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Abstract—In recent years, we have witnessed the explosion of
large-scale data in various fields. Classical statistical methodolo-
gies such as linear regression or generalized linear regression
often show inadequate performance on heterogeneous data be-
cause the key homogeneity assumption fails. In this paper, we
present a flexible framework to handle heterogeneous populations
that can be naturally grouped into several ordered subtypes.
A local model technique utilizing ordinal class labels during
the training stage is proposed. We define a new “progression
score” that captures the progression of ordinal classes, and use
a truncated Gaussian kernel to construct the weight function in
a local regression framework. Furthermore, given the weights,
we apply sparse shrinkage on the local fitting to handle high
dimensionality. In this way, our local model is able to conduct
variable selection on each query point. Numerical studies show
the superiority of our proposed method over several existing
ones. Our method is also applied to the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data to make predictions on
the longitudinal clinical scores based on different modalities of
baseline brain image features.

Index Terms—Heterogeneity, local models, ordinal classifica-
tion, random forests.

I. INTRODUCTION

ALZHEIMER’S disease (AD) is one of the most com-
mon forms of chronic neurodegenerative diseases char-

acterized by memory loss and behavioural issues. In 2015,
there were about 29.8 million people in the world diagnosed
with AD [1]. The widespread incidence of AD makes it
an inevitable issue and it creates severe financial burden
to both patients and governments. Therefore, accurate AD
diagnosis is critical for public health. To identify behavioral
and mental abnormalities associated with the disease, several
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neuropsychological tests have been proposed such as Mini-
Mental State Examination (MMSE) [2] and Alzheimer’s Dis-
ease Assessment Scale-Cognitive Subscale (ADAS-Cog) [3].
The scores obtained from the tests can be considered as the
quantitive measurements of the disease progression. Recently,
several studies based on regression methods have been con-
ducted to estimate clinical scores based on extracted features
from different modalities of biomarkers, e.g., structural brain
atrophy delineated by structural magnetic resonance imaging
(MRI) [4], [5], [6], and metabolic alterations characterized
by fluorodeoxyglucose positron emission tomography (FDG-
PET) [7]. In this paper, we mainly focus on estimating lon-
gitudinal clinical scores from baseline brain modality features
to better understand the relationship between them and gain
further insight about AD.

Our key motivation for the proposed method is to handle
data heterogeneity to improve interpretation in terms of feature
selection and prediction. One important characteristic of brain
image features is that the data can be very heterogeneous
[8]. In this paper, heterogeneity refers to that data can be
neither independent identically distributed (i.i.d.) nor station-
ary observations from a distribution [9]. Classical statistical
methodologies that give a global fit such as linear regression
or generalized linear regression often show inadequate perfor-
mance on heterogeneous data because the key homogeneity
asssumption fails. For example, homogeneity in linear regres-
sion assumes that the regression coefficient is the same for the
whole population and the errors are i.i.d. In particular, linear
regression assumes the following probability distribution for
response yi given feature xi:

yi = xTi β + εi, i = 1, · · · , n,

with εi being the noise term. To make statistical inference,
one often assumes normality. If εi are i.i.d. N(0, σ2), then
the homogeneity assumption holds. A similar concept is ho-
moscadescity, which assumes the equality of the variances
on the errors. If we have different variances σ2

i , then the
errors are heteroscadastic and the homogeneity assumption
fails. A typical way to relax the homoscedasticity assumption
is weighted regression if we have some information about the
variances. The scope of this paper is beyond heteroscedastic
errors. Our proposed framework is more flexible to model
heterogeneous data such as brain image data.

In this paper, we are interested in the regression setting
with clinical scores as the continuous response, where the
population can be naturally grouped into several ordered
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subtypes. The ordered subtypes indicate that the groups under-
lying the population are ordinal, which can be seen in many
applications, especially in the biomedical research studies. For
example, in the study of AD, subjects are diagnosed into
Normal Control (NC), Mild Cognitive Impairment (MCI) or
AD, where the three groups are ordered by the disease severity.
The underlying relationship between the responses and input
variables can vary among different ordered groups. Since there
is inherent relationship between the class label information and
clinical scores [10], [11], it would be useful to incorporate
the class information during the training stage to improve the
prediction performance. A natural way of handling this is the
clusterwise regression models [12], where the idea behind is to
determine the class membership and then apply linear regres-
sion within each class. However by training separate models
within each class, the training sample size will be decreased
dramatically and at the same time information across different
groups may not be sufficiently captured. Furthermore, in many
applications, close classes often share a similar distribution or
a smoothly changing behavior [9]. The mixed effect model or
latent mixed effect model [13] is another possible solution.
Despite the improvement over fixed effect models, the model
assumption is still not flexible enough and may not be well
suited for the case with ordinal classes. In addition, it is
typically computationally intensive with EM type algorithms
that need multiple steps to converge.

To utilize the class label information, we define a new “pro-
gression score” that captures the progression of ordinal classes
on a continuous spectrum. For example, in the AD study,
instead of labeling the subjects with discrete labels NC, MCI
and AD, a continuous scalar variable could be assigned. In
this way, the severity of the disease is naturally characterized
by the ordering of real numbers. In the literature, [14], [15]
developed progression scores on a longitudinal trajectory by
assuming a linear or nonlinear link from progression scores to
seven selected cognitive biomarkers, where their progression
scores are modeled as affine transformations from subjects’
ages. Utilizing similar longitudinal frameworks, [16], [17],
[18] proposed longitudinal models using voxel-wise biomark-
ers as the responses. EM-type algorithms were used, which can
be time-consuming to predict progression scores using high-
dimensional brain biomarkers as input. For example, [16] took
30 minutes per iteration and [18] took 15 hours. To reduce
the dimensionality, [17] used a clustering algorithm for voxel-
wise biomarkers before fitting the longitudinal model. [13]
proposed a composite cognitive performance measure based
on four types of existing clinical scores. In contrast to existing
progression scores, in this paper, our new progression score is
not defined as a longitudinal measure along the time course,
but as a disease severity measure, which is characterized
by the natural ordering the disease stages: NC, MCI and
AD. Another major difference is that our progression scores
are obtained from modeling the relationship between brain
modality features (as inputs) and class labels (as responses),
while the progression scores from existing longitudinal models
are estimated from modeling the relationship between ages (as
inputs) and cognitive biomarkers such as clinical scores and
other brain modality features (as responses).

We propose the use of ordinal logistic regression to de-
fine our progression score. Being known as a classification
method dealing with ordinal population, the class assignment
is accomplished by maximizing the likelihood of an ordinal
logistic regression model for predicting class. Our choice of
progression scores is based on linear transformation of the
logistic regression output, which quantifies the disease severity
on a continuous scale.

