arXiv:1909.10619v1 [math.MG] 23 Sep 2019

Carathéodory-type extension theorem with respect to
prime end boundaries

Joshua Kline, Jeff Lindquist and Nageswari Shanmugalingam *

September 25, 2019

Abstract

We prove a Caratheodory-type extension of BQS homeomorphisms between
two domains in proper, locally path-connected metric spaces as homeomor-
phisms between their prime end closures. We also give a Caratheodory-type
extension of geometric quasiconformal mappings between two such domains pro-
vided the two domains are both Ahlfors Q-regular and support a Q-Poincare
inequality when equipped with their respective Mazurkiewicz metrics. We also
provide examples to demonstrate the strengths and weaknesses of prime end
closures in this context.

1 Introduction

The celebrated theorem of Riemann states that every simply connected planar do-
main that is not the entire complex plane is conformally equivalent to the unit disk
(that is, there is a conformal mapping between the domain and the disk). However,
there are plenty of simply connected planar domains with quite complicated bound-
aries, and it is not always possible to extend these conformal mappings from such
domains to their (topological) boundaries. The work of Carathéodory [C] beau-
tifully overcame this obstruction by the use of cross-cuts and the corresponding
notion of prime ends, and showed that every such conformal mapping extends to
a homeomorphism between the (Carathéodory) prime end boundary of the domain
and the topological boundary (the unit circle) of the disk. This extension theorem
is known in various literature as the Carathéodory theorem for conformal mappings
and as the prime end theorem (see [C], [Ahl, Section 4.6] and [P, Chapter 2]).

In the case of non-simply connected planar domains or domains in higher di-
mensional Euclidean spaces (and Riemannian manifolds), the notion of prime ends
of Carathéodory is not as fruitful. Indeed, it is not clear what should play the
role of cross-cuts, as not all Jordan arcs in the domain with both end points in the
boundary of the domain will separate the domain into exactly two connected com-
ponents. There are viable extensions of the Carathéodory construction for certain
types of Euclidean domains, called quasiconformally collared domains (see for ex-
ample [N, AW]), but this construction is not optimal when the domain of interest is
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not quasiconformally collared, and indeed, there is currently no analog of quasicon-
formal collared domains in the setting of general metric measure spaces. However,
the workhorse of the prime end construction of Carathéodory is the nested sequence
of components of the compliments of the Jordan arcs that make up the end. Keep-
ing this in mind, an alternate notion of prime ends was proposed in [ABBS]. The
construction given there proves to be useful even in the non-smooth setting of do-
mains in metric measure spaces, and is a productive tool in potential theory and
the Dirichlet problem for such domains, see [BBS2, ES, AS].

Branched quasisymmetric mappings (BQS) between metric spaces started life as
extensions of quasiregular mappings between manifolds, see [G1, G2, GW1, GW2,
LP]. The work of Guo and Williams [GW2] demonstrate the utility of BQS map-
pings in Stoilow-type factorizations of quasiconformal maps between metric measure
spaces. Between metric spaces of bounded turning, the class of homeomorphisms
that are BQS coincide with the class of quasisymmetric maps. However, for more
general metric spaces, BQS homeomorphisms are not necessarily quasisymmetric,
as demonstrated by the slit disk (see the discussion in Section 2). The focus of this
present paper is to obtain a Carathéodory type extension theorem for two types
of mappings between domains in locally path-connected metric spaces using the
construction of prime ends from [ABBS]. The two types of mappings considered
are branched quasisymmetre (BQS) homeomorphisms and geometric quasiconfor-
mal homeomorphisms. In Theorem 4.4 we prove that every BQS homeomorphism
between two bounded domains in locally path-connected metric spaces has a home-
omorphic extension to the respective prime end closures. We also show that if these
domains are finitely connected at their respective boundaries, then the extended
homeomorphism is also BQS, see Proposition 4.12 and the subsequent remark. In
Theorem 5.14 we also prove a Carathéodory extension theorem for BQS mappings
between unbounded domains in locally path-connected metric spaces, where the no-
tion of prime ends for unbounded domains is an extension of the one from [ABBS],
first formulated in [E]. We point out here that local path-connectedness of the am-
bient metric spaces can be weakened to local continuum-connectedness (that is, for
each point in the metric space and each neighborhood of that point, there is a smaller
neighborhood of the point such that each pair of points in that smaller neighborhood
can be connected by a continuum in that smaller neighborhood). However, as local
path-connectedness is a more familiar property, we will phrase our requirements in
terms of it.

In contrast to BQS homeomorphisms, geometric quasiconformal mappings do
not always have a homeomorphic extension to the prime end closure for the prime
ends as constructed in [ABBS]; for example, with ) the planar unit disk and €’ the
harmonic comb given by

Q= (0,1) x (07 1) \ (U{%ﬂ} X [07 %]) ) (1)

we know that  and ' are conformally equivalent, but the prime end closure o
of Q is the closed unit disk which is compact, while " is not even sequentially
compact. However, we show that if both domains are Ahlfors Q-regular Loewner



domains for some ) > 1 when equipped with the induced Mazurkiewicz metrics
duv and dj; respectively, then geometric quasiconformal mappings between them
extend to homeomorphisms between their prime end closures. Should the two
domains be bounded, then the results in this paper also imply that the geomet-
ric quasiconformal mappings extend as homeomorphisms between the respective
Mazurkiewicz boundaries, with the extended map serving as a quasisymmetric map
thanks to [HK, Theorem 4.9] together with [K, Theorem 3.3]. In Theorem 6.9 we
give a Carathéodory-type extension for geometric quasiconformal maps.

Our results are related to those of [A, AW] where extensions, to the prime end
closures, of certain classes of homeomorphisms between domains is demonstrated.
In [A, Theorem 5] it is shown that a homeomorphism between two bounded domains,
one of which is of bounded turning and the other of which is finitely connected at
the boundary, has a homeomorphic extension to the relevant prime end closures pro-
vided that the homeomorphism does not map two connected sets that are a positive
distance apart to two sets that are zero distance apart (i.e., pinched). In general,
it is not easy to verify that a given BQS or geometric quasiconformal map satisfies
this latter non-pinching condition. Moreover, we do not assume that the domains
are finitely connected at the boundary. We therefore prove homeomorphic extension
results by hand. The paper [AW] deals with domains in the first Heisenberg group
H', and the prime ends considered there are not those considered here. The notion
of prime ends considered in [AW] are effectively that of Carathéodory, see [AW, Def-
inition 3.3]. In particular, topologically three-dimensional analogs of the harmonic
comb, e.g. ' x (0,1) with Q' as in (1), will have no prime end considered in [AW]
with impression containing any point in {0} x {3} x [0,1], whereas each point in
this set forms an impression of a singleton prime end with respect to the notion
of prime ends considered here. The paper [Sev] has a similar Carathéodory type
extension results for the so-called ring mappings between two domains satisfying
certain geometric restrictions at their respective boundaries.

The structure of the paper is as follows. We give the background notions and
results related to prime ends and BQS/geometric quasiconformal maps in Section 2.
In Section 3 we describe bounded geometry and the Loewner property; these no-
tions are not needed in the subsequent study of BQS mappings (Sections 4,5) but are
needed in the study of geometric quasiconformal maps in Section 6. Using the prime
end boundary for bounded domains as defined in Section 2, in Section 4 we prove a
Carathéodory-type extension property of BQS homeomorphisms between bounded
domains in proper locally path-connected metric spaces. In Section 5 we extend the
prime end construction to unbounded domains, and demonstrate a Carathéodory-
type extension of BQS homeomorphisms between unbounded domains in proper
locally path-connected metric spaces. The final section is concerned with proving
a Carathéodory-type extension property of geometric quasiconformal mappings be-
tween two domains in proper locally path-connected metric spaces, under certain
geometric restrictions placed on the two domains. Note that it is not possible to
have a BQS homeomorphism between a bounded domain and an unbounded do-
main, but it is possible to have a geometric quasiconformal map between a bounded
domain and an unbounded domain, as evidenced by the conformal map between the
unit disk and the half-plane.



2 Background notions

In this section we give a definition of prime ends for bounded domains. An extension
of this definition of prime ends (following [E]) for unbounded domain is postponed
until Section 5 where it is first needed. We follow [ABBS, Section 4] in constructing
prime ends for bounded domains.

We say that a metric space X is (metrically) doubling if there is a positive integer
N such that whenever z € X and r > 0, we can cover the ball B(x,r) by at most
N number of balls of radius r/2.

Let X be a complete, doubling metric space. It is known that a complete dou-
bling space is proper, that is, closed and bounded subsets of the space are compact.
Let 2 C X be a domain, that is, € is an open, non-empty, connected subset of X.

Definition 2.1 (Mazurkiewicz metric). The Mazurkiewicz metric dy; on € is given
by
du(z,y) = i%f diam(FE)

for z,y € €, where the infimum is over all continua (compact connected sets) £ C
that contain z and y.

Note that in general dy; can take on the value of co; however, if X is locally
path-connected (and hence so is §2), then dy is finite-valued and so is an actual
metric on €.

Definition 2.2 (Acceptable Sets). A bounded, connected subset E C  is an
acceptable set if E is compact and E N 9Q # 0.

The requirement that E be compact was not needed to be explicitly stated
in [ABBS] because it was assumed there that the metric space X is complete and
doubling, and so closed and bounded subsets are compact; as € is bounded and
E C Q, it follows then that F is compact in the setting considered in [ABBS]. In
our more general setting, we make this an explicit requirement.

Given two sets F, F' C (), we know from Definition 2.1 that

distp(F, F) = inf diam(7),
gl

where the infimum is over all continua v C Q with yNE #0 #~vyNF.
Definition 2.3 (Chains). A sequence {E;} of acceptable sets is a chain is
(a) Eiy1 C E;foralli>1

(b) distm(2NOE;i+1,2NIE;) >0 foralli>1

(©) N, B € 0.

The second condition above guarantees also that F,;,1 is a subset of the interior
int(Ey) of Ej.



Definition 2.4 (Divisibility of Chains, and resulting ends). A chain {E;} divides a
chain {F;} (written {E;}|{F};}) if for each positive integer k there exists a positive
integer iy, with F;, C Fj. Two chains {E;} and {F}} are equivalent (written {£;} ~
{F;}) if {E;}{F};} and {F;}|{E;}. The equivalence class of a given chain {F;} under
this relation is called an end and is denoted [E;].

Notation 2.5. We write ends using the Euler script font (e.g. £,F,G). If {E;} is
a chain representing the end &, we write {E;} € €.

Note that if {Eg}{Gr} and {Fy} ~ {E}, then {F}|{Gr}. Moreover, if
{Ep}{Gk} and {Fy} ~ {Gy}, then {E}}[{Fr}. Therefore the notion of divisibility
is inherited by ends from their constituent chains.

Definition 2.6 (Divisibility of Ends). An end € divides an end & (written €|F) if
whenever F; € € and F; € F, then {E;}[{F}}.

Definition 2.7 (Impressions). The impression of a chain {E;} is (5o, E;. If two
chains are equivalent, then they have the same impression. Hence, if € is an end, we
may refer to the impression (&) of that end. We may also write I[E;] if {F;} € €.

Definition 2.8 (Prime Ends and Prime End Boundary). An end € is called a prime
end if § = € whenever F|€. The collection of prime ends of 2 is called the prime end
boundary of 2 and is denoted Jp€). The set ) together with its prime end boundary

form the prime end closure of €2, denoted o’ =qu 0pfl.

. =P . .
We next describe a topology on 2 using a notion of convergence.

Definition 2.9 (Sequential topology for the prime end boundary). We say that a
sequence {xy} of points in £ converges to a prime end & = [E%] if for each positive
integer k there is a positive integer IV, such that x; € Ej, for all j > Nj. It is possible
for a sequence of points in ) to converge to more than one prime end, see [ABBS].

A sequence of prime ends {€;} is said to converge to a prime end € if, with each
(or, equivalently, with some) choice of {E} ;} € €; and {E}} € &, for each positive
integer k there is a positive integer Ny such that whenever j > N, there is a positive
integer m; j such that Emj,k,j C Ey.

It is shown in [ABBS] that the above notion of convergence yields a topology on
Q" which may or may not be Hausdorff but satisfies the T1 separation axiom.
Recall that a domain €2 is of bounded turning if there is some A > 1 such that

whenever z,y € Q we can find a continuum E,, C 2 with z,y € E,, such that
diam(F, ) < Ad(z,y).

Lemma 2.10 (Bounded Turning Boundary). Let X be a complete metric space.

Let Q C X be a bounded domain with \-bounded turning. Then, Q" is metrizable by
an extension of the Mazurkiewicz metric dyy and there is a biLipschitz identification
= =P
Q=0 .

Proof. Let x € 0. Let x; € Q be such that d(x;,z) < 27¢. For each i, let y; be
a continuum with z;, 2,41 € 5 and diam(y;) < Ad(z4, z541), and let I'; = Ufi] Yi-



Then, T'; is connected for each j and diam(I';) < A277*1. Let E; be the connected
component of B(x, \27772) N Q containing I'j. Then z € 09 HE, and so I is an
acceptable set.

We claim [E}] is a prime end with I({E;}) = {«}. We first show {E;} is a chain.
Condition (a) is clear as I'j41 C I'j for each j, and B(z,A277T1) C B(z,\27772)
for each j. If y € B(x,A27772) N QN JE;, then there is some p > 0 such that
B(y,p) C B(z,A27772) N Q, and there is a point w € B(y,p/[3\]) N E;. Thus
whenever z € B(y, p/[3A]), by the bounded turning properety of Q we know that
there is a continuum in 2 containing both z and w, with diameter at most 2p/3 < p,
and so this continuum will lie inside B(x,p). It follows that B(y,p/[3)\]) C Ej,
violating the assumption that y € OF;. Therefore QNOE; C dB(z,A27772). Hence

disty(Q N OE;, QN OF;41) > dist(Q N OE;, QN OE;11) > 27711 > 0,

that is, Condition (b) is valid. Condition (c) follows as {z} = (1, E;. Hence, {E;}
is a chain and therefore [E;] is an end. That it is a prime end follows from [ABBS]
together with the fact that I[F;] is a singleton set.

