
MONSOON: Multi-Step Optimization and Execution
ofQueries with Partially Obscured Predicates

Sourav Sikdar
Rice University
ss107@rice.edu

Chris Jermaine
Rice University
cmj4@rice.edu

ABSTRACT
User-defined functions (UDFs) in modern SQL database sys-
tems and Big Data processing systems such as Spark—that
offer API bindings in high-level languages such as Python or
Scala—make automatic optimization challenging. The foun-
dation of modern database query optimization is the collec-
tion of statistics describing the data to be processed, but when
a database or Big Data computation is partially obscured by
UDFs, good statistics are often unavailable.
In this paper, we describe a query optimizer called the

Monsoon optimizer. In the presence of UDFs, the Monsoon
optimizer may choose to collect statistics on the UDFs, and
then run the computation. Or, it may optimize and execute
part of the plan, collecting statistics on the result of the par-
tial plan, followed by a re-optimization step, with the process
repeated as needed. Monsoon decides how to interleave ex-
ecution and statistics collection in a principled fashion by
formalizing the problem as a Markov decision process.

ACM Reference Format:
Sourav Sikdar and Chris Jermaine. 2020. MONSOON: Multi-Step
Optimization and Execution of Queries with Partially Obscured
Predicates. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20), June 14–19, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3318464.3389728

1 INTRODUCTION
User-defined functions (UDFs) in modern SQL and Big Data
processing systems such as Spark [46]—that offer API bind-
ings in high-level languages such as Python or Scala—pose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389728

many challenges [37]. One major challenge is that it is dif-
ficult to perform cost-based optimization over UDFs. For
example, consider the following PySpark code:
docNameAndText = validLines.map

(lambda x : (x[x.index('id="') + 4 :
x.index('" url=')], x]))

docInfo = docNameAndText.join (docInfo)
docInfoWithAuthor = docInfo.map

(lambda x : (x[1][1][x[1][1].index(
'author="') + 7 : x[1][1].index(
'" id=')], (x[1][0], x[1][1])))

docAndAuthorInfo = docInfoWithAuthor.join
(authorInfo)

This code first extracts a document name from each docu-
ment in a large text corpus (stored in the RDD validLines),
and then joins validLines (on the document name) with the
docInfo data set. The code then extracts each document’s
author and joins the result (on the author name) with the
authorInfo data set. Because the system is aware that there
are two equi-joins but is unaware what the arguments to the
joins are due to the presence of UDFs, these joins are said to
make use of partially obscured predicates.
Modern cost-based optimizers require statistics on the

underlying data, such as the number of distinct document
names in validLines and docInfo, so that they can estimate
the size of the resulting join. If these statistics depend upon
non-trivial code that includes API calls (like x.index()),
obtaining these statistics from a static analysis of the code
can be quite difficult.
One way to optimize a computation that contains such

black-box UDF functions is to execute the UDFs over the
data, and count the statistics on the resulting data. If the
UDF is applied to the input data in one pass, then the re-
sult can be pipelined into a probabilistic counting [44] or
sketching algorithm [22] to compute required statistics, such
as distinct value counts. However, there are some problems
with this. First, executing the UDF and counting the results
can add a significant overhead to the computation. For some
computations—for example, a join of a huge table with a
small table where the output from the join cannot be much
larger than the input—the statistics may not really matter.
It may be best to simply run the computation rather than
paying the cost of first computing accurate statistics.

https://doi.org/10.1145/3318464.3389728
https://doi.org/10.1145/3318464.3389728
https://doi.org/10.1145/3318464.3389728

A second problem is that collecting statistics before exe-
cution is not a universal solution to the problem, as it may
be the case that some UDFs do not even take the base data
as input. For example, consider an SQL query of the form:

SELECT ∗
FROM R, S, T, ...
WHERE F1 (R, S) = F2 (T) AND ...

Here, it is not possible to compute statistics for F1 until
after a join of R and S has been performed because F1 takes
attributes from both sets as input.

Balancing Exploration and Execution. In this paper, we
describe an optimizer called Monsoon (Multi-Step Optimiza-
tion and executiON) that is able to decide when it is better to
be safe and collect statistics on the number of distinct values
returned by a UDF—and pay the cost to materialize and scan
an intermediate result (or one of the inputs)—and when it is
better to be bold and simply guess at and run a reasonable
plan. Monsoon is able to execute a computation in a series
of steps, running part of the computation, observing some
statistics, then re-planning and executing once again.

To interleave execution and statistics collection in a princi-
pled fashion, we model the problem of iteratively executing
a partial plan and collecting statistics as a Markov decision
process (MDP) [23, 34]. The MDP models the uncertainty in
the output of a UDF using a prior on the number of distinct
values. Query optimization is performed not by dynamic
programming, as in a classical relational system, but using
Monte Carlo tree search (MCTS) [9, 27].

Classically, interleaved query planning and execution has
been used to correct or avoid errors made by the optimizer
cost model [4, 6, 15, 25]. In contrast, Monsoon assumes a
correct cost model and uses interleaved execution in order
to collect statistics that are unknown at optimization time.
Ideas related to Monsoon have been explored before; Mi-
crosoft SQLServer, for example, can partially execute a query
to materialize and collect accurate statistics on table-valued
functions [1], and subsequently resume optimization and
execution of the remaining operations. Our goal is to de-
sign a principled framework within which such iterative
optimization and execution can take place.

Our Contributions. Specific contributions are:

• We introduce the idea of using an MDP and MDP
solver as a method for handling UDFs in Big Data
and relational computations. Our methods provide a
framework for optimizing computations that contain
UDF functions whose statistics are unknown.

• We carefully examine the empirical effect of different
priors, and propose a general purpose, “spike and slab”
prior that works well on a variety of benchmarks.

• While our focus is on data processing in the presence
of UDFs, the ideas described in this paper could, in
principal, be applied to any scenario where statistics
are missing at optimization time [13, 14], or when car-
dinality estimation is challenging due to the presence
of correlations or heavy skew.

2 EXAMPLE AND MOTIVATION
2.1 UDFs and Logical Query Optimization
We are interested in the optimization of multi-table (or multi-
set) queries where statistics over one (and sometimes all) of
the attributes referenced in the underlying computation are
unavailable, typically because the predicate(s) evaluated by
the computation are partially obscured by the presence of
UDFs.

For example, imagine a Spark SQL query over two Python
DataSets. One of the DataSets describes customer orders, the
second describes online sessions. The order DataSet has a
data structure containing all of the items purchased in the
order. The goal is to find potentially fraudulent orders by
finding pairs of identical orders placed on a specific date
by pairs of customers who logged on from the same city
(the city is extracted from the sessions’ IP address). The
corresponding SQL query is:

SELECT c1.name, c2.name
FROM order o1, order o2, sess s1, sess s2

Intersection (o1.items, o2.items) =
Union (o1.items, o2.items) AND
ExtractDate (o1.when) = '1/11/19' AND
ExtractDate (o2.when) = '1/11/19' AND
o1.cID = s1.cID AND o2.cID = s2.cID AND
o1.cID <> o2.cID AND
City (s1.ipAdd) = City (s2.ipAdd)

Any reasonable plan will probably first filter each instance
of the order DataSet on the specified date. The next action
is unclear. We could compute a cross product over the two
instances of order, filtering and accepting only those pairs
with matching sets of items, followed by a pair of joins with
sess. This gives the plan ((o1 × o2) Z s1) Z s2, with a
final filter for City (s1.ipAdd) = City (s2.ipAdd). Or,
one could filter o1 and o2, then join each with sess, giving
(o1 Z s1) Z (o2 Z s2). The plan would finish with a final
filter checking for the equality of o1.items and o2.items.
If a customer has many sessions, and the predicate City

(s1.ipAdd) = City (s2.ipAdd) is not selective, it may be
much better to run the cross product first (before the joins
with sess have a chance to increase the number of order
pairs to check) meaning the first plan is preferred. If things
are reversed (the check for equality is not selective, but the
check for the same city is), the second plan is preferred.

The presence of UDFs clearly makes it very difficult to
choose between these options. If all UDFs present in a query
are over a single set, then a viable solution is to evaluate
each UDF during a pre-processing step, and then compute
the number of distinct values (and the heavy hitters i.e., most
common values with their frequencies, if needed [2]). Then,
the query can be optimized and executed in the traditional
fashion. This can be expensive, rendering an overall execu-
tion time that is higher than necessary. Sometimes, it may be
better to simply run the query using a (possibly) poor plan,
and “take our chances", rather than undertaking the expense
of scanning the sets and applying the user-defined func-
tions beforehand. Furthermore, this simple tactic becomes
problematic in the case of multi-table UDFs, as it requires
sampling from a join or a cross-product.

2.2 A Bayesian Approach
The problem is that it is not clear whether it is better to collect
the statistics before (or during) query execution, or to just
execute and try our luck. We aim to build a query optimizer
that is able to intelligently choose among such options. Our
approach takes a Bayesian view of the problem, modeling
uncertainty as probability. That is, we allow for a prior on
the number of distinct values output by each user-defined
function, and given such a prior, we choose a sequence of
actions so as to minimize the expected overall execution time.
In practice, we find that choosing a prior that works well in
most cases does not require much engineering effort.

Given the various priors, the simplest sequence of actions
would be to simply choose a logical plan for the query, and
then execute the plan, even if many of the distinct values are
unknown. However, this most likely will be a sub-optimal
strategy. Thus, we also allow the system to materialize the
result of subcomputations needed to perform the overall
computation, and then compute statistics over those inter-
mediate results, using the computed statistics to optimize the
rest of the computation. The simplest example of this is per-
forming a scan over one or more of the input sets to collect
statistics before the computation begins. Under certain cir-
cumstances (such as when a user-defined function is defined
over multiple input sets), such statistics collection will hap-
pen later in the computation. But in other situations, the best
execution plan may involve executing a series of subcom-
putations, collecting statistics over each and re-optimizing
after each statistics collection.
Note that this approach resembles classical mid-query

re-optimization [6, 25] in that a query is run as a series of
planning and execution steps. However, this classical work
assumes that all parameters (cardinalities, distributions, his-
tograms, etc.) required for query optimization are known
before compilation, and a classical optimizer can be invoked

𝑑 (F2, S) 𝑑 (F4, T) Optimal Plan Int. Tuples
1 1 Both 10 million
1 10000 ((R Z T) Z S) 1 million

10000 1 ((R Z S) Z T) 1 million
10000 10000 Both 1 million

Table 1: Enumerating attribute cardinalities.

as is to generate a query plan. The execution of the query
plan is subsequently monitored to correct or avoid errors
made by the optimizer cost model. In contrast, our goal is to
use interleaved execution in order to collect statistics that
are unknown at optimization time.

