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1. Introduction

Globally p-admissible weights for Sobolev spaces and differential equations on R"
were introduced in Heinonen—Kilpeldinen-Martio [16]. Four conditions were im-
posed on such weights, which were later reduced to the following two conditions
(the remaining two being redundant), see [16, 2nd ed., Section 20]. Even earlier,
such weights were used to study regularity of linear degenerate elliptic equations
(with p = 2) in Fabes—Jerison—Kenig [12] and Fabes-Kenig—Serapioni [13].

Definition 1.1. A measure p on R" is globally p-admissible, 1 < p < oo, if it is
globally doubling and supports a global p-Poincaré inequality. If dy = w dx we also
say that the weight w is globally p-admissible.

Muckenhoupt A, weights are globally p-admissible (see [16, Theorem 15.21] and
[6, Theorem 4]), but the converse is not true in R™, n > 2. On the other hand,
on R even globally p-admissible measures are given by global A, weights, as was
shown in Bjorn—-Buckley—Keith [7, Theorem 2].
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In many situations it is local, rather than global, properties that are relevant,
especially when dealing with local properties such as regularity of solutions to differ-
ential equations. In [8], Chua and Wheeden extensively studied which weights sup-
port various types of Poincaré inequalities on intervals, and also obtained optimal
constants using variants of the Muckenhaupt condition. However, the conditions
given in [8] allow the weights to vanish to high orders at the end points of the inter-
val. Hence, such p-admissible weights on a bounded interval are not necessarily A,
weights on that interval, only on its subintervals that stay away from its boundary,
see [8, point 5 of p. 152], Example 4.7 and also Theorem 4.6.

The principal aim of this paper is to obtain the following characterization of
locally p-admissible measures on R, see Section 3 for the relevant definitions. There
are several different possibilities for formulating local doubling conditions and local
Poincaré inequalities. The conditions we impose on the measure do not require
any uniformity in the constants nor in the radii involved, and are thus truly local.
However, uniformity is natural in many situations, and then we are able to conclude
slightly more, see Section 7.

Theorem 1.2. Let p > 1 and let p be a measure on R. Then the following are
equivalent:
(i) p is locally p-admissible;
(i) dp = wdx, where w is a local A, weight;
(iii) du = wdx, and for each bounded interval I C R there is a global A, weight
w on R such that w =w on I.

As a consequence of these characterizations we obtain the lattice property for
locally p-admissible weights on R, as well as the preservation of local p-admissibility
when taking finite sums of measures, see Section 5. This complements some results
in Kilpeldinen—Koskela-Masaoka [21], where such questions were studied for global
A, weights and globally p-admissible measures on R". As a byproduct, we provide
an elementary proof of [21, Proposition 4.3], see Lemma 5.3.

This note is a continuation of the systematic development of local and semilocal
doubling measures and Poincaré inequalities on metric spaces from Bjorn-Bjorn [3]
and [4]. Local assumptions are also natural for studying p-harmonic and quasihar-
monic functions, as in [3], [4], Danielli-Garofalo-Marola [9], Garofalo-Marola [14]
and Holopainen—Shanmugalingam [19]. Theorem 1.2 also plays a role in Liouville
type theorems on the real line, see Bjorn—Bjorn—Shanmugalingam [5].

The proof of Theorem 1.2 turned out to be more complicated than we had ex-
pected, and considerably more involved than the proof of the corresponding global
result in Bjorn—Buckley—Keith [7, Theorem 2]. In addition to careful estimates,
we also use the metric space theory. More specifically, to show that a locally p-
admissible measure p is absolutely continuous, we create a suitable p-admissible
measure on the circle S', and then use a flattening argument due to Durand-
Cartagena-Li [11] to obtain a globally g-admissible measure i on R for some g.
We then have at our disposal the global result in [7, Theorem 2] which yields that [
is absolutely continuous and that the corresponding weight @ (given by dji = @ dx)
is an A, weight. The number ¢ obtained from [11] can be larger than p (and de-
pends on p as well as on the interval used in constructing fi). However, the only
consequence we need from this step is that ji is absolutely continuous and hence so
is p. Once the absolute continuity of y is in place we instead use a direct argument
to deduce the local A, condition. To complete the proof we also need the fact from
Bjorn—-Bjorn [3] that locally p-admissible measures are semilocally p-admissible.