We show that if F is a prime end with I(F) = {z}, then & = F where € is the one
constructed above. To prove this it suffices to show that F|€. Let & = [Ej] as above,
and choose {F;} € F. Fix a positive integer k and let w; € Q N B(x,2~?+*)) and
zj € ExNB(z, 2_(2+k)). Then by the bounded turning property, there is a continuum
K containing both w; and z; such that diam(K;) < Ad(zj,w;) < A27¥=2. It follows
that K; C B(z,\27**2)NQ, and so K; C Ej. It follows that B(x,27¥"2)NQ C Ej.
On the other hand, ﬂjfj = {z}, and as F} is compact with F;;1 C Fj for each j,
it follows that for each k there is some j, € N such that Fj, C B(z,27%72)n Q.
It then follows that Fj, C Ej. Therefore we have that {F;}|{E}, that is, F|€ as
desired.

We now show that if F is a prime end, then I(F) consists of a single point. Let
x € I(F) and choose {Fj} € F. Then for each positive integer k we set

7, = [BA] 7 min{27772 dist\ (Q N OF;, QN OF 1) = j=1,--- ,k}.

Note that 7511 < 7% with limg 7, = 0. We can then find a point xy € B(x, %) N Fii1
since x € OFj for each j € N. Note that as Fj; C Fj for each j, we necessarily have
ZTka1, T € Friq1. By the bounded turning property of 2 we can find a continuum
K}, C Q such that zy, xp1q € Ky and diam(Ky) < Ad(zg, Tr11) < 2A7g. As

207, < disty(Q N OF, QN OF11)

and xg, Tpr1 € Fiy1, it follows that Ky C Fj for each positive integer k. A similar
argument now also shows that B(x, )N is contained in the connected component
Gy, of B(z,2A71;) N Q containing Ky, and hence B(x, 1) N Q C Gy C Fy. It follows
that {Gy} is a chain in Q with {Gy}|{F})}, and as {F}} is a prime end, it follows
that [Gx]| = F. Thus we have I(F) = I([Gg]) = {=}.

The above argument shows that dp{2 consists solely of singleton prime ends, and
hence by the results of [ABBS] we know that 9" s compact and is metrizable by
an extension of the Mazurkiewicz metric dy;. Moreover, for each x € 0f) there is



exactly one prime end &, € 9p{2 such that I(€,) = {x}. To complete the proof of
the lemma, note that if =,y € Q, we can find a continuum E, , C Q with 2,y € E, ,

such that diam(E, ) < Ad(z,y); therefore d(z,y) < dm(z,y) < Ad(x,y). Since a”
is the completion of €2 with respect to the metric dyy, this biLipschitz correspondence
extends to O — QO as wished for. O

Throughout this paper, Q and Q' are domains in X. Recall that a set £ C X
is a continuum if it is connected and compact. Such a set E is nondegenerate if in
addition it has at least two points.

Definition 2.11. A domain €2 is said to be finitely connected at a point z € 92 if
for every r > 0 the following two conditions are satisfied:

1 There are only finitely many connected components Uy, --- Uy of B(z,r) N
with x € 9U; fori =1,--- ,k,

2 there is some p > 0 such that B(z,p) N Q C U?:l Uj.

It was shown in [ABBS] (see also [BBS1]) that 2 is finitely connected at every
point of its boundary if and only if every prime end of ) has a singleton impression
(that is, its impression has only one point) and dp§2 is compact.

It is an open problem whether, given a bounded domain, every end of that
domain is divisible by a prime end, see for example [ABBS, AS, ES]. Since this
property is of importance in the theory of Dirichlet problem for prime end boundaries
(see for instance [AS, ES]), the following useful lemma is also of independent interest.

Lemma 2.12 (Divisibility). Suppose that Q2 is a bounded domain that is finitely
connected at © € OR), and let [Ey] be an end of Q with x € I[Ey|. Then there is a
prime end [Gy] such that [Gy] | [Fk].

Proof. For each positive integer j let C’f o ,C’,zj be the connected components of

B(z,277)NQ that contain z in their boundary. For each choice of positive integers j
and k, there is at least one choice of m € {1,--- , k;} such that C,%'QOE,;f is non-empty.

Let V' be the collection of all C%,, j € N and m € {1,--- ,k;} for which ci,
intersects E} for infinitely many positive integers k (and hence, by the nested prop-
erty of the chain {Ejy}, all positive integers k), and let V := V' U {Q}. As Q is
finitely connected at the boundary, it follows that for each j there is at least one
m € {1,--- ,k;} such that C}, has this property. We set CY := Q. For non-negative
integer j we say that Cl, is a neighbor of CotYif and only if CitY < ¢f,. This
neighbor relation creates a tree structure, with V' as its vertex set, with each vertex
of finite degree.

Note that for each positive integer M, there is a path in this tree (starting from
the root vertex C{ = ) with length at least M. Because each vertex has finite
degree, it follows that there is a path in this tree with infinite length. To see this we
argue as follows. Let property (P) be the property, applicable to vertices C3,, that
the sub-tree with the vertex as its root vertex has arbitrarily long paths starting at
that vertex. For each non-negative integer j the vertex C3, has finite degree, and
so if CY, has property (P) then it has at least one descendant neighbor (also known



as a child in graph theory) CJ™ with property (P). Since CY = Q has property (P)

as pointed out above, we know that there is a choice of my € {1,--- , k1 } such that
the vertex C}, also has property (P). From here we can find mo € {1,--- , k2} such

that Cp,, also has property (P) and C}, is a neighbor of CZ, . Inductively we can
find C,J;@j for each positive integer j to create this path.

Denoting this path by Q ~ Cf,, ~ C2, ~ -- -, we see that the collection {Cfﬁj} is
a chain for ) with impression {z}. As a chain with singleton impression, it belongs
to a prime end [Gg]. Recall that X is locally path-connected and Q@ C X is an
open connected set. Therefore, for each positive integer i we see that there is some
Jji such that Cﬂﬁj C E; when j > j;, and so [Gg||[Ek] (for if not, then for each
7 the open set Cﬂﬁj contains a point from F;;; and a point from Q\ E;, and so
distm(Q N OE;, QN OFE; 1) < 2'77 for each j, violating the property of {E}.} being
a chain). O

The following two lemmata regarding ends are useful to us.

Lemma 2.13. Let {E}} be a chain of Q. Then there is a chain {Fy} of Q that is
equivalent to {Ey} such that for each k € N the set Fy, is open.

Proof. For each positive integer k we choose F} to be the connected component of
int(F}) that contains Fjyyq. It is clear that

Fyy1 C Ep C Fy (2)

for each k£ € Nﬂad that_Fk is cogaected and open. Moreover, as Ei 1 C Fy, it
follows that (), Ex C (i Fr C [ Ex C 01, and so we have that

0# (). (3)
k

We show now that 0F), C dE), from which it will follow that
disty(Q N OFE, QN OFk1) >0

because Fy, Fry1 also satisfy analogous condition. To see (3), let z € OF). Then,
for each € > 0, the ball B(z,¢) intersects Fj, and so also intersects Ej. Hence
x € By,. If x ¢ OF), then x € int(E}), and in this case there is a ball B(z,7) C Ej;
we argue that this is not possible. Indeed, by the local path-connectedness of X
there must be a connected open set U C 2 such that x € U C B(z,7) C Ej, and
as x € OFy, necessarily U intersects Fj as well. Then Fjp U U is connected, with
F, UU C FEy; this is not possible as F}, is the largest open connected subset of Ej.
Therefore z ¢ int(Ey), and so « € OEy.

From the above we have that {F} is a chain of 2. By (2) we also know that
this chain is equivalent to the original chain {E}}. O

Lemma 2.14. If {Ey} is a chain of 2, then its impression I{Ey} is a compact
connected subset of X.



Proof. For each j € Nset K; := Fj Then K is compact, non-empty, and connected
with K41 C Kj. Set K := ﬂj K. Suppose that K is not connected. Then there are
opensets VW C X with K C VUW, KNV # 0, KNW # (), and KNV NW empty.
We set Ky := KNV and Ky := KNW. Then Ky = K\ W and Kyy = K\ V,
and so both Ky, and Ky are compact sets. Moreover, Ky N Ky = KNVNW = (.
Therefore

dist(Ky, Kw) > 0,

and so there are open sets Oy,Ow C X such that Ky € Oy, Ky C Ow, and
Oy NOw = 0. Set U := O, UOw. As each K; is connected, it follows that we
cannot have K; C U, for then we will have K; C Oy U Ow with K; N Oy N Ow
empty but K;NOy D KNOy # 0 and K;NOw D KNOw # 0. It follows that for
each j € N there is a point z; € K; \ O. This forms a sequence in the compact set
K1, and so there is a subsequence z;, that converges to some point x € Kj.

For each k € N we have that K}, is compact and {x}};> a sequence there; so x €
K, for each k € N, that is, « € K. However, K C O and each z; € X \ O; therefore
we must have x € X \ O (recall that O is open), leading us to a contradiction.
Therfore we conclude that it is not possible for K to be not connected. O

Definition 2.15 (BQS homeomorphisms). A homeomorphism f : Q — Q' is said to
be a branched quasisymmetric homeomorphism (or BQS homeomorphism) if there
is a monotone increasing map 7 : (0,00) — (0,00) with lim, ,o+ 7(¢t) = 0 such that
whenever F, F C §2 are nondegenerate continua with £ N F' non-empty, we have

diam(f(FE)) diam(E)
diam(f(F)) =1 (diam(F)> '

Definition 2.16 (Quasisymmetry). A homeomorphism f :  — ' is said to be an
n-quasisymmetry if 7 : [0,00) — [0,00) is a homeomorphism and for each triple of
distinct points x,y, z €  we have

dY(f($)7f(y)) dx(ﬂi',y)
dy (f@), 1(2) =" <dx<:c,z>> |

Quasisymmetries are necessarily BQS homeomorphisms, but not all BQS home-
omorphisms are quasisymmetric as the mapping f in Example 5.5 shows. How-
ever, if both Q and Q' are of bounded turning, then every BQS homeomorphism
is necessarily quasisymmetric. BQS homeomorphisms between two locally path-
connected metric spaces continue to be BQS homeomorphisms when we replace the
original metrics with their respective Mazurkiewicz metrics, see Proposition 4.12.
When equipped with the respective Mazurkiewicz metrics, the class of BQS home-
omorphisms coincides with the class of quasisymmetric maps. However, a domain
equipped with its Mazurkiewicz metric could have a different prime end structure
than the prime end structure obtained with respect to the original metric, see Exam-
ple 4.8 for instance. Hence, considering BQS maps as quasisymmetric maps between
two metric spaces equipped with a Mazurkiewicz metric would not give a complete
picture of the geometry of the domain.

There are many notions of quasiconformality in the metric setting, the above
two being examples of them. The following is a geometric version.



Definition 2.17 (Geometric quasiconformality). Let uy be an Ahlfors Q-regular
measure on Y and px be a doubling measure on X. A homeomorphism f: Q —
is a geometrically quasiconformal mapping if there is a constant C' > 1 such that
whenever I is a family of curves in €2, we have

C~tModg(fT) < Modg(T) < CModg(fT).

Here, by Mod,(I") we mean the number

Mod,(I') := inf/ PP dux
PJa

with infimum over all non-negative Borel-measurable functions p on Q for which
f,ypds > 1 whenever v € T'.

From the work of Ahlfors and Beurling [Ah1, Ah2, AB| we know that conformal
mappings between two planar domains are necessarily geometrically quasiconfor-
mal; a nice treatment of quasiconformal mappings on Euclidean domains can be
found in [V]. Hence every simply connected planar domain that is not the entire
complex plane is geometrically quasiconformally equivalent to the unit disk. How-
ever, as Example 4.6 shows, not every conformal map is a BQS homeomorphism;
hence among homeomorphisms between two Euclidean domains, the class of BQS
homeomorphisms is smaller than the class of geometric quasiconformal maps. Fur-
thermore, from Example 4.10 we know that while quasisymmetric maps between
two Euclidean domains are BQS homeomorphisms, not all BQS homeomorphisms
are quasisymmetric. Thus the narrowest classification of Euclidean domains is via
quasisymmetric maps, the next narrowest is via BQS homeomorphisms. Among
locally Loewner metric measure spaces, geometric quasiconformal maps provide the
widest classification. Therefore, even in classifying simply connected planar do-
mains, a deeper understanding of the geometry of the domains is gained by consid-
ering the Carathéodory prime end compactification in tandem with the prime ends
constructed in [ABBS, ES, EJ.

3 Bounded geometry and Loewner property

Not all BQS homeomorphisms are quasisymmetric, as shown by Example 4.10 from
the previous section, and not all geometrically quasiconformal maps are BQS, as
shown by Example 4.6. On the other hand, BQS homeomorphisms need not be
geometrically quasiconformal, as the next example shows.

Example 3.1. Let X = R" be equipped with the Euclidean metric and Lebesgue
measure, and Y = R" be equipped with the metric dy given by dy (x,y) = /||l — y||.
Then X has a positive modulus worth of families of non-constant curves, while Y
has none. Therefore the natural identification map f : X — Y is not geometrically
quasiconformal; however, it is not difficult to see that f is a BQS homeomorphism
and a quasisymmetric map.