2.3 Optimal Multi-Step Execution
For an example of how one may choose whether to collect
statistics early on, or to just guess at a reasonable join order
and see what happens, consider the following SQL query.

SELECT SUM(R.a)
FROM R, S, T
WHERE F1 (R) = F2 (S) AND F3 (R) = F4 (T)
We have the following statistics on the size of the inputs:

• 𝑐 (R) = 1000000
• 𝑐 (S) = 10000
• 𝑐 (T) = 10000

Andwe have the following priors on the number of distinct
values output by each UDF:

• Pr(𝑑 (F1, R) = 1000) = 1.0
• Pr(𝑑 (F2, S) = 1) = 0.5
Pr(𝑑 (F2, S) = 10000) = 0.5

• Pr(𝑑 (F3, R) = 1000) = 1.0
• Pr(𝑑 (F4, T) = 1) = 0.5
Pr(𝑑 (F4, T) = 10000) = 0.5

Without considering physical implementations, the opti-
mizer has three equivalent logical plans to choose from:
((R Z S) Z T), ((R Z T) Z S) and ((S × T) Z R).
Most optimizers would avoid the plan ((S × T) Z R),

involving a cross product between S and T. The plan is likely
to be sub-optimal as the cross product produces 100 million
objects. Hence, the optimizer is left with choice between one
of the two plans ((R Z S) Z T) and ((R Z T) Z S).

Given the prior described above, Table 1 shows the differ-
ent possibilities for the domain cardinalities, along with the
corresponding optimal plan and the number of intermediate
objects generated by the first join in each of those plans,
assuming the classical cost model for join result size holds
[19, 38]. Subsequently, we assume that the cost of a plan is
the number of intermediate objects produced, though other,
more sophisticated metrics are certainly possible.
We want our optimizer to evaluate the merits of various

possibilities, whether it is better to collect statistics on some

sets, or to just guess at a reasonable join order based on
the priors. Imagine that the optimizer simply guesses the
join order ((R Z S) Z T) based on priors, without additional
statistics. In three out of the four aforementioned scenarios, it
turns out to be the optimal plan. However, in one of the cases
(row 2 of Table 1), it is a sub-optimal plan. Again assuming
that the classical join cost model, it will produce 10 million
intermediate objects, which is 10× the number of objects
produced by the optimal plan. Similarly, choosing the join
order ((R Z T) Z S), can produce 10× the number of objects
produced by the optimal plan if we fall in row 3 of Table 1.
Note that the classical notion of least-expected cost opti-

mization [13, 14] is not particularly helpful here. Both the
second and third rows in the table have the same expected
number of intermediate objects.
As an alternative, imagine the optimizer chooses to scan

the set S and collect statistics on 𝑑 (F2, S). If the domain cardi-
nality is revealed to be 10000, then the optimizer can choose
an optimal join order ((R Z S) Z T) with certainty. In con-
trast, if the domain cardinality is revealed to be 1, the opti-
mizer can again choose an optimal join order ((R Z T) Z S)
with certainty. By paying an additional cost of scanning and
collecting additional statistics, we can ensure that the opti-
mizer chooses the optimal plan for all four possible scenarios.
A similar case can be argued in favor of scanning the set T
and collecting statistics on 𝑑 (F4, T).

Scanning either S or T to collect statistics and then optimiz-
ing based upon those statistics is the strategy with the lowest
expected cost among all query plans. Excluding the cost to
write the final result, and the cost to scan the input data, the
expected cost of either plan is 104 + 0.25(107) + 0.75(106)
(that is, for the cost of scanning 104 objects and computing
statistics, we are assured an optimal plan). In contrast, the
best plan that does not scan either S or T has expected cost
0.5(107) + 0.5(106)—nearly twice as large—as it has a 50%
chance of picking a terrible plan.

3 BACKGROUND
3.1 Problem Scope
Consider the following simplified grammar for the Boolean
expression appearing in the WHERE clause of a query:

boolExp → boolExp boolOp boolExp

| funcEval | value compOp value

value → attRef | const | funcEval

Here, boolOp refers to AND or OR, funcEval refers to the eval-
uation of a UDF, compOp refers to >, =, etc., attRef is a
reference to an attribute, and const is a constant value.
A predicate constructed using this grammar is partially

obscured if it utilizes the production rule value → funcEval.

We constrast this with a fully obscured predicate which uti-
lizes the production rule boolExp → funcEval. Optimizing
for such predicates likely involves semantic analysis of the
predicate’s code [17, 18, 35, 36] to translate them into equiv-
alent relational algebra expressions. Such analysis can be
difficult in the general case, where the code for the UDF
may not even be available (for example, the UDF may be
compiled into a shared library that is dynamically loaded
by the system). In the remainder of the paper, without loss
of generality, we assume a purely relational system with
an SQL programming interface (the ideas in the paper are
easily extended to systems such as Spark [46] or our own
PlinyCompute [48]).

Also without loss of generality, we assume that all values
referenced in the WHERE clause of the query are produced by
UDFs. If they are not, and statistics on a referenced function
are available, this can be handled within our framework
by simply initializing the optimization problem so that any
relevant statistics are known.
To keep the scope of the paper manageable, we consider

join ordering. Physical optimization is left to future work.

3.2 QO as a Decision Process
A sequential decision process describes a setting in which a
fixed set of choices are available to an agent, but the effects
of those choices are not completely known. Choosing the
best action requires planning. Often the immediate effects of
an action are easy to gauge but the long term effects are not
obvious. Actions that produce immediate rewards can have
debilitating future effects. The goal in a decision process is
to trade-off immediate gains versus future rewards, to yield
the best possible solution.
Query optimization for computations with opaque UDFs

can be seen as a sequential decision process, where at every
step the optimizer needs to choose from a set of available
actions, like composing two RA expressions to produce a
more complicated expression, or choosing to execute a RA
expression and materialize the result to collect its statistics,
where the impact of such decisions might only be visible
much later. Our goal is to build an optimizer that can weigh
such different actions and plan accordingly.

We are not the first to view query optimization as a deci-
sion process [28, 31, 32, 42]. Notably, there has been a flurry
of recent work that views the classical query optimization
problem as a decision process where the task of choosing
a join order is cast as a series of sequential decisions that
build up a query plan. This recent work uses a sequential
formulation of query optimization to permit the application
reinforcement learning (RL) algorithms [39] to the problem
of query optimization, with the hope that RL can solve some
of the problems that have long plagued optimizers, such

as the exponential running time of dynamic programming
optimizers [38], or the inaccuracy in cost models [24].

Our own motivation (and formulation) is different. We are
specifically interested in optimizing queries with partially-
obscured predicates. These are queries for which we have
too little information to optimize in the traditional manner, as
opposed to learning to optimize queries in a workload.

3.3 Review of MDPs
AMarkov decision processes (MDP) [23, 34] is a special type
of sequential decision process. Since we cast the optimization
problem over partially-obscured predicates as an MDP, we
briefly review MDPs now.
An MDP is a tuple ⟨Σ, 𝐴,𝑇 , 𝑅,𝛾⟩. A state 𝑠 ∈ Σ is a de-

scription of the environment at a particular point in time.
An agent navigates in the state space Σ by making decisions
from the action set𝐴 (alternatively, from𝐴𝑠 , the set of actions
available from state 𝑠 ∈ Σ).
The dynamics of the underlying system are modeled by

transition probabilities 𝑇 : Σ ×𝐴 × Σ → [0, 1] and a reward
structure 𝑅 : Σ × 𝐴 × Σ → R, as follows: when, at time
tick 𝑡 , the agent chooses action 𝑎𝑡 ∈ 𝐴𝑠 , in state 𝑠𝑡 ∈ Σ,
then, with probability 𝑇 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) it makes a transition to
the next state 𝑠𝑡+1 and receives a reward 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). This
happens independently of the history of the states, actions,
and rewards—the Markov property. Finally, the discount
factor 𝛾 ∈ [0, 1] balances the importance of future rewards
compared to present rewards.

The solution of an MDP is a policy 𝜋 : Σ → 𝐴: a function
𝜋 that specifies the action 𝜋 (𝑠) that the agent will choose
in state 𝑠 . The policy “controls” the actions of the agent as
it moves from state to state. In general, the goal is to try to
choose a policy that will tend to increase the rewards that
the agent will receive. From start state 𝑠0 expected reward
for policy 𝜋 is computed as

𝑉 𝜋 (𝑠0) = 𝐸

[∞∑
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
��𝜋]

“Solving” an MDP requires computing a policy 𝜋∗ that
maximizes expected long-term reward:

𝜋∗ = argmax
𝜋

𝑉 𝜋 (𝑠0)

That is, the goal is to choose a policy 𝜋∗ that, out of all
possible policies, maximizes the expected reward that the
agent will receive as it transitions from state to state.

4 MDP FORMULATION
To define our particular MDP, we must describe the states,
actions, transitions, and rewards that constitute the decision
process. In this section, we describe our MDP in detail.

4.1 States
In an MDP, a state is a description of the environment at a
particular point in time. During optimization and execution
of a query, the current state consists of three sets,

• A set of RA expressions (or partial plans) R𝑝 that have
been constructed so far, but not executed yet (the sub-
script 𝑝 denotes “planned”).

