present, we can justify dropping the event Q;l ks Dy an argument similar to Lemma
6.17. Thus, we can continue from here working with

m (i—b)n
1 s * *
=3 Y iy [0 @eda, L B @80 ) 0, ] e
i=1 s=(i—b—1)n+1,
s#xn+k

Next, for any 1 <4 < m, by independence of ¢, from gfzk’s)(z)lgn‘k,s, we can factor

the above as
(i—b)n
S el |98 (eta, | B [ @8 ) Ta, | e pnin

s=(i—b—1)n+1,
s#xn+k

(i—b)n

= Y B |57 ()10, | Exled

s=(i—b—1)n+1,
s#xn—+k

X el (000 () Lo, eovnen (89)
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Observe that the value of Eg[cs] depends on whether or not the column ¢, has been
conditioned on. If the column has been conditioned on, then the expectation returns
the column itself and otherwise the expectation is zero. Since Ej[-] conditions on
the first k& columns in each block, we can simplify (85) to

(i—b—1)n+k—1
> el [0 (1a,, ] B [0 () 10, ] i tn sk
s=(i—b—1)n+1

Now, consider ¢sci. Based on the block structure of V,,, if (1 —b—1)n+1 < s <
(i —b—1)n+ k, then we have

if(i—b—2n+1<f=g<@i—-b—1)n
otherwise '

El(esc}) )] = {g

Therefore, for a fixed term ¢ with 1 < ¢ < m and since (i —b—1)n+1 < s <
(i —b—1)n+k, we have E [c,¢;] = 2D;_,_;. We wish now to replace c,c} with its
expectation. Observe that the terms

5 * 1 s *
e(i—1yn+1Ek [gﬁk’é)(z)lan,k,s} (CSCS - nDz‘b1> x Ey |:(g7(7,k7 )(w)) 19,7,,:@,5} €(i-1)ntk

satisfy the conditions of a martingale difference sequence in s. Therefore we have

1w 1
RIEO B

m (i—b—1)n+k—1
k=1 i=

S hnunEr |50,
1 s=(i—b—1)n+1
1 2
X <Cs0: - nDi—b—1> Ex [(gflk’s) (w))*lgn,k,s] €(i—1)ntk

(i—b—1)n+k—1

<mex o D E|ef B (00 (2)1a,,,]
1<i<m s=(i—b—1)n+1
2

1
X <CSC: - nDi—b—1> Ex [(gﬁk’s) (w))*lgn,k,s] €(im1)n+k

By Lemma 6.20,

E

9 L1
6671)n+kE7€ [gy(zk”)(z)lﬂn,k,s} (cscs - nDi—b—1>

‘2 =o(n™)

x Eg [(gﬁk’s)(w))*lnn,k,s} €(i—1)n+k

uniformly in ¢, k, and s, and therefore we may proceed with

(i—b—1)n+k—1 1

DD T {gflk’s) (Z)lﬂn,k,s] —Dip-1Ex {(gék’s)(w))*lﬂn,k,s} €(i—1)ntk-
s=(i—b—1)n+1

Next, we wish to add back in column ¢4 to Q,(f’s) and €2, s. Since the events
Q1 and €, 1 s both hold with overwhelming probability, an argument similar to
Lemma 6.17 shows that we can insert or drop these events with a sufficiently small
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L?-norm error. This is achieved by showing

(i—b—1)n+k—1

LY e (B [0 010, ] DB [0 ) 10,

s=(i—b—1)n+1

E

2

—Ex [g(k)( )1QM} Di_p—1Ex {(gﬁk) (w))*lﬂnkD e(i—1ynt+k| = o(1),

which is done in Lemma 6.21. Since
(i—b—1)n+k—1

%ii S (fnnen (B [950(00, ] Pics B |95 () 10,

k=1i=1 = s=(i—b—1)n+1

3=

2

¢ [00(2)10,.,] Dico B (6 (w)" 10, ] ) e-nnie) | = o(D)

column c¢; may be reinserted. With this column replaced, in each term we now have

(i—b—1)n+k—1

. Z eafl)mkEk [gr(zk)(z)lﬂn,k] Di p1

n
s=(i—b—1)n+1

X B (0 () T, .| €a-tnsr
k-1

=— 6571)n+kEk |:g’l(’Lk)(Z)]‘Qn,ki| Dj_p—1Ex [(gy(lk)(w))*lﬂn,k} E(i—1)n+k

since there were k — 1 terms in the above sum, and none of them depended on s.
This concludes the proof of Lemma 6.15. ([l

With the proof of Lemma 6.15 complete, we continue with the proof of Lemma
6.12. Applying Lemma 6.15 in the base when b =1 gives

1< 1 E-1E
" Z <77L,k(zaw) B Ze(Ti—nnJrkEk [gék)(z)lﬂn,k] Di—»

i=1

2

xEj [(gr(f)(w))*lﬂn‘k} e(i—l)n+k> =o(1).

The goal is to iterate this process until 7y, x(z, W) reappears. Lemma 6.15 verifies
that, for any b # m,

%ZZ (e(z Dntk Bk [g< J(2)1q, } D;—pEy [(gﬁk)(w))*lm,k} Clim1)n+k
=11i=1
- % £ % Dt klk [Q(k)(z)lﬂn,k} Di—b+1)

2

X Eg [(gr(f') (w))*lgnk} e(il)n+k> = 0(1)

where i — b is reduced modulo m. After iterating twice, we have
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S|

Zn: ( ( )22”36(1 Dtk Ek [ G (2)1q,, k} Di 3

k=1
2

=o(1).

x [Eg [(gflk) (w))*lszn,k} e(i—l)n+k>

After iterating m — 1 times, we have

1 n N 1 k—1 m—1 m
E gz (E,k(z,w) - (an> > el nriEr [gr(lk)(z)lﬂn,k] Dj—m
k=1

i=1

2

x Ep [(gr(tk) (w))*lgn’k} e(il)n+k> = 0(1).

To recover T, (2, W), we will iterate one final time. Due to the block structure of
D, for 1 < p < m, the mth iteration will result in less cancellation than in previous
iterations. Consider the expansion due to (79),

ity Br |00 ()10, DimBr (G0 () 10, ] e 1nin
1
_e(z Dtk Pi—m 7(Pk(Q ))26(i—1)n+k

e 3 DB [t (G0 ) T, | PO e

s#xn—+k
1
e(z Dtk s Z Ey [gflk)(z)ctetTlQn,k] D mPr(Qn k) e(i—1)n+k
t#£xn+k
+€(z 1)n+krzw Z Z Ex [Q(k) 2)crel1 ]Di_m
s#xn+k tAxn+k

x Ey, [6502(g£k)(w))*19n,k] e(i—1)ntk
where the notation ¢ # *n + k indicates that the sum is over all 1 <t < mn such
that t # k,n+k,...,(m — 1)n + k and Py denotes the conditional probability on
the o-algebra ]—"k We have

