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Abstract
We consider the multi-armed bandit setting with a twist.
Rather than having just one decision maker deciding which
arm to pull in each round, we have n different decision
makers (agents). In the simple stochastic setting, we show
that a “free-riding” agent observing another “self-reliant”
agent can achieve just O(1) regret, as opposed to the regret
lower bound of Ω(log t) when one decision maker is playing in
isolation. This result holds whenever the self-reliant agent’s
strategy satisfies either one of two assumptions: (1) each arm
is pulled at least γ ln t times in expectation for a constant
γ that we compute, or (2) the self-reliant agent achieves
o(t) realized regret with high probability. Both of these
assumptions are satisfied by standard zero-regret algorithms.
Under the second assumption, we further show that the free
rider only needs to observe the number of times each arm is
pulled by the self-reliant agent, and not the rewards realized.

In the linear contextual setting, each arm has a dis-
tribution over parameter vectors, each agent has a context
vector, and the reward realized when an agent pulls an arm
is the inner product of that agent’s context vector with a
parameter vector sampled from the pulled arm’s distribu-
tion. We show that the free rider can achieve O(1) regret
in this setting whenever the free rider’s context is a small
(in L2-norm) linear combination of other agents’ contexts
and all other agents pull each arm Ω(log t) times with high
probability. Again, this condition on the self-reliant players
is satisfied by standard zero-regret algorithms like UCB. We
also prove a number of lower bounds.

1 Introduction

We consider situations where exploitation must be
balanced with exploration in order to obtain optimal
performance. Typically there is a single decision maker
who does this balancing, in order to minimize a quantity
called the regret. In this paper we consider settings
where there are many agents and ask how a single
agent (the free rider) can benefit from the exploration
of other self-reliant agents. For example, competing
pharmaceutical companies might be engaged in research
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for drug discovery. If one of these companies had access
to the research findings of its competitors, it might
greatly reduce its own exploration cost. Of course,
this is an unlikely scenario since intellectual property
is jealously guarded by companies, which points to an
important consideration in modeling such scenarios: the
amount and type of information that one agent is able
to gather about the findings of others.

More realistically, and less consequentially, a recom-
mendation system such as YelpTM makes user ratings of
restaurants publicly available. The assumption underly-
ing such systems is that “the crowd” will explore avail-
able options so that we end up with accurate average
ratings. Many problems of this sort can be modeled us-
ing the formalism of multi-armed bandits. Free riding
also arises in online advertising. Each advertiser may
be modeled as an agent with a context vector describ-
ing its likely customers, and it must choose online niches
in which to advertise. A free rider can take advantage
of competitors’ exploration of niches by monitoring im-
pressions and clickthroughs of their ads. In fact, there
are a number of paid services (WhatRunsWhere, Ad-
beat, SpyFu, etc.) that facilitate this behavior.

Multi-armed bandit problems model decision mak-
ing under uncertainty [15, 12, 5]. Our focus in this paper
will be on the stochastic bandits model where there is
an unknown reward distribution associated with each
arm, and the decision maker has to decide which arm
to pull in each round. Her goal is to minimize regret,
the (expected) difference between the reward of the best
arm and the total reward she obtains. In the extension
to the linear contextual bandits model, each arm i has
an unknown parameter vector θi ∈ Rd for i = 1, . . . , k,
where k is the total number of arms. At round t, a con-
text xt ∈ Rd arrives. The expected reward for pulling
arm i in round t is the inner product 〈θi, xt〉.

In the simple stochastic case, there are two types
of relevant information: the other agents’ actions and
the resulting rewards. In the full-information setting,
the free rider has access to both types of information.
We also consider a partial-information setting where the
free rider can only observe the other agents’ actions. For
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linear contextual bandits, the full-information setting
also includes the context vectors of the other agents.

In our setting, using YelpTM as the running exam-
ple, the k arms correspond to restaurants. Our model
differs from standard bandit models in three significant
ways. First, there are n decision makers rather than
one; in the YelpTM example, each decision maker corre-
sponds to a diner. Upon visiting a restaurant, a diner
samples from a distribution to determine her dining ex-
perience. In the stochastic setting, we assume that all
diners have identical criteria for assessing their experi-
ences, meaning that identical samples lead to identical
rewards. Second, in the linear contextual setting, the
contexts in our model are fixed in time and can be re-
garded as the types of the individual decision makers.
Each diner’s context vector represents the weight she
assigns to various features (parameters) of a restaurant,
such as innovativeness, decor, noise level, suitability for
vegetarians, etc. Third, each arm has a distribution over
parameter vectors instead of a fixed parameter vector.
When a diner visits a restaurant, her reward is deter-
mined by taking the inner product of her context with a
parameter vector drawn from the restaurant’s distribu-
tion, rather than by adding sub-Gaussian noise to the
inner product with a fixed parameter vector as in the
standard model.

In the standard stochastic or linear contextual ban-
dit setting, a decision-making algorithm is called zero-
regret if its regret over t rounds is o(t). It is well
known that exploration is essential for achieving zero
regret [12]. One algorithm that achieves the asymptot-
ically optimal regret bound of O(log t) over t rounds
is the so-called Upper Confidence Bound (UCB) algo-
rithm of Lai and Robbins [12]. In addition to maintain-
ing a sample mean for each arm, this algorithm main-
tains confidence intervals around these means, where
the width of the confidence interval for arm i drops
roughly as 1/

√
ni where ni is the number of times arm i

has been pulled so far. The UCB algorithm then selects
the arm with the highest upper limit to its confidence
interval. There are many other zero-regret strategies,
such as Thompson sampling [16] or one where an ini-
tial round-robin exploration phase is followed by an ex-
ploitation phase in which the apparently optimal arm is
pulled [8].

Our results:

• In the stochastic setting a free rider can achieve
O(1) regret under either of two reasonable assump-
tions, both of which are satisfied by standard zero-
regret algorithms:

– Some self-reliant agent has pulled each arm
at least γ ln t times in expectation at all suf-

ficiently large times t, where γ is a constant
derived from our analysis (Theorem 4.1).

– Some self-reliant agent is playing a strategy
that with high probability achieves o(t) re-
alized regret. In this case, the free rider
can achieve O(1) regret even in the partial-
information setting (Theorem 4.2). As a corol-
lary, a free rider can achieve O(1) regret when-
ever a self-reliant agent plays UCB (Corol-
lary 4.1).

• For linear contextual bandits, a free rider can again
achieve O(1) regret in the full-information setting
under an assumption similar to the first assumption
above (Theorem 5.1).