In this section we will describe notions of Ahlfors regularity and Poincaré inequal-
ity that are needed in the final section of this paper where geometric quasiconformal
maps are studied.
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Remark 3.2. Note that € is a domain in X, and hence it inherits the metric
dx from X. However, ) also has other induced metrics as well, for example the
Mazurkiewicz metric dy; as in Definition 2.1. We denote the balls in 2 with respect
to the Mazurkiewicz metric dyr, centered at z € € and with radius p > 0, by
Bpi(z,p). Since we assume that X is locally path connected, we know that the
topology generated by dx in 2 and the topology generated by dy; are the same.
To see this, observe that if U C () is open with respect to the metric dx, then
for each x € U there is some r > 0 such that B(x,2r) C U. Then as dx < dm,
it follows that Bys(x,r) C B(x,2r) C U; that is, U is open with respect to dy.
Next, suppose that U C € is open with respect to dyr, and let z € U. Then there
is some p > 0 such that Bys(z,3p) C U. We can also choose p small enough so
that B(z,3p) C Q. Then by the local path-connectedness of X, there is an open
set W C B(z,p) with x € W such that W is path-connected. So for each y € W
there is a path (and hence a continuum) K C W with z,y € K. Note that then
dm(z,y) < diam(K) < 2p < 3p, that is, y € By(x,3p) C U. Therefore W C U
with x € W and W open with respect to the metric dx. It follows that U is open
with respect to dx as well.

From the above remark, given an interval I C R, a map v : I — € is a path
with respect to dx if and only if it is a path with respect to dy;.

Definition 3.3 (Upper gradients). Let Z be a metric space and dg a metric on (2.
Given a function f : Q — Z, we say that a non-negative Borel function g is an upper
gradient of f in € with respect to the metric dg if whenever v is a non-constant
compact rectifiable curve in 2, we have

dz(f(x), f()) < / gds,

v

where x, y denote the end points of v and the integral on the right-hand side is taken
with respect to the arc-length on .

Lemma 3.4. If v is a curve in ), then ~ is rectifiable with respect to dy if and
only if it is rectifiable with respect to dx ; moreover, £q, () = lay (7). Furthermore,
if g is a non-negative Borel measurable function on 2, then g is an upper gradient
of a function u with respect to the metric dx if and only if it is an upper gradient
of u with respect to dy. Also, given a family T' of paths in Q and 1 < p < oo, the
quantity Mod, (") is the same with respect to dx and with respect to dy;.

Proof. 1t suffices to prove the lemma for non-constant paths v : I — Q with [ a
compact interval in R. Since dx < dy, it follows that {4, (v) < £q,, () (whether 7 is
rectifiable or not, this holds). To show that converse inequality, let tg < t; < --- <
t,, be a partition of the domain interval I C R of . Then for j = 0,--- ,m — 1,
note that

dM(fY(t]%fY(t]ﬁ-l)) S diam(’}/|[tj7tj+1}> S edX (’Y|[tj7tj+1])'
It follows that

[y

m—

dM(’V(tj)? ’7(tj+1)) < de (7)
=0

11



Taking the supremum over all such partitions of I gives £q,,(7) < 44, (7). Therefore,
whether + is rectifiable or not (with respect to either of the two metrics), we have
Liy (7) = Lay (7). The rest of the claims of the lemma now follow directly from this
identity. O

Given the above lemma, the notions of Moduli of path families and geometric
quasiconformality of mappings can be taken with respect to either of dx or dy; (and
respectively on the image side in the case of geometric quasiconformal mappings).
On the other hand, the notions of Poincaré inequality and Ahlfors regularity differ
in general based on whether we consider the metric dx or the metric dy, for the
balls are different with respect to these two metrics.

Definition 3.5 (Poincaré inequality). We say that Q supports a p-Poincaré inequal-
ity with respect to the metric dg if there are constants C' > 0 and A > 1 such that
whenever u : 2 — R has g as an upper gradient on 2 with respect to the metric dg
and whenever x € {2 and r > 0, we have

L[ u L )
inf / u—clduy <Cr < / g d > ,
ek 1(Ba) Jp a u(Ba) Js?

where Bq 1= {y € Q : do(z,y) <r} and ABq :={y € Q : da(z,y) < Ar}.

Definition 3.6 (Ahlfors regularity). We say that a measure p is doubling on 2
with respect to a metric dq if p is Borel regular and there is a constant C' > 1 such
that for each z € Q and r > 0,

u(Ba(x,2r)) < C p(Bao(z,7)).

We say that p is Ahlfors Q-regular (with respect to the metric dg) for some @ > 0
if there is a constant C' > 1 such that whenever z € @ and 0 < r < 2diam(2) (with
diameter taken with respect to the metric dg) if

Q
& < u(Bale.r) < Or

From the seminal work of Heinonen and Koskela [HK, Theorem 5.7] we know
that if a complete metric measure space (X, d, ) is Ahlfors Q-regular (with some
@ > 1), then it supports a Q-Poincaré inequality if and only if it satisfies a strong
version of the Q)-Loewner property.

Definition 3.7. We say that (X,d, u) satisfies a Q-Loewner property if there is a
function ¢ : (0,00) — (0, 00) such that whenever E, F' C X are two disjoint continua
(that is, connected compact sets with at least two points),

Modg(I'(E, F, X) > ¢(A(E, F))

where I'(E, F, X) is the collection of all curves in X with one end point in F and
the other in F, and

dist(E, F)
min{diam(F), diam(F)}

A(E,F) :=
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is the relative distance between E and F. The strong version of the Q-Loewner
property is that

liminf ¢(t) = oc.

gt o) = o
Theorem 3.8 ([HK, Theorem 3.6]). If (X,d, u) is Q-Loewner for some Q > 1 and
w is Ahlfors Q-regular, then we can take ¢(t) = C max{log(1/t),|log(t)|*=?} for
some constant C > 1.

4 Extending BQS homeomorphisms between bounded
domains to prime end closures

The principal focus of this section and the next section is to obtain a Carathéodory-
type extension of BQS homeomorphisms between two domains. In this section we
will focus on bounded domains, and in the next section we will study unbounded
domains. Thus in this section both € and € are bounded domains in proper, lo-
cally connected metric spaces. Theorem 4.4 and Proposition 4.7 are the two main
results of this section. However, Proposition 4.12 is of independent interest as it
demonstrates that BQS property and geometric quasiconformality can be formu-
lated equivalently with respect to dx,dy or with respect to dup, d};; moreover, this
proposition holds also for unbounded domains.

To understand how BQS homeomorphisms transform prime ends, we first need
the following two lemmata.

Lemma 4.1. Let X and Y be complete, doubling, locally path-connected metric
spaces with Q C X, Q' C Y two domains (not necessarily bounded). If there is a
BQS homeomorphism f : Q — ', then Q is bounded if and only if Q' is bounded.
Moreover, if A C Q with diamys(A) < oo, then diam’y,(f(A)) < oo.

Proof. 1t suffices to show that if € is bounded, then ' is also bounded. We fix
a continuum I' C Q such that diam(I") > diam(Q2)/2, and let 7 := diam(T), s :=
diam(f(T")). Note that 0 < s7 < oo. Let z,w € €. Then as Q is locally path-
connected, it follows that there is a path (and hence a continuum) A connecting
f1(2) to f~Y(w). The set f(A) is a continuum in €’ with z,w € f(A). Let I'; be
the continuum obtained by connecting I" to A in €; then diam(I';) > 7 and so by
the BQS property of f we now have

cifil((;((ﬁ)))) = (d%(w = (d%(% '

Moreover, as I' and I'y intersect with
diam(€2)/2 < diam(I") < diam(T';) < diam(£2),
we know from the BQS property of f that

1) (o)
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It follows that

dy () < dian(F(A) < dian((E) 7 (T2 ) < spyn (F2) <o,

T T

and so €' is also bounded.

Now suppose that A C Q with diamps(A) < oo. If A has only one point, then
there is nothing to prove. Hence assume that 0 < diamp;(A); then we can find a
continuum I' C €2 intersecting A, such that

diamys(A4)/2 < diam(T") = diamy/(T') < 2diamps(A).

Let z,w € f(A); then we can find a path 8 C Q with end points f~1(2), f~}(w)
such that diam(f8) < 2diamp;(A). We can also find a continuum v C Q with
f~Y(w) and a point from ANT contained in v and diam(y) < 2diamy;(A) (note
that f~'(w) € AN p). It follows from the BQS property of f that

diam(f(5)) < diam(p) < 2 diam;(T)
diam(f(yUT)) — 1 diam(yUT) ) = 7 \ diam(f(I"))
Applying the BQS property of f to the two intersecting continua vy U and I gives

diam(f(yuT)) diam(yUT)
dam(F(T) = ( diam(D) ) < 1(8).

It follows that

dyi (2, w) < diam(f(B8)) < n(8)n <2(1LM(F)>

diam(f(I"))
It follows that

diam’y; (f(A)) < diam(f(8)) < n(8)n (M) -

diam (F (1))
as desired. 0

Lemma 4.2. Let X and Y be complete, doubling, locally path-connected metric
spaces with @ C X, Q' CY two domains (not necessarily bounded) and let f : Q —
Q' be a BQS homeomorphism. Suppose that E,F C Q are two non-empty bounded
connected open sets with E C F' such that

disty (2N OE, QN OF) > 0. (4)

Then
disty’ (Y N Of(E), Q' Nnof(F)) > 0.

Proof. Suppose 7 is a continuum in Q' connecting Q' N Af(E), ' NIf(F). Then
because f is a homeomorphism, f~!(y) is a continuum in € connecting QN IOE, QN
OF', and hence

diam(f~!(y) > distm(QNIE, QN IF) :=7 > 0.
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Let A C Q be a continuum in F' with 2diam(F) > diam(A); as X is locally path
connected and F' is a non-empty bounded connected open set, such a continuum
exists. As f~1v intersects I (for by the assumption (4), we know that QNOE C F),
we can find a continuum 3 C F intersecting both A and f~!(y) N F such that
diam(8) < 2diam(F"). By applying the BQS property of f to the two intersecting
continua AU 3 and f~1(v), we have

diam(f(AUB)) _ ( diam(A U j3) ) - <4 diam(F)) '

diam(y) diam(f=1(v)) T
As diam(f(A U p)) > diam(f(A)) > 0, we see that
diam(f(A4))

diam(y) > —Z=es > 0,
n (f)
that is, ;
distm’ (' NOf(E), Q' NAf(F)) > % >0
p (Adnm(E))
as desired. -

Lemma 4.3. Let X and Y be complete, doubling, locally path-connected metric
spaces with @ C X, Q' CY two domains (not necessarily bounded) and let f: Q —
Q' be a BQS homeomorphism. If {Ey} is a chain of Q with singleton impression,
then (N, f(Ex) has only one point.

Proof. Suppose that and let {Ex} is a chain with singleton impression. Then
limy diam(Ey) = 0. We fix a continuum J C Ej with diam(F;)/2 < diam(J) <
diam(E;), and let £ € N. For each pair z,w € f(E)) we can find a continuum
v C Ej containing f~'(z) and f~!(w) such that diam(vy) < diam(E}). Let J; be a
continuum in F; that intersects both J and +; note that diam(J; U J) < diam E;
as well. Then by the BQS property of f, we obtain

diam(f (7)) diam(vy) diam(FEy)
diam(f(J U J)) = <diam(JU Jk)> = < diam(J) > '

On the other hand, by applying the BQS property of f to the two intersecting
continua J and J U Ji, we see that

diam(f(J U Jy)) - (diam(JU Jk)> < n(2).

diam(f(J)) diam(f(J))

Therefore . diam(FE})
diam(f (7)) <n(2)n <W>

It follows that
diam(FE%)

diam(f(Ex)) <n(2)n <W> — 0 as k — oo.

Therefore (), f(Ek) has at most one point, and as f(Ej) is compact and @ #
f(Ek+1) C f(Eg), it follows that (), f(Ek) has exactly one point. O
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Theorem 4.4. Let X and Y be complete, doubling metric spaces that are locally
path connected. Let Q C X and ¥ CY be bounded domains. Let f: Q — Q' be a
branched quasi-symmetric (BQS) homeomorphism. Then, f induces a homeomor-

phism fp: o’ o’

Note that both ©Q and € are locally path connected because X and Y are;
however, we do not assume any further topological properties for these domains.
For instance, we do not assume that either Q or ' is finitely connected at their
boundaries, and so we do not know that Q" s compact.

Proof. We must show that f maps prime ends to prime ends.

We first show that f maps chains to chains. As f is a homeomorphism, f maps
admissible sets to admissible sets. Indeed, if £ C () is an admissible set, then F
is connected and so f(E) is also connected. Suppose f(E) does not intersect 9€Y';
then f(F) is a compact subset of €, and hence f~'(f(E)) is a compact subset of
Q. Therefore E C f~1(f(FE)) C Q, which violates the requirement that E N9 be
non-empty.

Suppose {E;} is a chain in Q. We check conditions (a) — (¢) of Definition 2.3
for the sequence {fE;}. Note that if E C F C Q, then fE C fF C Q as fis a
homeomorphism. Hence, fE;;1 C fE; for all i, so condition (a) holds. Condition (b)
follows from Lemma 4.2 by considering E := FEy,1 and F := E}.

Lastly, let {E;} € &, and for each i let F; = fE;. Suppose y € . Let
z=f"1l(y) € Q. As N2, E; C 99, there is an ig and a p > 0 such that B(z,p) C Q
and B(z,p) N E;, = 0. Then, f(B(x,p)) N f(E;,) is empty. As f(B(z,p)) open and
y € f(B(z,p)), there is some p; > 0 such that B(y,p1) C Q' N f(B(x,p)). It follows
that f(E;,) N B(y, p1/2) is empty, and hence y € f(E;,). Condition (c) follows.

The above argument tells us that given a BQS homeomorphism f : Q — @/,
each chain {E}} is mapped to a chain f{Ex} := {f(Ex)}. Next we show that
ends are mapped to ends. To this end, note that if {Gy} is also a chain in  with
{Gr}{Fi}, then for each k there is a positive integer i;, such that G;, C Fj. Hence
f(Gi,) C f(Ek), that is, f{Gr}|f{Ek}. Therefore division relation among chains is
respected by f. Therefore, for each end € we have that f€ C G for some end G of
V. Given that f~!: Q' — Q is also a BQS homeomorphism, we see that f€ = G.
Finally, if € is a prime end, then whenever {G}} is an end for Q' with {G}|f€&, we
have that f~'{G}%}|€ and hence as € is a prime end, we must have f~1{G}} € €.
Therefore €|f~1{Gy}, from which it follows that fE|{G}, that is, {Gy} € f€.
Hence f€& is also a prime end. Thus we conclude that whenever € € 9p), we must
have f€ € 0pQ, and we therefore have the natural extension fp : Q" 5" as
desired.