Having characterized the locally p-admissible measures p on R, it is also in-
teresting to know how the minimal p-weak upper gradients behave for functions
in the Newtonian Sobolev space N'P(R, ). If u is locally absolutely continuous
on some interval, then the fundamental theorem of calculus shows that |u/| is an
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upper gradient for w, and thus g,, < |«/| a.e. For Lipschitz functions u and arbitrary
measures on R, the minimal p-weak upper gradient g, has been fully described in
Di Marino—Speight [10, Theorem 2]. The following result addresses this question
for general Newtonian functions and weights on R.

Proposition 1.3. Let pu be a measure on R and 1 < p < co. Assume that dp = w dx
and w,w'/=P) ¢ LL (I) for some (not necessarily open) interval I C R. Then

every u € Nl{)’f(l,u) is locally absolutely continuous on I and g, = |v/| a.e.

In particular, the proposition applies if w is locally p-admissible on R (and
thus a local A, weight, by Theorem 1.2) with p > 1. Note that NEP(I ) is

loc

a refinement of the standard Sobolev space VVlicp (I,w) considered in Heinonen—

Kilpeldinen—Martio [16], see the discussion at the end of Section 2.
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2. Metric spaces

We are primarily interested in measures and weights on R, but we will also need
to use tools from first-order analysis on metric spaces. In this section we discuss
the definitions used in metric spaces. For proofs of the facts stated in this section
we refer the reader to Bjorn-Bjorn [2] and Heinonen—Koskela—Shanmugalingam—
Tyson [18].

We assume throughout the paper that 1 < p < co and that X = (X,d,u) is
a metric space equipped with a metric d and a positive complete Borel measure pu
such that 0 < u(B) < oo for all balls B C X. We assume throughout the paper
that balls are open. We let B = B(x,r) = {y € X : d(x,y) < r} denote the ball
with centre z and radius » > 0, and let AB = B(z, Ar). In metric spaces it can
happen that balls with different centres and/or radii denote the same set; we will
however adopt the convention that a ball B comes with a predetermined centre zp
and radius rg.

We primarily deal with X being the real line R, and in this case balls and
bounded open intervals are the same objects. We will use both nomenclatures and
notations.

We follow Heinonen and Koskela [17] in introducing upper gradients as follows
(in [17] they are referred to as very weak gradients). A curve is a continuous
mapping from an interval. We will only consider curves which are nonconstant,
compact and rectifiable, i.e. of finite length. A curve can thus be parameterized by
its arc length ds.

Definition 2.1. A nonnegative Borel function g on X is an upper gradient of an
extended real-valued function u on X if for all curves v : [0,1,] — X,

u(7(0)) — uly (1)) < / gds, (2.1)

Y

where we follow the convention that the left-hand side is considered to be co when-
ever at least one of the terms therein is +oo. If g is a nonnegative measurable
function on X and if (2.1) holds for p-almost every curve (see below), then g is a
p-weak upper gradient of u.
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We say that a property holds for p-almost every curve if it fails only for a curve
family I" with zero p-modulus, i.e. there is a Borel function 0 < p € LP(X) such that
fﬂ/ pds = oo for every curve v € I'. The p-weak upper gradients were introduced in
Koskela-MacManus [23]. It was also shown therein that if g € L{ (X) is a p-weak
upper gradient of w, then one can find a sequence {g; }‘;‘;1 of upper gradients of u
such that ||g; — gllz»(x) — 0.

If u has an upper gradient in Li (X), then it has a minimal p-weak upper
gradient g, € LY (X) in the sense that for every p-weak upper gradient g € L], .(X)
of u we have g, < g a.e., see Shanmugalingam [26]. The minimal p-weak upper
gradient is well defined up to a set of measure zero.

