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Abstract: Consider averages along the prime integers IP given by
AnfO)=N"1 3" (logp)f(x - p).
pEP : p<N
These averages satisfy a uniform scale-free ¢’ -improving estimate. Forall 1 < p < 2, there is a constant Cp so
that for all integer N and functions f supported on [0, N], there holds
NP Anfl g < CoN TP f v

The maximal function A™f = supy|Anf| satisfies (p, p) sparse bounds for all 1 < p < 2. The latter are the
natural variants of the scale-free bounds. As a corollary, A" is bounded on ¢ (w), for all weights w in the
Muckenhoupt A, class. No prior weighted inequalities for A" were known.
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1 Introduction

LetP={3,5,7,..., } be the odd primes and define the logarithmically weighted averages along the primes
by

AnfO)=N"1 3" (logp)f(x-p),
pEP : psN

We prove scale-free /P improving bounds for these averages, and sparse bounds for the associated maximal
function

A'f = suplAxf]. 1)

For a function f on Z, and an interval I C Z, define

) 1p
Prp = (1 > If(X)”) 1.2)

xel

to be the normalized ¢’ norm on I. Throughout the paper, if I = [a, b] N Z, with a, b € Z, is an interval on Z,
let 2I = [2a - b - 1, b] N Z be the doubled interval (on the left-hand side), let 3 = [2a-b - 1,2b - a + 1] be
the tripled interval which has the same center as I.

We prove that the averages along the primes improve integrability, uniformly over all scales.
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Theorem 1.1. For 1 < p < oo, there is a constant Cy so that for all integers N, and interval I of length N, there
holds for all functions f,
(ANF)1pr < Colf)atps (1.3)

wherep’ = ;21

We turn to the sparse inequalities. They are the natural extensions of the /7 improving inequalities above for
the maximal function (1.1). We say that a sublinear operator B has sparse type (r, s), for 1 < r, s < oo if there is
a constant C so that for all finitely supported functions f, g there are a sparse collection of intervals § so that

|(Bf,8)| < €Y (Farr(rsl, (1.4)

Ies8

where (f, g) is the standard inner product on ¢2(Z). A collection of intervals 8 is said to be sparse if there are
subsets E; C I for I € § which are pairwise disjoint, and satisfy |Ej| > 1—10 I].

Theorem 1.2. The maximal operator A" is of sparse type (r, s), forall 1 < r,s < 2.

This statement is much stronger than just asserting that A" is bounded on 7, for all 1 < p < oo. It implies
for instance these weighted inequalities, which match the classical result of Muckenhoupt for the ordinary
maximal function. (Although the quantitative estimates of the norm will not match.)

Corollary 1.3. Forany 1 < p < oo, and any weight w in the Muckenhoupt class A,, we have that A" is a bounded
operator on (P (w).

We remark that for the simple averages along the primes, one can check that for non-negative f

sup 8N S fie-p) < ATY.

N pEP : p<N

Therefore, the sparse bounds hold for the maximal function on the left. Our argument for the fixed scale
inequalities (1.3) requires the logarithmic averages.

Following Bourgain’s work on arithmetic ergodic theorems 1], Wierdl 20] showed that A" is bounded on
/P forall 1 < p < oo. At the time, this was the first arithmetic example for which this fact was known for all
1 < p < 2. Bourgain’s work 3] gave a comprehensive approach to the ¢ theory of arithmetic averages. The
subject continues to be under development, with important contributions by 8, 15, 16]. We point to the work
of Mirek-Trojan and Trojan 17, 18] also focused on the primes. The methods therein are different from those of
this paper.

Our subject, developing the ¢’-improving properties and sparse bounds started with 4], and continued
in 6,14]. It now encompasses the discrete spherical maximal operators 9,10, 12], as well as the square integers
5].

We use the High Low Method 5, 7, 11]. This depends upon efficient use of ¢2-methods, followed by a fine
analysis of certain ¢!-type expressions. The latter are frequently the most intricate part. In this argument, they
depend upon a relatively accessible property of Ramanujan sums, Lemma 3.4. Our argument is new, even if
one is only interested in the #/ — ¢ bounds for A".