The fact that fp is bijective follows from applying the above discussion also to
f~! (a BQS homeomorphism in its own right) to obtain an inverse of fp.

To complete the proof of the theorem it suffices to show that fp is continuous,
for then a similar argument applied to f~! and f;l yields continuity of fp L To

show continuity, it suffices to show that if {(x} is a sequence in Q" and ¢ e Q"
such that ( — (, then f(x — f¢. If ( € Q, then the tail-end of the sequence
also must lie in Q, and thus the claim will follow from the fact that fp|o = f is
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a homeomorphism of . Therefore it suffices to consider only the case ( € dpf).
By separating the sequence into two subsequences if necessary, we can consider two
cases, namely, that (; € Q for each k, or (; € 9pQ for each k.

First, suppose that (; € 2 for each k. Let {E}} € ¢. Then the fact that ¢, — ¢
tells us that for each £ € N we can find a positive integer i; such that whenever
i > ik, we have (; € E. It then follows that f((;) € f(E)). Thus for each k there is a
positive integer i with f((;) € f(Ey) when i > i, that is, f(¢x) — f([Ex]) = f(Q).

Finally, suppose that [F} ] = (i € 9pS) for each k. We again choose any chain
{Ex} € (. Then for each k there is a positive integer iy such that for each i > iy,
there exists a positive integer j;; such that whenever j > j; . we have Fj; C Ej.
So we have f(Fj;) C f(Ex) for j > ji, that is, f([Fjx]) = f(C) = f([Ex]) = f(C).
This completes the proof of the theorem. O

Remark 4.5. The only place in the above proof where the BQS property plays a
key role is in verifying that if Ey, E}1 are two connected sets in 2 with Ej, 1 C Ey
and

diStM(Q NOE, QN 8Ek+1) >0, (5)

then we must have
distm (' NOf(Ek), Y NOf(Ery1)) > 0. (6)

This part was explicated into Lemma 4.2. The remaining parts of the proof of
existence and continuity of the map fp hold for any homeomorphism f : Q —
that satisfies (6) for each pair of connected sets Eyy 1 C Ep C Q) that satisfies (5).
This is useful to keep in mind in the final section, where we consider quasiconformal
mappings that are not necessarily BQS maps.

In the situation of the above theorem, if a" s compact, then so is " . This is
a useful property in determining that two domains are not BQS-homeomorphically
equivalent, as the following example shows.

Example 4.6. With Q a planar disk and Q' given by

Q= (0,1) x (0,1)\ | J{1/n} x [0,1/2],

neN

we know from the Riemann mapping theorem that Q and Q' are conformally equiv-

=P . . . . =P .
alent. However, as Q" is the closed disk, which is compact, and as 2" is not even
sequentially compact, it follows that there is no BQS homeomorphism between these
two planar domains.

The above theorem is useful in other contexts as well.

Proposition 4.7. Suppose that X and Y are locally path connected and 2 C X,
Q' C Y are bounded open connected sets. Suppose that there is a BQS homeomor-
phism f: Q — Q.

(a) If Q" is compact, then so is o’
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(b) If Q" is metrizable, then so is o’
(c) If Q is finitely connected at the boundary, then so is €.

Proof. By Theorem 4.4, homeomorphically invariant properties of a’ will be inher-

ited by WP; hence the first two claims of the proposition are seen to be true. On the
other hand, finite connectivity of a domain at its boundary is not a homeomorphic
invariant. Hence we provide a proof of the last claim of the proposition here.

Note by [BBS1] that a bounded domain is finitely connected at the boundary if
and only if all of its prime ends are singleton prime ends and its prime end closure

. . . . =P .
is compact. Thus if  is finitely connected at the boundary, then 2 is compact,

and hence so is " . Hence to show that Q' is finitely connected at the boundary,
it suffices to show that all of the prime ends of € are singleton prime ends. This is
done by invoking Lemma 4.3. O

Example 4.8. It is possible to have two homeomorphic equivalent domains with
one finitely connected at the boundary and the other, not finitely connected at the
boundary. Let

Q:=(0,1) x (0,1)\ | J (0,1 — 1/n) x {1/2n}) U ([1/n,1] x {1/(2n + 1)})

neN

and Q' be the planar unit disk. Then as Q is simply connected and bounded, it fol-
lows from the Riemann mapping theorem that € and € are conformally, and hence
homeomorphically, equivalent. However, Q' is finitely connected at the boundary
and 2 is not.

Example 4.9. The domain €2 constructed in Example 4.8 has the property that
Q" is compact and metrizable. This is seen by the fact that Q" is homeomorphic
to U where U := ©(Q) where ¢ : R? — R? is given by ¢(z,y) = (zy,y). Observe
that U is simply connected at its boundary, and so T" is metrizable.

On the other hand, the domain ' given by

Q= (0,1) x (0, 1)\ |J ([0,2/3] x {1/2n}) U ([1/3,1] x {1/(2n + 1)})

neN

—P . . .
has the property that €2 is not compact. Hence §2 is not BQS homeomorphically
equivalent to €, even though both are simply connected planar domains that are
not finitely connected at the boundary.

Example 4.10. With 2 the planar domain given by
Q:={zeC:|z] <1and Im(z) > 0}

and ' :={z € C : |z| < 1}\[0, 1] a slit disk, the map f : Q — Q' given by f(z) = 22
is a conformal equivalence that is not a quasisymmetric map. However, this map is

a BQS homeomorphism, and so has an extension fp:Q = Q" - ", This follows
from [GW2, Theorem 6.50].
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Example 4.11. With Q and € as in Example 4.10 above, the map h : Q — Q’
given by h(re?) = re?? is also a BQS homeomorphism which is not conformal. This

again follows from [GW2, Theorem 6.50].

As indicated by the definition of chains in the prime end theory, a domain 2 can
also naturally be equipped with the Mazurkiewicz metric dys.

Proposition 4.12. Let X and Y be locally path-connected metric spaces, and f :
Q — Q' be a homeomorphism. Then f is BQS with respect to the respective metrics
dx and dy on Q and € if and only if it is BQS with respect to the corresponding
Mazurkiewicz metrics dyr, djy.

Proof. To prove the theorem it suffices to show that whenever £ C (2 is a continuum,
we have diam(F) = diamy;(E). Note that z,y € Q we have d(z,y) < dy(z,y). To
prove the reverse of this inequality, let £ C € be a continuum, € > 0, and we
choose x,y € E such that [1 + ¢]dm(z,y) > diamp/(E). By the definition of the
Mazurkiewicz metric dy (see Definition 2.1), we have

du(z,y) < diam(FE).

It follows that
diamy, (F) < [1 + ¢] diam(E),

The desired claim now follows by letting e — 0. O

Remark 4.13. By the above proposition together with [H, Proposition 10.11], if
Q and Q' are finitely connected at their respective boundaries and f : Q — Q' is a
BQS homeomorphism, then its extension fp : Q" 5" isa BQS homeomorphism
with respect to the respective Mazurkiewicz metrics dy and dj;.

Given Proposition 4.12 and the above remark, it is natural to ask why we do not
consider prime ends as constructed with respect to the Mazurkiewicz metric induced
by the original metric dx on 2. However, while the property that a set £ C ) be
connected is satisfied under both dx and the induced Mazurkiewciz metric dy, the
crucial property that £NdQ be non-empty depends on the metric (since the closure
E depends on the metric), and hence we have fewer acceptable sets and chains, and
therefore prime ends, under the induced metric dy; than under the original metric
dx. See Lemma 4.14 below for the limitations put on prime ends under dy;. For
instance, the domain ) as in Example 4.8 will have as prime ends under dy; only
the singleton prime ends, with no prime end with impression containing any point
(,0), 0 <z < 1. Hence under the metric dy; the prime end closure of € will not
be compact. The issue of considering prime ends with respect to the original metric
dx versus the induced metric dy; becomes even more of a delicate issue when  is
not bounded, see Section 5 below.

Lemma 4.14. Let Q be a bounded domain in a locally path connected complete
metric space X, and let dy be the Mazurkiewicz metric on Q induced by the metric
dx inherited from X. If [{Ex}] is a prime end in Q with respect to dyp, then [{Ey}]
s a prime end with respect to dx with ﬂkE_k a singleton set.
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Proof. Note first that if £ C € with M compact, then EM is sequentially compact
and hence so is E; hence it follows that if EM is compact, then E is also compact.
Combining this together with the fact that diam = diamp; for connected sets, tells
us that if {E)} is a chain with respect to dy; then it is a chain with respect to d.
Next, note that if {E}} is a chain with respect to dy and {Gy} is a chain with
respect to d such that {Gy}|{Ex}, then, by passing to a sub-chain if necessary,
{G}} is also a chain with respect to dy. Indeed, the only property that needs to be

verified here is whether each G_kM is compact. By the divisibility assumption, we
know that there is some jo € N such that whenever j > jo we have G; C E7. Then
G_jM is a closed subset of the compact set E_lM, and hence is compact.

Since E}, is acceptable with respect to dyr, we know that E_kM, the closure of Ej,
under the metric dy, is compact. It then follows also that [, E_kM is non-empty and
has a point ¢ € 9. We can then find a sequence zj, € Ej with limy dy(zx, () = 0.
Since dx < dy on €, it follows that {zy} is a Cauchy sequence with respect to the
metric dy, and as X is complete, there is a point € Q such that limy dx (z3, ) = 0.
Since {z}} is also a Cauchy sequence with respect to the metric dy, for each positive
integer k we can find a continuum I'y in 2 with end points x; and xx1q such that
(by passing to a subsequence if necessary)

diamp;(T') = diam(I,) < 27D,

In the above, the first identity is inferred from the proof of Proposition 4.12 above.
For each positive ineger k let G be the connected component of B(z,2'7%) N
containing the connected set ;5 I'; C 2. Then {G} is a chain in € with respect
to the metric d, and {z} = I({Gy}). It is clear from the second paragraph above
that {G}} is a chain also with respect to dy, with {C} =, G As a chain with
singleton impression, it follows that the end (with respect to dy) that {Gy} belongs
to is a prime end. Moreover, for each positive integer k we know that infinitely
many of the sets G, j € N, intersect Ej; it follows from the assumption that [{E}}]
is a prime end that [{Ex}] = [{Gr}] (see the last part of the proof of Lemma 2.12),
and so the claim follows. O

5 Prime ends for unbounded domains and extensions of
BQS homeomorphisms

In this section we consider unbounded domains, and so we adopt the modification
to the construction of ends found in [E, Definition 4.12]. However, we introduce a
slight modification, namely the boundedness of the separating compacta Ry and K
wiht respect to the Mazurkiewicz metric dy;. Recall that a metric space is proper if
closed and bounded subsets of the space are compact.

Definition 5.1. A connected set £ C  is said to be acceptable if E is proper and
E N 90N is non-empty. A sequence {Ej} of acceptable subsets of 2 is a chain if for
each positive integer k we have

(a) Exq1 C By,
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(b) Ej is compact, or Ej is unbounded and there is a compact set Ry C X such
that ©Q \ Ry has two components C;j and Cyj with Q N OE, C C)y and
QN OEj4+ C Cyy, and diamp; (R N Q) is finite,

(c) distm(QNOEE, QN OER+1) > 0,
(d) 0%, Br C 0.

The above notion of ends agrees with the notion of ends from Section 2 when (2
is bounded, for then the properness of F will guarantee that F is compact. When
Q) is not bounded, the above definition gives us two types of ends, (a) those that
are bounded (i.e. E} is bounded for some positive integer k) and (b) those that are
unbounded (i.e. Ej is unbounded for each k). While the definition above agrees in
philosophy with that from [E], but the requirement that diamy;(Rx N Q) be finite
eliminates some of the candidates for ends from [E| here. However, ends in our sense
are necessarily ends in the sense of [E]. From [E, Section 4.2] we know that if X itself
is proper, then ends (and prime ends, see below) as given in [E] are invariant under
sphericalization and flattening procedures, and so understanding ends of type (b)
above can be accomplished by sphericalizing the domain and understanding ends
of the resulting bounded domain with impression containing the new point that
corresponds to co. Both of these types of ends have non-empty impressions. The
next definition deals with ends that should philosophically be ends with only oo in
their impressions.

Definition 5.2. An unbounded connected set £ C € is said to be acceptable at oo
if £ is proper and there is a compact set K C X such that diamy; (K N Q) < oo
and F is a component of \ K. A sequence {Ej} of sets that are acceptable at co
is said to be a chain at oo if for each positive integer k we have

(a) Egy1 C By,
(b) diStM(Q NOE, QN 8Ek+1) >0,
(c) ﬂkE_k = (.

As with chains and ends for bounded domains in Section 2, we define divisibility
of one chain by another, and say that two chains are equivalent if they divide each
other. An end is an equivalence class of chains, and a prime end is an end that is
divisible only by itself.

It was noted in [E, Remark 4.1.14] that every end at oo is necessarily a prime
end.

We now return to some mechanisms that make unbounded ends from Defini-
tion 5.1 work.

Lemma 5.3. Let Ey and Fy be two open connected subsets of Q such that Es C Ej.
Suppose in addition that R is a compact subset of X such that no component of
Q\ R contain points from both QN OE; and QN OE,. Let Ry := RN E1\ Eo. Then
FEs is contained in a component C of @\ Ry and Cc FE1. Moreover, no component
of Q\ Ry contains points from both QN OFEy and QN OFs.
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Proof. Let Cy be the union of all the components of 2\ Ry that contain points from
QNOE;, and let Cy be the union of all the components of 2\ Ry that contain points
from QN OE,.

Since Q2N OEy C Cy and Cy is open, it follows that Cy U Fs is a connected subset
of @\ Ry. So there is a component C of \ Ry such that Cy U Ey C CcQ \ Ry,
and hence Cy = Co Es.