The information from the estimated progression scores is
utilized by fitting a flexible local model [19]. [20] proposed
a local framework with applications to classification in ADNI
studies. In general, local methods can be formulated within
the nonparametric regression framework as local weighted
averages for prediction, using kernel functions as weights.
More specifically, these types of local kernel methods fit a
different but simple model separately at each query point to
achieve the flexibility. The kernel weight function can control
the contribution of each training point according to its distance
to the query point. As a result, such local kernel methods
can handle heterogeneity since separate models are used in
the local neighborhood of every query point. For example,
the method of K nearest neighbors (KNN) [21] is a special
case of such local kernel methods. The local fitting step
in the traditional kernel methods can be challenged by the
high dimensionality, which motivates us to apply shrinkage
techniques to prevent overfitting.

We propose to use a truncated Gaussian kernel with the
estimated progression scores as input to construct the weight
function in our local model framework. The prediction on each
query point can borrow the strength of samples both within
the same class and across different classes. As a result, our
method can be more robust to incorrect classification results
even if we apply a classification model in our first step. By
doing so, we are able to map the high dimensional large-
scale data onto a one-dimensional space that characterizes the
class progression, where the Euclidean distance can work well.
A truncation parameter is automatically selected by cross-
validation to remove samples that are far away from the query
point in the local fitting.

In addition to the kernel function from ordinal logistic
regression that forms part of our sample weights, we also
include random forests [22] sample weights [23] adaptively
for the kernel function in our framework. The weights from
random forests circumvent the use of the Euclidean distance in
high dimensional data in the nonparametric setting. By doing
so, our method inherits the benefits from random forests such
as robustness to outliers and the good performance on large-
scale data. Depending on the effectiveness of random forests,
we allow our algorithm to automatically determine whether
the sample weights from random forests are absorbed into
the kernels by cross-validation. Once the adaptive weights are
determined, we fit the local shape of the regression surface
using these weights.

There are two main new contributions on our proposed
weight function: its capability to capture the ordinal population
structure and the utilization of the random forest weights to
improve performance. Furthermore, given the weights, we ap-
ply shrinkage on the local fitting to handle high dimesionality.
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For the local fitting, we apply a penalty to achieve the goal of
variable selection. We have shown that applying the penalty in
the local fitting generalizes the methods of kernel smoothing,
i.e., local weighted averaging. Our numerical studies show the
superiority of our proposed method over random forests and
penalized regression techniques.

The rest of the paper is organized as follows. In Section
II, we introduce the general penalized local model framework
and develop our own sample weight functions, tailored to the
ordinal heterogeneous population. In Section III, we perform
some simulation studies and show the superiority of our work
over several other existing methods. In Section IV, we apply
our method onto the ADNI data to make predictions on the
longitudinal clinical scores based on different modalities of
baseline brain image features. Some discussions are provided
in Section V.

II. SUPERVISED NEIGHBORHOODS FOR ORDINAL
SUBGROUPED POPULATION

There are two key ingredients in our local model framework.
First, we have a regularization step embedded in the local
linear fitting. Second, we construct local kernel weights by
adaptively combining weights from truncated Gaussian kernel
with weights from random forests. The Gaussian kernel func-
tions are defined on a newly defined progression score space,
on which the scores are given by the ordinal logistic regression
to capture the heterogeneity in the ordinal population. Besides
the progression score, the sample weights from random forests
are adaptively included in the local weights to make our
method more flexible than global methods.

We now introduce some notations for the paper. Suppose
there are n training samples and p predictive variables. Let
X = (X1, · · · ,Xp) = (x1, · · · ,xn)T denote the n×p training
data matrix of prediciting variables. Let y = (y1, · · · , yn)T
denote response vector of length n. Suppose there are K
ordered groups in the population and let c = (c1, · · · , cn)T
denote the observation vector of class labels for the n subjects,
where ci takes discrete values from the set {1, · · · ,K}.

In order to discuss our proposed method, we first introduce
the general penalized local linear models in Section II-A.
Then, we describe how the progression score is established
based on ordinal logistic regression and applied to build
the kernel function in Section II-B. Finally, we describe an
additional type of local weights trained from random forests
that can possibly be absorbed in the weights to enhance the
model performance in Section II-C.

A. Penalized Local Linear Models

Local models are very flexible and have the potential to be
robust to heterogeneity. In this paper, we fit a different local
model that uses a squared error loss and takes linear functions
in the function space at each query point x0 ∈ Rp. Moreover,
we apply a penalty to the weighted squared loss to overcome
the high dimensionality in the large-scale data. Denote the
weight function as w(·, ·) : Rp × Rp → [0,∞), a mapping
that is determined by the distance between two points in Rp.
The smaller the distance is, the larger the weight will be. For

Fig. 1. A toy example to illustrate heterogeneity and local models.

now we assume that the weights are given and will discuss
the choice of weights in Sections II-B and II-C.

We use a toy example to better illustrate the idea of
local models. As in Figure 1, we simulate the heterogeneous
population with 3 classes such as NC, MCI and AD and one
covariate. The 3 ordinal classes are separated by 2 dashed
lines. Within each class, the reponse seems to be roughly linear
with respect to the covariate with small variations while there
is a steeper change across neighboring classes. A global model
will not be optimal for such a heterogeneous population. In
particular, as is shown in the plot, we fit a global linear model
for the data. This global model is not sufficient to capture the
local variability in the population due to its heterogeneity. On
the other hand, we can fit the data more efficiently with a
local model. For the query point x0 marked by blue color in
the plot, the red bell-shaped shading area symetrically around
x0 represents the local Gaussian kernel weight function. The
estimate ŷ0 utilizes only the data points covered by the kernel.
The height of the kernel function represents the weight of
the observations for calculation of ŷ. The red curve is the
corresponding response function estimated from the local
Gaussian smoothing method. As we can see from Figure 1, the
local method indeed captures the local variability and better
recover the heterogeneity in the population.

