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Abstract. A rise in Advanced Persistent Threats (APTs) has intro-
duced a need for robustness against long-running, stealthy attacks which
circumvent existing cryptographic security guarantees. FlipIt is a secu-
rity game that models attacker-defender interactions in advanced sce-
narios such as APTs. Previous work analyzed extensively non-adaptive
strategies in FlipIt, but adaptive strategies rise naturally in practical in-
teractions as players receive feedback during the game. We model the
FlipIt game as a Markov Decision Process and introduce QFlip, an adap-
tive strategy for FlipIt based on temporal difference reinforcement learn-
ing. We prove theoretical results on the convergence of our new strategy
against an opponent playing with a Periodic strategy. We confirm our
analysis experimentally by extensive evaluation of QFlip against specific
opponents. QFlip converges to the optimal adaptive strategy for Peri-
odic and Exponential opponents using associated state spaces. Finally,
we introduce a generalized QFlip strategy with composite state space
that outperforms a Greedy strategy for several distributions including
Periodic and Uniform, without prior knowledge of the opponent’s strat-
egy. We also release an OpenAI Gym environment for FlipIt to facilitate
future research.

Keywords: Security games · FlipIt · Reinforcement learning · Adaptive
strategies · Markov Decision Processes · Online learning.

1 Introduction

Motivated by sophisticated cyber-attacks such as Advanced Persistent Threats
(APT), the FlipIt game was introduced by van Dijk et al. as a model of cyber-
interactions in APT-like scenarios [3]. FlipIt is a two-player cybersecurity game in
which the attacker and defender contend for control of a sensitive resource (for
instance a password, cryptographic key, computer system, or network). Com-
pared to other game-theoretical models, FlipIt has the unique characteristic of
stealthiness, meaning that players are not notified about the exact state of the
resource during the game. Thus, players need to schedule moves during the game
with minimal information about the opponent’s strategy. The challenge of de-
termining the optimal strategy is in finding the best move times to take back
resource control, while at the same time minimizing the overall number of moves
(as players pay a cost upon moving). FlipIt is a repeated, continuous game, in
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which players can move at any time and benefits are calculated according to the
asymptotic control of the resource minus the move cost.

The original FlipIt paper performed a detailed analysis of non-adaptive strate-
gies in which players move according to a renewal process selected at the begin-
ning of the game. Non-adaptive strategies are randomized, but do not benefit
from feedback received during the game. In the real world, players naturally
get information about the game and the opponent’s strategy as play progresses.
For instance, if detailed logging and monitoring is performed in an organiza-
tion, an attacker might determine the time of the last key rotation or machine
refresh upon system takeover. van Dijk et al. defined adaptive strategies that
consider various amounts of information received during gameplay, such as the
time since the last opponent move. However, analysis and experimentation in
the adaptive case has remained largely unexplored. In a theoretical inspection,
van Dijk et al. prove that the optimal Last Move adaptive strategy against Pe-
riodic and Exponential opponents is a Periodic strategy. They also introduce an
adaptive Greedy strategy that selects moves to maximize local benefit. However,
the Greedy strategy requires extensive prior knowledge about the opponent (the
exact probability distribution of the renewal process), and does not always result
in the optimal strategy [3]. Other extensions of FlipIt analyzed modified versions
of the game [13,5,19,10,6], but mostly considered non-adaptive strategies.

In this paper, we tackle the challenge of analyzing the two-player FlipIt game
with one adaptive player and one non-adaptive renewal player. We limit the
adaptive player’s knowledge to the opponent’s last move time and show how
this version of the game can be modeled as an agent interacting with a Markov
Decision Process (MDP). We then propose for the first time the use of temporal
difference reinforcement learning for designing adaptive strategies in the FlipIt
game. We introduce QFlip, a Q-Learning based adaptive strategy that plays
the game by leveraging information about the opponent’s last move times. We
explore in this context the instantiation of various reward and state options to
maximize QFlip’s benefit against a variety of opponents.

We start our analysis by considering an opponent playing with the Periodic
with random phase strategy, also studied by [3]. We demonstrate for this case
that QFlip with states based on the time since opponent’s last move converges
to the optimal adaptive strategy (playing immediately after the opponent with
the same period). We provide a theoretical analysis of the convergence of QFlip
against this Periodic opponent. Additionally, we perform detailed experiments
in the OpenAI Gym framework, demonstrating fast convergence for a range of
parameters determining the exploration strategy and learning decay. Next, we
perform an analysis of QFlip against an Exponential opponent, for which van
Dijk et al. determined the optimal strategy [3]. We show experimentally that
QFlip with states based on the player’s own move converges to the optimal strat-
egy and the time to convergence depends largely on the adaptive player’s move
cost and the Exponential player’s distribution parameters. Finally, we propose a
generalized, composite QFlip instantiation that uses as state the time since last
moves for both players. We show that composite QFlip converges to the optimal
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strategy for Periodic and Exponential. Remarkably, QFlip has no prior informa-
tion about the opponent strategy at the beginning of the game, and most of the
time outperforms the Greedy algorithm (which leverages information about the
opponent strategy). For instance, QFlip achieves average benefit between 5% and
50% better than Greedy against Periodic and 15% better than Greedy against
a Uniform player.