1
6(1 1)n+kD1 m (Pk(Qn,k))2e(i71)n+k = (Di—m)((z 1)n+k,(i— 1)n+k) (Pk(Q ))2

Note that after reducmg modulo m, D;_,, is nonzero in the (i—1)st block. Therefore

1 1
T Do — (Pr( Q1)) 04 = —(Pr(Q,:))2.
Cli—1)n+k zw( k (k) €(i—1)n+k zw( (k)

By arguments similar to those used in the proof of Lemma 6.15, we can calculate
that

1 * *
65—1)n+k% > DiomEy [escs(g,(ﬁ)(w)) 194 Pr(Qn.k)ei—1yntr =0
s#xn+k
and

1
e:(l;fl)n+k% Z ]Ek |:g7(1k)( )Ctet ]-Q :| Difmpk(gn,k)e(i—l)n-&-k =0.
t#xn+k
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By the forthcoming Lemma 6.19, we can see that E|(zw) (1 — Py(Q)?)| =
0q(n~%) for any a > 0, and therefore we have

E |efiyeiEr [0 ()10, . DiomEi |60 (@) L0, | ety

_ L_ — L_e{iq)wrk Z Eg [g,(lk)(z)cslgn‘k}

s=(i—1)n+1,
s#*n—+k

2
XEp [C: (gr(f) (w))*lﬁnk} €(i—1)n+k ‘

= 0q(n™%).

By the same argument as in Lemma 6.15, we have

1 n m .
E|~ ;; (€€71)n+kEk [gr(f) (Z)lﬂn,k} Di—mEy [(gr(f) (w)) 1Qn,k} €(i-1)n+k
1 1k-1
- el yanEr (90 (e, Dy

2

xEj [(Q,(Lk)(w))*lnn,k} €(i71)n+k) = o(1).

By recognizing that we have recovered 7, x(z,w) in the previous expression, and
by putting this together with the previous iterations of the process, we in total get

3> (77“’“(2"”) (5 (S 1)’”%,6(2,@)) ‘ o

k=1

E

The goal now is to regroup in order to compare the object of study, % Sony Toi(z,w),
to an appropriate Riemann sum. The sum we will compare to is

% ; 7m(kn;})lm_l ((zw)m - (’tl)m> - (87)

As n — o0, (87) is the Riemann sum for fol ma™ 1 ((zw)™ — ™)' dz which, by a

1 m) . By regrouping the quantities

substitution of variables, is equal to — In (1 - Gy
’ ZW)

inside the sum in (86), we can write

Tk (2,0) <1— (kl)m) - = <k1>m_l+£n,k(sz)

n™(zw)™ (zw)™ n

where &, 1(2,%w) is an error term which satisfies E |% Z:l 5n7k(z,w)|2 = o(1).
This implies

—_— (nm(zw)m (k- 1)’”) _m (k - 1)7"_1 £ (2 )

nm(zw)m (zw)

and thus

Tok(z, @) = mn(k — 1) +(

n™(zw)™ — (k—1)™

n™(zw)™
n™(zo)™ — (k. —1)™

) X En iz, m). (88)



42 N. COSTON AND S. O’'ROURKE

We are now ready to compare %22:1 Tn,k to the Riemann sum in (87). By rear-
ranging (88), we have

n 2

1 & ol &m0 (R—1\™)
E|=> Tan(ew) =~ > ———— <(zw) - (n) )
k=1 k=1
1 n
< E|- Enk(z,w)
et
=o(1).
Therefore £ 31" | T, (z, W) converges to — In (1 - ﬁ) in probability as n — oo

as claimed in (76). By recalling that we invoked Vitali’s theorem, this implies

mZ(Z’II))mil

];onﬂj]Ek [Zn,k(z)zn,k(w) — O‘iﬂjm

in probability as n — oo. This concludes the proof of Lemma 6.12. (I

Remark 6.16. In the case where the atom variables are complex-valued, the limit
of Y p_ By 1[M7 ;] would differ from that of Lemma 6.12. In this case, the cal-

9] 9

culations for terms of the form B;a;Eg Znyk(zi)Znyk(zj)} would differ from those

v 9

of the form B;a;Ey [Znyk(zi)Zn,k(zj)} due to the fact that the conjugation would
need to be carried throughout the entire calculation.

The Cramer—Wold theorem implies the convergence of finite dimensional distri-
butions which completes the proof of Theorem 6.1. The remainder of this section
is devoted to proving the technical lemmas needed for Lemma 6.15.

Lemma 6.17. Define all quantities as in Lemma 6.12. Then under the assump-
tions of Lemma 6.12, for any a > 0, we have

E[efiyinBr 00 (s, Br [0 (@) 10, ] eonns
2
el e Br [0 ()esT0, wrn e Br [2G0 (@) L, .| € tmer]

— Oa(n4—a/4)

uniformly in i and k.
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Proof. Observe that
ehinanEr [0 ()esto, | Bi [0 () 10, ] i tnin
= el iyniBr |0 (2)ecla, . | Br 200 (@) 10, 00,0 | e 1nik

+eloiyniBr |G (2)esla, o | Er |5 (G0 (W) Lo, ina, . | €6-1ntk
) S ) (89)

+ el nynanBr |G (2)esla, wnan . | Br [5G (w) 1a, cnas , | €-1ynsk
) _ ) _ (90)

+eli 1y kEr ggk)(z)cslﬂn,mﬂgyk‘s Er C:(gqg,k)(w))*lﬂn,mﬁg)m €(i—1)n-+k-
) ) ) _ (91)

Therefore, we must show terms (89), (90), and (91) are sufficiently small in the L2-
norm. The argument for all three terms is very similar. We use Jensen’s inequality
and the Cauchy—Schwarz inequality to separate the inner conditional expectations.
For resolvent terms where a complement event is not present, we bound by a con-
stant and in terms where a complement event is present, we bound by O(n~%) since
each event holds with overwhelming probability. We show the calculation for term
(89), and the other terms follow in a similar manner. Observe

|
!
)

E[efinsiBr [0 (esla, nas | B [0 (@) 10, 00, | e imen

2
< [Be [0 G0 umns, Tl B 1 |08 @) 10,

n,k,s
< (JE\
< <IE

4
4 14 *
Elles|* Elle: | E|| (6% ()" 10, 0.