For a given query point x0 ∈ Rp, we denote wi(xi,x0) to be
the weight given by the training sample i and use the notation
wi in this section for simplicity. Then local linear coefficients
(β0

x0
,βx0

) ∈ Rp+1 associated with xi are estimated from
solving the following penalized weighted least square problem:

(β0
x0
,βx0

) = argmin
(β0,β)∈Rp+1

n∑
i=1

wi
(
yi − β0 − βT (xi − x0)

)2
+ λ(α‖β‖1 + (1− α)‖β‖22), (1)

where ‖ · ‖1 denotes the L1-penalty, as in the Lasso [24],
‖ · ‖22 denotes the L2-penalty, as in the ridge regression
[25], λ is a tuning parameter, and α is the parameter that
balances between the L1-penalty and L2-penalty. The linear
combination of the L1- and L2-penalties forms the Elastic Net
penalty [26]. The weighted penalized framework we proposed
can be implemented in the R programming language under
the R package “glmnet”. Note that in our tuning procedure,
we determine the λ candidate set based on x0. Given x0,
we compute the largest candidate λmax that vanishes the
corresponding estimated βx0 , based on Section 2.5 in [27].
Our λ candidate set for x0 is chosen using the same strategy
with [27], by selecting a minimum value λmin = 0.001λmax

and constructing a sequence of 100 values of λ decreasing
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from λmax to λmin on the log scale. We choose α = 0, 0.5
or 1 in the simulation study and real data applications and
the choice depends on problem. We tune the parameter λ by
cross-validation. With the estimated local linear coefficients,
the response of the query point x0 is given by

ŷ0 = β0
x0

+ βTx0
(x0 − x0) = β0

x0
, (2)

which is the estimated intercept term.
Our key contribution of this paper is the construction of

the local weights for every training sample given any query
point. We next describe the construction of the weight function
using ordinal logistic regression in Section II-B. Besides the
weights defined by the continuous class progression, our
weight function can also be flexibly enhanced by random
forests depending on the model performance during cross-
validation, which will be described in Section II-C.

B. Progression Scores for Local Weights Using Ordinal Lo-
gistic Regression

In an ordinal heterogeneous population, the responses tend
to have clustering effects among different groups. Hence,
it can be helpful to utilize the information from the class
labels. Instead of discretizing the population into different non-
overlapping classes, we model the change of the ordinal class
label as a continuous progress. We define a progression score
to quantify the degree to which the subject progresses on the
class evolution spectrum. There are K − 1 latent thresholds
on the spectrum being set as the ordinal class bounds. Then,
based on the progression score, we develop a sample weight
function so that not only the samples from the same class
but also the samples from different but close classes will be
utilized in the local fitting.

Let Ci = 1, · · · ,K denote the class label random vari-
able from the K ordered classes and ci the realization of
this random variable. Consider the ordinal logistic regression
model [28]. The cumulative probability of Ci is modeled as
the logistic function,

P (Ci ≤ j|xi) = φ(θj − ηTxi) =
1

1 + exp(ηTxi − θj)
, (3)

where j = 1, · · · ,K − 1, and i = 1, · · · , n. Here η ∈ Rp,
θ = (θ1, · · · , θK−1) ∈ RK−1 are vectors of parameters and φ
is defined as the logistic function φ(t) = 1/(1+ exp(−t)). In
addition, θ is constrained to be non-decreasing (−∞ = θ0 <
θ1 ≤ θ2 ≤ · · · ≤ θK−1 < θK = +∞) to characterize the
ordinal structure of the K classes.

The overall likelihood function based on the ordinal logistic
model can be expressed as
n∏
i

P (Ci = ci|xi) =
n∏
i

[
P (Ci ≤ ci|xi)− P (Ci ≤ ci − 1|xi)

]
=

n∏
i

[
φ(θci − ηTxi)− φ(θci−1 − ηTxi)

]
.

As in the local weighted least squares, we apply shrinkage to
tackle the high dimensional problem. The parameters θ and

η can be estimated by minimizing the penalized negative log-
likelihood, defined as

Lγ(η,θ) = −
n∑
i=1

log(φ(θci − ηTxi)− φ(θci−1 − ηTxi))

+ γ · ‖η‖22. (4)

Here we impose an L2-penalty on η due to its simplicity
and its effectiveness on dealing with multicollinearity in the
heterogeneous dataset. We use γ as the tuning parameter.
The optimization problem can be solved by gradient methods
[29]. Detail calculation can be found in Section S.I in the
supplementary material.

From the ordinal logistic regression, we want to define
a quantity to capture the continuous progression of ordinal
classes. For example, in the ADNI studies, we want to
characterize how the disease progresses from the very healthy
brain in the NC group to the most severe case of AD. One
natural idea is to utilize the estimated posterior probability
of one class, but it can only interpret the closeness to this
specific class. More specifically, if we let the probability of a
subject being an AD quantify the disease progression, then
a low probability will not give us information on whether
this subject is closer to the state of NC or MCI. On the
other hand, the affine function ηTx naturally quantifies the
disease progression since there exists a latent vector θ̃ =
(θ̃0, · · · , θ̃K) ∈ RK+1 (−∞ = θ̃0 < · · · < θ̃K = ∞),
such that Ci = j if ηTx ∈ (θ̃j−1, θ̃j), j = 1, · · · ,K. The
threshold vector θ̃ determines the class assignments in the
ordinal logistic model. However, the score ηTx provides more
detailed information on disease severity of all subjects.

Motivated by the discussion of the disease progression, we
define the progression score si for subject i to be the estimated
affine function

ŝi = η̂Txi. (5)

If the query point and a training sample are in different classes,
the distance between their progression scores can still be small,
and hence the weight given from this training sample to the
query point should be large. If the distance between the query
point and a training sample is too large, then it would be
reasonable to make the weight from this training sample small
or even zero. In the literature, Gaussian kernel is a commonly
used kernel when the dimension is relatively low. The kernel
gets larger when the Euclidean distance between two points
gets smaller, indicating that more information should be drawn
from each other during the local fitting process. This motivates
us to build a truncated Gaussian kernel. For a query point x0

and training sample xi, we define

ws(xi,x0) = I{|ŝi − ŝ0| < D} ·KD̃0
(ŝi, ŝ0), (6)

where ŝi and ŝ0 are the estimated progression scores for
the training sample i and query point x0 respectively. Here
I{|ŝ0 − ŝi| < D} is the indicator function that only allows
for those observations whose progression scores’ gaps from
the query’s point are less than D to contribute the weights,
where D is the cutting off threshold parameter. The function
KD̃0

(·, ·) is a univariate Gaussian kernel with the bandwidth
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parameter D̃0. As we can see in Figure 1, the red bell-shaped
is a truncated Gaussian kernel. Parameter D̃0 determines the
flatness or sharpeness of the kernel. Parameter D determines
how far its truncated tail can reach from the center x0. In our
framework, the choice of D is tuned together with λ, and D̃0

is estimated from the Silverman’s Rule of Thumb [30]

D̃0 = (
4σ̂5

0

3n0,D
)1/5,

where σ̂0 is the standard error taken over the set {ŝi : |ŝi −
ŝ0| < D} and n0,D is the number of samples in the set.

The weight function defined above gives a query-specific
weight function for the local fitting. The cut off D gives a uni-
form cutting off threshold while D̃0 is specifically computed
for each query point x0. By using ws(·, ·), we can adaptively
choose the local neighborhood for x0 depending on its location
on the class progression spectrum. More weights are added to
the sample points closer to the query point.