• A set of executed and materialized RA expressions R𝑒

(the subscript 𝑒 denotes “executed”).
• A set of statistics S on materialized RA expression (or
input data sets).

For example, re-consider the example of Section 2.3. Ini-
tially, R𝑝 is empty, as we have not yet developed any plans.
Initially, R𝑒 is the set {R, S, T}, as each of these input sets has
presumably been materialized and is ready to be processed.
And initially, S contains whatever statistics are available
on the expressions in R𝑒—we assume that the all input set
sizes are available—so we may have S = {𝑐 (R) = 106, 𝑐 (S) =
104, 𝑐 (T) = 104}. If we happen to have distinct values counts
(the other type of statistic available), we may also have the
item 𝑑 (F1 (R)) = 103 in S, indicating that there are a thou-
sand distinct values for F1 (R).

Later on, imagine that we have executed and materialized
RA expression (R Z T). At this point, R𝑝 is still empty,
R𝑒 = {R, S, T, (R Z T)}, as (R Z T) has now been executed.
S may contain additional statistics on the result of R Z T.

4.2 Actions
The actions available can be categorized in two classes:

• We can modify the set of unexecuted plans R𝑝 . This
corresponds to query planning.

• We can execute the RA expressions in R𝑝 .
The various modifications toR𝑝 each correspond to taking

another step in building a query plan. At a high level, there
are two categories of modifications to R𝑝 : first, we can add
to R𝑝 a subplan that is topped with a statistics collection
operator, and second, we can choose to join two existing
expressions.

Here are the two options for applying a statistics collection
operator to the output of an expression:
(1) We can copy a RA expression 𝑟 from R𝑒 to R𝑝 , and

apply the Σ operator—the statistics collection operator–
to it. When Σ(𝑟) is executed, it computes the number
of distinct values returned by 𝑟 for all UDFs that are ref-
erenced in the query to be optimized. If the optimizer
makes this move, it has decided to collect statistics on
(the materialized) RA expression 𝑟 .

(2) We can replace an RA expression 𝑟 from R𝑝 with Σ(𝑟).
If the optimizer makes this move, it has decided that it
will materialize 𝑟 and collect statistics on it.

And here are the three options that correspond to deciding
to join two expressions:
(1) For two RA expressions 𝑟1 and 𝑟2 from R𝑒 , we add

(𝑟1 Z 𝑟2) to R𝑝 . This move corresponds to deciding to
join two already-materialized expressions.

(2) We replace two RA expressions 𝑟1 and 𝑟2 from R𝑝—
neither of which contains the statistics collection op-
erator Σ—with (𝑟1 Z 𝑟2). This move corresponds to
deciding to join two not-yet-materialized expressions.
Note that we cannot join two expressions when one
of them is topped by a statistics collection operator.

(3) Finally, for 𝑟1 ∈ R𝑒 and 𝑟2 ∈ R𝑝 where 𝑟2 does not
contain the statistics collection operator Σ, we replace
𝑟2 ∈ R𝑝 with (𝑟1 Z 𝑟2). This corresponds to joining a
materialized and not-yet-materialized expression.

The final move that the optimizer can make is to decide to
execute and materialize each of the expressions in R𝑝 . As we
describe in detail subsequently, this has the effect of moving
all expressions in R𝑝 to R𝑒 .

4.3 Transitions
Overview:How transitions affect the state.As described
above, there are two types of actions that the optimizer can
take. The first type of action simply modifies the current
plan, by (for example) deciding to join two expressions. Plan
modifications are always deterministic. Thus, each of the
actions described above that modifies the set of RA expres-
sions that we plan to execute initiates a deterministic state
transition that simply modifies R𝑝 .
The second type of action—materializing each of the ex-

pressions in R𝑝—results in a (partially) non-deterministic
state transition. Note that even in this second case, a por-
tion of the transition is deterministic. As each of the plans
in R𝑝 are executed, this has the effect of moving the plan
from R𝑝 to R𝑒 .1 However, execution and materialization also
results in a non-deterministic update to the set of statistics,
as statistics regarding the executed plans are observed. Prior
to execution and materialization of a join expression such
as 𝑟 = 𝑟1 Z 𝑟2, we have some idea (quantified as a prior
distribution) as to the value of the statistics describing 𝑟 ,
but the actual execution of 𝑟 “hardens” the statistics over 𝑟 ,
non-deterministically assigning them an actual value.

There are two types of statistics that are non-deterministically
added to S as the result of an execution:

• For each RA expression 𝑟 from R𝑝 where 𝑟 does not
have a statistics collection operator Σ at the top of the
plan, 𝑐 (𝑟) is added to S.

1Note that if a plan has a statistics collection operator at its top, this is
removed before the plan is added into R𝑒 , as it is assumed that when an
expression is executed and statistics are collected, the result of executing
the expression is materialized before statistics collection.

• For each expression 𝑟 with a statistics collection op-
erator at the top, an object count for 𝑟 is added to S.
Also, a distinct value count is added to S, computed
over each “useful” expression over 𝑟 . This is described
in more detail subsequently.

Statistical model: distinct value counts and set sizes.
We use a simple model where the size of a join is assumed to
depend (deterministically) on the number of distinct values
for the joined function and the size of the sets being joined.
The number of objects returned from a selection predicate
is assumed to depend (deterministically) on the number of
distinct values for the function(s) appearing in the selection
clause and the size of the input set. For example, consider an
RA expression of the form

𝑟 = (𝑟1 ZF1 (𝑟1)=F2 (𝑟2) 𝑟2) (1)

Define the number of objects returned by 𝑟1 and 𝑟2 as 𝑐 (𝑟1)
and 𝑐 (𝑟2), respectively. Define 𝑑 (F1, 𝑟1 |𝑟2) to be the number
of distinct values for F1 (𝑟1) computed with respect to the join
with 𝑟2. Define 𝑑 (F2, 𝑟2 |𝑟1) similarly. Then the size of the join
is assumed to be:

𝑐 (𝑟) = 𝑐 (𝑟1)𝑐 (𝑟2)
max(𝑑 (F1, 𝑟1 |𝑟2), 𝑑 (F2, 𝑟2 |𝑟1))

(2)

It may seem curious to the reader that we have chosen to
define a number of distinct values for an RA expression “with
respect to” a particular join. After all, the number of distinct
values for F1 (𝑟1) is the same, regardless of which RA expres-
sion 𝑟1 is being joined with. However, our expectation as to
the number of distinct values may be different, depending
upon what expression we are joining with. For example, we
know that in practice, foreign key joins are common. If the
join in question happens to be a foreign key join from 𝑟1 to
𝑟2, then the number of distinct values for F1 will be bounded
by 𝑐 (𝑟2). Hence, in a WHERE clause like:

WHERE F1 (R) = F2 (S) AND F1 (R) = F3 (T)
we may have a different expectation as to the number of
distinct values for F1 (R), depending on whether we are com-
puting R Z S or R Z T or R Z (S Z T). We could attempt to
somehow reconcile these different expectations into a single
value, but instead we take the simple approach of treating
these two distinct value counts as being different quantities:
𝑑 (F1, R|S), 𝑑 (F1, R|T) and 𝑑 (F1, R|SZT).

In our MDP, the expectation as to the number of distinct
values for the expression F1 (𝑟1) computed with respect to a
join like 𝑟1 ZF1 (𝑟1)=F2 (𝑟2) 𝑟2 is quantified via a prior distribu-
tion over 𝑑 (F , 𝑟1 |𝑟2), taking the form:

𝑓 (𝑑 (F1, 𝑟1 |𝑟2) | 𝑐 (𝑟1), 𝑐 (𝑟2))
Note that the distribution of the number of distinct values for
F1 (𝑟1) with respect to a join with 𝑟2 takes two parameters:

𝑐 (𝑟1) and 𝑐 (𝑟2) (the number of tuples returned by 𝑟1 and
𝑟2, respectively). Why parameterize the distribution in this
way? Our goal is to allow a reasonable model for the number
of distinct values for F1 (𝑟1) in the join 𝑟1 ZF1 (𝑟1)=F2 (𝑟2) 𝑟2,
and any model for the number of distinct values should
probably take into account at least one of 𝑐 (𝑟1) or 𝑐 (𝑟2).
If F1 (𝑟1) is a key for 𝑟1, the number of distinct values for
this expression is 𝑐 (𝑟1). If it is a foreign key referencing
F2 (𝑟2), the number of distinct values is bounded by 𝑐 (𝑟2).
The number of distinct values for F1 (𝑟1) cannot exceed 𝑐 (𝑟1).
We will examine precise choices for this distribution later in
the paper, but it is clear that we should allow the distribution
to be parameterized on 𝑐 (𝑟1) and 𝑐 (𝑟2).
Finally, we note that distinct value counts for predicates

of the form:

WHERE F (R) = 12

are handled similarly, with a prior taking the form:

𝑓 (𝑑 (F , R) | 𝑐 (R)).
Here, we parameterize the prior on the number of distinct
values for F (𝑟) on 𝑐 (𝑟), as the number of distinct values is
upper-bounded by 𝑐 (𝑟). To estimate the selectivity of such a
predicate, we use the classical formula:

𝑐 (F (R) = 12) = 1
𝑑 (F , R) .

Updating the set of statistics.Given such a prior, the ques-
tion is: how to update the set of statistics S to facilitate a
state transition? It is not always as simple as just sampling
from the prior, since the state transition may be complicated,
involving the execution of a non-trivial plan. For example,
imagine the MDP is in the following state when the planned
RA expressions are executed: R𝑝 = {((R Z T) Z S)},
R𝑒 = {R, S, T}, and S = {𝑐 (R) = 106, 𝑐 (S) = 104, 𝑐 (T) = 104}.
In this case, we must add the count 𝑐 ((R Z T) Z S) to S.
This quantity depends on the distinct value counts associ-
ated with the join predicate linking (R Z T) to S, as well
as the sizes of (R Z T) and S. The distinct value counts for
the join predicate can be sampled from the prior provided
as input to the MDP, and 𝑐 (S) is already in S. However, the
size of (R Z T) is not in S. Thus, this needs to be recursively
generated before we can add 𝑐 ((R Z T) Z S) to S.
The algorithm to recursively generate 𝑐 (𝑟) for an RA ex-

pression of the form 𝑟 = (𝑟1 ZF1 (𝑟1)=F2 (𝑟2) 𝑟2) in R𝑝 is as
follows:
(1) If the count 𝑐 (𝑟) is already in S, return.
(2) Otherwise, if the number of objects 𝑐 (𝑟1) and 𝑐 (𝑟2)

returned by 𝑟1 or 𝑟2, respectively, are not in S, recur-
sively generate them.