• As a way of relating the two assumptions in the
first bullet above, we prove that if a self-reliant
agent achieves O(t1−ε) regret, then that agent
must pull each arm Ω(log t) times in expectation
(Theorem 3.1) and with a high probability that
depends on ε (Theorem 3.2).

• There is a deterministic lower bound of Ω(log t) on
the number of times a UCB agent must pull each
arm in the stochastic case (Theorem 3.3).

• To achieve o(log t) regret in the contextual setting,
the free rider must know both the contexts and the
observed rewards of the other agents (Theorems 5.2
and 5.3).

Related work: This paper asks how and when an
agent may avoid doing their “fair share” of exploration.
Several recent works have studied how the cost of ex-
ploration in multi-armed bandit problems is distributed,
from the perspective of algorithmic fairness. Works by
Bastani, Bayati, and Khosravi [2]; Kannan, Morgen-
stern, Roth, Waggoner, and Wu [9]; and Raghavan,
Slivkins, Vaughan, and Wu [14] show that if the data
is sufficiently diverse, e.g., if the contexts are randomly
perturbed, then exploration may not be necessary. Celis
and Salehi [7] consider a model in both the stochastic
and the adversarial setting where each agent in the net-
work plays a certain zero-regret algorithm (UCB in the
stochastic setting and EXP3 in the adversarial setting)
and study how much information an agent can gather
from his neighbors.

There is some discussion in the economics literature
of free riding in bandit settings. In the model of Bolton
and Harris [3], agents choose what fraction of each time
unit to devote to a safe action (exploitation) and to
a risky action (exploration), and they show that while
the attraction of free riding drives agents to select the
safe action always, risky action by a agent may enable
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everyone to converge to the correct posterior belief
faster. Keller, Rady, and Cripps [10] consider a very
similar setting where a risky arm will generates positive
payoff after an exponentially distributed random time;
they characterize unique symmetric equilibrium as well
as various asymmetric equilibria. Klein [11] gives
conditions for complete learning in a two-agent, three-
armed bandit setting where there are two negatively-
correlated risky arms and a safe arm, with further
assumptions about their behavior. It is clear that these
models do not support having more than two arms
(or three in the case of [11]) and that their goal is
maximizing expected reward, not minimizing regret.
Moreover, one arm is explicitly designated as the safe
arm and the other(s) as risky, a priori.

2 Preliminaries

Stochastic Model There are k arms, indexed by [k] =
{1, . . . , k} and n players or agents, indexed by [n]. Arm
i has a reward distribution Di supported on [−1, 1]
with mean µi, and D = (D1, . . . , Dk) is the reward
distribution profile, or the stochastic bandit. The arm
with the highest mean reward is denoted by

i∗ = arg max
i∈[k]

µi ,

and we write µ∗ for µi∗ ; we assume that i∗ is unique.
An important parameter is

∆ = µ∗ − max
i∈[k]\{i∗}

µi ,

the gap between optimal and suboptimal arms.
In round t = 1, 2, . . ., each player p selects an arm

itp ∈ [k] and receives a reward rtp ∼ Ditp
. We write

HT = ((itp, r
t
p)t∈[T ])p∈[n]

to denote the history of all players’ actions and rewards
through round T . A policy or strategy for a player p
is a function fp mapping each history to an arm or to
a distribution over the arms; a player p with policy fp
who observes history HT will pull arm fp(H

T ) in round
T+1. A policy profile is a vector f = (f1, . . . , fn), where
each fp is a policy for player p. Notice that a policy
profile and a stochastic bandit together determine a
distribution on histories. A policy fp for player p is self-
reliant if it depends only on p’s own observed actions
and rewards. In contrast, a free-riding policy may use
all players’ history.

The regret of player p at time T under stochastic
bandit D is

RTp (D, f) = Tµ∗ −
∑
t∈[T ]

E[rtp] ,

where the expectation is according to the distribution
on histories determined by D and f .1 When it will not
introduce ambiguity, we simply write RTp or, in single-

player settings, RT . We also consider the realized regret
under a particular history HT ,

R̂Tp (D, f) = Tµ∗ −
∑
t∈[T ]

rtp .

For any player p, arm i, and time t, the sample
count is N t

p,i, the number of times i has been pulled by
the player in the first t rounds, and the sample mean
is µtp,i, the average of all of player p’s samples of arm i
through time t.

One well-studied self-reliant policy that achieves
logarithmic regret in the stochastic setting is called α-
UCB [12], defined by

α-UCB(Ht) = arg max
i∈[k]

µti +

√
α ln(t+ 1)

2N t
i

for all histories Ht. The parameter α calibrates the
balance between exploration and exploitation. For each
arm i, a player using this policy maintains an upper
confidence bound on µi, and in each round, she pulls
the arm with the highest upper confidence bound. The
distance from each arm’s sample mean to its upper
confidence bound depends its sample count.

Linear Contextual Model The linear contextual
model generalizes the stochastic model. Now, each
arm i has a feature distribution Fi supported on the
d-dimensional closed unit ball, for some d ∈ N, and
F = (F1, . . . , Fk) is the feature distribution profile or
contextual bandit. Each player p has a context xp ∈ Rd,
and x = (x1, . . . , xn) is the context profile. As before,
in each round t, each player p selects an arm itp, but
now the reward is given by sampling a feature vector
θtp ∼ Fitp , and taking its inner product with xp, i.e.,

rtp = 〈θtp, xp〉. Dp,i is the distribution of rewards from
arm i for player p, and the mean of this distribution is

µp,i = E
θi∼Fi

[〈θi, xp〉] .

The optimal arm for player p is

i∗p = arg max
i∈k

µp,i .

Histories, policies, policy profiles, self-reliance, and
free riding are defined exactly as in the stochastic
setting. The regret of player p through round T ∈ N

1Some sources refer to this quantity as pseudo-regret and use
regret to refer to the realized regret.
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under contextual bandit F, context profile x, and policy
profile f is given by

RTp (F,x, f) = Tµ∗p −
∑
t∈[T ]

E[rtp] ,

where the expectation is taken according to the distri-
bution determined by F, x, and f . Notice that for a self-
reliant player p with context xp, the contextual bandit
F = (F1, . . . , Fk) is equivalent to the stochastic bandit
D = (Dp,1, . . . , Dp,k).

3 Lower Bounds on Sample Counts

If a self-reliant player has sampled an arm sufficiently
many times, then a free rider with full information can
use those samples to find a good estimate of that arm’s
mean. In this section, we give three lower bounds on
the sample counts of each arm. All missing proofs can
be found in the appendix.