Let U be a component of 2 \ Ry such that U C C1. If U N C is non- 1-empty, then
U= C and in this case there are two points z € U N 0FE; and w € on OF5 such
that z,w € U. As U is an open and connected subset of €, we can find a curve = :
[0,1] — U with 4(0) = z and (1) = w. We can assume, by considering a subcurve
of v and modifying z and w if necessary, that v((0,1)) N OE; and v((0,1)) N 0E>
are empty. As QN OFy C Fy, it follows that v((0,1)) C E; \ E>. By the property
of separation that R has, we must have v((0,1)) N R non-empty. Hence ~((0,1))
intersects R N By \ B> = Ry. This contradlcts the fact that v C U with U N Ry
empty. We therefore conclude that C N C is empty.

Finally we are ready to prove that Cc FE1. Suppose there is a point z € C \ Fy.
Since Fy C C and C is open and connected, there is a point w € EFy C Eq and a
curve 3 C C connecting z to w. As z € Fy, it follows that «y intersects Q2 N JF,
which violates the conclusion reached in the previous paragraph that Q N 9dFE; does
not intersect C. Hence such z cannot exist, whence it follows that Cc Ei. O

As mentioned above, by [E, Section 4.2], understanding prime ends for un-
bounded domains can be done by first sphericalizing them and transforming them
into bounded domains and then studying the prime ends of the transformed domains.
There is a metric analog of reversing sphericalizations, called flattening. However,
the category of BQS homeomorphisms need not be preserved by the sphericalization
and flattening transformations, see the example below. Therefore sphericalization
and flattening may not provide as useful a tool as we like in the study of BQS maps.

Example 5.4 (BQS Sphere = BQS Plane). Let f: C* = C\ {0} — C* be given
by f(z) = 1/z. The push-forward of f under sphericalization of C* to the twice-
punctured sphere gives a BQS homeomorphism, but f is not a BQS homeomorshim
from C* to itself, for the families of pairs of continua E, := [r,1] and F, := S!
0 < r < 1/10, have the property that

diam(E,) diam(f(E)) 1

diam(F,) = diam(f(F,)) ~ r’

Example 5.5 (BQS Plane # BQS Sphere). For each positive integer k let
A = ({3} ¥ [1L,2°]) U ([38, 5¢)) x {2"D) U ({5} % [0,2%))
U(lgrrz, geer) X {01) U ({5} % [0, 1)),

0(Ay) = 281 2k+2 the length of Ay, and let

Q=) U QG e),

JjeN ZGAQj

let g, = 4k,
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Figure 1: Aj; and its cube neighborhood

where, for z € C, the cube Q(z,t) = (Re(z) —t,Re(z) +t) x (Im(z) — ¢, Im(2) + t).
For m > 1, let a,, = Y72, €(Az;), and set ag = 0. Let

I = [am—1, am] = [am—1,am-1 + E(A2m)]v I =10,00).

Let ' = U;o_; Im X (—€2m,€2m). Then, there is a BQS map f: Q' — Q defined
as follows. On I, this map is the arclength parametrization of the curve J, Aag.
On most of €/, this map is defined similarly; for m € N and €940 < 7 < €9,
the line (0,a,,) x {7} is mapped by f as a parametrization to a curve that is an
¢>-distance 7 “above” the curve |J, Agi (the dashed straight line gets mapped to
the dashed bent line above f(I) in Figure 2 below). This parametrization is mostly
an arclength parametrization, although near the corners of {2 we change speed of
this parametrization by an amount that is determined by 7. We can ensure that
this speed is at least 1/128 and 128. For example, in the picture below, the dashed
curve on the left is mapped to the dashed curve on the right by f at a speed that
is the ratio of the lengths of the dashed curve on the right and the middle curve on
the right.

Figure 2: Fiber map of f near corners

By using ¢; much smaller than 2* (as k& > 2) and changing the “tube size” at
y = 1, this guarantees that near each of these corners the map is biLipschitz and
hence BQS there. The arclength parameterization guarantees that the map is BQS
at large scales, and hence BQS.

After applying the stereographic projection ¢ (projection to the sphere), how-
ever, there is some C' > 0 such that for any ¢ < j we have diam(p(U]_. Ag;)) > C,
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whereas diam(p(f (U2, Aa,)) — 0 as ¢ — oo. Hence the induced map between ¢(£2)
and ¢(£') is not BQS.

Now we are ready to study boundary behavior of BQS homeomorphisms between
two unbounded domains.

Let ©, €Y be two open, connected subsets of metric spaces X, Y respectively, with
X and Y both proper and locally path-connected metric spaces. Let f: Q — Q' be
a BQS homeomorphism.

In light of Lemma 4.1, we now concentrate on the case of both Q and Q' be-
ing unbounded. So henceforth, we assume that Q and Q' are unbounded domains
in proper, locally path-connected metric spaces and that f : Q@ — Q' is a BQS
homeomorphism. Recall that we have now to deal with three types of prime ends.

Definition 5.6 (Prime end types). We categorize the three types of ends as
follows:

(a) Ends [{E}}] for which there is some positive integer k with Ej, compact,
(b) Ends [{E}}] for which each Ej is unbounded and I[{Ej}] is non-empty,
(c) Ends that are ends at oo; these are also unbounded.

Remark 5.7. A few words comparing prime ends with respect to the original metric
dx on ) and prime ends with respect to the induced Mazurkiewicz metric dy; are
in order here. A prime end of type (c) with respect to dx will continue to be a
prime end of type (c) with respect to dy;. A prime end of type (b) with respect to
dx will be a prime end of type (c) with respect to dy, and so information about
the impression of such a prime end is lost. A singleton prime end of type (a) with
respect to dx will continue to be a singleton prime end of type (a) with respect to
dy. However, a non-singleton prime end of type (a) with respect to dx will cease to
be a prime end (and indeed, cease to be even an end) with respect to dy. Indeed,
if [{Ey}] is a prime end of type (a) with respect to dx with I[{E}}] non-singleton,
then no point of I[{Ej\}] can be accessible from inside the chain {FE}}, as can be
seen from an easy adaptation of the proof of Lemma 2.12. Therefore [, E_kM is
empty, and so the sequence {E}} fails the definition of an end with respect to dy;.

Lemma 5.8. Suppose that oV s proper. Fix xg € Q and a strictly increasing
sequence {ny} of positive real numbers with limgny = oco. Then, for each k € N
there is only finitely many unbounded components of Q \ Byr(xo,ng). If for each
k € N we choose an unbounded component Fy, of Q\ Bas(xo,ng) such that Fy1q C Fy,
then {Fy} is a chain for Q such that [{Fy}| is a prime end of Q.

Proof. To see the veracity of the first claim, note that if there are infinitely many
unbounded components of Q\ Bys(xg, ng), then there are infinitely many components
of Q\ Bas(xo, ng) that intersect Bys(xo, ngro) N2, in which case we can extract out
a sequence of points {x;} from Bps(zo, ng+1) N\ Bar(xo, ng+1) such that for j # 4
we have 2ny19 > dv(zj, 25) > Ngy2 — ngp1 > 0, and this sequence will not have any

subsequence converging in 2, violating the properness of ).
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Given the first claim, it is not difficult to see that we can choose a sequence {Fy, }
as in the second hypothesis of the lemma. Since

diStM(QﬂaFk, Qﬂ(‘)FkH) > diStM(QﬂaBM(xo,nk), Qﬂ@BM(xo,nkH)) > nge1—ng > 0,

it follows that {F)} is a chain of type (b) if ), F is non-empty, and is a chain
of type (c) (chain at oo) if (), Fk is empty. In this latter case, we already have
that [{F;}] is prime. Hence suppose that (), F is non-empty, and suppose that
{Gr} | {F}} for some chain {Gj} of Q. By passing to a subsequence of {Gy} if
necessary, we can then assume that Gy C Fj for all K € N. We need to show that
{Fx}|{Gr}. Suppose this is not the case. Then there is some positive integer ky > 2
such that for each j € N the set F}; \ G}, is non-empty. Recall that G, C F}, for each
k € N. Therefore, it follows from the nested property of {Gy}, that both F; \ Gy,
and Fj N Gy, are non-empty for each j € N. This immediately implies that {Gj}
cannot be a chain of type (a).

Suppose that {G}} is a chain of type (c). As Fj is an open connected subset of
€, it follows that N 0Gy, must intersect F;. Hence, for each j € N we have that
QN OGk, N F; # 0, which violates the requirement that diam;(Q N 0Gy,) < oo.
Therefore we have that {Gy} cannot be of type (c). If {Gy} is of type (b), then
as Ry, separates Q2 N 0Gy,—1 from QN 0G},, we must have that for each j € N, Ry,
intersects F;. This again violates the requirement that diam; (R, N Q) < oco.

Therefore we must have that {Fj}|{Gr} as well. Hence [{F}}] is a prime end.

U

Lemma 5.9. If € is a bounded prime end of Q, then f(&) is a bounded prime end
of . Moreover, if € is a singleton prime end (that is, its impression contains only
one point), then f(&) is also a singleton prime end.

Proof. Let {Ey} € &; by passing to a subsequence if need be, we can also assume
that F; is compact. Moreover, by Lemma 2.13 we can also assume that each Ej,
is open. Then the restriction f|g, is also a BQS homeomorphism onto f(E;), and
it follows from Lemma 4.1 above that f(F;) is also bounded. Therefore for each
positive integer k£ we have that f(Fj) is bounded, and by the properness of Y we
also have that f(Ej) is compact. Moreover, since Ej, N 0 is non-empty, we can
find a sequence z,, of points in Ej, converging to some = € Ej, N 0); since f is
a homeomorphism, it follows that f(x,,) cannot converge to any point in €', and
so by the compactness of f(Ex) we have a subsequence converging to a point in
f(Ex)NoY, that is, f(E))NOQ is non-empty. A similar argument also shows that
Ny f(Ek) is non-empty and is a subset of 9.
From Lemma 4.2 we know that for each positive integer k,

diStM,(Q/ NOf(Ey), N Of(Egy1)) > 0.

Therefore f(&) is an end of €.

Next, if F is an end that divides f(€), then with {F;} € F we must have that Fj,
is bounded (and hence, F, is compact) for sufficiently large k. The above argument,
applied to {F},} and the BQS homeomorphism f~! tells us that f~(F) is an end of
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Q dividing the prime end €; it follows that f~'(F) = &, and so F = f(€), that is,
f(&) is a prime end of .
The last claim of the theorem follows from Lemma 4.3. O

Lemma 5.10. Let € be a prime end of Q of type (b). Then f(€) is a prime end
of type (b) for Q' or there is an end F at oo for Q' such that with {Ey} € & there
exists {Fp} € F with Fyy1 C f(Ey) C Fy for each positive integer k.

Proof. Here we cannot invoke Lemma 4.2 as neither Ejy nor Fi; is bounded; but
the idea for the proof is similar, as we now show. Suppose F1, Fo C ) be connected
open sets with Ey C E; and 7 := disty(Q N OE,Q N IE,) > 0. Suppose also
that there is a compact set R C X such that Q N 9F; and Q N 0F, belong to
different components of 2 \ R and that diamp;(R N Q) < co. We fix a continuum
A C Q that intersects R with diam(A4) < 2diamp/ (RN Q). If v is a continuum
in € intersecting both 2 N dF; and 2 N dF,, then it must intersect R. Hence
we can find a continuum 5 C € intersecting both v N R and A N R such that
diamy;(8) = diam(B) < 2diamy (R N ). Now by the BQS property of f, we see

that
diam(f(5U A)) diam(B U A) diam(B U A)
diam(F(7)) ( diam () ) =1 < . > |

Note that 8 and A are intersecting continua with diameter at most 2 diam s (RN2).
It follows that diam(8 U A) < 4diamy (RN Q) < co. Hence

diam(f(A)) 4diamy (RN Q)

T <7 ().
that is, .

0 < _ diam(f(4))

T

< di .
n <4diamM(RﬂQ)> - dlam(f(y))
It follows that
distp (X NOf(EY), Q' NOf(Es)) > 0.

From the second claim of Lemma 4.1, we know that f(R N ) is bounded with
respect to the Mazurkiewicz metric dj; and hence with respect to dy. From the
fact that f is a homeomorphism from § to ', it also follows that Q' N A f(E1) and
' NIf(Ey) belong to different components of Q' \ f(RN Q).

The properness of Y together with the fact that diamg,. (f(QNR)) < diam’, (f(2N
R)) < oo tells us that f(2N R) is compact in Y.

From the above argument, we see that f(&) is an end of € provided that
i f(Ef) is non-empty. Similar argument as at the end of the proof of Lemma 5.9
then tells us that f(€) is a prime end.

Suppose now that (), f(Ex) # 0. To see that f(&) is of type (b), note that
with {Ex} € &, each Ej is unbounded (and without loss of generality, open, see
Lemma 2.13). Hence by Lemma 4.1 we know that f(Ej) is unbounded. This
completes the proof in the case that (), f(E})) is non-empty.

Finally, suppose that (), f(Ex) is empty. We construct the end at oo, F, as
follows. By Lemma 5.3, we can assume that the separating sets Ry have the added
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feature that Ej.q is a subset of a component of 2\ Ry and that that component
is a subset of Ej. So for each positive integer k we set I}’ to be the image of this
component under f. Then (), Fi, C [ f(Ex) = 0. Moreover, F}" is a component
of '\ Ky with K, = f(Rr N ), and as Ry is compact and diamy; (Rx N ) < oo,
by Lemma 4.1 we know that diam’y;(f(Rg N ) < oo and so f(Rg N ) is compact
in Y. We cannot however guarantee that disty’ (2 N OF}, Q' N OF) 41) is positive;

hence we set F}, := Fy; ;| and note that
diStM/(Q/ N OFy, O'n 8Fk+1) > diStM/(Q, N OFsy, O'n 8E2k+1) > 0.
Thus the sequence {F}} is an end at oo of €', completing the proof. O

Given that ends at infinity are prime ends (no other ends divide them, see [E]),
it follows that should € be associated with an end F at oo, there can be only one
such end at oo it can be associated with.