The implications of our findings are that reinforcement learning is a promising
avenue for designing optimal learning-based strategies in cybersecurity games.
Practically, our results also reveal that protecting systems against adaptive ad-
versaries is a difficult task and defenders need to become adaptive and agile in
face of advanced attackers. To summarize, our contributions in the paper are:

– We model the FlipIt game with an adaptive player competing against a re-
newal opponent as an MDP.

– We propose QFlip, a versatile generalized Q-Learning based adaptive strategy
for FlipIt that does not require prior information about the opponent strategy.

– We prove QFlip converges to the optimal strategy against a Periodic oppo-
nent.

– We demonstrate experimentally that QFlip converges to the optimal strategy
and outperforms the Greedy strategy for a range of opponent strategies.

– We release an OpenAI Gym environment for FlipIt to aid future researchers.

Paper organization. We start with surveying the related work in Section 2. Then
we introduce the FlipIt game in Section 3 and describe our MDP modeling of FlipIt
and the QFlip strategy in Section 4. We analyze QFlip against a Periodic opponent
theoretically in Section 5. We perform experimental evaluation of Periodic and
Exponential strategies in Section 6. We evaluate generalized composite QFlip
against four distributions in Section 7, and conclude in Section 8.

2 Related Work

FlipIt, introduced by van Dijk et al. [3], is a non-zero-sum cybersecurity game
where two players compete for control over a shared resource. The game dis-
tinguishes itself by its stealthy nature, as moves are not immediately revealed
to players during the game. Finding an optimal (or dominant) strategy in FlipIt
implies that a player can schedule its defensive (or attack) actions most effec-
tively against stealthy opponents. van Dijk et al. proposed multiple non-adaptive
strategies and proved results about their strongly dominant opponents and Nash
Equilibria [3]. They also introduce the Greedy adaptive strategy and show that it
results in a dominant strategy against Periodic and Exponential players, but it is
not always optimal. The original paper left many open questions about designing
general adaptive strategies for FlipIt. van Dijk et al. [1] analyzed the applications
of the game in real-world scenarios such as password and key management.

Additionally, several FlipIt extensions have been proposed and analyzed.
These extensions focus on modifying the game itself, adding additional play-
ers [10,6], resources [13], and move types [19]. FlipLeakage considers a version of
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FlipIt in which information leakage is gradual and ownership of resource is ob-
tained incrementally [5]. Zhang et al. consider limited resources with an upper
bound on the frequency of moves and analyze Nash Equilibria in this setting [25].
Several games study human defenders players against automated attackers us-
ing Periodic strategies [20,8,18]. All of this work uses exclusively non-adaptive
players, often limiting analysis to solely opponents playing periodically. The only
previous work that considers adaptive strategies is by Laszka et al. [15,14], but
in a modification of the original game with non-stealthy defenders. QFlip can
generalize to play adaptively in these extensions, which we leave to future work.

Reinforcement learning (RL) is an area of machine learning in which an agent
takes action on an environment, receiving feedback in the form of a numerical
reward, and adapting its action policy over time in order to maximize its cu-
mulative reward. Traditional methods are based primarily on Monte Carlo and
temporal difference Q-Learning [22]. Recently, approximate methods based on
deep neural networks have proved effective at complex games such as Backgam-
mon, Atari and AlphaGo [23,17,21].

RL has emerged in security games in recent years. Han et al. use RL for
adaptive cyber-defense in a Software-Defined Networking setting and consider
adversarial poisoning attacks against the RL training process [9]. Hu et al. pro-
poses the idea of using Q-Learning as a defensive strategy in a cybersecurity game
for detecting APT attacks in IoT systems [11]. Motivated by HeartBleed, Zhu
et al. consider an attacker-defender model in which both parties synchronously
adjust their actions, with limited information on their opponent [26]. Other RL
applications include network security [4], spatial security games [12], security
monitoring [2], and crowdsensing [24]. Markov modeling for moving target de-
fense has also been proposed [7,16].

To the best of our knowledge, our work presents the first application of RL to
stealthy security games, resulting in the most effective adaptive FlipIt strategy.

3 Background on the FlipIt Game

FlipIt is a two-player game introduced by van Dijk et al. to model APT-like
scenarios [3]. In FlipIt, players move at any time to take control of a resource.
In practice, the resource might correspond to a password, cryptographic key,
or computer system that both attacker and defender wish to control. Upon
moving, players pay a move cost (different for each player). Success in the game
is measured by player benefit, defined as the asymptotic amount of resource
control (gain) minus the total move cost as described in Figure 2. The game
is infinite, and we consider a discrete version of the game in which players can
move at discrete time ticks. Figure 1 shows an example of the FlipIt game, and
Figure 2 provides relevant notation we will use in the paper.

An interesting aspect of FlipIt is that the players do not automatically learn
the opponent’s moves in the game. In other words, moves are stealthy, and
players need to move without knowing the state of the resource. There are two
main classes of strategies defined for FlipIt:
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Player	0	(Renewal)

Player	1	(LM-Adaptive)

Fig. 1: Example of FlipIt game between Last Move adaptive Player 1 and Player
0 using a Renewal strategy. Rounded arrows indicate player moves. The first
move of Player 1 is flipping, and the second move is consecutive. τt is the time
since Player 0’s last known move at time t and LMi is Player i’s actual last move
at time t. Due to the stealthy nature of the game, τt ≥ t− LM0.