Following Shanmugalingam [25], the Newtonian space N'P(X) = NYP(X, )
is the collection of all measurable functions v : X — [—o00, 00], having an upper
gradient in LP(X), such that

1/p
follveoo = ([l dns [ pan) <o
X X

The space N7 (X)/~, where u ~ v if and only if [|u—v| x1.»(x) = 0, is a Banach
space and a lattice, see [25]. Contrary to the usual a.e.-defined Sobolev functions,
the functions in N'?(X) are defined everywhere (with values in [—o0,c]), and
u ~ v if and only if u = v outside a set of p-capacity zero, which is important in
Proposition 1.3.

In this paper, the letter C' will denote various positive constants whose values
may vary even within a line.

3. Doubling and Poincaré inequalities

We will discuss several notions of locally p-admissible measures on the real line, re-
lations between them, and connections to local and global Muckenhoupt A, weights.
We give the following definitions. Let By = B(xq, 7).
The measure p is doubling within By if there is C > 0 (depending on xg and rp)
such that
1(2B) < Cu(B) (3.1)

for all balls B C By.

The p-Poincaré inequality holds within By if there are constants C' > 0 and
A > 1 (depending on xg and rg) such that for all balls B C By, all integrable
functions w on AB, and all upper gradients g of u (or equivalently all p-weak upper

gradients g of u),
1/p
][ |u—uB|du<CrB<][ gpdu> , (3.2)
B AB

where up = fyudp = [yudp/pn(B). We also say that the Lipschitz p-Poincaré
inequality holds within By if (3.2) holds for all Lipschitz functions v on AB with

g(z) = Lipu(x) = lirynj;lp W

The measure pu is (Lipschitz) p-admissible within By if it is doubling and sup-
ports a (Lipschitz) p-Poincaré inequality within By. Moreover, w is an A, weight
within By if

1-p
(][ wt/ (=P dm) , 1< p<oo,
][ wdx < C B (3.3)
B

essBinfw, p=1,
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for all balls B C By.

Note that whether a property holds within a ball or not depends also on the
ambient space X, since 2B\ By or AB\ By may be nonempty. Unless said otherwise,
the ambient space will be assumed to be R in this paper.

Furthermore, a property such as these above is local if for every x € X there are
R,,C, > 0 and A, > 1 such that it holds within the ball B(z, R,) with constants
C, and A;. If it holds within every ball By C X, with C and A depending on By,
it is semilocal. If, moreover, the constants C' and A are independent of By then the
property is global. If dy = wdz, we will sometimes say that w has a property if u
has it.

As Lipu is an upper gradient of u, the Lipschitz p-Poincaré inequality triv-
ially follows from the standard p-Poincaré inequality (3.2) within any ball. If p is
globally doubling on a complete metric space, then p supports a global Lipschitz
p-Poincaré inequality if and only if it supports the global standard p-Poincaré in-
equality (3.2), by Keith [20, Theorem 2] (or [18, Theorem 8.4.2]). As we shall see,
the corresponding equivalence is true also in the local (and semilocal) case on R.

The p-Poincaré inequality (20.3) in Heinonen—Kilpeldinen—-Martio [16, 2nd ed.]
is weaker than the standard p-Poincaré inequality (3.2) but stronger than the Lips-
chitz p-Poincaré inequality defined above. On R, in view of [20, Theorem 2] (or [18,
Theorem 8.4.2]) and Theorem 4.1 below, the p-Poincaré inequality (20.3) in [16, 2nd
ed.] is equivalent to both p-Poincaré inequalities considered in this paper, provided
that p is locally doubling.

It was shown in Hajlasz—Koskela [15] that in geodesic spaces with a doubling
measure supporting a p-Poincaré inequality, the dilation constant A in (3.2) can
be taken to be 1. This is true also under the local assumptions on the doubling
and Poincaré inequality considered here, and without assuming completeness, both
for the standard and the Lipschitz p-Poincaré inequality, cf. Bjorn—-Bjorn [3, Theo-
rem 5.1]. In the rest of this paper, we will mainly be concerned with the real line R,
and in this case this can be deduced much more simply and generally. In particular,
the doubling assumption is not required.

Proposition 3.1. Let i be a measure on R. Assume that I C R is a bounded open
interval such that the p-Poincaré inequality (3.2) holds for B = I with dilation
constant X > 1 and constant Cpy. Then (3.2) also holds for B = I with dilation
constant 1 and the same constant Cpy.

