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ABSTRACT

Resonance is a ubiquitous phenomenon observed in a wide range of physical systems. Recently, with the Fano resonance exerting remarkable
potential for optical, acoustic, atomic, and electronic applications, it is vital to control and even dynamically reconfigure the resonance line
shape and bandwidth, in addition to its frequency. In this work, we introduce a parity-time-reciprocal scaling (PTX)-symmetric structure,
which can offer a promising avenue for tailoring the resonance frequency and line shape of electronic circuits. We have theoretically studied
the resonance behavior of such a PTX-symmetric electronic system, particularly for dependencies of resonant peaks and line-shapes on the
non-Hermiticity, coupling coefficient, and the scaling coefficient introduced by the reciprocal scaling (X) transformation. Our results demon-
strate that, at resonance frequencies, a transition between Fano and Lorentzian line-shapes is possible with a specific reciprocal scaling rule
applied to lumped-element circuits.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014919

Resonance is a fundamental phenomenon in several physical
fields, such as optics, electronics, electromagnetics, acoustics, elastody-
namics, and quantum mechanics, to name a few.1 The Lorentzian
resonance with a symmetric line shape was regarded as the fundamen-
tal line shape of a typical resonance,2 which is generally realized in a
single oscillator with an external applied harmonic force. In 1961, Ugo
Fano discovered a new type of resonance which exhibits an asymmet-
ric line shape, so-called Fano resonance.3 Such a spectral feature was
observed in a system consisting of two weakly coupled oscillators
(only one oscillator is driven by an external force) and can be
described by the well-known Fano formula.4 In this class of resonators,
the Fano parameter q measuring the degree of asymmetry is usually
used to describe the transition between Fano and Lorentzian line-
shapes. It has been proven that when the coupling parameter q
becomes very strong ðq! 61Þ or q tends to zero, the Fano profile
reduces to a symmetric Lorentzian line shape.5 Recently, it was sug-
gested that the Fano resonance and its enabled electromagnetically
induced transparency (EIT) can be generated at optical frequencies
using plasmonic structures,6 optical nanocircuits,7 and microwave
lumped-element circuitry,8 or even in acoustics.9 The Fano resonance
is generated when two resonant modes (one discrete and one broad-
band) interfere with each other, and the out-of-phase coupling

between the modes (destructive interference) may lead to EIT. Thus,
the Fano resonance and EIT have become topics of intense interest due
to their promising optical and microwave applications, such as slow
light devices,10 narrow-band filtering, bio- and chemical sensing,10–12

optical switching,13,14 and enhancement of nonlinear wave mixing.15–17

In this context, electronic circuits have been exploited to elucidate the
mechanisms of Fano and Lorentzian resonances,8,18 as they are consid-
ered as an effective-mapping image of classical mechanics and also
bring about new applications, such as the effective linewidth tuning for
microwave filters and oscillators, as well as sensors with improved sen-
sitivity and resolvability.8,19–21

In this work, we introduce the parity-time-reciprocal scaling
(PTX)-symmetric electronic systems, aiming to realize resonances
transitioning from Lorentzian to Fano line-shapes at the frequency of
interest (that is also tunable). Parity-time (PT)-symmetry was first dis-
covered by Bender and Boettcher in quantum mechanics.22 Since
then, PT-symmetry has aroused intense interest in fields of optics and
photonics,23–28 acoustics,29,30 electromagnetics,31–34 and electronics.35–43

Except for being mathematically and physically intriguing, PT-sym-
metric systems enable many new applications, such as unidirectional
reflectionless wave propagation,23,24,44,45 invisibility cloaks,46,47