Symbol Description

t Time step (tick)
ki Player i’s move cost
Γi Player i’s total gain (time in control)
ni Player i’s total moves
βi Player i’s total benefit. βi = Γi − ki · ni
τt Time since opponent’s last known move at time t
LMi Player i’s actual last move time at time t
ρ Player 0’s average move time

Symbol Description

st Observation
at Action
rt Reward
γ Future discount
α Count of at in st
ε Exploration parameter
d Exploration discount
p New move probability

Fig. 2: FlipIt notation (left) and QFlip notation (right)

Non-adaptive Strategies. Here, players do not receive any feedback upon moving.
Non-adaptive strategies are determined at the beginning of the game, but they
might employ randomization to select the exact move times. Renewal strate-
gies are non-adaptive strategies that generate the intervals between consecutive
moves according to a renewal process. The inter-arrival times between moves are
independent and identically distributed random variables chosen from a proba-
bility density function (PDF). Examples of renewal strategies include:

– Periodic with random phase (Pδ): The player first moves uniformly at ran-
dom with phase Rδ ∈ (0, δ), with each subsequent move occurring periodi-
cally, i.e., exactly at δ time units after the previous move.

– Exponential: The inter-arrival time is distributed according to an exponential
(memoryless) distribution Eλ with rate λ. The probability density function
for Eλ is fEλ(x) = λe−λx, for x > 0, and 0 otherwise.

– Uniform: The inter-arrival time is distributed according to an uniform dis-
tribution Uδ,u with parameters δ and u. The probability density function for
Uδ,u is fUδ,u(x) = 1/u, for x ∈ [δ − u/2, δ + u/2], and 0 otherwise.

– Normal: The inter-arrival time is distributed according to a normal distri-
bution Nµ,σ with mean µ and standard deviation σ. The probability density

function for Nµ,σ is fNµ,σ (x) = 1√
2πσ2

e−(x−µ)
2/2σ2

, for x ∈ R.
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Adaptive Strategies. In these strategies, players receive feedback during the game
and can adaptively change their subsequent moves. In Last Move (LM) strate-
gies, players receive information about the opponent’s last move upon moving
in the game. This is the most restrictive and therefore most challenging subset
of adaptive players, so we only focus on LM adaptive strategies here.

Theoretical analysis of the optimal LM strategy against specific Renewal
strategies has been shown [3]. For the Periodic strategy, the optimal LM strat-
egy is to move right after the Periodic player (whose moves can be determined
from the LM feedback received during the game). The memoryless property of
the exponential distribution implies that the probability of moving at any time
is independent of the time elapsed since the last player’s move. Thus, an LM
player that knows the Exponential opponent’s last move time has no advantage
over a non-adaptive player. Accordingly, the dominant LM strategy against an
Exponential player is still a Periodic strategy, with the period depending on the
player’s move cost and the rate of the Exponential opponent.

Greedy Strategy. To the best of our knowledge, the only existing adaptive strat-
egy against general Renewal players is the “Greedy” strategy [3]. Greedy calcu-
lates the “local benefit”, L(z) of a given move time, z, as:

L(z) =
1

z

[∫ z

x=0

xf̂0(x)dx+ z

∫ ∞
z

f̂0(x)dx− k1
]
, (1)

where f̂0(x) = f0(τ+x)/(1−F0(τ)), f0 is the probability density function (PDF)
of the opponent’s strategy, F0 is the corresponding cumulative density function
(CDF), and τ is the interval since the opponent’s last move. Greedy finds the
move time, ẑ, which maximizes this local benefit, and schedules a move at ẑ if
the maximum local benefit is positive. In contrast, if the local benefit is negative,
Greedy chooses not to move, dropping out of the game.

Although the Greedy strategy is able to compete with any Renewal strategy,
it is dependent on prior knowledge of the opponent’s strategy. van Dijk et al.
showed that Greedy can play optimally against Periodic and Exponential play-
ers [3]. However, they showed a strategy for which Greedy is not optimal. This
motivates us to look into other general adaptive strategies that achieve higher
benefit than Greedy and require less knowledge about the opponent’s strategy.

4 New Adaptive Strategy for FlipIt

Our main insight is to apply traditional reinforcement learning (RL) strategies to
the FlipIt security game to create a Last Move adaptive strategy that outperforms
existing adaptive strategies. We find that modeling FlipIt as a Markov Decision
Process (MDP) and defining an LM Q-Learning strategy is non-trivial, as the
stealthy nature of the game resists learning. We consider the most challenging
setting, in which the adaptive player has no prior knowledge on the opponent’s
strategy. In this section, we present QFlip, a strategy which is able to overcome
those challenges and elegantly compete against any Renewal opponent.
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1.	Estimate	value	of	at	in	st
2.	Store	estimated	value	in	Q(st,at)
3.	Choose	at+1	(with	exploration)

(see	Algorithm	1	for	details)

(st+1)

(at∈{0,1})

(rt+1)
Agent	(Adaptive	Player) Environment	(FlipIt	game	history)

action	at	time	t

state	at	time	t+1		, 	reward

Fig. 3: Modeling FlipIt as an MDP.