4) 1/2

G (2)1q, noc

n,k,s

4
| E (@ @) 1a, oo,

IR,

< P( Z,k,s)1/2
< n %2

O

Lemma 6.18. Define all quantities as in Lemma 6.12. Then, for any i with
1 < i < m where subscripts are reduced modulo m, under the assumptions of
Lemma 6.12, we have

E ea—l)nJrkEk |:g7(7,k78)(Z)Csékas(z)lﬂn,k,st;hk,s}
XBy (81,5 ()" G0 (@) e, o | oty

_65—1)n+kEk {g%k’s)(Z)Cslﬂn,k,mQ;,k,s]
2
’ =o(n7?)

xEg [cZ(gﬁk’s) (w))*lﬂn,k&mQ;’k)J €(i—1)n+k)

uniformly in i, s, and k.
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Proof. Observe that by the triangle inequality,

E e%;—l)rL—i-k]Ek [g'r(Lk’S) (Z)Cs(sk’s(z)lgn,k,an' }

n,k,s
xEy, [(5k,s(w))*cz(g§f’s) (w))*lﬂn,k,sﬁ%,k,s} €(i—1)n+k
S [ E TR PR
2
xEy, [cz(g,(f’s)(w))*lﬂn,k,st;,k,J e(ifl)mk]‘

B[l sBr [0 ()b ()10, 000,

n.k,s

2
KB (B0 = DG ) L0, 4y, | et
(92)
+E ‘ea—l)n-i-kEk {gr(f’s)(z)cs(ém(z) - 1)19%““@%&5}
* (2 (k,s) * ’
X]Ek |:CS (gn o# ('UJ)) ]‘Qn,k,stln,k,s:| e(i_l)n+k’ (93)

We will show each of these terms are o(n~2). We begin with (92). By the generalized
Holders inequality, Lemma 6.6, and Lemma 6.14, we have

E [l tyiBr [0 ()esba(2) 10, 0c

n.k,s

<Bi: [(0r.1 ()" DS (G8) w) La,, nar,,. | e

4>1/2
8>1/4

2

= (E ’6,(1;—1)n+kg'gk’8)(Z)Csdk,s(z)lﬂn,k,st/

g\ 1/4
) (e

9 1/2
STCIIE) R S OISR
8>1/4

C: (gy(bk’s) (w))*@(i—l)n+k€(Ti—1)n+kgv(Lk’s) (w)cslﬂnkysﬁQ’

x (E [(Brs(w))” = Dgy, . (G (W) e ymirlan,,

< (e

X (IE ’((51“(71)))* -1y

n,k,s
X (IE

< n7% (E ’((5k,s(w))* - Dlg, . .ne;

a\ 1/4
g\ 1/4 >
) . (94)

Now, recall 0y s(z) defined in (65). By the resolvent identity (12), we have 1 —
-1
Sps(z) =1— (1 + ezgﬁk’s)(z)cs) = (ezg,(,k’s)(z)cs) k.s(2). This gives

n.k,s

Os(2) = 1= (eI G (2)cs) + (€] G (2)¢) 1, (2).
Ergo,

(Frs(w))* = 1= (el G (w)es)™ + (€7 G (w)es) (S (w)) " (95)
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We replace ((0x,s(w))* — 1) in (94) with the expression on the right hand side of
(95) and use Lemma 6.6 to see
8) 1/4

E [(— (TG (w)en)* + (B (0)) (TG (w)ea)* 1, oar,

< n—3/2—8 (E

n9/27 (E |(Orsw)) = Dla, ,na; .

< n—3/2—s

8) 1/4

4

co(GL") (w) esel G (w)eslq,

8

(G (w) esel G (weslq, , nar, .

"

+E U(6k,s(w))*lnn,k,m;,k,s

4
n 302 (w2 (G () TG (w1 .

8>1/4

This shows term (92) is o(n=2). A very similar argument shows that term (93) is
o(n=2) as well. We omit the details. This completes the proof. O

0122 | (G (w)) eyl G5 (w)a, e,

< n—3/2—sn—1/2—5.

Lemma 6.19. Define all quantities as in Lemma 6.12. Then under the assump-
tions of Lemma 6.12, for any a > 0

2

L 1P| = oa(n®)

Zw

E

uniformly in k.

Proof. Observe that since z,@ € C are fixed with |z| = |w| = 1 + 4§, we know that

2

1 2
— (1= Pp(u)?)| < |1 =Pe(Qnp)?|” < |1 —Pr(Qnp)].

20

Since €, . holds with overwhelming probability by Corollary B.5,
c 2 (& —
E[1 - Pe(Qu ) = E|PL(©%,0)]” < B 1) = 0a(n ™)

for any a > 0. O

Lemma 6.20. Define all quantities as in Lemma 6.12 and assume (i—b—1)n+1 <
s < (i — b)n. Then under the assumptions of Lemma 6.12,

E [l inBr |95 ()10, 0. ] esctBi (G4 (@) La, 1. | e 1pnen

1 S S *
- g‘%—l)mk]}fk [Qﬁf“ )(Z)lﬂn,k,s} D;—p-1Eg {(gff’ )(w)) 1Qn,k,s} €(i—1)n-+k

=o(n™h)

uniformly in k.
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Proof. To begin, observe that by viewing the expression as a trace, and by cyclic
permutation, we can rewrite

B (9859 ()10, . | esctBi (G (@) 10, | e 1ynin

= % (\/EC:]EIC [(gy(lk’s) (w))*lﬂn,k,s} €(i—1)m+k€(i— 1)n ik Bk {gr(f,s)(z)lﬂmkvs} \/ﬁcs) .

For any complex-valued N x N matrix A and any subset S C [N], let Agxs denote
the |S| x |S| matrix which has entries A; ;) for i,5 € S. Let Sy = {(i —b—2)n +
1L,i=b—2n+2,...,(i — b— 1)n}. Then observe by cyclic permutation of the
trace, we have

]' S S *
etk Br |05 ()10, | Dicot B (0459 (@) L0, 0] e-nns

1 S S *
= tr (n65_1>n+kEk [gff’ )(Z)lnn,k,s} Di—p-1Ex [(gﬁf“’ )(w)) 1an} 6(i—l)n+k)

1 . s
—tr (Di—b—lEk {(gﬁf’ﬂ(w)) 1nk} €(i—1)n+k€(i— 1)ntk Bk [gf(zk’ )(Z)lnn,k,SD

1 S * S
=~ (B [0 @) La, ] e nariel nnaBr (98 (0, )

By this observation and Lemma C.2 we have

E ’ea—l)n—&-kEk [gﬁk’s)(Z)lm,k,J csC By, [(gﬁk’s) (w))*lﬂn,k,s} €(i-1)n+k

1
- ge(TH)nM]Ek [gff’s)(z)lﬂn,k,s] Di—p—1Ey [(gfﬁ’s)(w))*lﬂn,k,s} €(i-1)ntk

1 £ s * S
= B |[VaeiE, [0 (@) o, ... | ea-nielivnsBi [98) (210, ... | Ve,
2
—tr (Ek {(Qﬁf’s)(w))*lﬂn,k,s} €(i-1)n+k€li—1yn+ kB [gr(f’s)(Z)lQn,k,SD

Sp X Sh
< %E [t (B [859 @) 10,0 | €6 1mskeliyninBr [ggk,ﬁ(z)lkadD*

% (B[O ) 10,1 | e vnirelinunBr [958 (2)1a,,.] )] - (96)

Observe that the rank is at most 1 so by bounding the trace by the rank times the
norm, and by the fact that each term in the above expression can be bounded in
norm by a constant, we can bound (96) by O(n~2) which completes the proof. [J

Lemma 6.21. Define all quantities as in Lemma 6.12. Then under the assump-
tions of Lemma 6.12, we have