The proof can be easily modified for Lipschitz Poincaré inequalities, and also for
so-called (g, p)-Poincaré inequalities. We assume implicitly, as always in this paper,
that balls have finite and positive measure.

Proof. We may assume that I = (—1,1). Let u be a bounded integrable function
on I and g be an upper gradient of v on I. For 0 < e < 1, we let

if <1- if <1-
ey = {1 el <i-e o fo, il s1-e
u(£(l—¢)), if tx>1-—c¢, 0, if |z >1—e.

It is easy to see that g. is an upper gradient of u.. By dominated convergence, as
u is bounded,

1/p
][|u —uy|dp = lim ][ lue — (ue)r| dp < lim Cpy <][ gfdu)
I e=0 /1 e—0 A

1/p 1/p
< lim Cpy (][ gt dﬂ) < Cpr <][ g’ dM) .
e—0 I I

By [2, Proposition 4.13], the p-Poincaré inequality holds also for unbounded inte-
grable w. O
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4. Proof of Theorem 1.2

The aim of this section is to show the following characterization of (semi)locally
p-admissible measures by means of A, weights. The corresponding global charac-
terization was given in Bjérn—Buckley—Keith [7, Theorem 2].

Theorem 4.1. Let p be a measure on R. Then the following are equivalent:
(a) w is locally Lipschitz p-admissible;
(b) w is locally p-admissible;
(¢) p is semilocally p-admissible;
(d) du =wdx, where w is a local A, weight;
(e) dp =wdz, where w is a semilocal A, weight;
(f) dp = wdz, and for each bounded interval I C R there is a global A, weight
w on R such that w =w on I.

Our first goal is to justify the implications (e) = (f) and (d) = (b). This will
be implied by the following lemma and its corollary.

Lemma 4.2. Assume that w satisfies the A, condition (3.3) within the interval
Ip = (0, M). Then the periodically reflected weight

. Jw(EM —=x), x€[(2k—1)M,2kM],
@) =\ e — 2kM), € [2RM. (2 + 1)M]. ’

is a global A, weight on R.

For weights on R", similar reflection results were obtained in Bjorn [1, Proposi-
tion 10.5] and Rychkov [24, Lemma 1.1], but since the proof on R becomes especially
simple, we provide it here for the reader’s convenience.

Proof. Let I C R be a bounded open interval. If |I| < M then I intersects at most

two copies I, := (KM, (k + 1)M) and Ij4q of Iy. We can assume that k£ = 0 and
that [I N Io| > |I N I;|. Using the A, condition (3.3) for w on B = I N Iy, we see

that for p > 1,
p p
/@dw (/ @'/ (1=p) da:) < 2/ wdaz(2/ wl/(1=p) dm)
I I INIo INIo
< 2PC|INIL|P < 2PCIIIP.

On the other hand, if |I| > M, then by translating I, we can assume that I C

(0,nM) with nM < 3|I|. Then
p p
/@dw(/@l/(l_p) dm) < n/ wdx(n/ wt/A-p) dw)
I I I Io
<nPC|L|P < C|IP.

After division by |I|P, we obtain (3.3) for @ on both types of I.
For p = 1, the proof is similar using that essinf; w = essinf;nz, w. O

-1 -1

-1 —1

Corollary 4.3. If duy = wdx satisfies the A, condition (3.3) within a bounded open
interval Iy then p is p-admissible within %Io.

For the converse implication see Theorem 4.6. In view of Proposition 3.1, we
assume that the dilation constant A = 1 from now on.
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Proof. The extension @ of w, provided by Lemma 4.2, is a global A, weight and thus
globally p-admissible on R, by Theorem 15.21 in Heinonen—Kilpeldinen—-Martio [16]
(for p > 1) and Theorem 4 in Bjérn [6] (for p > 1). It then follows that for every
interval I C %Io, we have 21 C Iy and thus

w(2I) = p(2I) < Ca(I) = Cu(l),

by the doubling condition for dji = @wdx within Iy. Moreover, the p-Poincaré
inequality (3.2) holds for @ (and thus for w) on I. O

Most of the rest of this section is devoted to showing that (a) = (d), and
simultaneously that (¢) = (e), in Theorem 4.1.