Table 1: Observation Schemes
Scheme s0 st for t > 0

oppLM −1 τt if LM1 > player 0 first move, otherwise −1
ownLM 0 t− LM1

composite (sownLM0 , soppLM0 ) (sownLMt , soppLMt )

4.1 Modeling FlipIt as an MDP

Correctly modeling the game of two-player FlipIt as an MDP is as important
to our strategy’s success as the RL algorithm itself. In our model, player 1 is
an agent interacting with an environment defined by the control history of the
FlipIt resource as depicted in Figure 3.

We consider the infinite but discrete version of FlipIt and say that at every
time step (tick), t ∈ {1, 2, . . . }, the game is in some state st ∈ S where S is a set
of observed state values dependent on the history of the environment. At each
time t, the agent chooses an action at ∈ A = {0, 1} where 0 indicates waiting, and
1 indicates moving. The environment updates accordingly and sends the agent
state st+1 and reward rt+1 defined in Table 1 and Equation (3), respectively.

Defining optimal state values and reward functions is essential to generating
an effective RL algorithm. In a stealthy game with an unknown opponent, this
is a non-trivial task that we will investigate in the following paragraphs.

Modeling State. At each time step t, the LM player knows two main pieces of
information: its own last move time (LM1), and the time since the opponent’s
last known move (τt). The observed state can therefore depend on one or both
of these values. We define three observation schemes in Table 1. We compare
these observation schemes against various opponents in the following sections.

Modeling Reward. Temporal difference learning algorithms leverage incremen-
tal updates from rewards at each time tick, and therefore require the environment
to transmit meaningful reward values. A good reward should be flexible, inde-
pendent of prior knowledge of opponent strategy, and most importantly promote
the ultimate goal of achieving high benefit. We divide actions into three resulting
categories: flipping, consecutive, and no-play based on the type of action and the
state of the environment as depicted in Table 2.

The most straightforward reward after each action is a resulting benefit

β
(at,st)
1 = Γ

(at,st)
1 − k1 (2)
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Table 2: Player 1 Action Categories
Move type at Env State Cost Outcome Explanation

flipping 1 LM0 > LM1 −k1 τt+1 = t− LM0 + 1 Player 1 takes control
consecutive 1 LM0 ≤ LM1 −k1 τt+1 = τt + 1 Player 1 moves while in control
no-play 0 any 0 τt+1 = τt + 1 Player 1 takes no action

where Γ
(at,st)
1 is the resulting gain, or Player 1’s additional time in control be-

tween time t and the opponent’s next move as a result of taking action at in state
st. These rewards would sum to equal Player 1’s total benefit over the course of
the game, therefore exactly matching the goal of maximized benefit.

For consecutive moves, β
(at,st)
1 = −k1, as Player 1 is already in control, and

therefore attains no additional gain, resulting in a wasted move. For no-plays,

β
(at,st)
1 = 0, as not moving guarantees no additional gain and incurs no cost.

The main challenge here comes from determining reward for flipping moves.
Consider the case where the opponent plays more than once between two of

the agent’s moves. Here, it is impossible to calculate an accurate β
(at,st)
1 , as the

agent cannot determine the exact time they lost control. Moreover, there is no
way to calculate future gain from any move against a randomized opponent, as
the opponent’s next move time is unknown.

We acknowledge a few ineffective responses to these challenges. The first
rewards Player 1 for playing soon after the opponent (higher reward for lower
resulting τt+1 values). This works against a Periodic opponent, but not work
against an Exponential opponent as it does not reward optimal play. Another
approach is a reward based on prior gain, rather than resulting gain. This is
difficult to calculate and rewards previous moves, rather than the current action.

We determined experimentally that the best reward for at against an un-
known opponent is a fixed constant related to the opponent’s move frequency as
follows

rt+1 =


0 if no-play at time t

−k1 if consecutive move at time t
ρ−k1
c if flipping move at time t

(3)

where ρ is an estimate of Player 0’s average move frequency and c is a constant
determined before gameplay (for normalization). Playing often toward the be-
ginning of the game and keeping track of the observed move times can provide a
rough estimate of ρ. This reward proves highly effective, while maintaining the
flexibility to play against any opponent without any details of their strategy.

4.2 The QFlip Strategy

In this section we present a new, highly effective LM adaptive strategy, QFlip,
based on existing temporal difference reinforcement learning techniques. QFlip
plays within our FlipIt model from Section 4.1. Though optimized to play against
Renewal opponents, a QFlip player can compete against any player, including
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other adaptive opponents. To the best of our knowledge, QFlip is the first adap-
tive strategy which can play FlipIt against both Renewal and non-Renewal op-
ponents without any prior knowledge about their strategy.

Value Estimation. QFlip uses feedback attained from the environment after
each move and the information gathered during gameplay to estimate the value
of action at in state st. Player 1 has no prior knowledge of the opponent’s
strategy, therefore must learn an optimal strategy in real-time. We adopt an on-
line temporal difference model of value estimation where Q(st, at) is the expected
value of taking action at in state st as in [22].