(i—b—1)n+k—1

S B |98 ()10, DiooaEi [(G8) ) o, ] e
s=(i—b—1)n+1

E

S|

(i—2)n+k—1 2

1 *
o Y ChonmerBr [gr(lk)(z)lﬂn,k} Di—p-1Ex [(gff)(w)) 1Qn,k} ei—1n+k| = 0(1)
s=(i—2)n+1

uniformly in k.
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Proof. To begin, observe that

(i—b—1)n+k—1

> eliiiyminBx [gﬁk’s)(z)lﬂn,k,s} D;—p—1Eg [(gr(lk’s) (w))*lﬂn,k,s} €(i—1)ntk
s=(i—b—1)n+1

S|

1 (i—b—1)n+k—1 2

n D linninE [gﬁk)(z)lﬂn,k} Di—p—1Ey [(gﬁf)(w»*lﬂn,k] E(i—T)n-+k
s=(i—b—1)n-+1
(i—b—1)n+k—1
< > E ‘Ek [eafl)wkgﬁk’s)(Z)lﬂn,k,s} Di—p—1Ey {(gﬁk’s)(w))*e(z‘fl)mklﬂn,k,s}
s=(i—b—1)n+1

2
—Ex [ea—l)n%gﬁk)(z)lm,k} Di—p—1Ey [(gék) (w))*e(i—l)mklﬂn,k}

so it suffices to prove that

E[Ex [ef_1)n1a 0 (] Dicvr B [(689 ) eqsila, .
2

—Ex [e(q;—l)n-l-kgr(zk) (Z)lﬂ,n,k] Di—p-1Ek [(gﬁf) (w))*e(z‘fl)nwlﬂn,k} =o(1)

uniformly in ¢, k£ and s. We can expand this difference using the triangle inequality
to get differences which only vary by an event or a resolvent. We begin by observing
that by the Cauchy—Schwarz inequality and Lemma 6.14, for any o > 0,

E ‘Ek {ea_nmkgﬁk’s)(Z)lﬂn,k,s] Di—p-1Ex {(gﬁk’s)(w))*e(i—l)mklﬂn.k,s}
2
—Ex {G(TFDnMQé’“’S)(Z)lﬂn,k,s} Di—p—1E [(gﬁk’s) (w))*e(i—l)n+k19n,k,smn,k}

< E HEk [gy(f’s)(z)lﬂn,k,s] D;_p_1Eg {(gr(f’s)(w))*lﬂn.k,s}

2
—Ey [Qﬁk’s)(z)lm,k,s} D;—p-1Eg [(gr(lk’s) (w))*lﬂn,k,smszn,k} ’

=FE H]Ek [Q,(fs)(z)lgnk} D;_p1Eg [(gﬁk’s)(w))*(lﬂn,k,s1522;,,)] H2

4 1/2
)

< (IE U\@S’“”(z)lan,k,s

a/2.

4 4 (k»5) ()%
1Pl | E || 085 ) 2,

Lag N

The same argument shows that each indicator can be replaced with 1q, ,nq, . .-
We also bound terms that differ by a resolvent. To this end, observe that by the
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resolvent identity (12) and Lemma 6.6,

B [Bp [ef_1sr08 ()10 c00n. | Dico1Bi [0 (@) €l tynskle, cngn |
—Ey, [ — ’s)(z)lnn,mnn,k,s} Di—p—1Ey [(gﬁk)(w))*e(z‘71>n+k19n,mnn,k,s} i

=E ’Ek {e(i—l)n—l-kgn ’S)(Z)lszn,kmszn,kys} Di_p—1
XEs [ (G4 (w)(eoeD)GE (W)€ 1ynsi e wrto .

4
< (& lec-vmsell 02 @10, 00, 1201

2

llesll

1

4
E [H(gw(w>>*1m,k @ ) e ninla, .

2>1/2

The same argument shows that all instances of gnk’s)(z) or ( (k) (w))* can be

cs(G (W) el nninelimynsrbn ) (W)esla, .

<

<n!

replaced with gff)(z) or (gﬁf“) (w))* respectively gaining an error that is o(1) in
L?-norm. Finally, the same argument as before shows that

E ‘]Ek [6671)n+kg§zk)(Z)lszn,mszn,k,s} Di—p—1Ey [(gﬁk)(w))*6(i—l)n+k1Qn,mnn,k,s}

2
“Ex |- 1119 (e, .| DicoiBr |60 () e nynsrla,. || = o(D).
Replacing all instances of 1, ,nq, .. With 1, , completes the proof. ]

7. TIGHTNESS

In order to extend the finite dimensional convergence proved in Section 6 to
convergence of the stochastic process {Z,(z)}.cc, we must check that the sequence
of stochastic processes {E,(2)}.ec is tight. Namely, recall that we must verify
condition (43) in Theorem 5.3. To check this condition, it will be helpful to recenter
E,.(%). Define the modified sequence

[I]l

z": Er — Ex—1)[(t7(Gn(2)) — tr(GF (2))) La, e, ] (97)

k

[

which differs from =, (z) by the fact that we have subtracted the trace of Qﬁk)(z)
and multiplied by 1, ,. We wish to proceed from here working with Z,(z) instead
of Z,,(z). We will be justified in doing so after proving the following lemma.

Lemma 7.1. Let 2,(z) be as defined in (36) and Z,(z) as in (97). Then under
the assumptions of Theorem 4.13,
2

[1]x

n(2) — én(w)

Z—w

Z—Ww

for some constant ¢ > 0 independent of n and of any choice of z,w on the contour

C.
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Proof. We can see that

En(2) — En(w) |?

§
z—w
. . 2 . . 2
<FE En(2) —En(w)  En(z) — En(w) L E Ea(2) — E,(w)
Z—w zZ—w Z—w
Now note that by the resolvent identity (12),
En(2) = By — E-1)[tr(Gn(2) (w — 2)Gn(w))10,]
k=1

and

=D (B = Ep)[tr(Gn(2) (w — 2)Gn(w)) 10, e,

(G (2)(w — 2)G (w)) 1,00, ..

Therefore, by cyclic permutation of the trace and since the covariance terms in a
martingale difference sequence are zero, we have

Z0(2) ~ Zaw)  Za(z) — Za(w)|

Z—w zZ—w

Y (B = Bem)[tr(Gn(w)Gn(2)) (Lo, — 1a,n0,.,)]

k=1
(B~ B[00 ()6 () 10,00, |

)

for any a > 0 since (Ex — Ek_l)[tr(gék)(z)gff) (w))1q, ,] = 0. Note that any
choice of a > 3 suffices to show this term is bounded by a constant, concluding the

O

2

= (IE [66(Gn ()G (2) 10, 10z,
k=1

E| (B — Bx1)[tr(G ()G ()1, ]

«

Lo n3

proof.
The tightness of {E,,(2)}.cc will follow from the following lemma.

Lemma 7.2. Let {Z,(z)} be the sequence of stochastic processes defined in (97).