(3) If 𝑑1 = 𝑑 (F1, 𝑟1 |𝑟2) is not in S,
then sample 𝑑1 ∼ 𝑓 (𝑑 (F1, 𝑟1 |𝑟2) |𝑐 (𝑟1), 𝑐 (𝑟2)).

(4) Likewise, if 𝑑2 = 𝑑 (F2, 𝑟2 |𝑟1) is not in S, then sample
𝑑2 ∼ 𝑓 (𝑑 (F2, 𝑟2 |𝑟1) |𝑐 (𝑟2), 𝑐 (𝑟1)).

(5) Lastly, compute 𝑐 (𝑟) as a function of 𝑐 (𝑟1), 𝑐 (𝑟2), 𝑑1,
and 𝑑2 and add to S.

In the case that the RA expression 𝑟 is topped with the
statistics collection operator Σ, we first generate 𝑐 (𝑟) as de-
scribed above, and then sample a value for 𝑑 (F , 𝑟 |𝑠) from
𝑓 (𝑑 (F , 𝑟 |𝑠) |𝑐 (𝑟), 𝑐 (𝑠)) for each “useful” RA expression 𝑠 . Here
a “useful” expression 𝑠 is one that could possibly be joined
with 𝑟 . For example, reconsider the WHERE clause with predi-
cateF1 (R) =F2 (S) ANDF1 (R) =F3 (T).With respect to𝑑 (F , R|𝑠),
𝑠 would be “useful” for 𝑠 = S and 𝑠 = T and 𝑠 = (S Z T).

4.4 Rewards
The reward function maps each underlying state-action-state
triple onto an immediate reward. In our case, it is more in-
tuitive to consider cost, rather than reward. The cost of a
transition from state 𝑆1 to state 𝑆2 is the total number of ob-
jects that were processed in order to execute and materialize
all of the RA expressions found in R𝑝 in 𝑆1. We could use a
more sophisticated cost function (especially if Monsoon was
used to perform simultaneous logical and physical optimiza-
tion; see the Conclusion section of the paper), but we find
that object counts work well for logical optimization.
More formally, to cost the state transition from 𝑆1 to 𝑆2,

consider R𝑝 and R𝑒 from 𝑆1, as well as the set of statistics S
in 𝑆2. For an RA expression that is not topped by the statistics
collection operator Σ, compute cost(𝑟) as:

• If 𝑟 in R𝑒 , simply return 𝑐 (𝑟) from S.
• Otherwise, we know that 𝑟 must take the form (𝑟1 Z
𝑟2). So return 𝑐 (𝑟) + cost(𝑟1) + cost(𝑟2). Note that ei-
ther cost(𝑟1) or cost(𝑟2) (or both) may need to be eval-
uated recursively.

Finally, the cost for an RA expression that is topped by the
statistics collection operator Σ, cost(Σ(𝑟)) = 𝑐 (𝑟)+ cost(𝑟).
Intuitively, we are assuming that statistics collection requires
another pass through the data.

Then, the overall reward of the state transition is computed
as the negation of the cost of each of the individual RA
expressions that were computed in R𝑝 :∑

𝑟 ∈R𝑝

−cost(𝑟)

Given this MDP, the “best” query optimizer is the one
that, given a state, always makes the same choice as the
optimal policy 𝜋∗. That is, it always makes the choice that
maximizes the long-term cumulative reward (or minimizes
the long-term cumulative cost).

R𝑝 = {}
R𝑒 = {R, S, T}

R𝑝 = {R Z S} R𝑝 = {R Z T} R𝑝 = {˚(S)} R𝑝 = {˚(T)}

R𝑝 =

{(R Z S) Z T}
R𝑝 =

{(R Z T) Z S}

S =

{d(F2, S) = 1}
S =

{d(F2, S) = 104}

R𝑝 = {R Z S}

R𝑝 =

{(R Z S) Z T}

S =

{d(F2, S) = 1,
d(F4, T) = 1}

S =

{d(F2, S) = 1,
d(F4, T) = 104}

S =

{d(F2, S) = 104,
d(F4, T) = 1}

S =

{d(F2, S) = 104,
d(F4, T) = 104}

Start

R Z S
R Z T

Σ(S)
Σ(T)

EXECUTE . . .

. . .

0.5
0.5(R Z S) Z T (R Z T) Z S

EXECUTE EXECUTE

0.25 0.25 0.25

0.25

0.25

0.25

0.25

0.25

R Z S

R Z T

(R Z S) Z T

EXECUTE

0.5 0.5

. . .

Figure 1: A pictorial example of an MDP.

4.5 Example MDP
We now revisit the query we discussed in Section 2.3. Figure
1 shows the (partial) MDP corresponding to this optimization
problem. Note that to keep the figure readable, we have left
out states, as well as some details.
We begin in a start state, where R𝑝 is empty and R𝑒 con-

tains {R, S, T}. At this point, we have six options (though
only four are shown); we can add any two-way join to R𝑝 ,
or we can add any of the expressions from R𝑒 to R𝑝 , topped
with a statistics collection operator.

Imagine that we add Σ(S) to R𝑝 . Now, we can add addi-
tional RA expressions to R𝑝 , or we can choose to EXECUTE

the plan in R𝑝 . In this case, according to the prior in Section
2.3, there is a 50% chance that the number of distinct values
for F2 evaluated over Σ(S) is 1, and a 50% chance it is 104.
Imagine that it is 104. We can choose to add (R Z S) Z T

to R𝑝 , through two steps, and then EXECUTE. In this case,
depending upon the statistic 𝑑 (F4, T), there are two final
outcomes, either of which has a cost of one million (since
one million intermediate objects were produced).

5 IMPLEMENTATION
5.1 Solving the MDP via MCTS
There are many methods to solve for 𝜋∗, the policy that
maximizes the expected reward. Our query optimizer uses
Monte-Carlo tree search (MCTS) [9, 27], a popular online
planner, as its MDP solver (online means that the planner
attempts to compute the optimal policy from a given state
only after entering into the state). MCTS combines best-first
graph traversal and Monte-Carlo evaluation of the reward
associated with a particular decision. MCTS uses a simulator
for the MDP to generate a sequence of state-action pairs until
eventually, a goal state is reached. This is called a rollout or
an iteration. Since the incurred cost (or reward) for each
rollout is well-defined, the cost for a state-action pair, (𝑠, 𝑎)
can be approximated by averaging the rewards of many such
rollouts. Paired with selection algorithms [27, 39] to manage
the exploration/exploitation trade-off, MCTS can guarantee
asymptotic convergence to the optimal policy.
To find a near optimal action from a state, MCTS con-

structs a search tree, starting from the current state as root.
This tree incrementally grows into the direction of the most
promising actions, which are determined by the rewards of
the Monte-Carlo rollouts starting with these actions. MCTS
works by repeating the following steps until a predefined
number of iterations (or rollouts) are exhausted:
(1) Selection: Starting from the root node, a selection pol-

icy is recursively applied to traverse the tree until an
expandable node is reached. A node is expandable if it
is a nonterminal state and has unvisited children.

(2) Expansion: One child node is added to the selected
node to expand the tree, according to the actions.

(3) Simulation: A simulation or rollout is run from the new
node according to a predefined policy until a terminal
or goal state is reached.

(4) Backpropagation: The cumulative reward of the rollout
is back-propagated to update the value estimates of all
the state-action pairs.

As soon as the predefined number of iterations are reached,
the search terminates and the select the action with the
highest cumulative reward is selected. Subsequently, this
action is performed in the “real world”, a state transition is
observed, and planning begins again. Note that in our MDP,

only the execution of the set of RA expressions in R𝑝 has an
effect in the real world; all other actions deterministically
change the set of expressions in R𝑝 .

Balancing exploration and exploitation. To implement
MCTS, a choice needs to be made regarding the selection
strategy, that can balance between exploitation of actions
with very high values and exploration of actions with uncer-
tain values. In our implementation, we try out two different,
state of the art selection strategies.
The first is upper confidence bound for trees (UCT) [27].

UCT maintains two variables per state-action pair: a counter
depicting the number of times it has been visited, and the
average normalized reward (normalized to the range [0, 1])
for this state-action pair. UCT always selects the child node 𝑐
that maximizes 𝑟𝑐+𝑤×

√
log(𝑣𝑝)/𝑣𝑐 , where is 𝑟𝑐 is the average

cumulative reward for the child node, 𝑣𝑝 and 𝑣𝑐 are the visited
counters for the parent and child node respectively, and𝑤 is
a domain-specific weight factor (in our implementation, we
choose, 𝑤 =

√
2). The first term allows for exploitation, as

it promotes children with high reward. The second allows
exploration and promotes the children visited the least.
The second is 𝜖-greedy [39, 40]. In an 𝜖-greedy strategy,

the best action is selected with probability (1 − 𝜖), while
a random action is selected with probability 𝜖 . The initial
value is set to 𝜖 = 1 (promoting exploration), which is then
adaptively decreased [40] with progress in number of iter-
ations to promote exploitation. A lower threshold is used
(𝜖 = 0.1) to prevent purely exploitative behavior.

5.2 Designing Priors
Our query-planning MDP fundamentally depends on the
prior 𝑓 (𝑑 (F , 𝑟 |𝑠) |𝑐 (𝑟), 𝑐 (𝑠)). The wrong prior can result in
the optimizer making very poor choices. In theory, this prior
can take any form, and many choices are possible. In this
subsection, we design a set of simple candidate priors, that
will be evaluated subsequently.