negative refraction,48 ultrahigh-sensitivity sensors enabled by
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eigenvalue bifurcation,49–52 and coherent perfect absorber-
lasers.53,54 Counterintuitively, even though a PT-symmetric system
is described by a non-Hermitian Hamiltonian, it can exhibit entirely
real eigenspectra, provided that the system is invariant under com-
bined parity and time-reversal transformations. Recently, we have
proposed the generalized PT-symmetric (or PTX-symmetric)
electronic system and its telemetric sensing applications.42,43 The
PTX-symmetric electronic system shown schematically in Fig. 1
consists of an active �RLC oscillator (where �R can be realized
with a negative-resistance converter or NRC43) and a passive RLC
oscillator, which are inductively coupled to achieve a spatially-
varying gain and loss profile. Specifically, such a system is invariant
under the combined parity transformation P (q1 ! q2), time-
reversal transformation T (t ! �t), and the reciprocal scaling
transformation X ðq1 ! ðm=nÞ1=2q1; q2 ! ðm=nÞ�1=2q2Þ, where
q1 ðq2Þ corresponds to the charge stored in the capacitor in the
�RLC ðRLCÞ tank and the scaling coefficients m and n are arbitrary
positive real numbers. Different from PT-symmetric systems, the
PTX-symmetric one may possess unequal gain and loss coefficients,
i.e., �mR and nR, as shown in Fig. 1; this system degenerates into its
PT counterpart if m ¼ n. More importantly, the X transformation
offers the possibility for engineering the line shape and bandwidth
(Q-factor) of resonances, which can transit between the Fano and
the Lorentzian spectral line-shapes. In this Letter, we theoretically
study the characteristics of resonance in the PTX-symmetric elec-
tronic circuit shown in Fig. 1, which consists of lumped elements
operating in radio-frequency (RF) and microwave regions.
Nevertheless, the concept may be extended to the optical region by
means of the optical nanocircuit theorem.48 As detailed next, with
this scaling coefficient, a Fano-to-Lorentzian transition accompa-
nied by a tunable linewidth can be obtained, with the operation fre-
quencies controlled by the gain-loss parameter (non-Hermiticity)
and the coupling coefficient in the PTX-symmetric system. The pro-
posed PTX-symmetric system may be likewise realized in terahertz

and optical frequencies by exploiting the photoexcited thin-layer
with gain [such as some two-dimensional (2D) materials,32 poly-
mers, or III–V semiconductors54] and the resistive filament, within
the realm of optical nanocircuit.

The PTX-symmetric electronic system based on the lumped-
element circuit (Fig. 1) is similar to its PT-symmetric counterpart
m ¼ n ¼ 1ð Þ, but all elements are scaled according to the following
rule: �R!�mR, L! mL, and C ! m�1C on the gain side, while
R! nR, L! nL, and C ! n�1C on the loss side. Applying
Kirchhoff’s laws to this circuit, the system can be described by an effec-
tive non-Hermitian Hamiltonian HeffW ¼ i@sW, where W ¼ q1; q2;ð
_q1; _q2Þ

T , s � x0t, and the angular oscillation frequency of a neutral
LC tank (x0 ¼ 1=

ffiffiffiffiffiffi
LC
p

43) (see the supplementary material). When a
time-harmonic sinusoidal excitation is connected to the�RLC or RLC
oscillator, the forced oscillations arise in the system. In the normal
mode analysis, while a positive resistance implies energy dissipation,
an energy source (AC signal generator) with a generator impedance
Z0 is seen as a negative resistance, i.e., �Z0. Therefore, if the signal
generator is connected to the series �RLC tank, an NRC with an
equivalent resistance of � mR� Z0ð Þ and a resistor with a resistance
of R must be adopted, such that the PTX-symmetry condition is pre-
served. On the other hand, when an AC signal generator is connected
to the RLC tank, a resistor with a resistance of nRþ Z0 and an NRC
with a resistance of �mR must be used in the PTX-symmetric circuit.
The electronic circuits in Fig. 1 have four eigenfrequencies (in units of
x0) that can be obtained from the eigenvalue problem:
Heff � xiIð ÞW ¼ 0, and they can be written as (see the supplementary
material)

x1;2;3;4 ¼ 6x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c2 � 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4c2 þ 4c4j2

p
2c2 1� j2ð Þ

s
; (1)

where the gain-loss parameter (or non-Hermiticity) c ¼ R�1
ffiffiffiffiffiffiffiffiffi
L=C

p
,

the coupling coefficient j ¼ M=L, and M is the mutual inductance
between the two oscillators. There is a redundancy in Eq. (1) because
positive and negative eigenfrequencies of equal magnitude are essen-
tially identical. These eigenfrequencies bifurcate and branch out into
the complex plane at the two exceptional points, and the one govern-
ing the exact symmetry and broken phases is given by

cEP ¼
1
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2
p

2

s
: (2)

From Eq. (1), we find that the PTX-symmetric system and PT-
symmetric one display the same eigenspectra, even though the gain
and loss coefficients are not necessarily the same (i.e., �mRj j 6¼ nR).
More interestingly, the eigenfrequencies are independent of the scaling
factors m and n. Similar to PT-symmetric systems, phase transitions
(which are determined by c and j) are also found in the PTX-symmet-
ric system, as shown in Fig. 2. In fact, the Hamiltonian and the
eigenmodes of the PTX-symmetric electronic system in Fig. 1 may be
related to those of the PT-symmetric system H0;W0

� �
through the

similarity transformation:H ¼ S�1H0S and W ¼ S�1W0, where S is an
invertible 4-by-4 matrix.43 As a result, PTX and PT systems may
share the same eigenfrequencies, but may possess dissimilar eigenmo-
des. Moreover, H commutes with the transformed operators �P ¼
S�1PS and �T ¼ S�1TS ¼ T , i.e., �P �T ;H