It holds that
2

<c

Zn(2) — Ep(w)

zZ—w

E

for a constant ¢ > 0 independent of n and of any choice of z,w on the contour C.
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Proof. The idea behind this proof is similar to what was done in the proof of
Lemma 6.12 where we remove columns to achieve independence. First, observe
that by definition of =Z,,(z), linearity of trace, and the resolvent identity (12),

En(2) — Ep(w)

= (B = B )[t6(Gn(2) = Gn(w) = (G (2) = 68 ()10, r0,]
kzzl z—Ww
= = > (Br = Br 1) [(Gn(2)dn(w) = G ()0 ()10, 00, (98)
k=1

Now note that
(Gn(2) = G (2))(Gn(w) — G (w))
= Gn(2)Gn(w) = Gn(2)GP (w) = G (2)Gn (w) + G (2)GF) (w)
which implies
Gn(2)Gn(w) + G (2)G5 (w)
= (Gn(2) =GP (2))(Gn(w) = G (w)) + G ()G (w) + G (2)Gn (w).

By subtracting 2g\" (z)gn’“ (w) from each side of the previous equality, regrouping,
and applying the resolvent identity (12), we have

Gn(2)Gn(w) — G (2)GF) (w)

= (Gn(2)(URVI" G (2))(Gn (w) (U VT G (w))
+(Gn(2)(UVDGH (2))G( (w)
+ G (2) (G (w) (U VTG (w))

where we recall that Uy is the mn X n matrix which contains as its columns

ChyCntks -+ s Cm—1)ntk and Vi is the mn x m matrix which contains as its columns
€ly Ently - - .,e(m_l)n+k By the Sherman—Morrison-Woodbury formula (11), we
know Gy, (2)Uy = G ( Wi (In+ VLG (2)U ) 0= G (2) Uk A (2) where A, i (2) ==

(Im—i—VkTg,(Lk)(z)Uk) provided Im+v,3“gn (2)Uy, is invertible. Recall, as was done
in Section 6, we can guarantee that this matrix is invertible by working on the event
Qn.k defined in (52). Since @, x holds with overwhelming probability by Lemma
6.5, the same argument as in Section 6 shows that we can work on this event with
error 0, (n~—%) for any o > 0, so we are justified doing so. Therefore we can continue
on the event €, N @y %, With

Gn(2)Gn(w) — G ()G (w)

= (GP (2 >UkA s(VEGP ()G (W)U A (w) VI G (w))
+ (G () URAn 1 (2) VG (2)) G (w)
+9<’“><z><g§f><w>UkA (W) G (w)).

Since ( —zl ) and ( R wr ) commute, we can interchange the order in which
we multiply gn (z) and gﬁﬁ’(w). By this observation and by cyclic permutation of
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the trace, we have
tr(Gn (2)Gn(w) — gr(zk)(z)gr(Lk) (w))
= tr (G () Uk (VT G (2)) (1) (w) U A (w) VT G ()
+ 11 (G0 () Uk ()G ()G (w))

+tr (G ()P () Uk b () VI GO (w)) )

Putting all of these observations together, we have shown that

() — S ()|

E zZ—w
< 3 BB~ B 1) r(Ga (06, (0) — G0 ()0 () 10,00, ]|
k=1
< [ (G0 VG 2)

k=1
x (G0 (w)UkAmk(w)VkTgr(f)(w))) 10, 11Qu s C o (99)
+ > Elir (00 ()0 Ak (IVT G ()G (1)) 10, 0@ * (100)
k=1
- 2
+Y E ’tr (grgc) (2)(G® (w)UkAn,k(w)Vkngk)(w))) Lo ron |+ 000)
- (101)

Note that since G,,(z) is no longer present in (99), (100), and (101), we are justified
dropping the event €, as well. The O(1) is due to the error from introducing
the event @, and dropping the event (2,. Next, we show that we can replace
A, k(2) and Ay, k(w) with I, in (99), (100), and (101). We begin by showing the
calculation for term (99). Observe that by cyclic permutation of the trace, on the
event Qy, N Qn k, We have

tr (G ()UK ()T G (2)) (G (w) U A (w) VT G ()
— tr (G0 () U G0 () (0P ()0 Vi gL (w)) )

= tr (A () = L) VTGP ()G (w)Uk Ay (w)ViT G ()G () )
+tr (VTG0 ()G () Uk (A (w) = Tn) VTGP ()G (2)U )

We use the generalized Holders inequality to break the above expression into pieces
which have bounded expectation. By bounding the trace by the rank times the
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norm, we have

tr ((g’r(Lk)(Z)Uk)An7k(Z)VkTgr(Lk)(Z))(gfzk)(w)UkAn7k(w)VkTg'r(Lk)(w))> 10, ,Quk

8)1/4

E

2
— 1 (P VTGP )GP @) UVEGP () 10, 100,04

1/2
< (E[|(Anr(2) = In) 1, wranall') (]E [VEGP ()90 ()i, .

(102)
16)\ 1/8 S . 16\ 1/8
% (B[ Ans@)iq, . |") (EHVk 6P (w)GP (:)Uila, , ) (103)
172

+ (e|wreriee wina,. ) (101
1/4 8\ 1/4

X (]E [|(Ane(w) = In)la, v ||8> <IE ”V,CTQ,(LIC) ()G (2)Uk1aq, , >
(105)

We bound each expectation in (102), (103), (104), and (105). We start by bounding
the expectation of terms in which two resolvents appear. By the same argument as
in Lemma 6.9, we can show that for p > 4

p
E HVkTgr(lk) (w)gT(Lk) (Z)Uklﬂn,k <p n—c(P—4)—2

which shows

1/8
16) / < p3/2e-1/4

N 1/2
) <n !

]\ 1/4
> <<n7571/2'

Since the second term in (105) differs from the last line above only by the order
in which we multiply resolvents, the same bound holds for the second term in
(105). Now we bound terms involving A, ;. Recall that A, ; is bounded by a
constant almost surely on ), » so we need only to bound the expectations involving
Ay, k(z) = I, in terms (102) and (105). Recall the expansion from (57) can be
iterated to get

A i(2) = I — (VG (2)Uk) + (VT G0 (2)Uk) A 1 (2).

Using this fact, Lemma 6.9, and the Cauchy—Schwarz inequality, we get

(Bl@nk(2) ~ F)ta, nen )

< (E

< 7’L72€71 + ?7,71

(B[ wiod i,

(Evro et wina,,

and

(E[vro o s, ,

1/2

4
+E||( 9P (2)U0)2 Ak, 000

VIGP (2)Urkla, g

4>1/2
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and

1/4
(Ell(Ans(w) - Ln)la, snq..°)

8
+E||( 0P (U002 B ()10, 00

8>1/4

Therefore, combining these bounds, we can bound (102), (103), (104) and (105) by
O(n~"/%). This concludes the argument to show that we may replace all A,, x(2)

and A, k(w) in term (99) with I,,,. A very similar argument shows that, for terms
(100) and (101),