In the closest existing work, least expected-cost optimiza-
tion [13, 14], priors for key statistics are constructed either
from previous query workload information (an objective
prior) or by a domain expert (a subjective prior). However,
neither seems particularly palatable to us. Queries using
UDFs are often executed only once, or when they are exe-
cuted many times, it is on evolving or brand new data sets
[37] and so workload information may be hard to come by.
Further, we want our optimizer to applicable “out of the box”,
with little or no human involvement or domain expertise.

Hence, our tactic is slightly different. We design a set of
simple, general-purpose priors or magic distributions [5],
tune them on a set of validation queries—where “tuning”
means trying different parameter values so that the prior

0.0 0.2 0.4 0.6 0.8 1.0

Number of distinct values / c(r)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

Uniform
Increasing
Decreasing
U-Shaped
Low Biased

Figure 2: Five of the seven prior distributions.
gives good results during validation—and then experimen-
tally evaluate those priors on a test set. Then, we will choose
the best prior based upon those experiments, and evaluate the
resulting optimizer under several different scenarios. Note
that dataset specific priors [5] can be constructed for Mon-
soon, using pre-computed (or online samples) collected from
the database. Such tailored priors would possibly outperform
a generic prior or a “magic distribution”.

Here are the simple, general-purpose priors we design for
𝑓 (𝑑 (F , 𝑟 |𝑠) |𝑐 (𝑟), 𝑐 (𝑠)):
Uniform. This is the simplest prior, and assumes that the
number of distinct values is a random value chosen uniformly
between 1 and 𝑐 (𝑟).
Increasing. This is an optimistic prior, in the sense that it
assumes that there are usually a large number of distinct
values returned by F , which tends to cut down the number
of tuples returned by RA expressions that reference F . In
particular, we assume that 𝑑 (F , 𝑟 |𝑠) is produced by first sam-
pling from a Beta(3, 1) distribution, multiplying the result
by 𝑐 (𝑟), and taking the ceiling of the result. Using this prior
assumes queries return few results.

Decreasing. This is a pessimistic prior, assuming that there
are a small number of distinct values, tending to lead to
very large query results. An optimizer using this prior as-
sumes the worst by replacing the Beta(3, 1) distribution in
the Increasing prior with a Beta(1, 3) distribution.
U-shaped. This prior assumes that the number of distinct
values tends to be either low or high, but not in the middle.
Here, we use a Beta(.5, .5) distribution.
Low-biased. This is similar to the decreasing prior, but we
do not want to be too pessimistic; we expect that the number
of distinct values is not going to be too tiny. Here we use a
Beta(2, 10) distribution.

Spike and slab. Here, there is a 80% chance that 𝑑 (F , 𝑟 |𝑠)
is sampled from a uniform prior. However, we know that in
practice, foreign key joins are common. So, this prior assumes
that there is a 10% chance that the number of distinct values
is 𝑐 (𝑟) (this is a foreign key join from 𝑠 into 𝑟), and a 10%
chance that the number of distinct values is 𝑐 (𝑠) (this is a
foreign key join from 𝑟 into 𝑠).

Discrete. A discrete prior consists of a finite number of pre-
defined values [14]. Here, we evaluate a prior that assumes,
distinct count is always 10% of the row count, 𝑑 (F , 𝑟 |𝑠) =
0.1 × 𝑐 (𝑟).
The first five priors are plotted in Figure 2.

5.3 Postgres Implementation
The primary application of the ideas in this paper is optimiza-
tion over predicates that have been partially obscured by the
presence of UDFs. Such UDFs are arguably more common
in modern Big Data systems (such as Spark) compared to
classical relational systems. Still, we decided to prototype the
Monsoon optimizer on top of a relational engine (Postgres)
rather than a Big Data system. There are two reasons for
this. First, as we describe now, Monsoon works together with
(rather than in place of) an existing optimizer, and the Post-
gres optimizer is arguably more mature and robust than the
optimizer available in a system such as Spark, hence Postgres
is a more attractive target. Second, an alternative approach
(SkinnerDB [41, 42]) has also been implemented on top of
Postgres, allowing for an apples-to-apples comparison.
One of the benefits of our proposed methodology is that

it requires few (or no) changes to an existing system’s op-
timizer and execution engine, and our on-top-of-Postgres
implementation of Monsoon is in-keeping with this goal.
Monsoon works with the existing Postgres optimizer and
execution engine and requires few changes to either.
Given a query, our optimizer begins by using MCTS to

modify the set of planned RA expressions, R𝑝 . Once the
MCTS requests an EXECUTE operation, all of the RA expres-
sions inR𝑝 are executed, by Postgres, in sequence. TheMCTS
prescribes a join order for each RA expression that Postgres
is not allowed to change, but otherwise, the Postgres opti-
mizer is used without modification to optimize and execute
the query (including the choice of a physical plan) however it
chooses. If any RA expression in R𝑝 has a statistics collection
operator on top, Postgres’ statistics collection facility is used
to collect statistics on the result of the RA expression after
Postgres has executed the query, and those collected statis-
tics are added to the set of observed statistics S, as well as to
the Postgres system catalog to be used during optimization
and execution of subsequent RA expressions.
After the first EXECUTE operation, our optimizer again

performs a sequence of MCTS iterations, until once again

MCTS prescribes an EXECUTE operation. Again, Postgres is
used to execute all of the RA expressions in R𝑝 and statistics
are updated. This process is repeated until query completion.

6 EVALUATION
6.1 Goals and Scope
Our evaluation consists of two sets of experiments.
The goal of the first set of experiments is to determine

what effect, if any, the choice of a prior on distinct value
counts has on the performance of the optimizer, and to indi-
cate the appropriate prior for use in the optimizer.

The goal of the second set of experiments is to determine
whether there is an advantage to using the Monsoon op-
timizer to optimize and execute queries compared to a set
of reasonable alternatives, when cardinality estimates are
unavailable due to the presence of UDFs.

6.2 Experimental Design
6.2.1 Choice of Prior. The first set of experiments aim to
determine themost appropriate prior for use inMonsoon.We
use the TPC-H benchmark and data generator [3], restricted
to only those queries that have a non-trivial join ordering
problem (at least three tables). We use a scale-factor 100
TPC-H database, approximately 100GB in size.

We also create three skewed TPC-H benchmark sets [11].
The skewed TPC-H data generator provides a parameter to
control the degree of Zipfian skew 𝑧. The greater the values
of 𝑧, the more the skew in the generated data. We test three
options; low skew (𝑧 = 1), high skew (𝑧 = 4), and mixed (the
skew in each column is selected uniformly at random from
the range zero through four).

Over these data sets, we evaluate Monsoon using each of
the seven priors suggested in Section 5.2.

6.2.2 Comparison with Other Optimizers. The second set
of experiments compare Monsoon with a set of reasonable
alternatives for optimizing and executing queries in an envi-
ronment where predicates are partially obscured by UDFs.
These options are:

(1) Postgres/full statistics collection on demand. Simply com-
pute a full set of required statistics after the query is issued,
but before the query is optimized. To implement this, we use
state of the art HyperLogLog(HLL) sketches [22] to estimate
distinct value counts before optimization. Only the required
statistics for the tables and attributes that participate in the
predicates of a query are collected. We subsequently refer to
this option as “On Demand”.

(2) Postgres/Sampling. Without statistics, one may sample
from the base tables before optimization, estimate statistics
over the samples, and use those statistics. The closest work

to this is DYNO [26], which proposed sampling based pilot
runs for statistics collection over UDFs defined over base
tables—but did not consider selectivities for UDFs that are
applied on results of joins. Designing a solution that con-
siders selectivities for multi-table UDFs is challenging, and
to the best of our knowledge, it has not been well-explored
in the literature. In our implementation, at runtime we use
block-based sampling to sample 2% of each base table, up
to a maximum of 200,000 tuples, and use the algorithms of
Charikar et. al [8] to estimate distinct value counts from the
samples. For multi-table UDFs, we materialize at most one
million tuples from the product of the subsamples, applying
the multi-table UDF to the materialized tuples to estimate
distinct value counts. For efficiency, we use block-based sam-
pling. We refer to this option as “Sampling”.

(3) Postgres/Greedy. One option is to build a left-deep query
plan using only set sizes, but no other statistical information.
We call this the greedy optimizer. Starting with the set with
smallest size, greedy repeatedly joins the next largest table
that does not introduce a cross product (unless necessary),
until all tables are exhausted. Joining small sets first may
ensure that intermediate results are small. We subsequently
refer to this option as “Greedy.”

(4) Postgres/Defaults.When no statistics are available, a tactic
employed by optimizers is to use default values or to make
reasonable guesses, such as assuming that distinct count of
an attribute equals 10% of the row count. We evaluate an op-
timizer that uses default cardinalities and subsequently refer
to this strategy as “Defaults”. Many data management sys-
tems, including Postgres, resort to such ad-hoc estimations
or magic constants in the absence of statistics [30].

(5) Postgres/Skinner DB. SkinnerDB [41, 42], eschews classical,
cardinality based cost models and thus requires no statistics.
SkinnerDB learns an optimal left-deep query plan in an on-
line fashion during the execution of each query. There are
different variants that either make the assumption that a set
of self-similar queries are repeatedly issued over a database
with static schema and data (Skinner-H) or require a custom
execution engine (Skinner-C), and try to learn join orders
over the workload. Skinner-G makes no such assumptions
and is capable of handling specialized queries on ad hoc
datasets, with no statistics available beforehand; hence, it is
directly applicable to our problem. Since SkinnerDB relies
on online query processing—not supported by modern rela-
tional engines—it runs best when implemented from scratch
on top of a specialized engine. However, a Postgres-based
implementation is available. 2 We subsequently refer to this
option as “SkinnerDB.”

2Skinner-G was generously made available by Immanuel Trummer.