C. Weights Using Random Forests

The weight ws(·, ·) developed in Section II-B efficiently
uses the ordinal label information. In this section, we introduce
a sample weight trained from random forests. Depending on
the cross-validation results, we adaptively absorb the random
forests sample weights into our existing kernel.

Random forests enjoy several benefits such as its robustness
to outliers and its good performance on large-scale datasets.
[23] utilized the random forests [22] to train a local linear
regression model for each query point, which has an effect of
correcting local imbalances in the design. Motivated by this,
we aim to exploit the advantage from random forests based
on our current framework, which can be naturally done by
absorbing the random forests weights into our current kernel.
To make it more flexible, we provide two choices on our kernel
depending on the cross-validation performance, which will be
introduced in Section II-D.

Next we briefly describe the random forests framework in
terms of local fitting. Given a random forest consisting of J
trees, let ρ be the random parameter vector that determines the
growth of a tree. Denote the tree built with ρ as T (ρ). For a
given query point x0 ∈ Rp, let R(x0, ρ) be the rectangle with
respect to the terminal node of T (ρ) that contains x0. Denote
n(xi,ρ) as the number of times (with replacement) for the
training sample xi to be used, e.g., in-bag in the random forests
terminology, while building the tree T (ρ). With the notation
introduced, the prediction of the response from a random forest
at query point x0 ∈ Rp can be written as

ŷ0,RF =
1

J

J∑
j=1

[∑n
i=1 I{xi ∈ R(x0,ρj)}n(xi,ρj) · yi∑n
i=1 I{xi ∈ R(x0,ρj)}n(xi,ρj)

]

=

n∑
i=1

{
1

J

J∑
j=1

[
I{xi ∈ R(x0,ρj)}n(xi,ρj)∑n
i=1 I{xi ∈ R(x0,ρj)}n(xi,ρj)

]}
yi

=

n∑
i=1

wRF (xi,x0)yi,

where

wRF (xi,x0) =
1

J

J∑
j=1

[
I{xi ∈ R(x0,ρj)}n(xi,ρj)∑n
i=1 I{xi ∈ R(x0,ρj)}n(xi,ρj)

]
.

(7)
For a query point x0 and a training sample xi, we define

the local weight absorbing the random forests weight as

w(xi,x0) = ws(xi,x0) · wRF (xi,x0). (8)

Then we can conduct a cross-validation procedure to determine
whether to use ws(·, ·) or w(·, ·). The details will be introduced
in Section II-D.

D. Parameters Tuning and Weight Selection

In our experiment, we use M -fold cross-validation to tune
the parameters. We also use cross-validation to determine
whether to use ws(·, ·) and w(·, ·), depending on the perfor-
mance.

It is worth noting that in our model, there are three pa-
rameters to tune: γ in the ordinal logistic regression model,
D as the thresholding parameter, and λ in the penalized
local linear models. Theoretically, the three parameters can
be tuned together using one cross-validation procedure to
achieve a global optimum. Tuning three parameters together is
practically difficult and computationally expensive, hence we
decide to tune γ and D, λ separately by two cross-validation
procedures in two separate training processes. Since the ordi-
nal logistic regression model (4) and the local linear model
(1) are trained separately, γ, D, and λ can be tuned separately
as well. Denote the sizes of candidate sets for γ, D and λ as
nγ , nD and nλ, respectively. Tuning these three parameters
together will computationally cost O(MnγnDnλ). If tuned
seperately, the total computational cost will be proportional to
O(Mnγ) +O(MnDnλ).

Let n(−m) denote the number of all samples excluding the
mth segment (also referred to as the mth segment of training
samples) and n(m) denote the number of samples in the mth
segment (also referred to as the mth validation samples). De-
note the data in the mth segment as (y

(m)

n(m)×1,X
(m)

n(m)×p), and

the data excluding the mth segment as (y(−m)

n(−m)×1,X
(−m)

n(−m)×p).

Let η̂(−m)
γ be the parameters estimated from the mth train-

ing samples and tuning parameter γ in the penalized ordinal
logistic model. Then the estimated progression score vector
for the mth validation set is given by ŝ

(m)
γ = X(m)η̂

(−m)
γ .

We select the optimal tuning parameter γ̂ to maximize the
Pearson’s correlation coefficient between the predicted pro-
gression scores and the true response, since we assume that the
progression score is correlated to the responses. Specifically,
we select γ to maximize CV (γ) as follows

CV (γ) =

M∑
m=1

cor(ŝ(m)
γ ,y(m)). (9)

After determining the optimal γ̂, we can get the estimated
progression score ŝ. Given ŝ, let ŷ

(m)
s,D,λ denote the response

trained from fitting the training samples in (1) with the
threshold parameter D and tuning parameter λ, using sample
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weights given by (6). Let ŷ
(m)
D,λ denote the response estimated

with the same parameters D and λ and with sample weights
enhanced by random forests given by (8). Define the following
two cross-validation estimation errors with respect to the two
weight functions as

CV1(λ,D) =

M∑
m=1

‖y(m) − ŷ
(m)
s,D,λ‖

2
2,

CV2(λ,D) =

M∑
m=1

‖y(m) − ŷ
(m)
D,λ‖

2
2.

(10)

Let {λ̂1, D̂1} and {λ̂2, D̂2} denote the sets of param-
eters that minimize CV1(·, ·) and CV2(·, ·) respectively.
Then we determine the weight function by choosing the
one that minimizes CVi(λ̂i, D̂i). More specificallly, if
argmin

i
CVi(λ̂i, D̂i) = 1, then we select (6) as our weight

function. Otherwise, if argmin
i

CVi(λ̂i, D̂i) = 2, then we

select (8) as our weight function.
We summarize the algorithm of the procedure of our frame-

work in Section S.II the supplementary material.

III. SIMULATION STUDY

We conduct numerical studies using simulated examples.
The methods that we compare include the Lasso regression,
ridge regression, elastic net regression with α = 0.5 and
random forests (RF). All our simulations in this section and
real data applications in Section IV are implemented under R
programming language. We utilize the R package “glmnet” to
implement the baseline methods Lasso, ridge and elastic net
and “randomForest” to implement random forest algorithm.
Five-fold cross validation is utilized for parameter tuning for
our framework and Lasso, ridge and elestic net. For the choice
of parameters in random forests, we fix the number of trees to
be 100 and let the trees grow to the maximum possible depth
subject to the minimum size of terminal nodes 5.