2 Preliminaries

Throughout, let ¢(q) be the Euler totient function, let u(q) be the M&bius function. The following estimate
for ¢p(q) is well known:

#(q) e g . 2.1)
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We count primes in the standard logarithmic fashion. Put

9N = > logP. 2.2)
pEeP : psN
By the prime number theorem
'S(NI)V_ N ceev logN (2.3)

holds for some constant ¢, C > 0. This obviously implies 9(N) ~ N.
We now redefine the averaging operators Ay, by setting

AnfO) =9 " (logp)f(x-p) (2.4)

peP : psN

As this is a positive operator, there is no harm in this new definition.
The Fourier transform of a measure o on Z is given by

0 =>_ o(eks),

XEZL

where e({) = e?™ throughout. The inverse Fourier transform is denoted 7. Occasionally, we may also denote
the Fourier transform by 7, and inverse Fourier transform by 5.
We further set eq({) = e2™¢/4_ Recall that Ramanujan sums are defined by

cqm) = Y eqlan/q), 2.5)

ach,

where Ay = {1 <a<q : (a,q) = 1} is the multiplicative group associated to g. Define by convention that
ci(n)=1.
A finer property of Ramanujan sums is recalled in Lemma 3.4 below.

3 Approximating Multipliers

We define the approximating multipliers. Let 1|_y/g 1/g) < 1 < 1|_1/4,1/4) be @ Schwartz function. For an integer
s, let ns(&) = n(8°¢). Define the Fourier transform of the usual averages by

1 N —
IN = N El On. (3-1)
n=

The building blocks of the approximating multipliers are
I GEENGUHE)

L/q,\N(‘fF% Zﬁ-ns(é”—a/q), 2<g<25 521,
achy

(3.2)

Throughout, g and s have the relationship above, although this will be suppressed in the notation. (This is a
useful convention in the application of the multi-frequency maximal function inequality in the proof of the
sparse bounds, see (5.7).)

Theorem 3.1. Let A, N > 10 be integers. If K < (log N)*, there holds

E\J = Z L/q,\N +TA,NK> (3.3
1<q<K

where ||ra n k|1~ Sa KA,
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This is a consequence of standard facts in the number theory literature, and is very similar to how these facts
are used in 20]. We recall them here.

Lemma 3.2. For positive integers B, there is an integer Ny so that for all N > Np
B
1. If[¢] < Q8N then

An(&) = (&) + 0™ VIEN), (34)
2. If|é-a/q|< %for (a,q)=1and 1 < q < (log N)®, then
o) = M@ — . a ~cy/logN
An(&) ¢(q)w(€ q) +0(e ). (3.5)
3. If ¢ does not meet any of the hypotheses of the prior two conditions, then
An(@) = 0 ((logN)*7) . (3.6)
4. The following holds for |&| < 1/2
AN (@] < min{1, (N7} B.7)

The points (1), (2) and (3) above are in 19, Lemma 3.1 & Thm. 3.1], while the last point is well known.

Proof of Theorem 3.1. We note that by construction, the multipliers {L/q,\N : 25 < q < 25*1} are supported on
disjoint intervals around the rationals a/q, with a € A4, and 2° < g < 25*1. From this, it follows from (2.1)
that
H Z Lq’NH < max ¢(q)t <2750, (3.8)
L= 25<q<2s*!
255q<25+1
Above, A is the integer in Theorem 3.1.
It suffices to argue that for B = 2A + 8

Ay = Z L/q,\N + O(log N)™, (3.9
1<q=(log N)B

because we can use (3.8) to complete the proof of (3.3).

We note that the intervals of & that appear in the conditions 1 and 2 of Lemma 3.2 are pairwise disjoint.
Let us assume that & meets the condition 2, so | — a/q| < % for (a, g) = 1 and 1 < g < (log N)B. To prove
(3.3) in this case, we need to see that,

o, ifAg>b#a
ns(§ - b/q) = {1, b
Hence
L&) = ML 56 - afg,
¢(q)
and furthermore by (3.5),

AN(E) — Ly ()] < e7cVIosN, (3.10)

We also need to see that all the other Ly y(&) are small. Indeed, for 1 < ¢’ # g < (log N)B,and o’ ¢ Ay, we
have |§ - a’/q| = %. Hence, by (3.7), we have

Ly (&) S ¢(g) M log N)E.