Globally p-admissible measures on R are known to be global A4, weights and, in
particular, absolutely continuous with respect to the Lebesgue measure, cf. Bjorn—
Buckley—Keith [7]. Next, we obtain a similar characterization for locally Lipschitz
p-admissible measures. This will be done using reflections and a flattening argument
from Durand-Cartagena-Li [11]. Verifying p-admissibility for reflected measures
turns out to be more involved than for the A, condition in Lemma 4.2.

Lemma 4.4. Assume that p is Lipschitz p-admissible within the interval (—M,2M) C
R and define the measure i on [—M, M| by

A(A) = u(AN[0,M]) + u(—AN[0,M]), where —A={zeR:—z€ A}

Let the metric space (X,d, i) be obtained by identifying the endpoints =M of the
interval [—M, M| with each other and inheriting the length metric from the circle
of radius M /m. Then [i is doubling and supports a p-Poincaré inequality on X .

Because of the local doubling property, p and thus ji is nonatomic. Note that
the doubling and Poincaré constants for i depend on those for p within (—M,2M).
Example 4.7 below shows that it is not enough to assume that p is p-admissible
within the interval (0, M), even though fi only depends on pp, .

Equivalently, (X, d, ft) can be obtained by letting

f(A) = u(AN [0, M]) 4+ p((M — A) N0 [0, M]),

where A C [0,2M] and M — A={z € R: M —z € A}, and identifying the points
0 and 2M. Thus, the reflection points 0 and M play symmetric roles.

Proof. We begin by proving the doubling condition (3.1) and the p-Poincaré in-
equality (3.2) for frand I = (z —r,2+7), where z € [-1M, 1 M] and 0 <r < 1 M.
Intervals centred at x € X'\ [—%M, %M], and of length at most %M7 can be treated
similarly by reflecting at M. Since X is compact, the global doubling and p-Poincaré
inequality then follow for all I C X, by Proposition 1.2 and Theorem 1.3 in Bjorn—
Bjorn [3].

By symmetry, we can assume that 0 < z < 2r. (If 2r < z < %M then 21 C
[0, M] and the doubling property for i and I is immediate.) From the doubling
property of p within (=M, 2M) it follows that the measures u((0,a)) and p((—a,0))
are comparable for every 0 < a < M. Namely, with Cy; being the doubling constant
within (—M,2M),

(0.0)) < n{(—a.)) < Can{ (e, 30)) < Can((~30, 1)) < Chn((~a.0),
and similarly p((—a,0)) < C%u((0,a)). Hence,

(21) < 20((0, 2 + 2r)) < 20(21) < 2Cqu(I) < ACTU(I N[0, M) < 4C3 (1)
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and thus [ is doubling on X.

We shall now prove the p-Poincaré inequality for fi. As above, and by symmetry,
welet I = (x—rax+7r) with0 <z < %M and r < %M. Since X is complete, it
suffices to verify the Lipschitz p-Poincaré inequality on I, cf. Keith [20, Theorem 2]
(or [18, Theorem 8.4.2]).

If r <z, then I C [0, M] and the Lipschitz p-Poincaré inequality for ji follows
directly from the one for pu. Assume therefore that 0 < z < r < %M. Let u be a
Lipschitz function on I. We can also assume that «(0) = 0 and thus @ := ux(,z+r)
is also Lipschitz on I. Let I' = (—r,x + r). Since p((—r,0)), u(I') and p(I) are
all comparable, because of the doubling property of u, the proof of Lemma 2.1 in
Kinnunen-Shanmugalingam [22] shows that

1/p 1/p
Fralan<c f jilan< e ( # wip ﬁ)”u) < ( i u)Pdﬂ) .
I I’ I’ I

The integral of @ := wx(;—r0) over I is estimated similarly using reflection, and

hence
1/p
Flu—u(0)]ds < C(][ aldi+ f ﬂldﬂ> <o (f(Lipu)Pdﬂ) .
I I I I

Finally, we note that §, |u —uz | di < 2 f; |[u —u(0)| dfi, see [2, Lemma 4.17]. [

Corollary 4.5. If p is Lipschitz p-admissible within an open interval Iy C R, then
it 15 absolutely continuous with respect to the Lebesgue measure on Ig.