To simulate the data, we use a simulation setting similar
to the mixture models in [9]. Here we generate the known
groups by ordinal logistic regression and define the smooth-
ness structure by the affine function in the ordinal logistic
regression framework. One characteristic of heterogeneity is
that the set of important features might differentiate across
different groups. To capture that, we consider the following
setting with 3 ordinal classes:

yi = xTi0β0+xTi1βi1+xTi2βi2+xTi3βi3+xTicβc+εi, i = 1, · · · , n
(11)

where xij ∈ Rpj , j = 1, 2, 3, are independent and identically
distributed (i.i.d.) multivariate normal with mean 0 ∈ Rpj and
covariance matrix Σj . We fix n = 150 and vary the choices
of Σj . The predictors xij ∈ Rpj are the group j specific
important features. In particular, xic ∈ Rpc are also generated
from i.i.d. multivariate normal with mean 0 and covariance Σc.
Since the distribution is the same for all groups, the features
in xic are important for all 3 groups. Finally, we generate
xi0 ∈ Rp0 from i.i.d. multivariate normal with mean 0 and
covariance Σ0, which represents the unimportant features that

have zero coefficients β0 = 0. In (11), si is the affine function
that defines the progression score for the sample i in the
ordinal logistic setting. Given si, βi1, βi2, βi3, βc are model
coefficients that capture the group differences.

To determine the class label, we use the ordinal logistic
regression model in Section II-B and let θ1 = −4 and θ2 = 4.
We define the linear predictor θj − ηTxi in (3) to be

θj − ηTxi = θj − xTi0η0 − xTi1η1 − xTi2η2 − xTi3η3 − xTicηc

= θj − si, (12)

where ηj = 1 ∈ Rpj for j = 1, 2, 3 and ηc = 1 ∈ Rpc and
η0 = 0 ∈ Rp0 to represent the coefficients for the covariates
that are unrelated to the classification. The latter equality in
(12) defines the true progression score si = xTi1η1 + xTi2η2 +
xTi3η3 + xTicηc. Then the class label ci for the sample i is
determined by the largest posterior probability

ci = argmin
k∈{1,2,3}

P (Ci = k|xi) = argmin
k∈{1,2,3}

{φ(linpredk)

− φ(linpredk−1)}. (13)

Now we introduce how the coefficients are defined. Define
βi1 ∈ Rp1 to be 1 if ci = 1 and 0 otherwise; define βi2 ∈ Rp2
to be 1 if ci = 2 and 0 otherwise; define βi3 ∈ Rp3 to be
1 if ci = 3 and 0 otherwise. Here βij ∈ Rpj corresponds
to the group specific important features. Let the coefficients
βc ∈ Rpc corresponding to the common important features be
1 if ci = 1, 1.5 if ci = 2, and 2 if ci = 3.

Example 3.1. Σj = Ipj×pj for j = 0, · · · , 3.
Example 3.2. Σj = (σjst)s,t=1,··· ,pj with σjst = 0.5|s−t|,

for j = 0, · · · , 3.
In our simulated examples, we fix the parameters p1 = p2 =

p3 = 10 and pc = 20. The parameter p0 takes values 50, 100
or 200 to control the sparsity in both examples. We have
generated the plots for the simulated heterogeneous response
in Figure 2. In Figure 3, we plot the estimated progression
score as a function of clinical score for both simulation set-
tings. There exists a strong correlation between the two scores,
which further validates the usefulness of the progression scores
in our framework. The simulated results are summarized in
Tables I and III for the case p0 = 50, 200. Results for
p0 = 100 is given in the supplementary material in Tables SI
and SIV. The results show that our LWPR methods outperform
other methods. Among different penalties for LWPR, the
ridge penalty appears to achieve the best performance. As its
dimension increases, the estimation error gets larger as well.
Note that our LWPR methods achieve better performance than
the corresponding linear regression methods with the same
penalties. This implies that the local weights defined in our
framework work well. Another interesting fact to note here is
that, even though random forests generally perform the worst
in these examples, our LWPR method still achieve the best
performance, indicating that our cross-validation procedure
indeed works well to adaptively determine the inclusion or
exclusion of the sample weights from random forests.
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Fig. 2. The distributions of simulated responses in Example 3.1 (top) and
Example 3.2 (bottom) with p0 = 200.

Fig. 3. Plots of simulated response against estimated progression score in
Example 3.1 (left) and Example 3.2 (right) with p0 = 50.

We underline the performance measures from the methods
that achieve the best performance among the baseline methods
and make bold the performance measures from the methods
that perform the best among our LWPR methods. To test the
superiority of our method over other methods, we conduct
one-sided two-sample t-tests to check if the performance
measures given by our method are statistically significantly
better than others. All tests on the underlined values and
the corresponding bold values give p-values smaller than
the magnitude of 10−3, indicating a statistically significant
improvement of our method over the baseline methods.

Misdiagnosis can be an important issue in practice. Under
this setting, subjects can be assigned with incorrect labels.
We conduct modified simulations on Examples 3.1 and 3.2
to test our model robustness. Keeping all the parameters and
simulation schemes (11) and (12) to be the same, we randomly
select 10% and 20% simulated samples and assign them with
the wrong labels. If the original label of a selected sample is
1 or 3, we relabel this sample with 2. If the original label of
a selected sample is 2, we randomly relabel this sample with
1 or 3 with equal probabilities. Table II, IV and Table SII,
SIII, SVI, SV in the supplementary material summarize the
simulation results with misdiagnosis probability 10% and 20%
respectively. Comparing with the performances given by the

baseline method in Tables I and III, our methods are still better
despite incorrect labels. The differences with the ones given
the true labels are not significant compared with improvement
over the baseline methods.

p0 Methods MAE CC
RF 7.339 (0.073) 0.269 (0.012)
Ridge 6.334 (0.082) 0.617 (0.008)
Elastic Net 6.399 (0.092) 0.545 (0.014)

p0 = 50 Lasso 6.426 (0.093) 0.531 (0.015)
LWPR+Ridge 5.162 (0.051) 0.698 (0.008)
LWPR+EN 5.602 (0.055) 0.651 (0.007)
LWPR+Lasso 5.676 (0.057) 0.644 (0.008)
RF 7.598 (0.068) 0.180 (0.012)
Ridge 7.570 (0.071) 0.419 (0.010)
Elastic Net 7.338 (0.081) 0.354 (0.018)

p0 = 200 Lasso 7.376 (0.077) 0.357 (0.015)
LWPR+Ridge 6.715 (0.079) 0.465 ( 0.011)
LWPR+EN 6.975 (0.086) 0.421 (0.013)
LWPR+Lasso 7.018 (0.086) 0.413 (0.013)

TABLE I
SIMULATION RESULTS FROM EXAMPLE 3.1. “MAE” STANDS FOR THE
MEAN ABSOLUTE ERROR AND “CC” STANDS FOR THE CORRELATION

COEFFICIENT. RF: RANDOM FORESTS. THE VALUES IN THE PARENTHESES
ARE STANDARD ERRORS.