We next consider the last of the three types of prime ends of 2. We say that
a chain {F;} in an end € at oo of Q is a standard representative of € if there is a
point zg € X and a strictly monotone increasing sequence Ry — oo such that for
each k the set E} is a connected component of Q\ Bys(xg, Ri). Note that if H C Q
such that diamys(H) < oo, then diam(H N ) is also finite.

Lemma 5.11. Let € be an end at oo of . Then there is a standard representative
{Ex} € E. Moreover, for each xy € §) there is a representative chain {Fy} € € such
that for each k € N, Fy, is a component of Q\ Br(zo, k).

Proof. Let {Gy} € € and for each k let Kj be a compact subset of X such that
diam s (K N Q) is finite and Gy, is an unbounded component of Q\ Kj. Fix z¢ € Q.
Since () E, is empty, we can assume without loss of generality that xo & E1. Then
xo is in a different component from Ej of the set Q \ K}, for each k € N. In what
follows, by Bps(zg,7) we mean the ball in Q centered at zp with radius 7 with
respect to the Mazurkiewicz metric dy;.

As 13, := diam; (Kj) < oo, inductively we can find a sequence of strictly mono-
tone increasing positive real numbers Ry as follows. Let

Ry := max{1,diamp/({zo} U K1)}.

We claim that there is some L; € N such that G141, does not intersect Bps(xo, R1).
If this claim is wrong, then for each positive integer j > 2 there is a point x; €
G_j N By (zo, R1), in which case, by the compactness of the set Bys(xo, R1) there is
a subsequence xj, and a point zo € Bas(zo, R1) C X such that z;, — 2o; note
by the nestedness property of the chain {Gy} that zo, € Gy for each k, violating
the property that (), G, is empty. Therefore the claim holds. We set F; to be the
connected component of \ Bys(xg, R1) that contains Gy4r,. Set ny =14 L;. We
then set
Ry := max{2, Ry + 1,diamy; ({0} U Ky,)},

and as before, note that there is some ny > n; such that G,, is disjoint from
Bas(xg, R2). We set E5 to be the component of Q\ Bys(zg, R2) that contains G,.
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Thus inductively, once Rj,---, R have been determined and the corresponding
strictly monotone increasing sequence of integers nq,--- ,n have also been chosen,
we set

Rjq1 == max{k + 1, Ry, + 1,diam; ({zo} U Ky, ) }

and choose nyy1 such that ngi 1 > ng and G

npsr 1 By (o, Rey1) is empty, and
set Ejp41 to be the component of 2\ By(xo, Ry41) that contains Gy, ,. Thus we
obtain the sequence {Ey}; it is not difficult to see that this sequence is a chain at
oo according to Definition 5.2. Indeed, as G, ,, C Egy1, and as Gy, ., C Gy, and
Ky, N Egt1 = 0, it follows that Ej41 belongs to the same component as G of

O\ K, , and so Ej41 C Gj,. Thus we have
G

Nk+1

C By C Gnk C Eg,

Nk+1

and so we have both the nested property of the sequence {Fj\} and the fact that
{Gy} divides {E}}. Therefore, [{E)}] is an end at oo of € and hence is a prime end,
and thus [{E}] = &; see [E, Remark 4.1.11, Remark 4.1.14] for details of the proof.

The last part of the claim follows from knowing that for each k € N there are
positive integers j,! such that Ry < j < Rp4y. O
Lemma 5.12. Let € be an end at oo of Q. Then either (N, f(Ex) = 0 for each

{Ex} € € or N, f(Ex) non-empty for each {E} € E. In the first case f(€) is an
end at 0o of Q. In the second case f(€) is a prime end of type (b) of Q.

Proof. Let {E}} € € be a standard representative; hence, there is some xy € 2 and
for each k € N there exists Ry > 0 such that the sequence { Ry} is strictly monotone
increasing with limg Ry, = oo, and Ej is a component of Q \ Bjs(xo, Ri). Fix a
continuum A C € intersecting Q2 N E) and with

diam(A) < 2diamp (2 NIER) < cc.

Let z € ' NAf(Ex) and w € Q' N If(Fk41), and let v be a continuum in €’
containing z,w. Then f~!(v) is a continuum in Q containing f~!(z) € QN IE} and
fHw) € QN OEy, 1. By the fact that {E}} is a chain of , we know that

diam(f~1(7)) > 7 := distp (2 N OE, QN dEy 1) > 0.

As f~1(v) intersects both Q N dFE; and QN dE,1, we can find a continuum A3
connecting AN OEy, and f~1(y) N OE) such that diam(B) < 2diam;(QNOE}). By
the BQS property, we now have

diam(f(8U A)) < <diam(5 U A)> < <4 diamM(TQ N aEk)>

diam(y) diam(f~*(v) ’
a0 diam(7(4))
iam
< di
0< 7 <4diamM(QﬂaEk)) < diam(y),
and so we have that
diam(f(A))

diStM(Q, NOf(Ey), a'n Of(Eg+1)) >

7 <4diamM(QﬁﬁEk)) > 0. (7)

T
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Note that as neither Fy nor Ey1 is bounded, we cannot utilize that lemma directly,
nor can we directly call upon the relevant part of the proof of Lemma 5.10 as there is
no separating set Ry; but the idea of the proof is quite similar. For the convenience
of the reader we gave the complete proof above.

Now we have two possibilities, either (1, f(Ek) is empty, or it is not empty.
Case 1: (), f(Ey) = 0. For each k € N note that f(Ej) is a component of Q' \
f(Ba(zo, Ri) N Q). By Lemma 4.1, we know that dist;(f (B (o, Rr) N§)) < oo,
and moreover, as the topology on 2 with respect to dx and with respect to dy; are

the same, we also have that

f(Bu(zo, Ri) N Q) NQY = f(B(wo, Re) N Q).

Also, f(Bu(xo, R) N ) is compact as Y is proper and diam(f(Bas(xo, Rx) N §2)) =
diam(f(Bas(xo, Rx) N Q) < diamps (f (B (zo, Ri) N§2) < co. Again, as Y is proper,
f(E)) is also proper. Therefore f(E}) is an acceptable set at oo, and by (7) we see
that {f(Ex)} is a chain at oo of Q.

Case 2: [, f(Ek) # 0. In this case we need to show that {f(Ej)} forms a chain
of type (b). The only additional condition we need to check is that for each k € N
there is some compact set P, C Y such that Q' N 9f(E;) and Q' NOf(Eyy1) are
in different components of Q' \ Pg. In what follows, by Sys(zo,7) we mean the set
{y € Q : dm(zo,y) = 7}. We choose

Py = f(S(wo, Btley),

Since QN IE, C QN 8BM(x0,Rk) and QN JOER.1 C QN Z?BM(a:O,RkH), it fol-
lows that these two sets cannot intersect the same connected component of €\

Swr(xo, %)). Since Bys(xo, Ri) N is connected in €2, it follows that QN IE}

is in one component of 2\ Sy (zo, %)). As QNEg 1 C Q\Bys(z0, Ri11) is con-
nected, it also follows that QN0 E} 41 lies in a component of 2\ Sy (o, %)). As
f is a homeomorphism, similar statements hold for Q'NAf(Ey), Q' NOf(Ej11), that
is, they are contained in two different components of Q\ P. As diam;(P,NQY’) < oo
by Lemma 4.1, it follows also that Py is a compact subset of Y. Thus the separation
condition for the sequence {f(Ey)} is verified, and so this sequence is a chain of
of type (b).

To see that [{f(Ex)}] is a prime end, note that if {Gy} is a chain that divides
{f(E)}, then {f~1(Gy)} is a chain of Q that divides {Ey}; as {E)} is a prime end,
it follows that {F}} divides {f~1(G)}, and so {f(E)} divides {G}} as well. Thus
the corresponding end is a prime end. O

Example 5.13. In Example 5.5, {2 has a prime end of type (b) with impression
{0} x [0,00) (e.g. take E} = ((0, 2%) x (0, oo)> N Q) which gets mapped to an end

at oo by f. The BQS map f~! then also maps an end at infinity to an end of type

(b).

We now summarize the above study. Recall that we assume X and Y to be
locally path-connected proper metric spaces and that Q C X, ' C Y are domains.
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Theorem 5.14. Suppose that ) is an unbounded domain and let f : Q — ' be a
BQS homeomorphism. Then there is a homeomorphism fp : Q" = 0" such that
f(€) is a bounded prime end (i.e. a prime end of type (a)) if € is a bounded prime
end, and f(€) is either an unbounded prime end (i.e. of type (b)) or is an end at
oo of Q' if € is an unbounded prime end or an end at oo of Q. Moreover, if £ is a
singleton prime end, then so is f(€).

Remark 5.15. Combining the above theorem with [H, Proposition 10.11] we see
that if €2 is finitely connected at the boundary, then fP’ﬁp\é)oOQ is a BQS homeo-
morphism with respect to the Mazurkiewicz metric dy, where 9,.€2 is the collection
of all ends at oo of Q. However, unlike in the case of bounded domains (see Propo-
sition 4.7(c)), we cannot conclude here that €' must also be finitely connected at
the boundary, see Example 5.5; however, this is not an issue as no continuum in
Q" contains points from 0x.€2. The obstacle however is to know about f, 1 and
therefore it is natural to ask whether there are continua in WP that do not lie en-
tirely in ' U 9, where 0 is the collection of all bounded prime ends of €'
(which is the same as the collection of all singleton prime ends, thanks to the above
theorem). Unfortunately it is possible for 9pQ' \ [0 U 0] to contain many

continua, as Example 5.16 below shows. We do not have a notion of metric on WP
in this case, and so it does not make sense to ask that fp is itself a BQS map unless
Y is also finitely connected at the boundary (in which case, it is indeed a BQS
homeomorphism).

Example 5.16. Let )y be the planar domain
{(ry) eR? 2 >0,0<y < gz N\ J 1020 =20 x {5} U5 2n] x {z} |
2<neN neN

and set Q = Qg x (0,00).

Figure 3: Qg

Note that € is not finitely connected at the boundary. For each ¢ > 0 and k € N
consider

El = {(x,y,2) € R3 @ y? + (2 — t)2 < (k+11)2}‘

Observe that for each ¢ > 0 the sequence {EL} is a chain of Q with impression
R x {0} x {t}. The corresponding end is a prime end, and for each compact interval
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I C (0,00), the set {[{E}}] : t € I} is a subset of 9pQ\ [N U 050 and is a
continuum. Note that in this example, 0,2 is empty. By opening up the domain
along the slitting planes [0, 2n — 2] x {5} and [3,2n] x {Tlﬂ}v we obtain a domain
that is finitely connected at the boundary, and the map from € to this domain can
be seen to be a BQS homeomorphism.

The following example shows that it is possible to have a prime end in the sense
of [E] which makes the prime end closure sequentially compact, but no equivalent
prime end in our sense.

Example 5.17. We construct Q by removing closed subsets of R?. The “barrier”
G(h) centered at (0,0) with height h is given by G(h) = (e Ck, where Cpy :=
((—o0,—1] U [1,00)) x {0} and for h,k > 0,

Cr={1=2"F} x [=h27% h27*) U ([1 — 27%, 2%] x {—h27F h2F})
Cop=({-14+27F ) x [=h27% h2 ¥y U ([=2%, =1 + 2% x {=h27% h27F})

Thus C_y is obtained from Cj by reflecting it about the y-axis. See Figure 3 below
for an illustration of the barrier G(h).

] h[ I

Figure 4: The gate G(h) centered at (0,0).

Given a set A C R? and a point (a,b) € R?, we denote by A + (a,b) the set
A+ (a,b) :={(z+a,y+0b) : (z,y) € A}.

We now set
Q:=Rx (0,00)\ |J (G2™Y)+ @ 27).
2<jeN
The sets E; := QN (R x (0,277)) forms a chain {E;} of Q in the sense of [E]
with [{E;}] prime, but this does not form a chain in our sense, nor is it equivalent
to a chain that is also a chain in our sense.

6 Geometric quasiconformal maps and prime ends

In this section we consider a Carathéodory extension theorem for geometric qua-
siconformal maps. Unlike with BQS homeomorphisms, geometric quasiconformal
maps can map bounded domains to unbounded domains. In this section we will
consider quasiconformal maps between two domains without assuming boundedness
or unboundedness for either domain. As we have less control with geometric quasi-
conformal maps than with BQS maps, here we need additional constraints on the
two domains. The main theorem of this section is Theorem 6.9.

In this section, we will assume that X and Y are proper metric spaces that are
locally path-connected, and that Q C X, Q' C Y are domains. We also assume that
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both (€2, dym) and (€', d};) are Ahlfors Q-regular and support a Q-Poincaré inequality
for some @ > 1, u is a Radon measure on €2 such that bounded subsets of 2 have
finite measure, and that f : Q — €' is a geometric quasiconformal mapping. In light
of the following lemma, if both Q and €’ are bounded, then their prime end closures
and their Mazurkiewicz metric completions are equivalent, in which case by the
results of [HK] and [H, Proposition 10.11], we know that geometric quasiconformal
maps between them have even a geometric quasiconformal homeomorphic extension
to their prime end closures. Thus the interesting situation to consider here is when
at least one of the domains is unbounded.

Before addressing the extension result given in Theorem 6.9 below, we first need
to study the properties of prime ends of domains that are Ahlfors regular and support
a Poincaré inequality as above.

Lemma 6.1. The domain § is finitely connected at the boundary if and only if the
following three conditions hold:

(i) o s proper,
(ii) Q has no type (b) prime ends,
(iii) Q' s sequentially compact.