We start by defining the actual value of an action at in state st as a combi-
nation of the immediate reward and potential future value as

Vst,at = rt+1 + γ ·max
a′∈A

Q(st+1, a
′). (4)

where 0 ≤ γ ≤ 1 is a constant discount to the estimated future value, and rt+1

is the environment-provided reward from Equation (3).
After each tick, we update our value estimate by a discounted difference

between estimated move value and actual move value as follows:

Qα+1(st, at) = Qα(st, at) +
1

α+ 1
(Vst,at −Qα(st, at)) (5)

where α is the number of times action a has been performed in state s, and 1/α
is the step-size parameter, which discounts the change in estimate proportionally
to the number of times this estimate has been modified.

This update policy uses the estimate error to step toward the optimal value
estimate at each state. Note that, if γ = 0, we play with no consideration of the
future, and Qα(s, a) is just an average of the environment-provided rewards over
all times action a was performed in state s.

Action Choice (Exploration). A key element of any reinforcement learning
algorithm is balancing exploitation of learned value estimation with exploration
of new states and actions to avoid getting stuck in local maxima. We employ a
modified decaying-ε-greedy exploration strategy from [22] as

at =

{
choose uniformly at random from A with probability ε′

argmaxa∈AQ(st, a) with probability 1− ε′
(6)

where ε′ = ε · e−d·v for constant exploration and decay parameters 0 ≤ ε, d < 1
and v equal to the number of times QFlip has visited state st. If Q(st, 0) =
Q(st, 1), we choose at = 0 with probability p, and at = 1 with probability 1− p.
Algorithm Definition. We then define the agent’s policy in Algorithm 1. This
is a temporal difference Q-Learning based algorithm. The algorithm first esti-
mates the opponent move rate, ρ, by playing several times. This step is important
to determine if it should continue playing or drop out (when k1 ≥ ρ), and to fix
the environment reward. If the agent decides to play, it proceeds to initialize the
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Q table of estimated rewards in each state and action to 0. The agent’s initial
state is set according to Table 1. The action choice is based on exploration, as
previously discussed. Once an action is selected, the agent receives the reward
and new state from the environment and updates Q according to Equation (5).

Algorithm 1

1: Estimate rate of play ρ of opponent and drop out if k1 ≥ ρ
2: Initialize 2D table Q with all zeros
3: Initialize s0 according to observation type (see section 4.1)
4: for t ∈ {1, 2, . . . } do
5: if Q(st,0)=Q(st,1) then
6: at ← 0 with probability p, else at ← 1
7: else
8: Choose action at according to equation (6)

9: Simulate action at on environment, and observe st+1, rt+1

10: Update Q(st,at) according to equation (5)

5 Theoretical Analysis for Periodic Opponent

We consider first an opponent playing periodically with random phase. Previous
work has focused primarily on analyzing Pδ strategies in a non-adaptive con-
text [3,15,14,6]. We first show theoretically that QFlip eventually learns to play
optimally against a Periodic opponent when the future discount γ is set at 0. We
employ this restriction because, when γ > 0, the actual value of at in st (Vst,at)
depends on the maximum estimated value in st+1, which changes concurrently
with Q(st, at). Additionally, Section 6.2 shows experimentally that changing γ
does not have much effect on benefit.

In the discrete version of FlipIt a player using the Periodic strategy Pδ plays
first at some uniformly random Rδ ∈ {0, . . . , δ}, then plays every δ ticks for all
subsequent moves. In this case, the optimal LM strategy is to play immediately
after the opponent. Our main result is the following theorem, showing that QFlip
converges to the optimal strategy with high probability.

Theorem 1. Playing against a Pδ opponent with γ = 0, k1 < δ, QFlip using
the ownLM observation scheme converges to the optimal LM strategy as t→∞.

We will prove this theorem by first showing that QFlip visits state δ + 1
infinitely often, then claiming that QFlip will eventually play once in state δ+ 1.
We conclude by proving QFlip eventually learns to play in state δ+1 and no other
state. This is exactly the optimal strategy of playing right after the opponent.
Because the Pδ strategy is deterministic after the random phase, we can model
Player 1’s known state and transitions according to the actual state of the game
as in Figure 4. We prove several lemmas and finally the main theorem below.
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Fig. 4: QFlip using oppLM states against Pδ. Arrows indicate state transitions.
Red is at = 1, green is at = 0, and yellow is either at = 0 or at = 1.

Lemma 1. If t > Rδ and at = 1, QFlip will visit state δ + 1 in at most δ
additional time steps.

Proof. We want to show that, for any st, with t > Rδ, choosing at = 1 means
that QFlip will visit state δ + 1 again in at most δ additional time steps.

Case 1 : Assume 1 < st < δ+ 1. We see from Figure 4 that st+1 = st + 1, for
all at when −1 < st < δ+1. Therefore, QFlip will reach state δ+1 in δ+1−st < δ
additional time steps.