p0 Method MAE CC
LWPR+Ridge 5.627 (0.068) 0.634 (0.010)

p0 = 50 LWPR+EN 6.058 (0.076) 0.579 (0.010)
LWPR+Lasso 6.130 (0.086) 0.567 (0.011)
LWPR+Ridge 6.766 (0.081) 0.443 (0.011)

p0 = 200 LWPR+EN 7.081 (0.098) 0.396 (0.014)
LWPR+Lasso 7.062 (0.096) 0.393 (0.014)

TABLE II
SIMULATION RESULTS FROM EXAMPLE 3.1 WITH MISDIAGNOSIS

PROBABILITY 10%. “MAE” STANDS FOR THE MEAN ABSOLUTE ERROR
AND “CC” STANDS FOR THE CORRELATION COEFFICIENT.

p0 Method MAE CC
RF 11.301 (0.112) 0.480 (0.009)
Ridge 8.858 (0.104) 0.756 (0.006)
Elastic Net 9.051 (0.111) 0.713 (0.009)

p0 = 50 Lasso 9.133 (0.117) 0.702 (0.009
LWPR+Ridge 6.508 (0.098) 0.832 (0.006)
LWPR+EN 7.538 (0.104) 0.769 (0.008)
LWPR+Lasso 7.859 (0.105) 0.751 (0.009)
RF 11.653 (0.114) 0.422 (0.010)
Ridge 11.016 (0.128) 0.677 (0.007)
Elastic Net 9.605 (0.126) 0.677 (0.008)

p0 = 200 Lasso 9.673 (0.126) 0.663 (0.009)
LWPR+Ridge 8.359 (0.108) 0.722 (0.008)
LWPR+EN 8.777 (0.097) 0.689 (0.008)
LWPR+Lasso 9.012 (0.116) 0.672 (0.009)

TABLE III
SIMULATION RESULTS FROM EXAMPLE 3.2. “MAE” STANDS FOR THE
MEAN ABSOLUTE ERROR AND “CC” STANDS FOR THE CORRELATION

COEFFICIENT. RF: RANDOM FORESTS. THE VALUES IN THE PARENTHESES
ARE STANDARD ERRORS.

IV. APPLICATIONS ON ADNI CLINICAL SCORE
PREDICTION

We apply our method to the ADNI data (data aquired from
http://adni.loni.usc.edu/). All the subjects are from ADNI 1
phase of study. We are interested in predicting the longitudinal
ADAS-Cog scores at 0 month, 12 and 24 months, from two
brain image modalities, MRI and PET, together with the
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p0 Method MAE CC
LWPR+Ridge 7.011 (0.084) 0.812 (0.007)

p0 = 50 LWPR+EN 8.094 (0.095) 0.744 (0.008)
LWPR+Lasso 8.247 (0.096) 0.731 (0.009)
LWPR+Ridge 8.637 (0.105) 0.701 (0.008)

p0 = 200 LWPR+EN 9.156 (0.125) 0.659 (0.011)
LWPR+Lasso 9.203 (0.128) 0.653 (0.012)

TABLE IV
SIMULATION RESULTS FROM EXAMPLE 3.2 WITH MISDIAGNOSIS

PROBABILITY 10%. “MAE” STANDS FOR THE MEAN ABSOLUTE ERROR
AND “CC” STANDS FOR THE CORRELATION COEFFICIENT. THE VALUES IN

THE PARENTHESES ARE STANDARD ERRORS.

class labels (NC, MCI and AD), all of which were acquired
at the baseline. This is not an easy task, as most existing
literatures use additional inputs such as clinical scores at the
previous time points to achieve this goal [6]. MRI images
were acquired from structural magnetic resonance imaging
scans and PET images were acquired from fluorodeoxyglucose
positron emission tomography scans. The images for both
modalities were preprocessed. For MRI, the preprocessing
steps include anterior commissure (AC) posterior commis-
sure (PC) correction, intensity inhomogeneity correction, skull
stripping, cerebellum removal based on registration with atlas,
spatial segmentation and registration. After registration, we
obtain the subject-labeled image based on the Jacob template
with 93 manually labeled regions of interest (ROIs). For
each of the 93 ROIs in the labeled MRI, we compute the
volume of gray matter as a feature. For each PET image, we
first align the PET image to its respective MRI using affine
registration. Then, we obtain the skull-stripping image using
the corresponding brain mask of MRI and compute the average
standardized uptake value ratio (SUVR) of every ROI in the
PET image as a feature. For each subject, we finally obtain
93 MRI features and 93 PET features.

Table SVII in the supplementary material summarizes the
complete subject demography and the clinical score statistics.
There were 803 subjects tested on their ADAS-cog scores
at the baseline. In addition, 90 and 176 subjects missed the
follow-up visits at 12 months and 24 months respectively,
which are not included in our analysis at those time points. The
baseline PET images were not acquired for all 803 subjects.
For simplicity, we impute the missing values in the PET
features with the group medians. Imputation can be superior
to case deletion, because it utilizes all the observed data
[31]. Despite its simplicity, median imputation can distort the
distribution of the missing variables, leading to underestimates
of the standard deviation and bias on the mean. We have
maximized the variation in the imputed data by computing the
group medians on the missing variables. Moreover, the local-
ized framework and the penalty imposed on the coefficients
in (1) can compensate for the imputation effects by giving
weights to different samples.

To take into consideration of the dependence of the 186
features, we construct the pairwise interaction terms in our
analysis [32], which is often utilized in the categorical data
analysis [33]. In other words, we include the following con-
structed features into our model (1):

XiXj , i, j = 1, · · · , 186, i 6= j.

There are in total as many as 17205 interaction terms, and
17391 features including the “original” 186 features. To re-
duce the dimensionality, we utilize the technique of distance
correlation for screening of noise variables [34], [35]. Distance
correlation is a measure to quantify the linear and nonlinear
dependence between two paired random vectors. We select the
top 200 features that share the largest distance correlations
with the responses to be included in the model. The names
of the ROIs that have been selected 50 times are given in
the supplementary material. Table SVIII in the supplementary
material summarizes the percentages of the selected features
as interaction features vs original features. Over half of the 200
selected features are interactions, which justifies the inclusion
of interaction features for prediction. Out of the selected
interaction features, the percentages of MRI-only, PET-only,
and MRI-PET interaction features are summarized in Table
SIX. As shown in the tables, interestingly, the MRI-PET
interactions are the most common ones being selected among
all interactions. This indicates the strong association between
the two modalities.

We plot our estimated progression scores against the three
ordinal classes (NC, MCI, AD) and ADAS-cog scores in Fig-
ure 4. The overall progression scores tend to increase from the
class NC to the class AD. There are overlaps on the estimated
progression scores across the neighboring classes. This further
validates our motivation to locally predict the query point’s
clinical score by including points both from the same and
neighboring classes. In addition, we have also plotted the
scatterplot between the predicted progression scores against
the clinical scores, and such a plot shows a strong positive
correlation between the two.