< (E HVkTgv(zk)(Z)Uklnn,an,k

<« nel/2 4 p3e-1/2

E[ir (61 ()0 (VE G0 ()G () — tr (60 (U 6P ()60 () |

and
Etr (607(2)(G ()i (w)VE G () — tr (60 (2)(GH () UV G0 ) )|

are both O(n=2). Ergo, we need to show only that the expression

E |ix (69 (:)Ux VT 61 ()G (w) U VT 610 (w) )
+ir (G0 UVTGH ()60 @) + i (60 ()G (w)UVF 6 () |
<5l (e @) | (106)
+E i (V0P () (60 (2))° ) \2 (107)
[ (V60 ()60 )i )| (108)

is bounded by O(n~!), where we cyclically permuted the trace and reordered the
product of resolvents again. We will bound each term separately. First consider
term (106), and observe that

E|ir (V760 ()60 ()00)?) 1a,.,|

2
< E|| UG @) (6P (2) Vil 6P ()9P (w)Ui 1,

Since this matrix is m x m, if we can bound an arbitrary entry uniformly, then we
can bound the norm. We now wish to bound

2
max [ 0(7;71)n+k(gr(f) (w))* (g’r(Lk) (Z))*Vkangk) (z)gjﬁ) (w)eG—1ynrla, ,

1<i,j<m

Note that (gff) (w))*(gff)(z))*VkaTgék)(z) ﬁlk)(w) is independent of the kth col-
umn of each block, and hence is independent from c(;_1), 4k and c(j_1)pqx- It is
also rank at most m and it is Hermitian positive definite. Then by Lemma 6.6
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(when i = j) or Lemma 6.7 (when i # j), we have

2
E ‘C’(ki—l)n-i-k(gr(zk)(w))*(gr(zk)(Z))*VkaTgv(zk)(Z)gv(zk)(w)c(jfl)n+k19n,k

< n 7B [ir (G ()" (G0 () ViV 69 ()61 (w1,
<n”?

where we bounded an arbitrary element of VkTgflk) (=) ) (w)( ) (w))*( &) (2))* Vi
by a constant on the event 2, ;. This concludes the argument for term (106). Since
terms (107) and (108) are symmetric in z and w, the argument will be the same
for both terms. We show the argument for (107). Observe that

2
E

tr (VTG0 (w) (61 (2))2Uk) 10,

2
< max Elefi_p), G0 ()G () cinynsile, .

< max B e 1,x(05 ()2 (G () e 1y

<ol 1,0 ()G ()i pnside, .
<nh

This concludes the argument for (107) and the proof of Lemma 7.2. g

APPENDIX A. TRUNCATION ARGUMENTS

This section is devoted to the proof of Lemma 4.3.

Proof of Lemma 4.3. First, we prove property (i). Observe that
1 = Var(¢)
= E[€21{|§|Sn1/2—5}] + E[£21{‘§‘>n1/2—5}]

~ 2
= Var(f) —|— (E[§1{|§|§n1/2*5}}> + E[§21{|§|>n1/2*5}}'
Also observe that

O == E[E} == E[fl{‘§‘§n1/2—s}] + E[El{‘§‘>n1/2—s}]

which implies ‘E[gl{‘£‘§n1/2fs}” = {E[é‘l{‘g‘>nl/27a}” . Hence

nt 2

|]. - Var(§)| = (E[é‘l{‘&‘gnl/275}]) + E[EQI{‘gbnl/zfs}]
2

= [El1{jgjmrz-e)]|” + EIE 115 n1r2-c1]

|

S 2T jelsnta-ey

_ o(n_l_QE).

Next we move onto (). By construction, E[¢] = 0 and Var(§) = 1 provided n is
sufficiently large. By part (i),

1 < Var(¢)

T oplt2e



GAUSSIAN FLUCTUATIONS FOR LINEAR EIGENVALUE STATISTICS 55

for some constant C' > 0 so choosing Ny > (%)1/(14_26) ensures that § < Var(€),

N —1/2
which gives 2 > (Var(g)) for n > Ny. With such an n > Ny,

5‘ = §1qgj<nrz—cy — E [E1 (g <pn1/e-cy]

Var(€)
+2[E [l <pirz—<y ]|

< 2[€1 (¢ j<pra<y
S 4n1/2—6

almost surely. For part (iii), we have

4
T P e < B [521{|§|§n1/276}]
Var()
4
< 2°E |1 (jg1<nrrz-ey — E [E1fjg)cnirzoy ]|
< 2°E [¢[*
completing the proof of the claim. O

APPENDIX B. LARGEST AND SMALLEST SINGULAR VALUES

In this section, we consider events concerning the largest and smallest singular
values for the random matrices appearing in this paper. These results are included
as an appendix because the methods used to prove them are slight modifications
of those in [23, 48, 52]. In order to prove these results, we need to introduce
an intermediate truncation of the matrices. Specifically, let &;1,&s,...&, be real-
valued random variables each having mean zero, variance one, and finite 4 + 7
moment for some 7 > 0. Let X, 1X,, 2,... X, be independent iid n x n random
matrices with atom random variables &1, &o, . .. &, respectively. For a fixed ¢ > 0,
and for each 1 < k < m, define truncated random variables (at n'/27¢) &, and
& as in (19). Also define truncated matrices X, and X, 5 as in (21) and (22)
respectively. Define the linearized truncated matrix ), as in (31). Also recall that
P, = n_m/2Xn,1Xn,2 s Xn,m and pn = n_m/ZXlemg v Xnm’b-

Let X be an n x n random matrix filled with iid copies of a random variable &
which has mean zero, unit variance, and finite 4 + 7 moment. For a fixed constant
L > 0, define matrices X and X to be the n X n matrices with entries defined by

Xig) = Xaplyx,,<o/vay — B {X“J)l{lxu,mﬁ/ﬂ}] (109)
and

Xij) = —F/—— (110)
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for 1 < 4,5 < n. Define )G(ml,)o(n,z,...)c(n’m and )v(ml,)v(n,g,...)v(mm as in (109)
and (110) respectively. Finally, define the linearized truncated matrix

0 X, 0 - 0
0 0 Xno ... 0
Y, =n"1/2 : : : : . (111)
0 0 0 - Xpmo1
Xpm O 0o ... 0

Lemma B.1. Fiz e > 0. For a fized integer m > 0, let £&1,&3, ... &y be real-valued
random variables each mean zero, variance one, and finite 4 + 1 moment for some
7 > 0. Let Xn 1,Xn2, ... Xnm be independent iid random matrices with atom
variables as defined in (22), and define Yy, as in (31). For every § > 0, there exists
a constant ¢ > 0 depending only on & such that

inf sy (Vo —2I) > ¢
|z|>146/2

with overwhelming probability.

Proof. Fix § > 0 and define Y, as in (111). By [23, Lemma 8.1], which is based on
techniques in [48, 49], we know that there exists a constant ¢/ > 0 which depends
only on ¢ such that inf|.|~145/2 Smn ()7” —zI ) > ¢’ with overwhelming probability.
Note that by Weyl’s inequality (13),

sup |smn (j)n - ZI) — Smn (yn - ZI)| § Hj)n - yn” < max —= Xn,kH .
z€eC
(112)
Focusing on an arbitrary value of k, we have
1 X
ﬁ Xn,k_ nkH < — ok
\/Var nk)(ig)) \/Var )
for any 1 <, < n. Observe that
1 X i A I s ( Var((X. ’“)(W)))

_— — Xnkl| = —
VI Var (X)) Vi Var(Xok)(.)