Case 2 : Assume st ≥ δ + 1. The opponent is Pδ, so LM1 < LM0 at time t.
Given at = 1, Table 2 gives st+1 = t− LM0 + 1 < δ + 1, returning to Case 1.

Case 3 : Assume st = −1 and QFlip chooses at = 1. From Tables 1 and 2, we
have that st+1 = t− LM0 < δ + 1, returning again to Case 1. ut

Lemma 2. Playing against a Pδ opponent with γ = 0, 0 ≤ p < 1 and k1 < δ,
QFlip visits state δ + 1 infinitely often.

Proof. We prove by induction on the number of visits, n, to state δ + 1 that
QFlip visits state δ + 1 infinitely often.

Base of Induction: We show that, starting from s0 = −1, QFlip will reach
st = δ + 1 with probability converging to 1. If QFlip chooses at = 1 when
Rδ < t ≤ δ, this is a flipping move, putting QFlip in state st+1 < δ + 1. If not,
t > δ ≥ Rα. When st = −1, QFlip chooses at = 0 with probability p and at = 1
with probability 1− p. Therefore

P [QFlip not flipping after v visits to s = −1] = pv. (7)

This implies that QFlip will flip with probability 1 − pv → 1 as t = v →∞. By
Lemma 1, QFlip will reach state δ + 1 in finite steps with probability 1.

Inductive Step: Assume QFlip visits state δ + 1 n times. Because we are
considering an infinite game, at any time t there are infinitely many states that
have not been visited. Therefore ∃m ≥ δ + 1 such that ∀s > m,Q(s) = (0, 0).

If QFlip flips at state st ∈ {δ + 1, ...,m}, it will reach δ + 1 again in a finite
number of additional steps by Lemma 1.

If QFlip does not flip at state st ∈ {δ + 1, ...,m}, we have

P [QFlip does not move after z steps] = pz (8)
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since probability of moving when Q(s) = (0, 0) is p and not moving implies
st+1 = st+1 > m. Therefore, as t = z →∞, QFlip will flip again with probability
1− pz → 1.

By mathematical induction, we have that state δ+1 is visited infinitely often
with probability converging to 1. ut

Lemma 3. If γ = 0 and k1 < δ, QFlip will eventually choose to move in state
δ + 1 with probability 1.

Proof. If QFlip flips in any visit to state δ + 1, the conclusion follows.
Assume QFlip does not flip in state s = δ + 1. Since γ = 0, from Equation

(4), Vst,at = 0 for at = 0. Therefore Q(s) = (0, 0) and we have

P [QFlip does not flip after v visits to state δ + 1] = pv. (9)

By Lemma 2, we know that QFlip visits state δ + 1 infinitely often. Therefore,
probability that QFlip moves in state δ + 1 is 1− pv → 1 as v →∞. ut

Proof of Theorem 1 We will now prove the original theorem, using these
lemmas. To prove that QFlip plays optimally against Pδ, we must show that it
will eventually (1) play at s = δ + 1 at each visit and (2) not play at s 6= δ + 1
at any visit. Assuming γ = 0, we have from section 2.5 of [22] that

Qα+1(s, a) = Qα(s, a) +
1

α+ 1
· (rα+1 −Qα(s, a)) =

1

α+ 1

i=1∑
α+1

ri. (10)

Here we denote by ri the reward obtained the i-th time state s was visited and
action a was taken. Additionally, Pδ plays every δ time steps after the random
phase. Therefore we derive from Equation (3):

ri =


0 if ai = 0

−k1 if ai = 1 and 1 ≤ si ≤ δ
δ−k1
c if ai = 1 and si ≥ δ + 1

(11)

By Equations (10) and (11), we have for all states s,

Qα(s, 0) =
1

α

α∑
i=1

0 = 0. (12)

First we show that QFlip will eventually choose at = 0 in all states 1 < st <
δ + 1. Consider some st such that 1 < s < δ + 1. If QFlip never chooses at = 1
in this state, we are done. Assume QFlip plays at least once in this state, α > 0,
then

Qα(s, 1) =
1

α

α∑
i=1

−k1 = −k1 < 0 = Qα(s, 0) (13)
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since k1 > 0. Therefore argmaxa∈AQ(s, a) = 0. Because ε′ = ε · e−d·v, and
0 ≤ ε, d < 1, as v →∞ we have that ε′ → 0. Therefore P [QFlip does not play at
s]→ 1 for 1 ≤ s ≤ δ as desired.

Next we show that QFlip will eventually play at state δ + 1 at each visit.
From Lemma 3, we know that QFlip will play once at s = δ+ 1 with probability
1, meaning α > 0 with probability 1. By Equations (10) and (11) we have
for α > 0 and s = δ + 1.

Qα(s, 1) =
1

α

α∑
i=1

δ − kA
c

=
δ − kA
c

> 0 = Qα(s, 0). (14)

Now argmaxa∈AQ(s, a) = 1, so as ε′ → 0, P [QFlip plays at s = δ + 1]→ 1.
If QFlip plays at state δ+1, it will not reach states s > δ+1, and thus cannot

play in those states. Therefore, as t→∞, P [QFlip plays optimally]→ 1.
ut

6 QFlip Against Pδ and Eλ Opponents

In this section we show experimentally that QFlip learns an optimal strategy
against Pδ and Eλ opponents. Prior to starting play, we allow QFlip to choose its
observation scheme based on the opponent’s strategy. QFlip chooses the oppLM
observation against Pδ and the ownLM observation against Eλ, but sets other
parameters of QFlip identically. This reflects the theoretical analysis from [3]
which states that an optimal adaptive strategy against a Pδ opponent depends
on τ , while τ is irrelevant in optimal strategies against an Eλ opponent. Next
section, we generalize QFlip to play with no knowledge of opponent strategy.