Proof. We first show that oV s proper. It suffices to show that bounded sequences
in Q have a convergent subsequence converging to a point in V. Let {z,} be a
bounded sequence (with respect to the Mazurkiewicz metric dyp) in 2. Then it is a
bounded sequence in X, and as X is proper, it has a subsequence, also denoted {z,,},
and a point xg € X such that lim, x,, = x¢, the limit occurring with respect to the
metric dx. If zg € Q, then by the local path-connectivity of X, we also have that the
limit occurs with respect to dy as well. If xg € Q, then x¢ € 9. Since  is finitely
connected at the boundary, it follows that there are only finitely many components
Ui(1),---,Ug, (1) of B(zg,1) NQ with 2y € oU;(1) for j = 1,--- , ki, and we also
have that B(xg,p1) NQ C Uflzl U;(1) for some p; > 0. We have a choice of some
j1 € {1,--+ ,k1} such that infinitely many of the terms in the sequence {z,} lie in
Uj,(1). this gives us a subsequence {z}} with dy(z},z.,) < 1. Similarly, we have
finitely many components Uy (2),- -+ , Uy, (2) of B(z,271)NQ, with z¢ € 9U;(2) for
j=1,--+ ko, and we also have that B(x,p2) N C U;”:l U;(2) for some py > 0.
We then find a further subsequence {z2} of the sequence {zl} lying entirely in
Uj,(2) for some jo € {1,--- ,ko}. Note that dyi(z2,22,) < 271, Inductively, for each
| € N with [ > 2 we can find a subsequence {z!} contained within a component
of B(zp,27") N Q with that component containing z in its boundary, such that
{zl} is a subsequence of {x/"1}. We then have dy (2}, 2!,) < 27!, Now a Cantor
diagonalization argument gives a subsequence {y;} of the original sequence {z,}
such that for each I € N, dy(y, yi+1) < 274, that is, this subsequence is Cauchy
with respect to the Mazurkiewicz metric dy; and so is convergent to a point in o,

We next verify that there cannot be any prime end of type (b). Suppose € is
a prime end of 2 with impression I(€) containing more than one point. Then by
Lemma 2.12 there is a singleton prime end § with G| €&, and as the impression of
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€ is not a singleton set, we have § # €, violating the primality of €. Thus there
cannot be a prime end of type (b), nor a non-singleton prime end of type (a).

. =P . . .
To verify that € is sequentially compact, we first consider sequences {xj}
in . If this sequence is bounded in the metric dx, then by the properness of
X there is a subsequence {a;nj} that converges to a point zg € Q. If o € Q,

then that subsequence converges to zg also in o’ I xg € 0f), then using the
finite connectivity of Q2 at xy we can find a singleton prime end & = [{Ex}| with
{zo} = I(€) such that for each k& € N there is an infinite number of positive integers
J for which z,; € Ey. Now a Cantor-type diagonalization argument gives a further

subsequence that converges in Q" to &. If the sequence is not bounded in dyx, then
we argue as follows. Fix z € 2. Then for each n € N there are only finitely many
components of Q\ Bjys(z,n) that intersect Q \ Bys(z,n+ 1) (for if not, then we can
find a sequence of points y; in the unbounded components of Q2 \ B(z,n), with no
two belonging to the same unbounded component, such that dy(z,y;) =n+ % and
dm(yj, ) > L for j # I; then {y;} would be a bounded sequence with respect to dx,
and the properness of X gives us a subsequence that converges to some yy € 952,
and Q would then not be finitely connected at yp). Hence there is an unbounded
component Uy of Q\ Bys(z,1) that contains xj for infinitely many & € N, that is,
there is a subsequence {x;} of {x}} that is contained in U;. There is an unbounded
component Us of Q\ Bys(z,2) that contains le for infinitely many j € N, and so we
obtain a further subsequence {:173} lying in Us. Since this further subsequence also
lies in Uy, it follows that Us C Uy. Thus inductively we find unbounded components
Upn of Q\ Bu(z,n) and subsequence {z}} of {x?_l} such that 27 € Uy; moreover,
Uy, C Up—1. If N, Uy is non-empty, then (), U,, C 99 (because for every point w €
we know from the local connectivity of X that dy(z, w) < o0), and £ will not be
finitely connected at each point in (), U,. It follows that we must have (), U,, = 0.
Therefore {U,,} is an end at oo for €2, and by considering the subsequence z, = x}!
of the original sequence {xj}, we see that {z,} converges in " to {Un}. This
concludes the proof that sequences in ) have a subsequence that converges in a’.

Next, if we have a sequence €™ of points in 0p{2 that are all singleton prime ends
(that is, they have a representative in Jd3/(2), then we can use the Mazurkiewicz
metric to choose {E}'} € €" such that for each n,k € N we have diamy/(E}) <
2~ (k+1) "and choose y,, = 2 € E™ to obtain a sequence in . The above argument
then gives a subsequence y,,; and § € 9p(2 such that y,, — F as j — oo in the prime

end topology. If ¥ is a singleton prime end, then the properness of oV implies that
" — F. If F is not a singleton prime end, then it is an end at co (because we have
shown that there are no ends of type (b)), in which case we can find a sequence
of positive real numbers Ry — oo and {F;} € F such thatF) is a component of
Q\ Ba(zo, Ry) for some fixed xo € €2, see Lemma 5.11. Since we can find L € N
such that Ry, — Ry > 1, and as y; € Fj, for sufficiently large j € N, it follows
that EZ; C Fj. Therefore €% — F. Finally, if " are all ends at oo, then from
the second part of Lemma 5.11 we can fix z9 € © and choose {E}'} € £" with
E} a component of Q \ Bys(zo, k). For each k € N there are only finitely many
components of Q \ Bys(xo, k) that are unbounded, and so it follows that there is
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some component Fy of Q\ Bjy(xg, 1) for which the set
I1):={neN: El =F}

has infinitely many terms. Note that necessarily Fy C Fj. It then follows that there
is some component Fy of Q\ Bjs(xo,2) such that

I(2):={ne€lI(l) : n>2and EY = Fy}

has infinitely many terms. Proceeding inductively, we obtain sets I(j+1) C I(j) of
infinite cardinality and F} such that {Fj} is an end at oo, and a sequence n; € N
with j < n; € I(j) such that E;-Lj = F}. It follows that €" converges in the prime
end topology to {F}}.

Now we prove that if © satisfies conditions (i)—(iii), then it is finitely connected
at the boundary. Recall the definition of finitely connected at the boundary from
Definition 2.11. Suppose that xg € 9 such that 2 is not finitely connected at xg.
Then there is some r > 0 such that either there are infinitely many components
of B(zg,r) N Q with z¢ in their boundaries, or else there are only finitely many
such components Uy, --- , U such that for all p > 0, B(zg,p) \ U?:l U; is non-
empty. In the first case, B(zg,r/2) intersects each of those components, and hence
infinitely many components of B(zg, )N intersect B(zg,r/2). In the second case,
we see that B(xzg,7/2) \U?Z1 U; is non-empty; in this case, if there are only finitely
many components of B(xzg,r) N Q that intersect B(xzg,r/2), then for each of these
components W that are not one of Uy, - - , U, we must have that dist(zg, W) > 0,
and so the choice of p < r/2 as no larger than the minimum of dist(xg, W) over all
such W tells us that B(xzg,p) N Q C U?:l Uj, contradicting the fact that €2 is not
finitely connected at xg.

From the above two cases, we know that there is some r» > 0 such that there are
infinitely many components of B(zg,r) N Q intersecting B(zg,r/2). Hence we can
choose a sequence of points, y; € 2, with no two belonging to the same component
of B(zo,r) N Q, such that d(zg,y;) = r/2. Then we have that for each j,I € N
with j # [, dm(y;, 1) > /2. Since by condition (i) we know that ais proper, we
must necessarily have that {y;} has no bounded subsequence with respect to the
Mazurkiewicz metric dy;. By the sequential compactness of Q" there must then be
a prime end &, and a subsequence, also denoted {y;}, such that this subsequence

converges to € in the topology of Q" Since {y;} is a bounded sequence in X, it
follows from the properness of X that there is a subsequence converging to some
w € Q. Asw ¢ €, we must have that w € 99, and moreover, w € I(€). Thus € is of
type (a) since by condition (ii) we have no type (b) prime ends. It then follows that
when {E}} € &, for sufficiently large k the open connected set Ej must be bounded
in dx and hence in dy;. This creates a conflict between the fact that the tail end
of the sequence {y;} lies in Ej, and the fact that {y;} has no bounded subsequence
with respect to the metric dy;. Hence €2 must be finitely connected at zg. O

Example 6.2. Let Q C R? be given by

0 =(0,00) x (0,1)\ | J[0,k] x {27}

keN
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Then Q has no type (b) prime end. Moreover, any sequence {zj} in € that is
bounded in the Mazurkiewicz metric dy; will have to lie in a subset (0, 00) x (27%,1)
for some k € N, and so oV s proper. However, €2 is not finitely connected at the
boundary. Thus Conditions (i),(ii) on their own do not characterize finite connect-
edness at the boundary.

Lemma 6.3. Suppose that oV proper. Let A, B C Q) with distM(ZM,FM) =7>0
and diamp;(A), diamps(B) both finite. Then either diam’y,(f(A)) is finite or else
diam’y, (f(B)) is finite.

Proof. Suppose that diam’;(f(A)) = co = diam;(f(B)). Then we can find two
sequences z;, € f(A) and wy, € f(B) such that dj;(zx, zx+1) > k and dj; (wg, wiy1) >
k for each k € N. Let 2 = f~!(2;,) and yy = f~(wy). By the properness of ﬁM, we
can find two subsequences, also denoted xj, and ¥y, such that these subsequences are
Cauchy in dy;. We can also ensure that dy(xg, zxy1) < 27%7/8 and dyi(yk, yer1) <
2"%'/8. Then for each k there is are continua oy, S C Q with xp, zp1 € o,
Yk Ykt1 € Br, and max{diamy; (), diamps(8r)} < 27%7/8. Since 23, € A, y,, € B,
and distM(ZM,EM) =7 > 0, we must have that | J, a; and |J, i are disjoint with

disty <U ag, U 5k) > 37/4.
k k

For each n € N set I';, = | J;_; o, and Ay, = Jp_; Bk Then I, and A,, are disjoint
continua with disty(Ay,,IT') > 37/4 and

ryuA, C U B(z,T 4 diam(A) + diam(B)) =: U.
z€AUB

Hence

Modg(I'(I'y, Ay)) < / p% dp < oo
Q

where p = %TXU is necessarily admissible for the family I'(T',, A,) of curves in Q
connecting points in I';, to points in A,.

However, f(A,) is a continuum containing 21 and z,, and so diam/y;(f(A,,)) — oo
as m — 00; a similar statement holds for f(T',). Moreover, distyn(f(Ay), f(Ty)) <
djs(z1,w1) < co. Hence by the Q-Loewner property together with the Ahlfors @-
regularity of (€', d},) gives us

distm’(f(Tn), f(An))
min{diam’,;(f(A,,)), diam’, (f(Ty))}

this violates the geometric quasiconformality of f. O

Modo(T(f(T), f(An))) > @ (

>—)OO&SH—)OO.

Lemma 6.4. Suppose that (2, dy) is Ahlfors Q-regular for some Q > 1 and supports
a Q-Poincaré inequality. Then every type (a) prime end of Q is a singleton prime

end, and oV s proper. Moreover, 0 is sequentially compact.
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Thanks to Lemma 6.1, if the domain 2 satisfies the hypotheses of the above
lemma and in addition has no type (b) ends, then € is finitely connected at the
boundary. As Example 5.5 shows, there are domains {2 for which oV is proper and
Q' s sequentially compact but ) is not finitely connected at its boundary. We
do not know whether this is still possible if we also require (€2,dy) to be Ahlfors
Q-regular for some Q) > 1 and support a Q-Poincaré inequality.

Proof. The properness of 0V is a consequence of the fact that H? (this Hausdorff
measure taken with respect to the Mazurkiewicz metric dy) is doubling and that
oV s complete, see for example [HKST, Lemma 4.1.14].

Let € be a prime end of type (a) for 2, and let g € I(€). Let {Ex} € € such that
E; is bounded (in dx, and hence by the local connectedness of X and the fact that
Ej is open, in the Mazurkiewicz metric dy as well). Let {x;} be a sequence in E;
with z; € Ej such that it converges (in the metric dx) to xy. Then as this sequence

is bounded in dy;, it follows from the properness of QY that there is a subsequence,
also denoted {z;}, such that this subsequence converges in dy to a point ¢ € dp2.
For n € N we claim that Bps((,27") N is connected. Indeed, by the definition of
Mazurkiewicz closure, we can find a Cauchy sequence zy € Q with dy(zg, () — 0.
For © € By (¢,27") N Q we have dy(z,{) < 27", and so for sufficiently large k we
also have that dy(z,zx) < 27". Thus we can find a continuum in Q connecting
x to xp with diameter smaller than 27". Note that each point on this continuum
necessarily then lies in Bp/((,27") N Q. Now if y € By(¢(,27™) N Q, then we can
connect both x and y to x; for sufficiently large k£ and hence obtain a continuum
in Bp(¢,27™) N Q2 connecting x to y. Therefore By (¢,27™) N is a connected set.
Let F,, = By(¢,27™) N Q that contain z; for sufficiently large j. Then {F,} is a
chain for Q with {zo} = I({F,}), and so it forms a singleton prime end F = [{F}, }].
We claim now that F|E. For each k € N we know that x; € Ejy; for all j > k+1;
as distym (2 N OE,, QN 0Eg41) > 0, it follows that for large j the connected set F)
contains x,, for all m > j + 1 with

1
diamM(Fj) < B distp(Q N OER, QN OEk4+1);

hence F; C Ej, for sufficiently large j. Now the primality of € tells us that &€ = F,
that is, € is a singleton prime end.
Now we show that O is sequentially compact. If {z;} is a sequence in € that

is bounded in the Mazurkiewicz metric dy;, then by the properness of Y we see
that there is a subsequence that converges to a singleton prime end or to a point
in Q. Similarly, if we have a sequence of singleton prime ends that is bounded with
respect to dy; (and recall that singleton prime ends correspond to points in the
Mazurkiewicz boundary 0y/€, see [BBS2]), then we have a convergent subsequence.