� �
¼ 0 where �P performs the

FIG. 1. Illustration of the proposed PTX-symmetric electronic system excited by a
harmonic oscillator connected to (a) the gain side and (b) the loss side. Here, m
and n are the scaling coefficients. If m ¼ n ¼ 1, the PTX system degenerates into
the PT-symmetric one. In the steady state, an AC signal generator producing
continuous-wave sinusoidal signals is represented by �Z0, where Z0 is the source
(generator) impedance.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 117, 031101 (2020); doi: 10.1063/5.0014919 117, 031101-2

Published under license by AIP Publishing

https://doi.org/10.1063/5.0014919#suppl
https://doi.org/10.1063/5.0014919#suppl
https://doi.org/10.1063/5.0014919#suppl
https://scitation.org/journal/apl


combined operations of parity and reciprocal scaling: m=nð Þ1=2q1 $
m=nð Þ�1=2q2 (�P �T ¼ PTX). We should note that PTX-symmetry can
be considered as the generalized PT-symmetry, as it degenerates into
the PT form when m ¼ n ¼ 1. In the PTX-symmetric system, c and
j are responsible for the eigenfrequencies and eigenmodes, whereas
scaling coefficientsm and n can tune the resonance line-shapes.

Under the single-port excitation, the information (e.g., sensor
applications) may be encoded in the reflection coefficient r. When
the PTX-symmetric circuit is driven by a sinusoidal source con-
nected to the �RLC tank, the reflectance RG observed from the
gain side is given by

RG ¼ rG � r�G ¼

Q4
i¼1

x� xi

CðxÞ

0
B@

1
CA

2

C2
0 þ

Q4
i¼1

x� xi

CðxÞ þ a

0
B@

1
CA

2 ; (3)

where a ¼ g=m, C xð Þ ¼ 2x2= c2 j2 � 1ð Þ
� �

which describes the
resonance width, C0 ¼ ac x� 1=xð Þ, g ¼ Z0=R, and xi is the i-th
eigenfrequency in Eq. (1). The reflectance observed from the loss side
can be similarly written as

RL ¼ rL � r�L ¼

Q4
i¼1

x� xi

CðxÞ

0
B@

1
CA

2

D2
0 þ

Q4
i¼1

x� xi

CðxÞ � b

0
B@

1
CA

2 ; (4)

where b ¼ g=n and D0 ¼ bc x� 1=xð Þ. Equations (3) and (4) reveal
that in the exact PT-symmetric phase where c > cEP and xi is purely
real, resonant reflection dips (i.e., RG;RL ¼ 0) are obtained at the
eigenfrequencies in the reflection spectra [Eq. (1)] shown in Fig. 2.
The formulas stating the resonance behavior of this PTX-symmetric
system can be equivalent to the modified Fano or Lorentzian reso-
nance model. Here, a and b, respectively, related to the scaling coeffi-
cients m and n, play critical roles in analogy to the Fano factor q
(which determines the spectral features of the resonance). From Eqs.

(3) and (4), we also find that RG is independent of n, whereas RL is
independent ofm.

Figure 3(a) shows the reflectance spectra RG as a function of
the normalized frequency (x=x0) under similar conditions (g ¼ 1;
j ¼ 0:5; m ¼ 2; and n is an arbitrary positive real number), but with
different c (or Dc ¼ c� cEP) in the exact PT-symmetric phase. From
Fig. 3(a), it is evident that increasing Dc will cause a redshift (blueshift)
for the resonance at a lower (higher) frequency, whose bifurcation loci
are consistent with the results in Fig. 2. We note that the operation fre-
quencies split rapidly nearby the exceptional point, and they coincide
at the exceptional point (Dc ¼ 0). Figure 3(b) shows the reflectance
spectra RG under similar conditions (g ¼ 1; c ¼ 5; m ¼ 4; and n is
an arbitrary positive real number), but with different j in the exact
PT-symmetric phase. As can be observed in Fig. 3(b), the two reso-
nance frequencies can be tuned by varying j. The resonant peaks are,
however, independent of m and n. In practice, j and c may be tuned
by simply adjusting the inductive coupling strength ðMÞ and the val-
ues of the lumped elements (R, L, and C), respectively.