(6) Postgres/Monsoon. We evaluate our Postgres-based imple-
mentation of the Monsoon optimizer; the implementation
was described in Section 5.3 of the paper. We subsequently
refer to this option as “Monsoon.”

(7) Baseline: relational engine, full stats. As a baseline, we also
run Postgres with full statistics collection done offline, and
not counted on the optimizer running time. This shows us
how well Postgres could do, if it had access to full statistics.
We subsequently refer to this option as “Postgres”.

For a fair comparison, the different optimizers use only dis-
tinct value and tuple counts, when applicable. For exam-
ple, “On Demand” and “Monsoon” only collect distinct value
counts using HLL sketches [22]. PostgreSQL’s native sta-
tistics collection functionality is not used because it col-
lects more sophisticated statistics like frequencies for heavy-
hitters, histograms for non-heavy hitters, etc.

Benchmarks. We evaluate these seven options on three
different query optimization benchmarks.

(1) IMDB. This popular query optimization benchmark is
based on the Internet Movie Data Base (IMDB), a real-
world data-set. The benefit of using such a data set is that it
contains many correlations and non-uniform data distribu-
tions. Leis et. al. proposed the IMDB Join Order Benchmark
by normalizing the IMDB data-set into 21 tables and creat-
ing a suite of 113 realistic queries [29, 30]. Since the IMDB
database is relatively small (3.9 GB), we create a larger data-
base by making each table five times larger by bootstrap
resampling from the underlying table. That is, for a table
with 𝑛 tuples, we create a new version of the table with 5×𝑛

tuples by sampling 5 × 𝑛 times from the original table, with
replacement. The resulting database is 20 GB in size.

Note that the IMDB benchmark (and the OTT benchmark
described below) do not contain partially obscured predicates
or UDFs. However, if a system is forced to operate without
statistics (or collect them at runtime) it is a reasonable proxy
for a UDF-heavy workload where statistics are unavailable
due to the presence of UDFs.

(2) OTTs.Wu et. al. proposed the correlated Optimizer Tor-
ture Tests (OTTs) in [45] – a principled approach to cre-
ating corner-case queries that are specifically difficult for
cardinality-estimation-based query optimizers.
We created an OTT database 3 by augmenting a stan-

dard 100 GB TPC-H database with two additional correlated
columns. We also created a suite of 20 artificial queries by
following the instructions in Section 5.3 of [45]. The final
result of each query is empty. However, in the worst case
the optimizer can end up generating billions of intermediate
tuples. It is possible to manually identify the join predicate(s)

3The OTT data generator was obtained from Wentao Wu.

that would produce an empty result. An early evaluation of
such an empty join predicate is preferred; hence, as a base-
line, we implement the best hand-written left deep query
plans for the OTT queries.

(3) UDF. Finally, to evaluate our optimizer on a UDF-heavy
benchmark, we created a set of UDFs including few multi-
table UDFs that operate over strings, and designed a set of
25 queries 4 that exclusively use these UDFs for join and
selection predicates. 15 of the queries were selected from the
IMDB join benchmark, and are directly translated from that
benchmark. The remaining 10 were queries over the TPC-
H benchmark that were designed to present a difficult join
order problem. The UDFs used are relatively inexpensive.
We leave the study of expensive predicates [12, 21] as an
important direction for future work.
Note that computing statistics over multi-table UDFs re-

quirematerializing cross-products or joins. The “OnDemand”
option becomes prohibitively expensive. The “Postgres” op-
tion with all statistics (including multi-table UDFs) known
beforehand is also unrealistic. Hence, these two options have
been dropped for this benchmark.

Timeouts. We expect the various optimizers to periodically
fail to produce a reasonable plan, and may take hours or
days to execute (or crash the system). We set a timeout of
20 minutes. When a timeout occurs, we do not report an
average time on a benchmark.

Setup. Experiments are run on an Amazon EC2 c5d.9xlarge
instance which has 36 vCPU cores, 72 GB RAM and 900 GB
of SSD hard disks running with Ubuntu Linux 14.04 LTS. We
use Postgres 9.5.16. We follow the best practices mentioned
in the literature [30] for benchmarking optimizers.

6.3 Results
Table 2 gives the results of executing the TPC-H benchmark
with the Monsoon optimizer, using each of the seven prior
distributions from Section 5.2. Since the “Spike and Slab”
prior seems to consistently be one of the top choices, we
choose this prior for the remainder of the experiments.
Tables 3 and 6 give the mean, median, and max query

execution times over the IMDB and OTT benchmarks, re-
spectively. In Table 5, we give the execution times for the 20
longest-running queries on the IMDB benchmark. In Table
4, we indicate how often each method gives a running time
less than 90% or greater than 110% of Postgres on IMDB.

Table 7 gives similar results for the UDF benchmark. Figure
3 gives similar results in a plot, where the time of each of
the 25 benchmark queries is depicted for each of the four
optimization options. The queries are sorted from low to
high time required to execute the queries using Monsoon.
4https://bitbucket.org/sikdarsourav/monsoonqueries

Implementation TPC-H Low High Mixed

Uniform 430.68 370.07 386.36 N/A
Increasing N/A 442.61 398.43 376.04
Decreasing 381.25 416.97 315.02 N/A
U-Shaped N/A N/A 339.42 402.54
Low Biased 405.44 475.29 320.96 427.78
Spike and Slab 378.46 374.94 348.60 396.43
Discrete 408.67 422.71 326.18 429.03

Table 2: Average query execution time (in seconds) for
different priors on TPC-H benchmark queries. “Low",
“High", “Mixed" refer to different degrees of skew.
“N/A” means that one of the queries timed out, so an
average could not be computed.

Implementation TO Mean Median Max

Postgres 0 151.26 33.30 1004.72
Defaults 2 N/A 37.24 TO
Greedy 7 N/A 55.02 TO
Monsoon 0 164.83 49.29 964.41
On Demand 0 213.99 101.58 1112.35
Sampling 1 N/A 35.27 TO
SkinnerDB 35 N/A 1200 TO

Table 3: Performance (seconds) on the 20GB IMDB
database. “TO” means “timeout”.

Impl. < 0.9 [0.9,1.1) >1.1

Defaults 20% 33.33% 46.67%
Greedy 16.67% 23.33% 60%
Monsoon 21.67% 25% 53.33%
On Demand 8.33% 8.33% 83.34%
Sampling 18.33% 20% 61.67%
SkinnerDB 0% 1.67% 98.33%

Table 4: Relative performance of different implemen-
tations compared to baseline Postgres (with full statis-
tics) on the 20GB IMDB database.

Finally, in Table 8 we show the breakdown of the average
time taken by different components of the Monsoon opti-
mizer: time required for MCTS, time required to execute
statistics collection when ordered by the optimizer, and time
required to implement the various relational expressions.

6.4 Discussion and Recommendations
Given all of these results, what would we recommend? First
off, SkinnerDB does poorly in all of our experiments. This
is not an indictment of the SkinnerDB approach. The main
problem is that SkinnerDB is not a standalone optimizer;
it is a complete data processing system. SkinnerDB relies

Implementation TO Mean Median Max

Postgres 0 404.36 257.77 1004.73
Defaults 2 N/A 382.83 TO
Greedy 7 N/A 860.92 TO
Monsoon 0 410.43 240.86 964.41
On Demand 0 492.99 470.21 1112.35
Sampling 1 N/A 287.41 TO
SkinnerDB 19 N/A 1200 TO

Table 5: Performance (seconds) of different implemen-
tations on the 20 most expensive IMDB Join Order
Benchmark queries. “TO” means “timeout”.

Implementation TO Mean Median Max

Hand-written 0 5.73 5.39 8.93
Postgres 4 N/A 164.78 TO
Defaults 8 N/A 167.44 TO
Greedy 8 N/A 5.24 TO
Monsoon 3 N/A 103.35 TO
On Demand 2 N/A 523.41 TO
Sampling 2 N/A 179.49 TO

Table 6: Performance (seconds) on the Optimizer Tor-
ture Tests. “TO” means “timeout”.

Implementation TO Mean Median Max

Defaults 3 NA 40.67 TO
Greedy 4 NA 57.96 TO
Monsoon 0 46.37 26.23 195.35
Sampling 0 48.96 24.36 152.77
SkinnerDB 22 NA 1200 TO

Table 7: Performance (seconds) of different implemen-
tations on Queries with UDFs. “TO” means “timeout”.

Benchmark MCTS Σ Execution

IMDB (20GB) 2.77 2.05 160.01
IMDB-20 (20GB) 3.33 4.05 403.05
OTT 2.14 1.45 245.27
UDF 3.41 4.43 38.53

Table 8: Average time (seconds) taken by different
components of the Monsoon optimizer.

on incremental processing, where it partially runs an opera-
tion, such as a join order, and makes a decision as to what
to do next based upon the partial results. As such, it really
needs to be implemented from the ground up, and not on
top of an existing database (such as Postgres) that does not
directly support incremental processing. As the authors of
the SkinnerDB paper show in their paper, a ground-up imple-
mentation can be highly performant. But as an optimizer for

0 5 10 15 20 25

Queries

101

102

103

T
im

e
(s

ec
on

ds
)

SkinnerDB
Monsoon
Greedy
Defaults
Sampling

Figure 3: Performance of different implementations
on queries with UDFs.

a batch data processing system (such as Postgres or Spark),
it may not be the best choice.

On the IMDB queries, “classical” Postgres (with statistics)
generally does the best. This is not surprising. But if UDFs are
present, there are four options: Defaults, Sampling, Greedy,
and Monsoon. In contrast to these four, On-Demand is not
a universal option, as it cannot handle multi-table UDFs
(without materializing cross-products) and regardless, it is
generally dominated byMonsoon and Sampling. On-Demand
results in runtimes that are (in terms of themedian) 2× slower
than Monsoon on the IMDB queries.
Greedy has serious problems with timeouts on all the

benchmarks (it fails on eight of the OTT benchmark queries,
seven IMDB queries and four of the UDF queries). As such, it
is probably not a good choice. This leaves Defaults, Sampling,
and Monsoon.
Defaults does surprisingly well. In terms of median time,

it does an excellent job. It does best compared to Postgres
in terms of matching Postgres performance on IMDB (Table
4). Probably the biggest problem with the Defaults option is
that it has issues with timeouts. In particular, it fails on eight
of the OTT benchmark queries (it also fails on two IMDB
queries and three of the UDF queries). Onemay argue that the
OTT benchmark is somewhat artificial, but we believe that
the results call into question the robustness of the Defaults
option. This matches intuition: choosing default cardinalities
will usually give the right answer, but it will occasionally
be very wrong. Since query optimization is most concerned
with avoiding bad plans (as opposed to choosing the best
plan), we argue against this choice.