Theorem 3.1 shows that if a policy guarantees
O(T 1−ε) regret for some positive ε, then every arm must
be sampled Ω(log T ) times in expectation. We prove
this using the method of Bubeck, Perchet, and Rigol-
let [6], showing via the Bretagnolle-Huber inequality [4]
that the learner cannot rule out any arm’s optimality
without sampling that arm Ω(log T ) times.

Theorem 3.1. Let f be any self-reliant policy such that
RT = O(T 1−ε) for all stochastic bandits and some ε > 0.
Then for all stochastic bandits with µ∗ < 1 and all
i ∈ [k], f satisfies E[NT

i ] = Ω(log T ).

In addition to a bound on the expected sample
count, we sometimes need stronger guarantees on the
tail of the sample count distribution. In Theorem 3.2,
we use a coupling argument to show that if a policy
has regret O(T 1−β) for relatively large β, then the
probability that any arm that is sampled too few times
is small.

Theorem 3.2. Let f be any self-reliant policy such that
RT = O(T 1−β) for all stochastic bandits and some
β > 0. Then for all stochastic bandits with µ∗ < 1,
all i ∈ [k], and all γ > 0, f satisfies

Pr
(
NT
i ≤ γ lnT

)
= O

(
T γci−β

)
,

where ci = ln
(

1−µ∗
2(1−µi)

)
.

Proof. Let α, β, γ, t0 > 0, and let f be a self-reliant
policy such that for all stochastic bandits D and all
T > t0, RT (D, f) ≤ αT 1−β . Let t1 ≥ t0 satisfy
γ ln t1 < t1/2. Assume for contradiction that there is

some stochastic bandit D with µ∗ < 1, some arm i ∈ [k],
and some T > t1 such that

Pr
(
NT
i (D, f) ≤ γ lnT

)
>

Cα

T β+γ ln pi
,(3.1)

where C = 2
min{∆,(1−µ∗)/2} and pi = 1−µ∗

2(1−µi) .

Observe that if i is the optimal arm in D, then since
γ ln pi < 0, we have

RT (D, f) > ∆ · (T − γ lnT ) · Cα

T β+γ ln pi

≥ ∆ · (T − γ lnT ) · CαT−β

≥ αT 1−β ,

contradicting the assumption that RT (D, f) ≤ αT 1−β .
Hence, we assume that i is suboptimal.

We now construct a stochastic bandit D′ in which
i is optimal. Let D′ = (D1, . . . , D

′
i, . . . , Dk), where

D′i(x) = pi ·Di(x) + 1− pi

for all x ∈ [−1, 1]. Notice that the mean of D′i is

µ′i = 1+µ∗

2 , and that the gap between optimal and

suboptimal arms in D′ is ∆′ = µ′i − µ∗ = 1−µ∗
2 .

We now use a coupling argument to bound
Pr
(
NT
i (D′, f) ≤ γ lnT

)
. Observe that to sample from

D′i, one can sample a reward x ∼ Di, keep x with prob-
ability pi, and otherwise output 1. Thus, for any history
h in which i is pulled exactly s times,

Pr
(
HT (D′, f) = h

)
≥ psi · Pr

(
HT (D, f) = h

)
.

By summing over all such histories, we have

Pr
(
NT
i (D′, f) = s

)
≥ psi · Pr

(
NT
i (D, f) = s

)
,

and therefore

Pr
(
NT
i (D′, f) ≤ γ lnT

)
=

bγ lnTc∑
s=0

Pr
(
NT
i (D′, f) = s

)
≥
bγ lnTc∑
s=0

psi · Pr
(
NT
i (D, f) = s

)
≥ pγ lnT

i

bγ lnTc∑
s=0

Pr
(
NT
i (D, f) = s

)
= T γ ln pi · Pr

(
NT
i (D, f) ≤ γ lnT

)
.

Combining this bound with inequality (3.1) yields

Pr
(
NT
i (D′, f) ≤ γ ln(T )

)
> T γ ln pi · Cα

T β+γ ln pi

= CαT−β .
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Thus,

RT (D′, f) > CαT−β · (T − γ lnT ) · 1− µ∗

2

≥ αT 1−β ,

which again contradicts the assumed regret bound on
f .

Finally, we use a delicate inductive argument to
prove the following deterministic guarantee on the sam-
ple count for each arm when the arms are pulled accord-
ing to the α-UCB policy.

Theorem 3.3. Let α > 0 and η > 2. There exists a
constant t0 such that for all stochastic bandits, all t ≥ t0,
and all i ∈ [k], an agent playing the α-UCB policy must
satisfy N t−1

i ≥ α ln t/(2η2k2).

Proof. For every j ∈ [k] and t ∈ N, define the set

U tj =

{
i ∈ [k] : N t−1

i ≥ α ln t

2η2j2

}
.

We claim that for all j ∈ [k] there is a constant tj such
that for all t ≥ tj , |U tj | ≥ j. We will prove this claim by
induction on j.

For any time t, there is clearly some arm i with
N t−1
i ≥ t−1

k , and we can choose t1 such that t−1
k ≥

α ln t
2η2k2 whenever t ≥ t1, so the claim holds for j = 1.

Now fix j > 1, and assume that the claim holds for
j − 1. Define a function gj : N→ R by

gj(t) = t− (k − j + 1)
α ln t

2η2j2
.

We choose tj sufficiently large such that for all t ≥ tj
we have gj(t) > tj−1 and

(3.2)
ln(gj(t)− 1)

ln t
>

(
1− 1− 2/η

j

)2

.

Assume for contradiction that there is some time
t ≥ tj such that |U tj | < j. Since U tj−1 ⊆ U tj , the
inductive hypothesis then implies that U tj = U tj−1.
Thus, |U tj | = j − 1, and there are exactly k − j + 1
arms outside of U tj . Each one of those arms has been

pulled at most α ln t
2η2j2 times by round t − 1, so by the

pigeonhole principle there is some s ∈ [gj(t)− 1, t− 1]
such that an arm from U tj is pulled in round s.

Furthermore, inequality (3.2) implies

α ln s

2η2(j − 1)2
>
α ln t

2η2j2
,

which guarantees that Usj−1 ⊆ U tj . Since s ≥ gj(tj)−1 ≥
tj−1, the inductive hypothesis tells us that |Usj−1| ≥

j − 1, so we have Usj−1 = U tj , meaning that the arm
pulled in round s is also in Usj−1.

Now, Ns−1
i ≥ α ln s

2η2(j−1)2 for all i ∈ Usj−1, so the

upper confidence bound of the arm pulled at time s is
at most

1 +

√
α ln s

2α ln s/(2η2(j − 1)2)
= 1 + η · (j − 1) .