Next, we will discuss how the X transformation in the generalized
PT-symmetric circuit can be exploited to tailor the line-shapes of the
two resonances. Figure 4(a) presents the contours of reflectance RG as
a function of the normalized frequency and the scaling coefficient m;
here, g ¼ 1; j ¼ 0:4; c ¼ 4; and n is an arbitrary positive real num-
ber. From Fig. 4(a), we find that the resonance line shape evolves from
Lorentzian to Fano kinds by increasing the value of m. Particularly, we
should emphasize that there exists a critical scaling coefficient that
determines the type of resonance. For the first resonant mode observed
at the lower frequency, if j �mRj > Z0 (which yields an active circuit
with a < 1), RG displays a Fano-like resonance line shape and RG > 1
is observed in some frequency ranges. On the other hand, if
�mRj j < Z0, (which yields a fully-passive circuit with a > 1), this
mode displays a Lorentzian resonance. For the second resonance mode
observed at the higher frequency, if �ðmR� Z0Þ < � j

ffiffiffiffi
m
p� �2

R
(or, equivalently, a < 1� j2Þ the active circuit displays a Fano-like
line shape, while a Lorentzian line shape is obtained if � mR � Z0ð Þ
> � j

ffiffiffiffi
m
p� �2

R or a > 1� j2. The critical scaling coefficient can
also be obtained mathematically by observing the inequality RG > 1
around the operation frequency. From Fig. 4(a), it is evident that in
the PTX-symmetric system, the linewidths of both resonant modes
decrease with increasing the value of m, and that above the critical
value of m [highlighted in Fig. 4(a)], a Lorentzian to Fano transition
is observed. We also note that RG is not influenced by n, as can be

FIG. 2. Contours of (a) real and (b) imaginary parts of eigenfrequencies as func-
tions of the non-Hermiticity parameter c and the coupling coefficient j for the PTX-
symmetric circuit shown in Fig. 1. There exist two exceptional (branch) points,

cEP6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2
p� �

= 2j2ð Þ
q

where the bifurcation occurs.

FIG. 3. (a) Resonance spectra of reflectance RG with different non-Hermiticity
parameter Dc, where Dc ¼ c� cEP . If Dc is sufficiently small, the two resonance
modes are coupled together. (b) Resonance spectra of reflectance RG with different
coupling coefficient j. Tunable operation frequency and resonance width are
observed in both (a) and (b).
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deduced from Eq. (3). Despite the tunability in linewidth, the reso-
nance frequencies are always locked at xi, regardless of the changes
in m and n. This is due to the fact that PTX and PT systems
share the same eigenfrequencies that are tunable only with respect
to c and j.

Figure 4(b) depicts the resonance spectra of reflectance RL under
different scaling factor n when g ¼ 1; j ¼ 0:5; c ¼ 5; showing that
no matter how n is varied, a Fano resonance line shape is always
obtained. In this case, since an NRC with a resistance of�mRmust be
used to maintain the PTX symmetry, the electronic circuit is active
and, therefore, the Lorentzian resonance is absent. In this case, the
reflectance RL is insensitive to the changes in m. From Figs. 4(a) and
4(b), we find that the resonance linewidth is inversely proportional to
the scaling coefficient m or n, which describes the degree of asymme-
try of the Fano-like resonances locked at xi. Furthermore, for RG, the
newly introduced X transformation enables switching the resonance
between Fano and Lorentzian kinds at a fixed operating frequency. In
practice, the tunable scaling coefficientsm and n can be readily imple-
mented by using variable lumped elements (e.g., trimmer potentiome-
ters or varactor) that can be programmed via the external circuitry.
Our findings open up unique possibilities for sharpening of resonance
and effectively tuning the bandwidth (Q-factor) for various near-field
sensing and communication applications.

To sum up, we have introduced the PTX-symmetric electronic sys-
tem, in which the resonance frequencies are tunable with respect to the
gain-loss parameter and the coupling coefficient, and resonance line-
shapes may be altered by the scaling coefficient responsible for the X
transformation. In particular, the formulas that describe the spectral
reflectance of this PTX-symmetric system can be cast into a Fano-like or
a Lorentzian-like line shape by reconfiguring each lumped element ð6R,
L, and C). We have also derived the critical scaling coefficient that deter-
mines the transition from Fano to Lorentzian resonance at a fixed reso-
nance frequency. The proposed PTX-symmetric circuit, capable of
dynamically manipulating the central frequency, line shape, and line-
width of resonance, may open a new avenue for building advanced oscil-
lator/resonator circuits, ultrahigh-resolution high-sensitivity sensors, and
a more readily available platform for studying Fano resonances.

See the supplementary material for details on the Liouville for-
malism and effective Hamiltonian as well as the reflection from the
PTX-symmetric circuit.

This material is based upon work supported by the National
Science Foundation under Grant No. 1917678.
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from the corresponding author upon reasonable request.
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