. . =P .
It now only remains to consider sequences {¢;} from 2" such that the sequence is

either an unbounded (in dyr) sequence of points from 0 orisa sequence of prime
ends that are of types (b) and (c). In this case, we fix zy € 2 and construct a prime
end [{ F} }] as follows. With ng = k in Lemma 5.8, we choose F} to be the unbounded
component of Q \ By(xg,1) that contain infinitely many points from {¢;} if this
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sequence consist of points in ﬁM, or tail-end of the chains {E]i} € ¢ for infinitely
many j. We then choose F, to be the unbounded component of 2\ Bys(xg,2) that
contain infinitely many of the points {(;} that are in Fy if {¢;} C ﬁM, or tail-
end of the chains {Ei} € (; for infinitely many j that also gave a tail-end for F}.
Proceeding inductively, we obtain a chain {F}}; by Lemma 5.8 we know that [{F}}]
is a prime end of €2, and by the above construction and by a Cantor diagonalization,
we have a subsequence of {(;} that converges to [{F}}]. O

Chains in prime ends of type (b) have corresponding separating sets Ry, but
no control over the Mazurkiewicz diameter of the boundaries of the acceptable sets
that make up the chains. The following lemma and its corollary give us a good
representative chain in the prime end of type (b) that gives us control over the
boundary of the acceptable sets as well as dispenses with the need for the separating
sets Ry.

Lemma 6.5. Let € be an end of type (b) of Q. Let {Ey} be a representative chain
for € and let Ry, be as given in Definition 5.1. Then, there is a representative chain
{Fx} of €& and compact sets Sy, C X with the following properties:

(i) Fy is a component of Q\ S,
(71) diamps(SE N Q) < oo,
(’l"l"i) diStM(Sk NQ, Sk N Q) > 0.

Furthermore, there are corresponding separating sets R,f from Definition 5.1 that
have the properties that disty(Rf NQ,RE,, N Q) > 0 and diamy (Rf N Q) < oo.

Proof. Let

T, = (Rk nQ \ Ek+1) N Ey.

We see Fjy1 belongs to a single component of Q\ T}, because Ej1 is connected and
Ery 1 NTy = 0. This follows as Ej1 is open in X and (R NQ\ Exy1)NER = 0. We
also see that T NQ C Ej because Ry NIE, =0 and so Ty NQ = (R N Ey) \ Egi1-

By Lemma 5.3, we observe that there are no points x € 9QNE and y € QNIOFk 11
that belong to the same component of Q \ Tj.

Let Sy = Toi and let Fy be the component of 2\ Sy containing Fori1. The sets
S} are compact as they are closed subsets of the sets Ry,. We first verify properties
(i) - (iii) and then show that {Fj} is a chain equivalent to {Ej}. Property (i)
follows immediately from the definition of Fj. Property (ii) follows as Sy C R and
diam s (Ror) < oo. For property (iii), let x € Sy NQ and y € Sk41 N Q. Let B C Q
be a continuum containing x and y. As x € Sy, we have x ¢ Eo;11. Asy € Ski1, we
have y € Eoi11, so there must exist a point z; € E'N OFs,11. Similarly, © ¢ Eopio
and y € Foj,9, so there is a point zo € E N JdF9; 2. Hence,

0< distM(aEng NQ,0FEy 12N Q) < dM(Zl, 22).

and, as x,y are arbitrary, we have dists (S N2, Sk N Q) > 0.
It remains to show that Fj is a chain of type (b) that is equivalent to {Ej}.
We first note that Fj,1 C FEopy1 C F), from which equivalence follows. Indeed,
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Esiy1 C Fy, follows immediately from the definition of Fj,. To see that Fj,+1 C Fopi1,
suppose that there is a point y € Fi41 \ Fogt1. Let @ € Eogys C Fyyq; then by the
connectedness of the open set Fj1 together with local connectedness of €2, there is a
continuum v C Fj11 containing the points x,y. Then as z € For 11 and y & Fop1,
v intersects 2 N OFok11. Moreover, as x € Fop1o and y & Fop1o, we must also have
that ~ intersects QN OFo,19. Then as Tog 1 separates QN OFok 11 from QNI 2,
it follows that ~ intersects To,41, contradicting the fact that v C Fyy1.

Properties (a) and (d) in Definition 5.1 follow immediately from the above ob-
servation. Property (c) follows from (iii) as Q@ N 9F; C S, N . For property (b),
we use the sets R,f = Toi+1. Compactness of Rfj follows as before: Rfj is a closed
subset of the compact set Rop11. We see diamM(RfﬂQ) < diam s (Rog+1N) < o0.
The separation property of R,f is similar to the separation property for the sets T}:
let x € OF, and y € OFyy; and suppose v is a path in Q \ Thxy; with 4(0) = =
and v(1) = y. Then, y € Thi19 S0y € Eorio and x € Ty so © ¢ Fopy1. Thus, v
contains points in OFsk11 and OFsk 2. Considering an appropriate subpath of v as
before leads to a point in v N Th;y1, & contradiction.

The inequality dist s (RENQ, RE +1M€2) > 0 follows as in the proof that dist (SN
Q, Sk+1NQ) > 0. The inequality diamp; (RENQ) < oo follows as RENQ C Ropyq. O

The following corollary is a direct consequence of the above lemma and its proof.

Corollary 6.6. If {E}} is a representative chain of a type (b) prime end of §2, then
there is a sequence {F}} of unbounded open connected subsets of Q such that

(a) Fipi1 C Fy for each k € N,
(b) diamp (2N OFy) < oo for each k € N,
(c) distpm(QL N OFE, QN OFk11) > 0 for each k € N,

(d) 0 # Ny Fr, C 09,
and in addition, for each k € N we can find ji, i € N such that

ij C E, and Eik C Fp.

Moreover, if { Fi.} is a sequence of unbounded open connected subsets of Q2 that satisfy
Conditions (a)-(d) listed above, then {Fa} is a representative chain of a type (b)
prime end of €.

Lemma 6.7. Suppose that both (2, dm) and (', d};) are Ahlfors Q-regular for some
Q > 1 and that they both support a Q-Poincaré inequality with respect to the respec-
tive Ahlfors reqular Hausdorff measure. Let & be an end of any type of Q. Let
{Ex} € & be a chain with diamp;(Q N OEL) < oo for all k and let Fy, = f(Ek).
Then,

diStM,(Q, N OFy, QN O0F)11) > 0. (8)

Chains with diam;(2NOEy) < oo for all k exist for all types of ends by Lemma
6.4 (for type (a)), Lemma 6.5 (for type (b)), and Lemma 5.11 (for type (c)). Here
disty’ is the distance between the two sets with respect to the Mazurkiewicz metric
diy-
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Proof. Suppose (8) is not the case for some positive integer k. Then we can find
two sequences w; € ' N OF, and z; € Q' N OFg4q such that dj;(wj,z;) — 0 as
Jj — o0. Let x; € QN OE), be such that f(z;) = wy, and y; € QN IE,1; be such
that f(y;) = z;. By passing to a subsequence if necessary, we may assume that
w1 # wsg and that z; # zo; therefore we also have x1 # z9 and wy # wo. Note that
as

T = diStM(Q NOEL, QN 8Ek+1) > 0,

we must have that co > diamy;(E1) > dm(zj,y;) > 75 for each j.

=M .
By Lemma 6.4 we know that 0 is proper, and so sequences that are bounded
in Q have a subsequence that converges in dy; (and hence in dx as well) to some

point in oV By [BBS1, Theorem 1.1] we know that there is a bijective correspon-
dence between singleton prime ends and points in d3/§2. Therefore by passing to a
subsequence if necessary, we can find (,§ € 0p§2 with ¢ # £ such that x; — ¢ and
y; — €. Note that dm(€, () > 7. So we can choose chains {G,,} € £ and {H,,} € ¢
such that for each m the completion in dy; of Gy, and the completion of H,, in dy
are disjoint (indeed, we can ensure that G,, C By (&, 7/3) and H,,, C B (¢, 7/3)).
As z; — ¢, by passing to a further subsequence if needed, we can ensure that for
each positive integer j, x; € Hy; similarly, we can assume that y; € G1. As H; and
(1 are open connected subsets of 2 and X is locally path-connected, it follows that
for each j there is a path 7; in H; connecting x; to ;1; similarly there is a path f;
in G1 connecting y; to y;41. For each positive integer n let o, be the concatenation

of vj, 5 =1,---,n, and let o, be the concatenation of 3;, 7 = 1,--- ,n. Then o,
and o, are continua in Q with disty (o, 0,) > 7/3. Therefore for each n we have
3@
Modg(I(ap, 0p)) < —Q,u(Q) < 0.
T
k

On the other hand, with 4, = f(a,) and 3,, = f(0,), we know that disty’ (A, Xn) —
0 as n — oo. However,

lim inf diam’; (4,,) > diam’; (A1) > 0,

n—oo

lim inf diam’; (%,,) > diam’, (%) > 0.

n—oo

Therefore by the Ahlfors regularity together with the Poincaré inequality on € with
respect to dj;, we know that

Modg(I'(Ay, X,)) — oo as n — oo.

Since

f(T(an, 0n)) = T(An, Zy),
this violates the geometric quasiconformality of f, see Theorem 3.8. Hence (8) must
hold true. O

Lemma 6.8. Suppose that both (2, dm) and (', d},;) are Ahlfors Q-regular for some
Q > 1 and that they both support a Q-Poincaré inequality with respect to the respec-
tive Ahlfors reqular Hausdorff measure. Let & be an end of any type of Q. Let
{Ex} € & be an appropriate chain with diamp;(Q2 N OEy) < oo for all k and let
Fk = f(Ek) Then,
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(i) If diam(Fy) < oo for some k, then {Fy} is a chain corresponding to an end of
type (a).

(ii) If diam(Fy) = oo for all k and (N, Fy. # 0, then {F}} is a chain corresponding
to an end of type (b).

(iii) If diam(F}) = oo for all k and (", Fx, = 0, then {F}} is a chain corresponding
to an end of type (c).

We use the phrase “appropriate chain” to mean one which has the properties in
Lemma 6.5 for type (b) or of the form given in Lemma 5.11 for type (c). As f is a
homeomorphism, this means that f induces a map from ends of  to ends of €.

Proof. Let € be an end and let {E)} be a chain representing & with diamp,(Q N
O0Ey) < oo for all k. Let Fy, = f(F)). The proof will be split into several cases. We
note that in all cases, the containments Fj, 1 C F}, are immediate and the separation
inequality (8) follows from Lemma 6.7, so we only check the other conditions.
Case 1 [(a),(b),(c) — (a)]: Suppose diam(F}) < oo for some k. By considering
the tail end of this sequence, we assume diam(F}) < oo for all k. Then, as f is
a homeomorphism, each FJ, is a bounded, connected, open set. The sets F}, are
compact as Y is proper. As Y is complete, it follows that (), F, # 0. The fact
that (), Fr N = 0 follows as f is a homeomorphism: if 2’ = f(z) € N, Fr. N,
then as Q' is open we can find v/ > 0 with B(a’,r) C @'. Then, there is an
r > 0 with B(x,r) C f~1(B(a/,7")). For all types of ends, there is an index I with
Ern B(z,r/2) = 0. Hence f(B(x,r/2)) N F; = (), and so ¢ F;. In particular,
F, N oYY # 0 for all k, so the sets F}, are admissible, and (), F, C 99, so {Fy} is a
chain.

Case 2 [(a),(b),(c) — (b)]: We assume that diam(F}) = oo for all k¥ and that
ﬂka # (. As in Case 1, we must have ﬂkﬁ C 0. Moreover, F}, is proper for all
k as Y is proper. Now the fact that {F} corresponds to an end of type (b) follows
from Corollary 6.6 together with Lemma 6.3.

Case 3 [(a),(b),(c) — (c)]: We assume that diam(F)) = oo for all £ and that
ﬂka = (). We only need to check that there exists a compact subset K, C Y with
diam’y; (Kj N Q') < oo such that F is a component of '\ Kj. Note that for each
k we have diam; (2 N OFE)) < oo, and distp (2 N OER, QN OFky1) > 0. Therefore
for all except at most one k we have that diam’,; (' Ndf(Ex)) < oo by Lemma 6.3.
Set K = f(OEx N Q). To see that Fy, = f(Ex) is a component of Q' \ K, we
note that as Fy is connected it is contained in some component of Q' \ Kj. If Fj
is not this entire component, then as open connected sets are path connected, this
component contains a point of 0F}), but this is impossible as 0F; C K} because f
is a homeomorphism. O

Theorem 6.9. Suppose that both (2, dn) and (€, d},) are Ahlfors Q-regular for
some Q > 1 and that they both support a Q-Poincaré inequality with respect to
the respective Ahlfors reqular Hausdorff measure. Let f: Q — € be a geometric

. . . , —~P =P
quasiconformal mapping. Then, f induces a homeomorphism f: 0 — Q" .
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Proof. By Lemma 6.8, f induces a map from ends of € to ends of Q'. As continuity
is determined by inclusions of sets in chains and f as a homeomorphism preserves
these inclusions, the extended f is also a homeomorphism.

To see that f maps prime ends to prime ends, suppose that € is a prime end of
Q. Then, by Lemma 6.8, f(&) is an end of Q. If F is an end with F|f(€), then by
applying Lemma 6.8 to f~1, we see that f~1(F) is an end with f~1(F)[E. As € is
prime, it follows that €|f~!(F) as well, and so f(€)|F. It follows that f(€) =T, so
f(€) is prime as F was arbitrary. O

We end this paper by stating the following two open problems:

1 If Qis a domain (open connected set) in a proper locally path-connected metric
space and (£2,dyp) is Ahlfors Q-regular and supports a Q-Poincaré inequality
for some @ > 1, then could €2 have a prime end of type (b)?

2 If Q and ' are domains that satisfy the hypotheses of this section and f :
Q — Q is geometrically quasiconformal, then is its homeomorphic extension

= ——P . . .
I " & " also quasiconformal, and does quasiconformality make sense
. . . . = P .
in this situation when Q' and/or Q" are not metric spaces but are only
. . . . =P =
topological spaces? If Q and Q' are Euclidean domains with Q@ = Q and

Q" = (¥ then the results of [JSm] give a criterion under which f extends to
a quasiconformal mapping.
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