Proof. Let x € Iy be arbitrary. By translation, we can assume that z = 0 and that
(=M,2M) C Iy for some M > 0. Lemma 4.4 then shows that the metric space
(X,d, i), obtained by reflecting p at 0 and identifying the points +M with each
other, supports a p-Poincaré inequality with i doubling. Now, flattening (X, d, 1)
as in Durand-Cartagena—Li [11], we obtain R with the measure

J__dily) ___dily)
ATyl D)~ 20000, [o]))

which, by [11, Theorem 4.1], is g-admissible for some sufficiently large q. Theorem 2
in Bjorn—Buckley—Keith [7] then implies that /i must be an A, weight on R and,
in particular, it is absolutely continuous with respect to the Lebesgue measure. It
follows that also fi is absolutely continuous with respect to the Lebesgue measure
on [0, M]. Applying this to all z € I, with corresponding M, shows that p is
absolutely continuous with respect to the Lebesgue measure on Ij. O

dii(y

for y € X,

Theorem 4.6. Assume that u is Lipschitz p-admissible within a bounded open in-
terval Iy and let @ > 1. Then du = wdt for some nonnegative weight w and w is
an A, weight within 0~ Iy, with an A, constant depending on 6 and p.

Proof. Corollary 4.5 shows that du = wdt for some weight function w on Iy. Let
I=(x—r,x+7r)C 0 . Then 0I C I,.

First, we consider the case p > 1 and test the Lipschitz p-Poincaré inequality
on A with the Lipschitz function

RO
0= [ Gty e

where € > 0 is fixed but arbitrary. Note that « = 0 on the left component I; =
(x—0r,z—r] of I\ I and that u = u(z+r) on the right component I'r = [xv+r, z+0r)
of 01\ I. Hence, at least one of the following holds

lu—ugr| > 3u(x+r)yon Iy or |u—ugs|> tu(z+r)on Ig.
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Since p(Ir) and p(Ir) are comparable to p(6I), with comparison constant depend-
ing on @, this implies that the left-hand side of the Lipschitz p-Poincaré inequality
on 01 is

][ |u —wpr|dp > Cu(z + 1) = C/

w+5P/P -

At the same time, Lipu = [v/| < (w+€) "/ ®~Yy; a.e. (by the fundamental theorem
of calculus) and thus the right-hand side of the Lipschitz p-Poincaré inequality is

1/p 1 d 1/p
. p < |
cr (]éI(Llp v du) - CT(M(HI) /I (w + 5)p/(p—1))

Combining the last two estimates with the Lipschitz p-Poincaré inequality yields

oD = e </1 w+j>u/<—1>> L </I (w(t)%?)dpip-n ) o

Raising the last estimate to the pth power, writing [, w w(t)dt = p(I) < (o), divid-
ing by |I] = 2r and letting ¢ — 0 we obtain (3.3) for I, by monotone convergence.

Now, we consider p = 1 and let m = essinf; w. Test the Lipschitz 1-Poincaré
inequality on #I with the Lipschitz function

u(y) = /y xEe. (t)dt,

where E. = {t € I : w(t) < m+¢} and € > 0 is fixed but arbitrary. Then, as above,

u(x + r) = |E¢| is majorized by the right-hand side in the Lipschitz 1-Poincaré
inequality, i.e.

Cr / (m+e)|E:|
0< |E| € —— XEe. (H)w(t)dt < Cr
1Bl w(OI) Jor e (B (t) w(l)
Dividing by |E.| > 0 and letting € — 0, yields (3.3) for I, i.e. within §~1I,. O

Proof of Theorem 4.1. (e) = (f) This follows from Lemma 4.2.
(f) = (e) = (d) and (b) = (a) These implications are trivial.
(d) = (b) This follows from Corollary 4.3.
(b) = (c) This follows from Proposition 1.2 and Theorem 1.3 in Bjérn-Bjérn [3].
(a) = (d) and (c¢) = (e) These implications follow from Theorem 4.6. O

Lemma 4.2 and Theorem 4.6 imply that if p is p-admissible within (—0M, M)
for some 6 > 1, then the periodically repeated reflections of p|(_az a7 provide a
p-admissible measure on R. For the above arguments to hold it is important that p-
admissibility is assumed within a larger interval. Next, we give an example showing
that it is not enough to assume p-admissibility within (—M, M).