The upper confidence bound at time s of any arm in
[k] \ U tj is at least

−1 +

√
α ln s

2α ln t/(2η2j2)
= −1 + ηj

√
ln s

ln t
.

But since t ≥ tj and s ≥ gj(tj), inequality (3.2) implies

−1 + ηj

√
ln s

ln t
> 1 + η · (j − 1) .

This means that all arms outside of U tj have higher
upper confidence bounds at time s than the arms in
U tj , contradicting the choice to pull an arm in U tj at
time s.

By induction, we conclude that the claim holds for
all j ∈ [k], and in particular that the theorem holds with
t0 = tk.

4 Free Riding with Stochastic Bandits

Full-Information Case for Stochastic Bandits
Here we describe how a free rider can take advan-
tage of the samples collected by another player p
who pulls every arm sufficiently many times in ex-
pectation. This free-riding policy, which we call
SampleAugmentMeanGreedy, divides time into
epochs of doubling length. In the jth epoch, the free
rider checks whether a given player p has observed at
least γj samples of each arm i ∈ [k], where γ is an appro-
priate constant. If all sample counts are sufficient, then
the free rider uses p’s observed rewards to estimate the
mean of each arm, committing to the arm with the max-
imum estimated mean for the remainder of the epoch.
Otherwise, the free rider pulls any under-sampled arms,
augmenting all sample counts up to at least γj before
proceeding. Doing this allows the free rider to circum-
vent the logarithmic lower bound on regret and achieve
O(1) regret. A more detailed description of this policy
can be found in Appendix A.2.

Theorem 4.1. Fix a stochastic bandit, and suppose
some player p plays a self-reliant policy that satisfies
E[N t−1

i ] ≥ γ ln t for some γ > 2/∆2, all i ∈ [k], and all
sufficiently large t. Then a free rider can achieve O(1)
regret.
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Table 1: Necessary and sufficient information about self-reliant agent(s) p for a free rider seeking to achieve
constant regret, where γ is an appropriate constant. In this table “context,” “actions,” and “rewards” refer to
agent p’s context xp, their selected arm itp at each time t, and their observed reward rtp at each time t, respectively.

Guarantee on policy of other agent(s) Stochastic setting Contextual setting

≥ γ ln t samples of each arm in expectation actions and rewards —

≥ γ ln t samples of each arm with high probability actions and rewards context, actions, and rewards

O(t1−ε) realized regret with high probability actions —

Partial-Information Case for Stochastic Bandits
We now show that a free rider can achieve constant
regret by observing a player who plays any policy that
is unlikely to pull suboptimal arms too often. This class
of policies includes UCB. We consider a specific, natural
free-riding policy CountGreedyp, defined by

CountGreedyp(H
t) = arg max

i∈[k]

N t
p,i ,

which always pulls whichever arm i has been pulled most
frequently by player p. Notice that this policy does not
require the free rider to observe player p’s rewards.

One might suspect that it would be sufficient for
player p’s policy to achieve RTp = o(T ) in order
for the free rider to achieve constant regret under
CountGreedy, but this turns out not to be the case.
It is possible for p to achieve logarithmic regret despite
frequently pulling suboptimal arms with non-trivial
probability, preventing CountGreedy from achieving
constant regret.

Lemma 4.1. There is a self-reliant policy for player p
with RTp (T ) = O(log T ) such that, if player 1 plays

CountGreedyp, then RT1 (T ) = Ω(T ).

Proof. Consider the policy that, for j = 0, 1, 2 . . . ,
dictates the following behavior in epochs of tripling
length. With probability 1/3j , player p “gives up” on
rounds 3j to 3j+1 − 1, choosing arm

itp = arg min
i

µ3j−1
i .

Otherwise, with probability 1− 1/3j , player p plays α-
UCB during those rounds. This policy is self-reliant,
and player p’s regret grows at most logarithmically.
Notice that whenever player p gives up, i3

j

p will become

her most frequently pulled arm by round 2 · 3j , so the
CountGreedyp-playing free rider will pull this arm at
least 3j times before round 3j+1. It is routine to show
that i3

j

p is suboptimal with probability 1 − O(1/3j),
so the free rider’s regret through round T is at least

RT1 ≥
∑blog3 Tc
j=0 (1−O(1/3j)) ·∆ · 3j = Ω(T ).

Notice that by Theorem 3.3, the above policy
satisfies the conditions of Theorem 4.1 when α is
sufficiently large, and therefore a free rider playing
SampleAugmentMeanGreedyp would achieve con-
stant regret in this situation. Intuitively, this is because
the policy of sometimes giving up on entire epochs is
not “rational,” and SampleAugmentMeanGreedy,
unlike CountGreedy, does not make any implicit as-
sumption of rationality for the self-reliant player.

Since logarithmic regret for player p is not a strong
enough assumption, we instead show that if the realized
regret R̂Tp is sublinear with sufficiently high probability,
then the free rider achieves constant regret by playing
CountGreedyp.

Theorem 4.2. Fix a stochastic bandit and assume
there is some player p such that for all ε > 0 there ex-
ists a w > 1 satisfying Pr(R̂Tp ≥ εT ) = O(T−w). Then
a free rider playing CountGreedyp achieves O(1) re-
gret.

Audibert, Munos, and Szepesvári [1] showed that
α-UCB satisfies the probability bound of Theorem 4.2
in the single-player setting whenever α > 1/2. Since
α-UCB is a self-reliant policy, this immediately yields
the following corollary.

Corollary 4.1. If some player p’s policy is α-
UCB for any α > 1/2, then a free rider playing
CountGreedyp achieves O(1) regret.