6.1 Implementation

All simulations (https://github.com/lisaoakley/flipit-simulation) are written in
Python 3.5 with a custom OpenAI Gym environment for FlipIt (https://github.
com/lisaoakley/gym-flipit). We ran each experiment over a range of costs and
Player 0 parameters within the constraint that k1 < ρ, as other values have an
optimal drop out strategy. For consistency, we calculated ρ from the distribution
parameters before running simulations. We report averages across multiple runs,
choosing number of runs and run duration to ensure convergence. Integrals are
calculated using the scipy.integrate.quad function. For Greedy’s maximization
step we used scipy.optimize.minimize with the default “BFGS” algorithm. QFlip
can run against a variety of opponents with minimal configuration, thus we set all
QFlip hyper-parameters identically across experiments, namely γ = 0.8, ε = 0.5,
d = 0.05, c = 5, and p = 0.7 unless otherwise noted.

6.2 QFlip vs. Periodic

In Section 5 we proved that QFlip will eventually play optimally against Pδ when
future discount γ is 0 and k1 < δ. In this section, we show experimentally that

https://github.com/lisaoakley/flipit-simulation
https://github.com/lisaoakley/gym-flipit
https://github.com/lisaoakley/gym-flipit
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Fig. 5: Player’s 1 average benefit for different ε and p parameters at three time
ticks. Here QFlip plays with oppLM, γ = 0 and k1 = 25 against a Pδ opponent
with δ = 50, averaged over 10 runs. Darker purples mean higher average benefit.
QFlip converges to optimal (.48), improving more quickly with low exploration.

most configurations of QFlip using oppLM quickly lead to an optimal strategy.
Additionally, we show there is little difference in benefit when γ > 0.

Learning Speed. When γ = 0, Equation (4) reduces to Vst,at = rt+1. In
this case we verify that QFlip learns an optimal strategy for all exploration
parameters, but that lower exploration rates cause QFlip to reach optimal benefit
more quickly. Against a Periodic opponent, Qα(s, a) is constant after QFlip takes
action a in state s at least once (α > 0). Thus, exploring leads to erroneous
moves. When the probability of moving for the first time in state s is low (p is
high), QFlip makes fewer costly incorrect moves in states s < δ + 1 leading to
higher benefit. When p = 1, QFlip never plays and β1 = 0. Figure 5 displays
Player 1’s average benefit for different values of p and ε. QFlip achieves close
to optimal benefit after 64, 000 ticks with high exploration rates ε and high
probability of playing in new states (1 − p), and in as little as 8, 000 ticks with
no exploration (ε = 0) and low 1− p.
Varied Configurations. When γ > 0, Vst,at factors in the estimated value of
state st+1 allowing QFlip to attain positive reward for choosing not to move in
state δ + 1. The resulting values in the Q table can negatively impact learning.
Figure 6 shows the average benefit over time (left) and the number of non-optimal
runs (right) for different ε and γ values. We observe that QFlip performs non-
optimally on 38% of runs with γ = 0.8 and ε = 0 but has low benefit variation
between runs. However, increasing ε even to 0.1 compensates for this and allows
QFlip to play comparably on average with future estimated value (γ > 0) as with
no future estimated value (γ = 0). This result allows us flexibility in configuring
QFlip which we will leverage to maintain hyper-parameter consistency against
all opponents. In the rest of the paper we set γ = 0.8, ε = 0.5, and p = 0.7.

Comparison to Greedy. Assuming the Greedy strategy against Pδ plays first
at time δ, it will play optimally with probability 1 − k1/δ. However, with prob-
ability k1/δ, Greedy will drop out after its first adaptive move [3]. We compare
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0
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0.1 0 0.474 0.476
0.25 0 0.471 0.473
0.5 0 0.465 0.468
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0 19 0.417 0.478
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(b) Statistics over 50 runs. “Non-
optimal” runs have average ben-
efit > .02 less than optimal (.48)
after 500,000 ticks.

Fig. 6: QFlip using oppLM with k1 = 25 playing against Pδ with δ = 50.

QFlip and Greedy against Pδ for δ = 50 across many costs in Figure 7. QFlip con-
sistently achieves better average benefit across runs, playing close to optimally
on average. Additionally, Player 0 with k0 = 1 attains more benefit on average
against a Greedy opponent as a result of these erroneous drop-outs. For k1 < 45,
QFlip attains benefit between 5% and 50% better than Greedy on average.

6.3 QFlip vs. Exponential

The optimal LM strategy against an Eλ opponent is proven in [3] to be Pδ with δ
dependent on k0 and λ. The exponential distribution is memoryless, so optimal
δ is independent of time since the opponent’s last move. Optimal QFlip ignores
τ and moves δ steps after its own last move. QFlip therefore prefers the ownLM
observation space from Table 1, rather than oppLM used against Periodic.