We randomly partition 75% of the dataset into the training
dataset and the rest into the testing dataset. We train our
model on the training dataset and test the performance on
the testing dataset. The performance measures we use here
are mean absolute error (MAE) and Pearson’s correlation
coefficient (CC). The procedure is repeated 50 times and we
take the means of the performance measures. The standard
errors are also provided, which are calculated by dividing the
standard deviation of the performance measures by square root
of number of replications (50 in our case).

Table V summarizes the performances of different methods.
At each time point, our method always achieves the best
performance in terms of mean absolute errors and correlations,
shown in bold values. We conduct one-sided two-sample t-
tests to statistically demonstrate the performance improvement
of our method. At each time point, we test the null hypothesis
that the measures from our method (bold values) are smaller
(for MAE) / larger (for CC) than the measures from the method
that achieves the best performance among baseline methods
(underlined values). The p-values for the tests are summarized
in Table SX in the supplementary material. We use Bonferroni
correction to control the family-wise error rate for multiple
testing. For an overall significance level of 0.05, our p-values
are compared to the adjusted criteria 0.017(0.05/3). Both of
the adjusted tests on MAE and CC are rejected.

In real applications, it is of great interest to accurately
predict clinical scores among NC and MCI patients for early
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detection of MCI patients, since diagnosis on the AD patients
is a relatively easy task for a neurologist. We have retrained
our model on the NC/MCI subjects and Table VI summarizes
the performance of our proposed method on the NC/MCI
subjects. By comparing the predictive MAEs and the standard
deviations among MCI subjects, our method achieves some
improvement. With more precise predicted clinical scores,
our proposed method can be more useful for the prodromal
purpose.

Fig. 4. Plots of estimated progression scores vs class labels (left) and
progression scores vs clinical scores (right) at 0 month.

Month Method MAE CC
RF 3.635 (0.029) 0.660 (0.005)
Ridge 3.751 (0.028) 0.622 (0.010)
EN 3.647 (0.026) 0.672 (0.005)

0 Lasso 3.652 (0.026) 0.671 (0.004)
LWPR+Ridge 3.528 (0.024) 0.698 (0.004)
LWPR+EN 3.527 (0.024) 0.700 (0.004)
LWPR+Lasso 3.528 (0.024) 0.700 (0.004)
RF 4.455 (0.045) 0.701 (0.005)
Ridge 4.632 (0.049) 0.657 (0.009)
EN 4.420 (0.046) 0.697 (0.006)

12 Lasso 4.420 (0.046) 0.698 (0.006)
LWPR+Ridge 4.280 (0.040) 0.730 (0.005)
LWPR+EN 4.275 (0.040) 0.732 (0.005)
LWPR+Lasso 4.274 (0.039) 0.733 (0.005)
RF 5.367 (0.058) 0.705 (0.006)
Ridge 5.508 (0.074) 0.688 (0.010)
EN 5.464 (0.071) 0.690 (0.008)

24 Lasso 5.480 (0.051) 0.688 (0.008)
LWPR+Ridge 5.161 (0.0.053) 0.735 (0.007)
LWPR+EN 5.133 (0.052) 0.741 (0.005)
LWPR+Lasso 5.140 (0.052) 0.740 (0.006)

TABLE V
COMPARISON OF THE PREDICTION PERFORMANCE ON THE ADNI

DATASET. “MAE” STANDS FOR THE MEAN ABSOLUTE ERROR AND “CC”
STANDS FOR THE CORRELATION COEFFICIENT. THE VALUES IN THE

PARENTHESES ARE STANDARD ERRORS.

Our method has an unique advantage in the sense that it can
detect the most discriminative brain regions for each individual
subject because it is inherently a local method. When we use
a Lasso penalty, the most discrimative ROIs will be selected
as features with nonzero coefficients. To summarize the result,
we group the testing samples into 5 subgroups according to the
magnitudes of their progression scores. We selected the 20th,
40th, 60th and 80th percentiles as the grouping thresholds.
In more details, sample i is grouped into subgroup 1 if the
estimated progression score ŝi < ŝb20c; subgroup 2 if ŝb20c ≤
ŝi < ŝb40c; subgroup 3 if ŝb40c ≤ ŝi < ŝb60c; subgroup 4

Month Method MAE
LWPR+Ridge 3.032 (0.024)

0 LWPR+EN 3.041 (0.023)
LWPR+Lasso 3.038 (0.023)
LWPR+Ridge 3.619 (0.037)

12 LWPR+EN 3.609 (0.036)
LWPR+Lasso 3.600 (0.036)
LWPR+Ridge 4.121 (0.053)

24 LWPR+EN 4.120 (0.054)
LWPR+Lasso 4.123 (0.053)

TABLE VI
PREDICTIVE MAE ON THE NC/MCI SUBJECTS ON THE ADNI DATASET.

THE VALUES IN THE PARENTHESES ARE STANDARD ERRORS.

if ŝb60c ≤ ŝi < ŝb80c; subgroup 5 if ŝi ≥ ŝb80c. Table VII
summarizes the average number of NC, MCI and AD subjects
in the 5 groups out of 50 experiments. Table VII summarizes
the distribution of the class labels across subgroups 1-5 in
the revised manuscript. There is a clear shift from NC to AD
among these five subgroups with highest percentage of NC
in subgroup 1 and highest percentage of AD in subgroup 5.
Within each subgroup, in each iteration, we count the number
of times for each ROI that has been estimated with nonzero
coefficients. After 50 iterations, we sum up the total number
of the count for each ROI, and select the 10 mostly chosen
ROIs within each subgroup. Figure 5 shows the top 10 most
selected regions by LWPR with the Lasso penalty and MRI as
the modality input at the baseline. The brighter the color, the
more frequent the corresponding ROI is chosen. The names
of the 10 mostly selected regions among the 5 groups are
summarized in Table SXI in the supplementary material.

Interestingly, in Figure 5, as the disease gets more severe
(going in direction of group 1 to group 5), some regions are
detected to be brighter, meaning that the role played by them
are getting more significant as AD develops. For instance,
thalamus left in Figure 5 is marked brighter and brighter over
the first three subgroups, corresponding to the early stage of
AD development. [36] studied the thalamic pathology along
with the early development of AD, in which they reported that
thalamic dysfunctions may contribute or even be responsible
for some of the earliest cognitive symptoms of MCI and AD.
In Figure 5, the role played by thalamus detected by LWPR
is more and more significant over the first three subgroups,
which coincides with the finding in the previous study. As
the disease progresses, more regions in the medial temporal
lobe appears to be detected at the later stage of AD, such
as hippocampal formation left and fornix right. Moreover,
we note that the patterns of the marked regions seem to be
generally consistent within the first three subgroups, and they
become more diversed in the fourth and fifth subgroups where
the subjects’ disease become more severe. This further vali-
dates our assumption on the heterogeneity of the population,
especially when AD progresses into a more serious stage.
Table SXI reveals asymmetry in the ROIs selected by LWPR,
which is a common phenomenon of human brain with neu-
rodegeneration. For example, asymmetry on the hippocampal
volume has been investigated in [37] and a consistent left-less-
than-right asymmetry pattern is found. One possible reason for
the asymmetry on the brain structure deterioration related to
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Fig. 5. Ten most discriminative regions detected by LWPR.