5 Free Riding with Contextual Bandits

Theorems 4.1 and 4.2 show that free riding is easy in
the stochastic case, in which the reward distribution is
identical for all players, but the task is more nuanced
when players may have diverse contexts. In the linear
contextual setting, different players may have different
optimal arms, so a simple free-riding strategy like
CountGreedy may fail, even when there are strong
regret guarantees for the other players. In fact, as we
show in Theorems 5.2 and 5.3, successful free riding in
this setting requires knowledge of both the contexts and
the rewards of other players.
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Full-Information Case for Contextual Bandits
We now consider the full-information setting where the
free rider knows other players’ contexts, actions, and
rewards. We show that if the free rider’s context is a
linear combination of the other players’ contexts — and
if other players pull all arms sufficiently many times —
then the free rider can aggregate other players’ observa-
tions to estimate the means of its own reward distribu-
tion profile. In the event that some arm has not been
sampled enough by some player, the free rider temporar-
ily acts self-reliantly and chooses arms according to
UCB. Under the above assumptions, a player 1 with this
free-riding policy, UCBMeanGreedy, achieves O(1)
regret. Formally, for every historyHt, let j = blog tc, let

Sj be the event that N2j−1
p,i ≥ γj for all p ∈ {2, . . . , n}

and all i ∈ [k], and let µ̂sp,i denote the average of
the first s observed samples of Dp,i. Then for every
γ > 0 and every c = (c2, . . . , cn) ∈ Rn−1, we define
UCBMeanGreedyγ,c(Ht) as

arg max
i

n∑
p=2

cpµ̂
dγje
p,i

if Sj occurs and

2-UCB
((
i2
j

1 , r
2j

1

)
, . . . ,

(
it1, r

t
1

))
otherwise.

We will assume that the free rider’s context is a
linear combination of the others players’ contexts. The
vector c will consist of the coefficients of this linear
combination. If these coefficients are small, then no
individual player’s sampling noise can affect the free
rider’s choices too much.

Notice that when applying UCB this policy treats
the bandit as stochastic and “starts from scratch” in
each epoch, only considering the free rider’s own actions
and observed rewards from the current epoch.

Theorem 5.1. Let x be a context profile and c ∈ Rn−1

be a vector (c2, . . . , cn) such that
∑n
p=2 cpxp = x1. Fix

a contextual bandit, let ∆ be the gap for player 1, and

suppose that ε > 0 and γ > 8〈c,c〉 ln 2
∆2 satisfy

Pr(N t−1
p,i < γ log t) = O((log t)−2−ε)

for every player p ∈ {2, . . . , n} and arm i ∈ [k]. Then a
free rider playing UCBMeanGreedyγ,c achieves O(1)
regret.

Proof. Fix j ∈ N, let epoch j be rounds 2j through
2j+1 − 1, and let sj = dγje. For each i ∈ [k] let

µ̃ji =
n∑
p=2

cpµ̂
sj
p,i ,

and let ĩj = arg maxi µ̃
j
i . We analyze the free rider’s

regret incurred during epoch j in each of the following
cases: (1) Sj and ĩj = i∗1, (2) Sj and ĩj 6= i∗1, and (3)
¬Sj .

Notice that ĩj is defined in the first and second
cases. In case (1), the free rider incurs no regret during
epoch j because it pulls only the optimal arm i∗1 during
that epoch. We now analyze the regret incurred from
the other two cases.

For case (2),

Pr(̃ij 6= i∗1) ≤
∑
i∈[k]

Pr

(∣∣∣µ̃ji − µ1,i

∣∣∣ ≥ ∆

2

)
.

For fixed i ∈ [k], letting r̂sp,i denote the value of the sth

observed sample of Dp,i, we have

∣∣∣µ̃ji − µ1,i

∣∣∣ =

∣∣∣∣∣
n∑
p=2

cp
sj

sj∑
s=1

r̂sp,i −
n∑
p=2

cpµp,i

∣∣∣∣∣
=

∣∣∣∣∣
n∑
p=2

sj∑
s=1

Xs
p

∣∣∣∣∣ ,
where Xs

p =
cp
sj

(
r̂sp,i − µp,i

)
. Notice that the Xs

p are in-

dependent, and each Xs
p is supported on [−cp/sj , cp/sj ]

with E[Xs
p ] = 0, so Hoeffding’s lemma gives

E[exp(λXs
p)] ≤ exp

(
λ2c2p
2s2
j

)

for all λ ∈ R. Let λ = 4j ln 2
∆ , and apply a Chernoff

bound:

Pr

(∣∣∣∣∣
n∑
p=2

sj∑
s=1

Xs
p

∣∣∣∣∣ ≥ ∆

2

)

≤ 2 exp

(
−λ∆

2

)
E

[
n∏
p=2

sj∏
s=1

exp(λXs
p)

]

= 2 exp

(
−λ∆

2

) n∏
p=2

sj∏
s=1

E[exp(λXs
p)]

≤ 2 exp

(
−λ∆

2
+

n∑
p=2

sj∑
s=1

λ2c2p
2s2
j

)

≤ 2 exp

(
λ

2

(
λ

γj
〈c, c〉 −∆

))
= 2 exp

(
2j ln 2

(
4〈c, c〉 ln 2

γ∆2
− 1

))
.

Thus, the contribution of this case to the regret during
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epoch j is at most

k · 21+2j
(

4〈c,c〉 ln 2

γ∆2 −1
)
· 2j+1 = k · 22+j·

(
8〈c,c〉 ln 2

γ∆2 −1
)

= k · 2−Ω(j) ,

since γ > 8〈c,c〉 ln 2
∆2 .

For the case (3), observe that

Pr(¬Sj) ≤
n∑
p=2

k∑
i=1

Pr(N2j−1
p,i < γj)

= O(nkj−2−ε) ,

by assumption. In this case, UCBMeanGreedyγ,c
resorts to playing α-UCB for 2j steps, incurring O(j)
regret. Thus, the third case contributes O(nkj−1−ε) to
the expected regret of epoch j. Therefore, for any time
horizon T ∈ N, the regret incurred by the free rider is
bounded by

∞∑
j=0

(
k · 2−Ω(j) +O(nkj−1−ε)

)
,

which converges to a constant.

Partial-Information Cases for Contextual Ban-
dits Now we consider a situation where player 1 must
choose a free-riding policy without knowledge of the
other players’ contexts. We show that this restriction
can force the free rider to incur logarithmic regret even
given knowledge of the other players’ policies, actions,
and rewards. Intuitively, this is true because a self-
reliant player might behave identically in two differ-
ent environments, making observations of their behavior
useless to the free rider. To prove the theorem, we con-
struct a one-dimensional, two-arm example of two such
environments, then appeal to the lower bound technique
of Bubeck et al. [6] to show that the free rider must incur
Ω(log T ) regret when acting self-reliantly.

Theorem 5.2. A free rider without knowledge of the
other players’ contexts may be forced to incur RT =
Ω(log T ) regret, regardless of what self-reliant policies
the other players employ.

Similarly, a free rider in the contextual setting needs
to know the other players’ rewards; knowing their con-
texts, policies, and actions may not be sufficient to suc-
cessfully free ride, even when all other players have low
realized regret with high probability and are guaran-
teed to pull all arms frequently. This is in contrast to
the stochastic case, as Theorem 4.2 demonstrates. We
prove this by describing a self-reliant policy, EpochEx-
ploreThenCommit, that again proceeds in doubling

epochs. At the beginning of the jth epoch, the player
samples each arm Θ(j) times, then commits to the arm
with the highest sample mean for the remainder of the
epoch. This policy has strong guarantees on sample
count and realized regret, but we construct an example
where, with constant probability, the sequence of arm
pulls is completely uninformative to the free rider.