. ~1/2
By [23, Lemma 7.1], (Var((Xn,k)(iyj)D < 2 for L sufficiently large. Addition-

ally, an argument similar to that of [23, Lemma 7.1] shows that

Var((f(n,k)(i,j))‘ < % for any 1 < 4,5 < n and some constant C' > 0.
Therefore by [62, Theorem 1.4], for L sufficiently large,

1 Xk % l<-C Xk _

C
PR = >~ p) 1a
\/ﬁ Var((ka)(i’j)) L \/ﬁ Var(( n k)(z,j)) 16
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with overwhelming probability. Similarly,

s R (1= V)

k %
Xn k

% Var((j(n,k)(i,j)) - ol ﬁ Var(( nk)( ))

/2
By the arguments to prove part (ii) of Lemma 4.3, (Var(( nk‘)(m))) <

2 for n sufficiently large. Also, by part (i) of Lemma 4.3, we can show that
’ Var((Xn.1)(ij))| = o(n~1+%). Therefore by [13, Theorem 5.9],

! Xnk — Xl = o(n717%) !

Vol e Gomen) 1l vl

with overwhelming probability. Ergo, by the triangle inequality, for L sufficiently
large,

| <
Il =16

X’ﬂ ~n
Xn,k n kH > k =
\/Var n, k (4, ]) \/Var X (%J))

c’ -
C Hxnk b (113)

1
NG

with overwhelming probability.

Now, recall that the entries of Xn . are truncated at level L for a fixed L > 0 so
for sufficiently large n, L < nl/ 2—¢_ Note that if all entries are less than L in absolute
value, then the entries in Xn » and X, agree. Similarly, if all entries are greater
than nl/ 2=¢ then the entries in Xn,k and X,, agree. Ergo, we need only consider the
case when there exists some entries 1 < i,j < n such that L < [(X,, )i | < n'/27%.
For each 1 < k < m, define the random variables

ék = fkl{Lglgklgan—s} —E [gkl{Lg\fk\§n1/2_5}]
and define Xn,k to be the matrix with entries
(Xn k) = (Xn k) (1) L2 X )1, | <0t /2- 1B {(Xn’k)a,j)1{L§|<Xn,k><i,j>\SnI/H} :

for 1 < i,j < n. Note that the definitions of £ and Xnk differs from the definitions
in Section 4. We will use the definition given in this appendix for the remainder of
this proof. We can write

1 H 0
Vn f
By [13, Lemma 5.9], for L sufficiently large

€ HX H << (114)
\/’ﬁ n,k|| = S

with overwhelming probability. Thus, by choosing L large enough to satisfy both
conditions, by (113) and (114),

N c
Xl < 3
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with overwhelming probability. By recalling (112), this implies that, for L suffi-
ciently large,
inf n - 1 Z
BISsra Vo —zl) ze

with overwhelming probability where ¢ = % O

Lemma B.2. Fix ¢ > 0. For a fized integer m > 0, let &1,&s,...&y be real-
valued random variables each mean zero, variance one, and finite 4 + 7 moment
for some T > 0. Let Xy, 1,Xpn2,...,Xnm be independent itd random matrices with
atom variables &1,&s, ..., &n respectively. Define Xn,l,f(n,g, . Xnm as in (22),
and define P, as in (24). For any 6 > 0, there exists a constant ¢ > 0 depending
only on § such that

inf S (PH — ZI) >c
|z|>1+48/2

with overwhelming probability.

Proof. Fix § > 0. By Lemma B.1, we know that there exists some ¢’ > 0 such that
inf|.|>146/2 Smn (Vn — 21) > ¢’ with overwhelming probability as well. Recall that
S (Y — 2I) = 1 ((yn — 21)71> provided z is not an eigenvalue of ),. A block
inverse matrix calculation reveals that
(L1 . -1
((yn —20) ) = m-l (Pn - sz)
where the notation A1l denotes the upper left n x n block of A. Therefore,

S R e [y

|z|>146/2 |z|>146/2

1
J
This implies that there exists a constant ¢ > 0 such that
1 . -1
- > sup S1 <(Pn —ZI) )
Cz|>1446/2

with overwhelming probability. This gives inf|,|~145/2 Sn (an — 2zl ) > ¢ with over-
whelming probability. 0

Lemma B.3. For a fized integer m > 0, let £1,&a,...&,, be real-valued random
variables each satisfying Assumption 2.1. Fiz 0 > 0 and let Xy 1, Xn2,... Xnm
be independent iid random matrices with atom variables &1,&o, ... &y respectively.
Then there exists a constant ¢ > 0 depending only on & such that

inf s, (Pu/o—2I) >
\z\iﬁa/zs( Jo—zl)zc

with probability 1 — o(1) where 0 =01+« O,

Proof. By a simple rescaling, it is sufficient to assume that the variance of each
random variable is 1 so that ¢ = 1. Let § > 0 and recall by Lemma B.2 there

exists a ¢’ > 0 depending only on 0 such that inf ;5 145/2 50 (Pn - ZI) > ¢ with
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overwhelming probability. Then by Lemma 4.10,

/
IP’( inf s, (Py— 2I) < C)

|2]>1468/2 2

/
:11»< inf s, (Pp—2I) < = and ’Pn—Pn §n5>
|z|>146/2 2
/
JHP’( inf sn(PnfzI)<c— and ‘Pn—Pn >n5)
|2|>1+68/2 2
/
gIP’< inf s, (Pp—2I) < S and ’Pann §n5>
|2]>146/2 2
+P ([P - 2| > n7)
/
<P ( inf s, (P,—2I) <= and ’ P, - P, < n_€> +o(1).
|2[>1+6/2

Suppose that there exists a zg € C with |z| > 14 6/2 such that s, (P, — 20]) < %
P,—P,||<nc< %/ Then, by Weyl’s inequality (13),

and ‘

Sn(Py — 20l) — sp (P, — zOI)‘ < % which implies s, (P, — 20I) < ¢/. Thus, for n

’

sufficiently large to ensure that n=° < %, by Lemma 4.10

/

IE”( inf sn(Pn—zI)<c> SIP’( inf s, (Pn—zl)<c')+o(1).
|z|>146/2 2 |z|>146/2

Thus, selecting ¢ = %/, we have inf|,|5146/2 80 (Pn — 21) > ¢ with probability 1 —

o(1). O

Lemma B.4. Let A be an n X n matriz. Let R be a subset of the integer set
{1,2,...n}. Let A denote the matriz A, but with the rth column replaced with
zero for each r € R. Then

Sn (A(R) - zI) > min{s, (A4 — zI),|z|}.