Example 4.7. Let X = [0,1], w(z) = 2%, « > 0, and du = wdz. Then p is
doubling on X. By Chua-Wheeden [8, Theorem 1.4], u supports a 1-Poincaré
inequality for the interval (a,b) C [0,1] with A = 1 and the optimal constant

o= H z))p((z, b)) 2 ‘u((avfc))
(b —a)u(a,b) w(z) L=(ap) (b—a)|| w(z) L (a,b)
B 2 plta _ gl+a _ 2 (x —a)&d
O] ICE e PR e e PO

where &, € (a, ) comes from the mean-value theorem. As this holds for all intervals
(a,b) C [0,1], u supports a 1-Poincaré inequality with respect to the metric space
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[0, 1], with constant 2. It follows that u, extended by 0 outside [0, 1], is p-admissible
within (0,1).

If p < 1+a, then w!/(=P) is not integrable at 0, and hence the A, condition (3.3)
does not hold for w within (0,1). It is also easily verified that the set {0} has zero
capacity with respect to the metric space [0,1]. This implies that the collection
of all nonconstant compact rectifiable curves in [0, 1] starting at 0 has p-modulus
zero (see [2, Proposition 1.48]). Hence, X (9,0 has 0 as a p-weak upper gradient on
(R, 1) for any extension i of u to R, which violates the p-Poincaré inequality on
the interval (—1,1). Thus, u is not a restriction of any measure on R supporting a
p-Poincaré inequality.

5. Consequences of Theorem 1.2
Corollary 5.1. Let pj;, j = 1,2, be locally p-admissible measures on R. Then
W= 1 + po is locally p-admissible on R.

Corollary 5.2. Let w;, j = 1,2, be locally p-admissible weights on R. Then

max{wy,ws} and min{wy,ws} are locally p-admissible on R. Moreover, for p > 1,

1/(1-p)

the weight w; is locally p/(p — 1)-admissible on R.

These statements follow directly from the characterizations in Theorem 1.2 to-
gether with similar statements for global A, weights. The lattice property of global
A, weights on R™ was proved in Kilpeldinen-Koskela-Masaoka [21, Proposition 4.3]
using nontrivial characterizations of A, and A., weights. Here we seize the oppor-
tunity to provide an elementary proof, including p = 1 and also covering the local
case.

It is straightforward that the A, condition

1-p
(][ wt/(=p) da:) , 1<p<oo,
][ wdx < C B (5.1)
B

ess}ginfw, p=1,

for w is precisely the A,/ ,—1) condition for the conjugate weight w/(1=P) with the
Ap/(p—1) constant CY/(®=1) when p > 1.

Lemma 5.3. Assume that the A, condition holds for wy and wy with a constant C
in some ball B C R™. Then it holds also for wi+wq, max{wy, w2} and min{wy,ws}
with constants 2C, 2C and 2P~1C, respectively.

Proof. We have

][ max{wl,wg}dx<][(w1 —|—w2)dx—][ w1 dm—f—][ wa de,
B

][ min{ws, we} dr < mln{][ wy dz, ][ wa dw}

For p =1, (5.1) then follows directly from the facts that

essinfw; + essinf we < 2essinf max{w;, w2} < 2essinf(wy + wa),
B B B B
min{essBinf w1, essBinf wl} = essBinf min{wy, ws}.