Theorem 5.3. A free rider without knowledge of the
other players’ rewards may be forced to incur RT =
Ω(log T ) regret, even when all other players satisfy the
conditions of Theorems 4.1 and 4.2.

6 Conclusion

We have demonstrated that in the linear contextual set-
ting, a free rider can successfully shirk the burden of ex-
ploration, achieving constant regret by observing other
players engaged in standard learning behavior. Further-
more, we have shown that even with partial information
and weaker assumptions on the other players’ learning
behaviors, the free rider can achieve constant regret in
the simple stochastic setting. It would be interesting to
examine richer settings. For example, exploring players
need not be self-reliant, and both exploring players and
free riders could play a range of strategies. As another
example, when a free rider in the stochastic setting only
sees the actions (and not the rewards) of the self-reliant
players and does not know which of them are playing
UCB or other zero-regret strategies, can he still achieve
constant regret? More realistically, users of a service
like YelpTM cannot be partitioned into self-reliant pub-
lic learners and selfish free riders who keep their data
private. It would be interesting to explore more nuanced
player roles and to characterize the equilibria that arise
from their interactions. Such a characterization might
also suggest mechanisms for the deterrence of free riding
or for incentivizing exploration.
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analysis of stochastic and nonstochastic multi-armed

1899
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

07
/2

8/
20

 to
 7

3.
14

1.
17

4.
15

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



bandit problems. Foundations and Trends in Machine
Learning, 5(1):1–122, 2012.
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A Appendix

A.1 Proof of Theorem 3.1

Proof. Let k ≥ 1 and ε > 0, and let f be any self-
reliant policy satisfying RT (D, f) = O(T 1−ε) for all k-
arm stochastic bandits D. We prove that for all k-arm
stochastic bandits D with µ∗ < 1 and all i ∈ [k], we
have E[NT

i (D, f)] = Ω(lnT ).
Fix an arm i, and let X = E[NT

i (D, f)]. If
i is optimal, then X ≥ T − RT (D, f)/∆ and the

theorem holds. Hence, let i be any suboptimal arm,

let δ = min
{

∆, 1−µ∗
2

}
, let p = 1−µ∗−δ

1−µi , and let D′ =

(D1, . . . , D
′
i, . . . , Dk), where for all x ∈ [−1, 1],

D′i(x) = p ·Di(x) + 1− p .

Notice that the mean of D′i is µ′i = µ∗ + δ and that
KL(Di, D

′
i) ≤ ln(1/p). Now,

max{RT (D, f), RT (D′, f)}

≥ 1

2
(RT (D, f) +RT (D′, f))

≥ δ

2

T∑
t=1

(Pr[it(D, f) = i] + Pr[it(D
′, f) 6= i])

≥ δ

4

T∑
t=1

exp(−KL(Ht−1(D, f), Ht−1(D′, f)))

≥ δT

4
exp(−KL(HT−1(D, f), HT−1(D′, f))) ,

where KL denotes Kullback-Leibler divergence and
the second-to-last line follows from Lemma A.2, the
Bretagnolle-Huber inequality [4]. By Lemma A.1 [13],

KL(Ht−1(D, f), Ht−1(D′, f)

= KL(Di, D
′
i) · E[NT

i (D, f)]

≤ X ln(1/p) .

Thus, we have

max{RT (D, f), RT (D′, f)} ≥ δT

4
exp (−X ln(1/p)) .

It follows that exp(−X ln(1/p)) = O(T−ε) and therefore
that X = Ω(lnT ).

A.2 Proof of Theorem 4.1

Proof. Let D be a stochastic bandit and let let f be
a self-reliant policy. Assume there are constants γ >
2/∆2 and t0 such that E

[
N t−1
i (D, f)

]
≥ γ ln t, for all

i ∈ [k] and all t ≥ t0. Let f = (f1, . . . , fn) be a policy
profile with f1 = SampleAugmentMeanGreedyp,γ
and fp = f , for some player p ∈ {2, . . . , n}. We prove
that RT1 (D, f) = O(1).

Let t′0 = 2dlog t0e. For all j ∈ N, define sj = γj ln 2

and ĩ∗j = arg maxi ν
j
i . Then, letting ∆i denote µ∗ − µi,

RT1 (D, f) =
∑
i6=i∗

E
[
NT

1,i(D, f)
]

∆i

≤ 2t′0 +
∑
i 6=i∗

∆i

 T∑
t=t′0

Pr[it1 = i]

 .
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Now, for each i ∈ [k],

T∑
t=t′0

Pr[it1 = i]

<

dlog Te∑
j=dlog t0e

(
max

{
0, sj − E

[
N2j−1
p,i (D, f)

]}
+ Pr

[̃
i∗j = i

]
· 2j
)

=

dlog Te∑
j=dlog t0e

Pr
[̃
i∗j = i

]
· 2j

≤
dlog Te∑

j=dlog t0e

(
Pr
[
νji − µi > ∆i/2

]
+ Pr

[
µ∗ − νji∗ > ∆i/2

])
· 2j

≤ 2
∞∑
j=0

exp

(
−2

(
∆i

2

)2

γj ln 2

)
· 2j

= 2
∞∑
j=0

2(1−∆2γ/2)j .

Since ∆2γ/2 > 1, this sum converges to a constant, so
RT1 (D, f) = O(1).

Below, µ̂sp,i denotes the average of the first s samples of
Di observed by player p.

A.3 Proof of Theorem 4.2

Proof. Let D be a stochastic bandit, let p ∈ {2, . . . , n}
be a player, and let f = (f1, . . . , fn) be a policy profile
with f1 = CountGreedyp. Assume that for all ε > 0

there is some w > 1 satisfying Pr(R̂Tp (D, f) ≥ εT ) =

O(T−w). We prove that RT1 (D, f) = O(1).
The free rider pulls a suboptimal arm at each time

t if and only if CountGreedyp(H
t−1) 6= i∗, which

implies that N t−1
p,i∗ ≤ t−1

2 and therefore R̂Tp (D, f) ≥
∆ t−1

2 . Hence, we can bound the free rider’s regret by

RT1 (D, f) ≤ 2
T−1∑
t=0

Pr(R̂tp(D, f) ≥ ∆t/2) .