Proof. Let A(®) denote the matrix A with column 7 removed for all ~ € R. Note
that A7) is an n x (n — |R|) matrix, which is distinct from the n x n matrix
AR Also, let I(H) denote the n x n identity matrix with column r removed
for all » € R. In order to bound the least singular value of (A — 2I), we
will consider the eigenvalues of (4 — zI)" (4 — zI), (A® — zI)* (A® — 27), and
(AUR) — Z[((R)))* (A@) — (R

Now, observe that (A((f) — ZI((R)))* (AR — 2 [(B)) s an (n—|R|) x (n—|R))
matrix, and is a principle sub-matrix of the Hermitian matrix (A — 2I)*(A — 21).
Therefore, the eigenvalues of (A((R)) — zI((R)))* (A((R)) — ZI((R))) must interlace
with the eigenvalues of (A — 2I)* (A — zI) by Cauchy’s interlacing theorem [38,
Theorem 1]. This implies

2
Sn (A<<R>> - z1<<R>>) > s, (A— 20)°.

Next, we compare the eigenvalues of (A(R) — ZI)* (A(R) — zI) to the eigenvalues
of (A((R)) — ZI((R)))* (A((R)) — zI((R))). Note that, after a possible permutation of
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columns to move all zero columns of AU to be in the last |R| columns, the product
(A(R) — ZI)* (A(R) — zI) becomes

(A — ()" (ACR) — 21D 0 Ty

0 In—R))x|R| |21 - I1rixmy
Due to the block structure of the matrix above, if w is an eigenvalue of
(A(R) — z[)* (A(R) — zI)7 then either w is an eigenvalue of
(A((R)) — ZI((R)))* (A((R)) — ZI((R))) or w is |z|?. Ergo,

Sn (A(R) - 21)2 = min {sn (A((R)) _ zI((R>>)2, |22}

> min {sn (A—zI)?, |z\2}
which implies s,, (A% — 2I) > min {s, (A — zI), ||} concluding the proof. O
This lemma gives way to the following two corollaries.

Corollary B.5. Fixz € > 0. For a fixed integer m > 0, let £1,&a,...&, be real-
valued random variables each mean zero, variance one, and finite 4 + 7 moment
for some T > 0. Let Xy, 1,Xpn2,...,Xnm be independent itd random matrices with
atom variables &1, &, . . ., &m Tespectively, and define Xn,l, Xn’g, ... Xn,m as in (22).
Define Yy, as in (31) and y,ﬁ’“) as Y, with the columns ck, Cn ik, Cantks - - > Cm—1)n+k
replaced with zeros. For any 6 > 0, there exists a constant ¢ > 0 depending only on
0 such that

inf  Spn (y,(f) — zI) >c
|z|>1446/2

with overwhelming probability.

Proof. Note that by Lemmas B.1 and B.4,

inf  Smn (yfjﬂ - ZI) > inf  min{sm, (Vo —2I), |2|}
|2|>145/2 |2|>146/2
> inf i m n I ’ 1
> M;{lﬂmem {8mn (Vn —2I), 1}
> min {c, 1}

with overwhelming probability for some constant ¢’ > 0 depending only on §. The
result follows by setting ¢ = min {¢/, 1}. O

Corollary B.6. Fix ¢ > 0. For a fixed integer m > 0, let &1,&2,...&y, be real-
valued random wvariables each mean zero, variance one, and finite 4 + T moment

for some T > 0. Let Xn’l, Xnyg, ...y Xn.m be independent iid random matrices with
atom wvariables as defined in (22). Define YV, as in (31) and )},(lk’s) as YV, with the
columns Ci, Cnyky Contks -+ > Ctm—1)n+k and cs replaced with zeros. For any 6 >0,

there exists a constant ¢ > 0 depending only on § such that

ojot S (y’(Lk’S) - ZI) =

with overwhelming probability.

The proof of Corollary B.6 follows in exactly the same way as the proof of
Corollary B.5.
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APPENDIX C. USEFUL LEMMAS

Lemma C.1 (Lemma 2.7 from [12]). For X = (x1,z2,...,zn)7 iid standardized
complex entries, B an N x N complex matriz, we have, for any p > 2,

p/2
E|X*BX — tr(B)]” < K, ((IE \m1\4trB*B) +E|x1|2ptr(B*B>P/2)

where the constant K, > 0 depends only on p.

Lemma C.2. Let A be an N x N complez-valued matriz. Suppose that £ is a
complex-valued random variable with mean zero and unit variance. Let S C [N],
and let w = (w;)N. be a vector with the following properties:

(i) {w; :i € S} is a collection of iid copies of €,

(i) w; =0 fori & S.
Additionally, Asxs denote the |S| x |S| matriz which has entries A jy fori,j € S.
Then for any even p > 2,

E|w* Aw — tr(Agys)|P <, E €)% (tr(A* A))/2.

Proof. Let wg denote the |S|-vector which contains entries w; for ¢ € S and observe
wAw =) Wi jw; = wiAsxsws.
4,3
Therefore, by Lemma C.1, for any even p > 2,
E |w*Aw — tI‘(ASXs)|p =K |w§ASX5wS — tI‘(ASXs)‘p
4 x r/2 2p « )2
<y (EIEl' tr(A5usAsxs)) +EJE7 tr(Afy s Asxs)

<p B¢ (tr(Afy s Asxs)) .

Now observe that

N
tr(Ag.sAsxs) = Y A7 A < Y A7 A =tr(ATA).

ijes ij=1
Therefore
E[w* Aw — tr(Agxs)[” <p B[ (tr(AfxsAsxs))” < EJE[* (tr(A"A)"
]
Lemma C.3 (Lemma A.1 from [12]). For X = (z1,72,...,on)7 iid standardized

complex entries, B an N x N complex-valued Hermitian nonnegative definite matriz,
we have, for any p > 1,

E|X*BX|" < K, ((trB)" + E|z1|*"trB?) .
where K, > 0 depends only on p.
Lemma C.4. Let A be an N x N Hermitian positive semidefinite matriz. Suppose

that & is a complez-valued random variable with mean zero and unit variance. Let
S C [N}, and let w = (w;)N_; be a vector with the following properties:

(i) {w; :i € S} is a collection of iid copies of €,
(i) w; =0 fori & S.
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Then for any p > 2,
E |w* Aw|? <, E[¢]?P (tr A)P. (115)

Proof. Let wg denote the |S|-vector which contains entries w; for i € S, and let
Agxs denote the |S| x |S| matrix which has entries A, ;) for i,j € S. Then we
have

w'Aw =) WA w; = wiAsxsws.
4,J
By Lemma C.3, we get
E |w*Aw\p <p (tr ASXS)p + ]E|£|2p tr AZXS'

Since A is non-negative definite, the diagonal elements are non-negative so that
tr(A%, o) < (tr(Aaxa))?. By this and the fact that for a Hermitian positive semi-
definite matrix, the partial trace is less than or equal to the full trace, we observe
that

(tr Agys)” + EJE[2P tr A%, ¢ <, EIE2P (tr Agys)? <, EIE[2P (tr A)P .

Lemma C.5. Let A and B be n x n matrices. Then

|tr(AB)| < Vn [[ABly < Vn[|A]l - |B], -

Proof. This follows by an application of the Cauchy—Schwarz inequality and an
application of [13, Theorem A.10]. O
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