For p > 1, we have

1-p 1-p
][wldx+][w2dx<0(][ wi/(lp)dx> +C(][ w%/(lp)dx> .
B B B B
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Since 1 —p < 0 and
][ w;/(l_p) dx > ][ max{wy, wy }/7P) do > ][ (w1 + wy)V/P) dx
B B B
for j = 1,2, this proves (5.1) for w; + we and max{w;,wsy}.
To prove (5.1) for min{w,,wa}, we note that

min{wy, wy }/ 7P = max{wi/(l_p)’ w;/(l—p)}7

which by the above argument satisfies the A,/(,_1) condition with 201/ (>=1) The
duality between (5.1) and the A,y condition concludes the proof. O

6. Proof of Proposition 1.3

Proof of Proposition 1.3. By considering a smaller interval if necessary, we can as-
sume that I is closed, u € NYP(I, 1) and w, w1 =P) € LY(I). Let g € LP(I, ) be
an upper gradient of u. Let € > 0 be arbitrary and find § > 0 so that

/ w'/1=P) dg < ¢ whenever E C I and |E| < 4. (6.1)
E

Consider finitely many pairwise disjoint intervals (a;,b;) C I with
Z |b] - aj| < 0.
J

The Hélder inequality then yields for each j,

bj bj 1/p b; 1-1/p
lu(b;) — u(ay)| < / gdr < (/ gPw dx) (/ w'/=P) dm) . (6.2)

J J

Summing over all j and using (6.1) and the Hélder inequality for sums, we conclude
that

PBIICHRRICHIES (Z /ab g du)l/p (Z /ab /) dm)l_l/p

1/p
< (/g”du> e/,
I

Since € > 0 was arbitrary and g € LP(I, i), we conclude that u is locally absolutely
continuous (and thus a.e. differentiable) on I.

It remains to show that |u/| < g, a.e., since the converse inequality is trivial.
Let € int I. Replacing (a;,b;) in (6.2) by (x — h,x + h) C I, we see that for all
upper gradients g € LP(I, u),

lu(z+h) —u(@—h)| _ (1 /Hh Ve /m+h a2\
< (L v S /(1-p) ,
o7 s\m /), gPw dx on ), w dx

Letting h — 0, together with the observation that a.e. z € I is a point of differen-
tiability of u as well as a Lebesgue point both of gPw and of w!/(1=P) shows that
|u'| < g a.e. As this holds for all upper gradients g of u, and there is a sequence
{9;}521 of upper gradients tending to g, pointwise a.e., we conclude that [u'| < g,
a.e., and thus |[u'| € LP(I, p). O
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7. Uniform assumptions

Sometimes it can be of interest to consider (semi)locally admissible measures with
uniform constants. We therefore introduce the following notions.

Definition 7.1. Any of the properties considered in Section 3 is uniformly local if
there are R,C' > 0 and A > 1 such that the property holds within every ball By C X
of radius R, with the same constants C' and .

The property is semiuniformly local if for every z it holds within some ball
B(z, R;) with constants C' and A independent of z and R,.

If it holds within every ball By with C' and A depending on the radius (but not
the centre) of By, then it is uniformly semilocal.

Uniformly local A, weights were studied by Rychkov [24] under the name “local
A, weights” (primarily for the specific radius R = 1).

A careful analysis of the proofs in this paper shows that the involved constants
depend on each other in a controllable way. This, in particular, means that the
implications (f) < (e¢) = (d) & (b) < (a) and (c) = (e) in Theorem 4.1 hold
also if the (semi)local notions are replaced by uniformly (semi)local ones, and (f)
is replaced by its uniform version, where the global A, constant of the extension w
may depend on rg, but not on the centre of B.

Moreover, the covers used in the proofs of [3, Proposition 1.2 and Theorem 1.3]
(leading to the implication (b) = (c) in Theorem 4.1) can be controlled by con-
stants which only depend on C, X\ and the involved radii, but not on z. Since the
other estimates therein are quantitative as well, also the implication (b) = (¢) in
Theorem 4.1 holds for uniformly (semi)locally p-admissible measures on R.

Note that the “uniform” properties require uniformity both in C' and R, while
the semiuniformity allows R, to depend on z. In Bjérn-Bjorn [3, Section 6], this
property was shown to be sufficient for many qualitative, as well as some quantita-
tive, properties of p-harmonic functions, but it is not strong enough for the uniform
conclusions above. In fact, any positive continuous weight on R is semiuniformly
locally p-admissible, but the weight ¢ is not even uniformly locally doubling.
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