If w > 1 satisfies Pr(R̂tp(D, f) ≥ ∆t/2) = O(t−w), then
we have

RT1 (D, f) ≤ 2

T−1∑
t=0

O(t−w) = O(1) .

for j ∈ N do
t = 2j

for i ∈ [k] do

N = N2j−1
p,i

if N ≥ γj then
// p sampled arm i enough prior to

this epoch

νji = µ̂
sj
p,i

end
else

// the free rider samples arm i up

to dγje −N times

νji = µ̂Np,i ·N/(dγje)
while N < sj and t < 2j+1 − 1 do

it1 = i
νji = νji + rt1/s
N = N + 1
t = t+ 1

end

end

end
while t < 2j+1 − 1 do

it1 = arg maxi ν
j
i

t = t+ 1
end

end
Algorithm 1: SampleAugmentMeanGreedyp,γ

A.4 Proof of Theorem 5.2

Proof. We prove that there exist a pair of contextual
bandits F and F′ and a pair of two-player context
profiles x and x′ such that, for every time horizon T
and every policy profile f = (f1, f2) in which f1 is
independent of player 2’s context and f2 is self-reliant,
(A.1)

max{RT1 (F,x, f), RT1 (F′,x′, f)} ≥ ln(T/12) + 1

2
.

We construct a one-dimensional, two-arm, two-player
example. Let F1 be a point mass at 0; let F2 and F ′2
be discrete random variables that take value 1 with
probability 1/3 and 2/3, respectively, and value −1
otherwise; and let F = (F1, F2) and F′ = (F1, F

′
2).

Let f = (f1, f2) be any linear contextual bandit policy
profile such that f2 is self-reliant, and consider a free-
riding player 1.

Let x = (1, 1) and x′ = (1,−1). For p, i ∈ [2],
let Dp,i be the reward distribution of arm i for player
p under contextual bandit F and context profile x.
Similarly, let D′p,i be the reward distribution of arm
i for player p under parameter distribution profile F′
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and context profile x′. Observe that D1,1 = D′1,1,
D2,1 = D′2,1, and D2,2 = D′2,2, but D1,2 = −D′1,2.

Informally, the environment (F,x) is indistinguish-
able from (F′,x′) from the perspective of player 2. Ob-
serving player 2’s actions and rewards will therefore be
completely uninformative for player 1, who is ignorant
of player 2’s context. Thus, player 1’s task is essentially
equivalent to a single-player stochastic bandit problem
where the learner must distinguish between reward dis-
tribution profiles (D1,1, D1,2) and (D′1,1, D

′
1,2). Bubeck

et al. [6] showed that the latter task requires the learner
to experience logarithmic regret. Adapting their proof
to the present situation, we can demonstrate that (A.1)
holds. Our situation is almost identical to theirs, ex-
cept for the presence of an uninformative second player,
which requires only minor changes to their proof. We
include the details here for the sake of completeness:

Let

QT = RT1 (F,x, f) and Q′T = RT1 (F′,x′, f) .

For all t ∈ N, let Gt and G′t be distributions on
{(1, 0), (2,−1), (2, 1)}2t such that

Ht(F,x, f) ∼ Gt and Ht(F′,x′, f) ∼ G′t ,

and for i ∈ {1, 2}, let

Mt,i = N t
1,i(F,x, f) and M ′t,i = N t

i (F
′,x′, f) .

Observe that

max{QT , Q′T } ≥
E[MT,2]

3
,

and

max{QT , Q′T } ≥
1

2
(QT +Q′T )

=
1

6

T∑
t=1

(
Pr
Gt−1

[it1 = 1] + Pr
G′t−1

[it1 = 2]

)

≥ 1

12

T∑
t=1

exp(−KL(Gt−1,G′t−1))

≥ T

12
exp(−KL(GT ,G′T )) ,

where the second-to-last line follows from the
Bretagnolle-Huber inequality (Lemma A.2) [4].

We now calculate KL(GT ,G′T ). For each t ∈ N
and p ∈ {1, 2}, let γp,t and γ′p,t be the distributions
on (itp, r

t
p) under (F,x, f) and (F′,x′, f), respectively.

Observe that γ2,t = γ′2,t for all t ∈ N. By the chain
rule for KL divergence, taking probabilities over Ht−1 ∼

Gt−1,

KL(GT ,G′T )

=
T∑
t=1

E[KL((γt,1, γt,2 | Ht−1), (γ′t,1, γ
′
t,2 | Ht−1))]

=

T∑
t=1

E[KL((γt,1 | Ht−1), (γ′t,1 | Ht−1))]

=
T∑
t=1

Pr[f1(Ht−1) = 2] ·KL(D2, D
′
2)

= KL(D2, D
′
2)E[MT,2]

= E[MT,2]/3 .

Thus, we have

max{QT , Q′T } ≥
1

2

(
E[MT,2]

3
+
T

12
exp(−E[MT,2]/3)

)
≥ 1

6
min
x∈[0,T ]

(
x+

Te−x/3

4

)
=

ln(T/12) + 1

2
.

A.5 Proof of Theorem 5.3

Proof. Consider the following policy that essentially
plays the standard explore-then-commit strategy with
a doubling time horizon.

t = 1
for j ∈ N do

for i ∈ [k] do
Ni = 0
µ̂ji = 0
while Ni < γ(j + 2) and t < 2j+1 − 1 do

it = i
µ̂ji = µ̂ji + rt

γ(j+1)
t = t+ 1

end

end

î∗ = arg maxi∈[k] µ̂
j
i

while t < 2j+1 − 1 do

it = î∗

t = t+ 1
end

end
Algorithm 2: EpochExploreThenCommitγ

Fix γ ≥ 2/∆2, and let

gγ = EpochExploreThenCommitγ .

We prove that gγ satisfies the following three properties:
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1. For all contextual bandits F, context profiles x, and
policy profiles f = (f1, . . . , fn) with fp = gγ , there
is some t0 ∈ N such that NT

p,i(F,x, f) ≥ γ log T for
all i ∈ [k] and all T > t0.

2. For all contextual bandits F, context profiles x,
policy profiles f = (f1, . . . , fn) with fp = gγ ,
and ε > 0, there is some w > 1 such that
Pr
(
R̂Tp (F,x, f) ≥ εT

)
= O(T−w).

3. There exist a pair of contextual bandits F and
F′ and a context profile x such that for all pol-
icy profiles f = (f1, gγ , gγ) such that f1 is inde-
pendent of the other players’ observed rewards,
max

{
RT1 (F,x, f), RT1 (F′,x, f)

}
= Ω(log T ).