Sampling or Monsoon? On IMDB, the two options had
similar performance (see Table 4). Monsoon was better on
the tougher queries, Sampling on the easier queries. On the

OTT and UDF benchmarks, Monsoon was somewhat faster,
though not dominant. For us, the “tie-breaker” is that Mon-
soon is an universal option. Drawing samples from data can
be difficult or impossible, particularly in a Big Data setting
where input data are often saved to a huge file in JSON, CSV,
or some proprietary interchange format. In such a situation,
it is only feasible to process the file sequentially (or, with
some difficulty, sequentially in parallel [20]) so sampling
will require a full-pass reservoir algorithm [43] before opti-
mization. Under such a circumstance, it is probably a better
option to use a combination of On-Demand (using sketches
for single-table distinct value counts during a full pass) and
sampling (to draw samples from the cross product in the
case of multi-table UDFs). But this requires a sampling oper-
ator to handle multi-table UDFs. Monsoon does not require
a sampling operator, which makes it widely applicable.

7 RELATEDWORK
Classical, relational cost-based query optimization [10, 38] is
offline – the optimizer first performs an exploration among
a large space of semantically equivalent plans for a given
query, and chooses the plan of least cost, followed by exe-
cution. The plan chosen by an offline optimizer can be poor,
primarily due to errors in cardinality estimation [24]. To
alleviate these problems, online optimization, by interleaving
query planning with execution, has been a recurrent theme
in adaptive query processing [4, 6, 15, 25].
In least expected cost optimization [13, 14], parameters

which cannot be accurately estimated at query compile time
are modeled using prior distributions. The goal is to choose
robust plans considering the uncertainty expressed by the
priors. Similar approaches have been proposed with the goal
of finding robust query plans [5, 33].
There has been a flurry of recent work that solves the

classical, relational query optimization using reinforcement
learning [28, 31, 32, 42]. While ReJOIN [32] and DQ [28] uses
deep-reinforcement learning for join ordering for a given
cost model, NEO [31] proposes an end-to-end, continuously
learning solution without any reliance on predefined, hand-
crafted cost model. SkinnerDB [42] tries to learn join orders
in an online fashion in conjunction with learnt join orders
from historical experience.

Our approach connects to prior works that rely on online
statistics collection of some form [7, 26, 47] in big data sys-
tems. Query optimizers for big-data systems often assume
availability of historical statistics [7, 47] from prior work-
loads to generate an initial plan. Subsequently, modifications
are made to this plan online, based on statistics collected
during execution. However, queries with UDFs in big-data
processing systems are often run only once [37], making
such approaches unbefitting. The closest work to ours is

DYNO [26], which proposed sampling based statistics collec-
tion for UDFs as a prelude to optimization and execution. In
relational query optimization, certain approaches completely
eschew the need for prior statistics [16, 42] and we compare
our approach against recently proposed SkinnerDB [42].

Under a per-tuple cost model for fully-obscured predicates,
Chaudhuri and Shim [12] proposed an algorithm for optimal
placement of such predicates.
There have been some recent efforts targeted at translat-

ing imperative UDF code to declarative SQL; this is known as
UDF algebraization [17, 18, 35, 36]. However, it is known
that not all UDFs can be translated [36]. In some general
cases, the code for UDFs may not even be available for se-
mantic analysis (for example, the UDFs may be compiled
into a shared library that is dynamically loaded by the data
processing system). While semantic analysis, whenever ap-
plicable, can alleviate the problem by translating some UDFs,
it is not a replacement for a query optimizer. In general, we
believe an UDF algebraization framework like Froid [35, 36]
can co-exist within the same system as a pre-cursor to a
Monsoon-style optimization framework.

8 CONCLUSIONS
We have described an optimizer called Monsoon, which han-
dles relational and Big Data computations having predicates
that are partially obscured by the presence of opaque UDFs.
Monsoon views the problem of when to collect statistics on
such partially-obscured predicates as a Markov decision pro-
cess (MDP). By solving this MDP, Monsoon decides when
it is better to be safe and collect statistics on the number of
distinct values returned by a UDF, and when it is better to
be bold and simply guess at a reasonable query plan.
There are several avenues for future work. Cost models

are often inaccurate, and the MDP used by Monsoon could
be extended to handle uncertainty in the correctness of the
cost model, as well as uncertainty in statistics. We have only
considered the join order problem in this paper; extending to
other optimization tasks is left to future work. For example,
separating logical and physical optimization can result in
less efficient plans. The Markov decision process we have
defined could be extended to choose physical operators as
well as join orders, with the reward function measuring end-
to-end running time (or CPU time, memory usage, network
latency, or a combination of these).

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive
suggestions. Work presented in this paper has been sup-
ported by NSF under grant Nos. 1409543 and 1910803.

REFERENCES
[1] 2017. Introducing Interleaved Execution for Multi-Statement

Table Valued Functions. (2017). https://blogs.msdn.microsoft.
com/sqlserverstorageengine/2017/04/19/introducing-interleaved-
execution-for-multi-statement-table-valued-functions/

[2] 2019. https://www.postgresql.org/docs/9.3/view-pg-stats.html. (2019).
[3] 2019. TPC. 2013. TPC-H Benchmark. http://www.tpc.org/tpch/. (2019).

http://www.tpc.org/tpch/
[4] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously

Adaptive Query Processing. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’00). ACM,
New York, NY, USA, 261–272. https://doi.org/10.1145/342009.335420

[5] Brian Babcock and Surajit Chaudhuri. 2005. Towards a Robust Query
Optimizer: A Principled and Practical Approach. In Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’05). ACM, New York, NY, USA, 119–130. https://doi.org/10.
1145/1066157.1066172

[6] Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive
Re-optimization. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’05). ACM, New York,
NY, USA, 107–118. https://doi.org/10.1145/1066157.1066171

[7] Nicolas Bruno, Sapna Jain, and Jingren Zhou. 2013. Continuous Cloud-
scale Query Optimization and Processing. Proc. VLDB Endow. 6, 11
(Aug. 2013), 961–972. https://doi.org/10.14778/2536222.2536223

[8] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek
Narasayya. 2000. Towards Estimation Error Guarantees for Distinct
Values. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS ’00). ACM, New
York, NY, USA, 268–279. https://doi.org/10.1145/335168.335230

[9] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck.
2008. Monte-Carlo Tree Search: A New Framework for Game AI. In
Proceedings of the Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference, October 22-24, 2008, Stanford, California,
USA. http://www.aaai.org/Library/AIIDE/2008/aiide08-036.php

[10] Surajit Chaudhuri. 1998. An Overview of Query Optimization in
Relational Systems. In Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS
’98). ACM, New York, NY, USA, 34–43. https://doi.org/10.1145/275487.
275492

[11] Surajit Chaudhuri and Vivek Narasayya. [n.d.].
Program for Generating Skewed Data Distribu-
tions for TPC-D. https://www.microsoft.com/en-
us/download/confirmation.aspx?id=52430. ([n. d.]). https:
//www.microsoft.com/en-us/download/confirmation.aspx?id=52430

[12] Surajit Chaudhuri and Kyuseok Shim. 1999. Optimization of Queries
with User-defined Predicates. ACM Trans. Database Syst. 24, 2 (June
1999), 177–228. https://doi.org/10.1145/320248.320249

[13] Francis Chu, Joseph Halpern, and Johannes Gehrke. 2002. Least Ex-
pected Cost Query Optimization: What Can We Expect?. In Proceed-
ings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS ’02). ACM, New York, NY, USA,
293–302. https://doi.org/10.1145/543613.543651

[14] Francis Chu, Joseph Y. Halpern, and Praveen Seshadri. 1999. Least
Expected Cost Query Optimization: An Exercise in Utility. In Proceed-
ings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS ’99). ACM, New York, NY, USA,
138–147. https://doi.org/10.1145/303976.303990

[15] Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adap-
tive Query Processing. Found. Trends databases 1, 1 (Jan. 2007), 1–140.
https://doi.org/10.1561/1900000001

[16] Anshuman Dutt and Jayant R. Haritsa. 2014. Plan Bouquets: Query
Processing Without Selectivity Estimation. In Proceedings of the 2014

ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’14). ACM, New York, NY, USA, 1039–1050. https://doi.org/10.
1145/2588555.2588566

[17] K. Venkatesh Emani, Tejas Deshpande, Karthik Ramachandra, and S.
Sudarshan. 2017. DBridge: Translating Imperative Code to SQL. In
Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). ACM, New York, NY, USA, 1663–1666. https:
//doi.org/10.1145/3035918.3058747

[18] K. Venkatesh Emani, Karthik Ramachandra, Subhro Bhattacharya,
and S. Sudarshan. 2016. Extracting Equivalent SQL from Imperative
Code in Database Applications. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). ACM, New York,
NY, USA, 1781–1796. https://doi.org/10.1145/2882903.2882926

[19] Hector Garcia-Molina, Jennifer Widom, and Jeffrey D. Ullman. 1999.
Database System Implementation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

[20] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Don-
ald Kossmann. 2019. Speculative Distributed CSV Data Parsing for Big
Data Analytics. In Proceedings of the 2019 International Conference on
Management of Data. ACM, 883–899.