Index NC MCI AD
1 32.26 7.74 0.00
2 19.04 20.22 0.74
3 2.90 35.50 1.60
4 1.66 27.56 10.78
5 0.14 6.98 32.88

TABLE VII
AVERAGE NUMBERS OF NC, MCI AND AD SUBJECTS IN THE 5

DIFFERENT GROUPS DETERMINED BY PROGRESSION SCORE

AD is that most language- and motor-dominant regions are on
the left hemisphere, hence it is believed that the left side of the
brain suffers more from the gray matter loss in AD. In [38]
it is reported that rightward-biased asymmetries appear in a
cluster comprising the middle and superior temporal gyri, and
leftward-biased asymmetries are found in hippocampal GM.
Our result agrees with the latter by giving similar asymmetry
pattern in the 5th subgroup. According to [39], AD pathology
tends to affect brain lobes to different extents in an asymmetric
manner, where asymmetry can be derived from temporal,
parietal, and occipital lobe. This is also consistent with our
findings on the five subgroups.

V. CONCLUSION

In this paper we propose a flexible local framework to
predict clinical scores in the ADNI study based on subjects’
brain image features. Our method is superior in that it can
deal with subjects’ heterogeneity by modeling their disease
progression into a progression score and utilizing the defined
score in a truncated Gaussian kernel. We also adaptively
include random forests sample weights into the kernel function
to improve performance. We apply the elastic penalty in the
local fitting step to handle relatively high dimensionality.
Numerical studies show that our method can achieve better

performance than random forests, and Elastic Net type penal-
ized regression. Results of applications on ADNI real data also
agree with several previous scientific findings.
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[9] P. Bühlmann and N. Meinshausen, “Magging: maximin aggregation for
inhomogeneous large-scale data,” arXiv preprint arXiv:1409.2638, 2014.

[10] G. Yu, Y. Liu, and D. Shen, “Graph-guided joint prediction of class
label and clinical scores for the alzheimer?s disease,” Brain Structure
and Function, vol. 221, no. 7, pp. 3787–3801, 2016.

[11] X. Zhu, H.-I. Suk, L. Wang, S.-W. Lee, D. Shen, A. D. N. Initiative et al.,
“A novel relational regularization feature selection method for joint
regression and classification in ad diagnosis,” Medical image analysis,
vol. 38, pp. 205–214, 2017.

[12] W. S. DeSarbo and W. L. Cron, “A maximum likelihood methodology
for clusterwise linear regression,” Journal of classification, vol. 5, no. 2,
pp. 249–282, 1988.

[13] M. C. Donohue, R. A. Sperling, D. P. Salmon, D. M. Rentz, R. Raman,
R. G. Thomas, M. Weiner, and P. S. Aisen, “The preclinical alzheimer
cognitive composite: measuring amyloid-related decline,” JAMA neurol-
ogy, vol. 71, no. 8, pp. 961–970, 2014.

[14] B. M. Jedynak, A. Lang, B. Liu, E. Katz, Y. Zhang, B. T. Wyman,
D. Raunig, C. P. Jedynak, B. Caffo, J. L. Prince et al., “A computational
neurodegenerative disease progression score: method and results with
the alzheimer’s disease neuroimaging initiative cohort,” Neuroimage,
vol. 63, no. 3, pp. 1478–1486, 2012.

[15] D. Li, S. Iddi, W. K. Thompson, M. C. Donohue, and A. D. N.
Initiative, “Bayesian latent time joint mixed effect models for multi-
cohort longitudinal data,” Statistical methods in medical research, p.
0962280217737566, 2017.

[16] M. Bilgel, J. L. Prince, D. F. Wong, S. M. Resnick, and B. M. Jedynak,
“A multivariate nonlinear mixed effects model for longitudinal image
analysis: Application to amyloid imaging,” Neuroimage, vol. 134, pp.
658–670, 2016.

[17] R. V. Marinescu, A. Eshaghi, M. Lorenzi, A. L. Young, N. P. Oxtoby,
S. Garbarino, T. J. Shakespeare, S. J. Crutch, D. C. Alexander, A. D. N.
Initiative et al., “A vertex clustering model for disease progression:
application to cortical thickness images,” in International Conference
on Information Processing in Medical Imaging. Springer, 2017, pp.
134–145.



11

[18] I. Koval, J.-B. Schiratti, A. Routier, M. Bacci, O. Colliot, S. Allasson-
niere, and S. Durrleman, “Spatiotemporal propagation of the cortical
atrophy: Population and individual patterns,” Frontiers in Neurology,
vol. 9, 2018.

[19] W. S. Cleveland, S. J. Devlin, and E. Grosse, “Regression by local
fitting: methods, properties, and computational algorithms,” Journal of
econometrics, vol. 37, no. 1, pp. 87–114, 1988.

[20] H.-I. XiaofengvZhu, S.-W. Lee, and D. Shen, “Subspace regularized
sparse multi-task learning for multi-class neurodegenerative disease
identification,” 2016.

[21] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175–185, 1992.

[22] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[23] A. Bloniarz, A. Talwalkar, B. Yu, and C. Wu, “Supervised neighbor-
hoods for distributed nonparametric regression,” in Artificial Intelligence
and Statistics, 2016, pp. 1450–1459.

[24] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[25] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[26] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[27] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” Journal of statistical
software, vol. 33, no. 1, p. 1, 2010.

[28] R. Bender and U. Grouven, “Ordinal logistic regression in medical
research,” Journal of the Royal College of physicians of London, vol. 31,
no. 5, pp. 546–551, 1997.

[29] D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont,
1999.

[30] S. J. Sheather et al., “Density estimation,” Statistical Science, vol. 19,
no. 4, pp. 588–597, 2004.

[31] E. Acuna and C. Rodriguez, “The treatment of missing values and
its effect on classifier accuracy,” in Classification, clustering, and data
mining applications. Springer, 2004, pp. 639–647.

[32] C. Ai and E. C. Norton, “Interaction terms in logit and probit models,”
Economics letters, vol. 80, no. 1, pp. 123–129, 2003.

[33] A. Agresti and M. Kateri, “Categorical data analysis,” in International
encyclopedia of statistical science. Springer, 2011, pp. 206–208.
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