For QFlip to learn any Pδ strategy, it must visit states s < δ many times.
When playing against an Exponential opponent, the optimal δ grows quickly as
k1 increases. For instance, against an Eλ opponent with λ = 1/100 the optimal
Pδ strategy is δ = 53 for k1 = 10 and δ = 389 for k1 = 90 [3]. As a result,
the optimal Periodic strategy takes longer to learn as k1 grows. Figure 8 (a)
shows the average benefit versus cost after running the algorithm for up to 4.096
million ticks for rate of the Exponential distribution λ = 1/100. For small costs,
QFlip learns to play optimally within a very short time (16, 000 ticks). As the
move cost increases, QFlip naturally takes longer to converge. We verified this
for other values of λ as well. Figure 8 (b) shows how the benefit varies by time
for various move costs. Given enough time, QFlip converges to a near-optimal
Periodic strategy for all costs (even as high as k1 = 100, which results in drop
out for λ = 1/100).
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Fig. 7: Player 1 and Player 0’s average benefit for QFlip and Greedy across Player
1 costs. QFlip with oppLM playing against Pδ with fixed k0 = 1 and δ = 50 for
250,000 ticks, averaged over 100 runs.
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Fig. 8: QFlip with ownLM playing against Eλ with λ = 1/100.

7 Generalized QFlip Strategy

Previous sections show that QFlip converges to optimal using the oppLM and
ownLM observation schemes for the Pδ and Eλ opponents respectively. In this
section we show that QFlip using a composite observation scheme can play op-
timally against Pδ and Eλ, and perform well against other Renewal strategies
without any knowledge of the opponent’s strategy. The composite strategy uses
as states both Player 1’s own last move time (LM1), and the time since the oppo-
nent’s last known move (τt), as described in Table 1. Composite QFlip is the first
general adaptive FlipIt strategy that has no prior information on the opponent.
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(a) QFlip against Pδwith δ = 50.
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Fig. 9: QFlip with k1 = 10 averaged over 10 runs. QFlip converges to optimal
against Pδ and Eλ using oppLM and ownLM observation schemes respectively,
and plays close to optimally against both with composite observation scheme.

7.1 Composite QFlip Against Pδ and Eλ Opponents

Figure 9 shows that QFlip’s average benefit eventually converges to optimal
against both Eλ and Pδ when using a composite observation scheme. We note
that it takes significantly longer to converge to optimal when using the composite
scheme. This is natural, as QFlip has an enlarged state space (quadratic com-
pared to oppLM and ownLM observation schemes) and now visits each state less
frequently. We leave approximation methods to expedite learning to future work.

7.2 Composite QFlip Against Other Renewal Opponents

The composite strategy results in flexibility against multiple opponents. We eval-
uate QFlip using composite observations against Uniform and Normal Renewal
opponents in Figure 10. QFlip attains 15% better average benefit than Greedy
against Uδ,u. Figure 10 also shows that QFlip attains a high average benefit of
0.76 against a Nµ,σ opponent. We do not compare Nµ,σ to Greedy as the nu-
merical packages we used were unable to find the maximum local benefit from
Equation (1). QFlip using composite attains average benefit within 0.01 of QFlip
using oppLM (best performing observation scheme) against both opponents after
10 million ticks.

8 Conclusions

We considered the problem of playing adaptively in the FlipIt security game
by designing QFlip, a novel strategy based on temporal difference Q-Learning
instantiated with three different observations schemes. We showed theoretically
that QFlip plays optimally against a Periodic Renewal opponent using the oppLM
observation. We also confirmed experimentally that QFlip converges against Pe-
riodic and Exponential opponents, using the ownLM observation scheme in the
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(a) QFlip vs. Uδ,u with δ = 100, u = 50
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Fig. 10: QFlip’s average benefit by time for Uniform (left) and Normal (right)
distributions with k1 = 10. QFlip with oppLM and composite observations out-
performs Greedy against Uδ,u averaged over 10 runs. Against both opponents,
composite converges to oppLM as time increases.

Exponential case. Finally, we showed general QFlip with a composite observation
scheme performs well against Periodic, Exponential, Uniform, and Normal Re-
newal opponents. Generalized QFlip is the first adaptive strategy which can play
against any opponent with no prior knowledge.

We performed detailed experimental evaluation of our three observation
schemes for a range of distributions parameters and move costs. Interestingly,
we showed that certain hyper-parameter configurations for the amount of explo-
ration (ε and d), future reward discount (γ), and probability of moving in new
states (1 − p) are applicable against a range of Renewal strategies. Thus, QFlip
has the advantage of requiring minimal configuration. Additionally, we released
an OpenAI Gym environment for FlipIt to aid future researchers.

In future work, we plan to consider extensions of the FlipIt game, such as
multiple resources and different types of moves. We are interested in analyzing
other non-adaptive strategies besides the class of Renewal strategies. Finally,
approximation methods from reinforcement learning have the potential to make
our composite strategy faster to converge and we plan to explore them in depth.
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