[21] Joseph M. Hellerstein. 1998. Optimization Techniques for Queries
with Expensive Methods. ACM Trans. Database Syst. 23, 2 (June 1998),
113–157. https://doi.org/10.1145/292481.277627

[22] StefanHeule,Marc Nunkesser, andAlexanderHall. 2013. HyperLogLog
in Practice: Algorithmic Engineering of a State of the Art Cardinality
Estimation Algorithm. In Proceedings of the 16th International Confer-
ence on Extending Database Technology (EDBT ’13). ACM, New York,
NY, USA, 683–692. https://doi.org/10.1145/2452376.2452456

[23] R. A. Howard. 1960. Dynamic Programming and Markov Processes. MIT
Press, Cambridge, MA.

[24] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propa-
gation of Errors in the Size of Join Results. In Proceedings of the 1991
ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’91). ACM, New York, NY, USA, 268–277. https://doi.org/10.
1145/115790.115835

[25] Navin Kabra and David J. DeWitt. 1998. Efficient Mid-query Re-
optimization of Sub-optimal Query Execution Plans. SIGMOD Rec. 27,
2 (June 1998), 106–117. https://doi.org/10.1145/276305.276315

[26] Konstantinos Karanasos, Andrey Balmin, Marcel Kutsch, Fatma Ozcan,
Vuk Ercegovac, Chunyang Xia, and Jesse Jackson. 2014. Dynamically
Optimizing Queries over Large Scale Data Platforms. In Proceedings
of the 2014 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’14). ACM, New York, NY, USA, 943–954. https:
//doi.org/10.1145/2588555.2610531

[27] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-
carlo Planning. In Proceedings of the 17th European Conference on
Machine Learning (ECML’06). Springer-Verlag, Berlin, Heidelberg, 282–
293. https://doi.org/10.1007/11871842_29

[28] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, JosephM. Hellerstein,
and Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Re-
inforcement Learning. CoRR abs/1808.03196 (2018). arXiv:1808.03196
http://arxiv.org/abs/1808.03196

[29] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Al-
fons Kemper, and Thomas Neumann. 2015. How Good Are Query
Optimizers, Really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204–215.
https://doi.org/10.14778/2850583.2850594

[30] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter
Boncz, Alfons Kemper, and Thomas Neumann. 2018. Query optimiza-
tion through the looking glass, and what we found running the Join
Order Benchmark. The VLDB Journal 27, 5 (01 Oct 2018), 643–668.
https://doi.org/10.1007/s00778-017-0480-7

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/04/19/introducing-interleaved-execution-for-multi-statement-table-valued-functions/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/04/19/introducing-interleaved-execution-for-multi-statement-table-valued-functions/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2017/04/19/introducing-interleaved-execution-for-multi-statement-table-valued-functions/
http://www.tpc.org/tpch/
https://doi.org/10.1145/342009.335420
https://doi.org/10.1145/1066157.1066172
https://doi.org/10.1145/1066157.1066172
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.14778/2536222.2536223
https://doi.org/10.1145/335168.335230
http://www.aaai.org/Library/AIIDE/2008/aiide08-036.php
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/275487.275492
https://www.microsoft.com/en-us/download/confirmation.aspx?id=52430
https://www.microsoft.com/en-us/download/confirmation.aspx?id=52430
https://doi.org/10.1145/320248.320249
https://doi.org/10.1145/543613.543651
https://doi.org/10.1145/303976.303990
https://doi.org/10.1561/1900000001
https://doi.org/10.1145/2588555.2588566
https://doi.org/10.1145/2588555.2588566
https://doi.org/10.1145/3035918.3058747
https://doi.org/10.1145/3035918.3058747
https://doi.org/10.1145/2882903.2882926
https://doi.org/10.1145/292481.277627
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1145/115790.115835
https://doi.org/10.1145/115790.115835
https://doi.org/10.1145/276305.276315
https://doi.org/10.1145/2588555.2610531
https://doi.org/10.1145/2588555.2610531
https://doi.org/10.1007/11871842_29
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1007/s00778-017-0480-7

[31] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Moham-
mad Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul.
2019. Neo: A Learned Query Optimizer. CoRR abs/1904.03711 (2019).
arXiv:1904.03711 https://arxiv.org/abs/1904.03711

[32] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement
Learning for Join Order Enumeration. In Proceedings of the First In-
ternational Workshop on Exploiting Artificial Intelligence Techniques
for Data Management (aiDM’18). ACM, New York, NY, USA, Article 3,
4 pages. https://doi.org/10.1145/3211954.3211957

[33] Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman,
Hamid Pirahesh, and Miso Cilimdzic. 2004. Robust Query Processing
Through Progressive Optimization. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’04). ACM, New York, NY, USA, 659–670. https://doi.org/10.1145/
1007568.1007642

[34] Martin L. Puterman. 1994.Markov Decision Processes: Discrete Stochastic
Dynamic Programming (1st ed.). John Wiley & Sons, Inc., New York,
NY, USA.

[35] Karthik Ramachandra and Kwanghyun Park. 2019. BlackMagic: Au-
tomatic Inlining of Scalar UDFs into SQL Queries with Froid. Proc.
VLDB Endow. 12, 12 (Aug. 2019), 1810–1813. https://doi.org/10.14778/
3352063.3352072

[36] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan
Halverson, César Galindo-Legaria, and Conor Cunningham. 2017.
Froid: Optimization of Imperative Programs in a Relational Database.
Proc. VLDB Endow. 11, 4 (Dec. 2017), 432–444. https://doi.org/10.1145/
3186728.3164140

[37] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. 2017. Optimization of
Complex Dataflows with User-Defined Functions. ACM Comput. Surv.
50, 3, Article 38 (May 2017), 39 pages. https://doi.org/10.1145/3078752

[38] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. 1979. Access Path Selection in a Relational Database
Management System. In Proceedings of the 1979 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD ’79). ACM, New
York, NY, USA, 23–34. https://doi.org/10.1145/582095.582099

[39] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning -
an introduction. MIT Press. http://www.worldcat.org/oclc/37293240

[40] Michel Tokic. 2010. Adaptive epsilon-Greedy Exploration in Re-
inforcement Learning Based on Value Difference. In KI 2010: Ad-
vances in Artificial Intelligence, 33rd Annual German Conference on
AI, Karlsruhe, Germany, September 21-24, 2010. Proceedings. 203–210.
https://doi.org/10.1007/978-3-642-16111-7_23

[41] Immanuel Trummer, Samuel Moseley, Deepak Maram, Saehan Jo, and
Joseph Antonakakis. 2018. SkinnerDB: Regret-bounded Query Eval-
uation via Reinforcement Learning. Proc. VLDB Endow. 11, 12 (Aug.
2018), 2074–2077. https://doi.org/10.14778/3229863.3236263

[42] Immanuel Trummer, JunxiongWang, Deepak Maram, Samuel Moseley,
Saehan Jo, and Joseph Antonakakis. 2019. SkinnerDB: Regret-Bounded
Query Evaluation via Reinforcement Learning. CoRR abs/1901.05152
(2019). arXiv:1901.05152 http://arxiv.org/abs/1901.05152

[43] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Trans-
actions on Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[44] Kyu-Young Whang, Brad T. Vander-Zanden, and Howard M. Taylor.
1990. A Linear-time Probabilistic Counting Algorithm for Database
Applications. ACM Trans. Database Syst. 15, 2 (June 1990), 208–229.
https://doi.org/10.1145/78922.78925

[45] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-
Based Query Re-Optimization. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). ACM, New York,
NY, USA, 1721–1736. https://doi.org/10.1145/2882903.2882914

[46] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster computing with working
sets. HotCloud 10, 10-10 (2010), 95.

[47] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ron-
nie Chaiken, and Darren Shakib. 2012. SCOPE: Parallel Databases
Meet MapReduce. The VLDB Journal 21, 5 (Oct. 2012), 611–636.
https://doi.org/10.1007/s00778-012-0280-z

[48] Jia Zou, R. Matthew Barnett, Tania Lorido-Botran, Shangyu Luo, Carlos
Monroy, Sourav Sikdar, Kia Teymourian, Binhang Yuan, and Chris
Jermaine. 2018. PlinyCompute: A Platform for High-Performance,
Distributed, Data-Intensive Tool Development. In Proceedings of the
2018 International Conference on Management of Data (SIGMOD ’18).
ACM, NewYork, NY, USA, 1189–1204. https://doi.org/10.1145/3183713.
3196933

http://arxiv.org/abs/1904.03711
https://arxiv.org/abs/1904.03711
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/1007568.1007642
https://doi.org/10.1145/1007568.1007642
https://doi.org/10.14778/3352063.3352072
https://doi.org/10.14778/3352063.3352072
https://doi.org/10.1145/3186728.3164140
https://doi.org/10.1145/3186728.3164140
https://doi.org/10.1145/3078752
https://doi.org/10.1145/582095.582099
http://www.worldcat.org/oclc/37293240
https://doi.org/10.1007/978-3-642-16111-7_23
https://doi.org/10.14778/3229863.3236263
http://arxiv.org/abs/1901.05152
http://arxiv.org/abs/1901.05152
https://doi.org/10.1145/78922.78925
https://doi.org/10.1145/2882903.2882914
https://doi.org/10.1007/s00778-012-0280-z
https://doi.org/10.1145/3183713.3196933
https://doi.org/10.1145/3183713.3196933

	Abstract
	1 Introduction
	2 Example and Motivation
	2.1 UDFs and Logical Query Optimization
	2.2 A Bayesian Approach
	2.3 Optimal Multi-Step Execution

	3 Background
	3.1 Problem Scope
	3.2 QO as a Decision Process
	3.3 Review of MDPs

	4 MDP Formulation
	4.1 States
	4.2 Actions
	4.3 Transitions
	4.4 Rewards
	4.5 Example MDP

	5 Implementation
	5.1 Solving the MDP via MCTS
	5.2 Designing Priors
	5.3 Postgres Implementation

	6 Evaluation
	6.1 Goals and Scope
	6.2 Experimental Design
	6.3 Results
	6.4 Discussion and Recommendations

	7 Related Work
	8 Conclusions
	9 Acknowledgements
	References