First, let j0 ∈ N satisfy 2j0 ≥ kγ(j0 + 2), and
let i ∈ [k] be any arm. Then, for all j ≥ j0, f

satisfies N2j

p,i(F,x, f) ≥ γ(j + 1), i.e., each arm has
been pulled at least γ(j + 1) times at the beginning
of the epoch. So for every round t in the jth epoch,
we have N t

p,i(F,x, f) ≥ γ(j + 1) ≥ γ log t. Hence,

NT
p,i(F,x, f) ≥ γ log T for all T > 2j0 , so gγ satisfies

the first property.
Now, for each j ∈ N, define R̃j = R̂2j+1−1 − R̂2j−1,

the realized regret incurred during epoch j while playing
gγ . At most 2kγ(j + 2) of this realized regret can come
from the exploration phase; any further regret in that
epoch can only result from committing to a suboptimal
arm. By Hoeffding’s inequality,

Pr
(
R̃j > 2kγ(j + 2)

)
≤
∑
i∈[k]

exp

(
−γ(j + 2)(µ∗ − µi)2

2

)

≤ k · exp

(
−γ(j + 2)∆2

2

)
.

Notice that

blog(εT )c−2∑
j=0

R̃j ≤
εT/4∑
t=1

2 =
εT

2
,

and that dlog T e − (blog(εT )c − 2) ≤ 4− log ε, so

Pr
(
R̂T ≥ εT

)
≤ Pr

 dlog Te∑
j=blog(εT )c−1

R̃j ≥ εT

2


≤

dlog Te∑
j=blog(εT )c−1

Pr

(
R̃j ≥ εT

8− 2 log ε

)
.

For all sufficiently large T , 2kγ(dlog T e+ 2) < εT
8−2 log ε ,

so for j = blog(εT )c − 1, . . . , dlog T e,

Pr

(
R̃j ≥ εT

8− 2 log ε

)
≤ Pr

(
R̃j > 2kγ(j + 2)

)
≤ k · exp

(
−γ(blog(εT )c+ 1)∆2

2

)
.

Thus,

Pr
(
R̂T ≥ εT

)
≤ (4− log ε) · k · exp

(
−γ(blog(εT )c+ 1)∆2

2

)
= O

(
T−

γ∆2

2

)
,

meaning that γ∆2

2 > 1. So gγ satisfies the second
property.

Finally, let x = ((
√

2/2,
√

2/2), (1, 0), (0, 1)) be a
three-player context profile, and let F be the contextual
bandit where for each i ∈ [3], the feature distribution
Fi satisfies Fi(xi) = 2/3 and Fi(−xi) = 1/3, and F4

is a point mass at (0, 0). Define a second contextual
bandit F′ = (F ′1, F2, F3, F4), where F ′1(x1) = 1/3
and F ′1(−x1) = 2/3. Let f1 be some policy that is
independent of the other players’ observed rewards, and
consider the policy profile f = (f1, gγ , gγ).

Notice that under x, for both F and F′, we have
i∗2 = 2 and i∗3 = 3. As we showed above, in each epoch
j ∈ N, the probability that the policy gγ commits to a
suboptimal arm is at most k exp(−γ(j+2)∆2/2). Notice
also that neither player can commit to any arm for any
epoch j in which 2j ≤ kγ(j + 2). Let j1 be the first
epoch satisfying 2j1 > kγ(j1 +2). Then, for both F and
F′, the probability that either player 2 or player 3 ever
commits to a suboptimal arm in any epoch is at most

∞∑
j=j1

k exp

(
−γ(j + 2)∆2

2

)

≤ k
∫ ∞
j1

exp

(
−γ∆2

2
(x+ 1)

)
dx

< ke−j1 .

Now, 2j1 > kγ(j1 + 2) implies that j1 < ln k, so the
above expression converges to some constant p < 1.
Thus, with probability at least 1 − p > 0, neither
player 2 nor player 3 ever commits to any suboptimal
arm. In this situation, their sequences of arm pulls
are completely uninformative to the free rider, meaning
that the player 1 will have to act self-reliantly to solve
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Figure 1: Average realized regret of a 2-UCB player
and a free rider over 100 simulations. There are 10
arms whose reward distributions are Bernoulli, with
parameters 0.0, 0.1, . . . , 0.8, 0.9.

essentially the same 1-dimensional instance described in
the proof of Theorem 5.2, incurring Ω(log T ) regret. We
conclude that gγ satisfies the third property.

A.6 Simulations We present simulation results for
both the stochastic and the contextual cases. In the
stochastic case, we have the free rider simply pull
the most pulled arm of the self-reliant player, and
in the contextual case, we have the free rider pull
the arm with the highest sample mean calculated by
taking the linear combination of the sample means
from the other players. In each of the experiments,
we refer to maxi∈[k]

∑T
t=1 r

t,i −
∑T
t=1 r

t
p as the realized

regret for player p, where rt,i is the reward one would
have observed by pulling arm i in round t. For the
stochastic case, we consider situations where the reward
distribution Di of each arm i is Bernoulli, with different
parameters p. As shown in Figure 1, the realized regret
of the free rider flattens out after some constant number
of rounds, where this constant depends on the reward
distribution profile D.

In the contextual case, the context xp for each
player p and the vector c (i.e., the coefficients for the
linear combination of other players’ contexts that gives
the free rider’s context), are all chosen uniformly at
randomly from [−1, 1]. The feature distribution Fi for
each arm i is a multi-variate normal distribution with
covariance matrix is 0.1I, where I is the identity matrix,
and the mean vector is once again chosen by sampling
each coordinate uniformly from [−1, 1]. We normalize
xp and the mean vector of Fi so that the expected

Figure 2: Average realized regret of the free rider over
10 simulations. There are 50 players playing 10-UCB
and 30 arms, the dimension of the vectors is 10, and
∆ = 0.1839.

reward for each arm i falls within [−1, 1] for every player
p.

A.7 Technical Lemmas from Other Sources

Lemma A.1. (Divergence decomposition [13])
Let D = (D1, . . . , Dk) and D′ = (D′1, . . . , D

′
k) be

stochastic bandits. For any policy f and time t,

KL(Ht(D, f), Ht(D′, f))

=
∑
i∈[k]

E[N t
i (D, f)] KL(Di, D

′
i) .

Lemma A.2. (Bretagnolle-Huber [13]) Let P and
Q be probability measures on the same measurable space,
and let A be any event. Then,

P (A) +Q(Ac) ≥ 1

2
exp(−KL(P,Q)) ,

where Ac is the complement of A.
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