(log N)®
N

Similarly, we have |¢] = , hence

ILyn()] < (log N)E,
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Summing the estimates for L/q:\; over 1 < g’ # g < (log N)B and using (2.1), we have
S Ly (@) < Gog N (3.11)
1<q’#q<(log N)B

Putting (3.10) and (3.11) together, we have verified (3.9) in this case. If £ meets condition 1 of Lemma 3.2, the
proof is completely analogous.

We now assume that ¢ does not meet the first or second condition of Lemma 3.2. Then, (3.6) holds. And,
similar to (3.11), we have

S Lv@ISs Y @ g N)E S (log NY B

1<g<(log N)B 1<q<(log N)B
Combining (3.6) with (3.11), we have completed the proof of (3.9). O
The building blocks of the approximating multipliers have explicit inverse Fourier transforms.
Lemma 3.3. With the notation of (3.2), there holds

Lgn(x) = ’(;((q) cq(=x) - vy * 1js(x) (3.12)

Proof. For q = 2, compute

Ly w0 = / Lon(@e(-x§) dé

T

u(q) _
= N - ns(& - al/qle(-x¢&) d&
¢(q) %;m/

i - G
ach,

where we are using the notation of Ramanujan sums (2.5). Above 1s is understood as 1s,per, Where 1, per is
the 1-periodic extension of 1s. For g = 1, (3.12) holds since c¢; (x) = 1. O

The term on the right in (3.12) includes an average . It also includes a Ramanujan sum term. One should
note that c4(0) = ¢(q), but this is far from typical behavior. This crude estimate shows that for most x, c4(x)
is about one.

Lemma 3.4. Forany e > 0, and integer k > 1, uniformly in M > QX, there holds

Epawi)

|x|<M g=1

< Q- (3.13)

i| 1/k

The implied constant depends upon k and €.

Sketch of Proof. We will not give a complete proof. It follows from work of Bourgain 2, (3.43), page 126] that
we have, under the assumptions above, that for any integer P,

1/k
[1\1/[ Z\ > cq(x)llk} SPUR M PR

|x|<M Psq<2P

This is given a stand-alone proof in 12, Lemma 3.13]. Using the well known lower bound ¢(q) > gt ¢ we

see that
L Z) Z |(;;1((;())\ < p3els, (3.14)

|x|<M P<q<2P
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Finally, let integer mg be such that 2™ < Q < 2™*1, We have

EESEr T 5

| <M g=1 ‘ <M m=0 2mgg<2m+l

DD SRS SID ol iy

m=0 [x|<M 2m<g<2m+1

mo
S(log Q)k*l Z 23mk£/4

m=0

Sle’

where we used (3.14). This proves the claimed result. O

4 Fixed Scale

The fixed scale result has fewer complications than the sparse bound. We show that for any 1 < p < 2, there
holds

Nﬁl(‘ANf: g) < Cp(f)ZE,p<g>E,p: (4.1)
where E is an interval of length N, and the inequality is independent of N. Since the condition is open with
respect to p, it suffices to consider the case of p’ € N, with f = 1y supported on 2E and g = 1; supported on
E. We trivially have

N (Anf,8) S10gN - (f)25,1(8)E 1
so that we conclude (4.1) if
(log N)({f)2,1(8)E.)"”" < 1. (4.2)
We assume that this fails, thus
min{{f)o,1, (g)g1} > logN) 7. (43)
Now, we prove this auxiliary estimate—the High Low estimate. For constants 1 < J < (log N)p', we can
write Ayf = H + L where

(Hyg, ST (M2, (4.4)
(L)pee ST (132, (4.5)

The implied constants depend upon p. The term H is the High term, and it satisfies a quantified ¢? estimate,
while L satisfies something close to the ¢! — ¢> endpoint. It consists of the ‘low frequency’ terms.
From this, it follows that

NYANFL 8 ST 57 (Faea 85072 + TP (AP, ()51
The two sides are equal provided that
J= (3@ (.6)
By our lower bound on (f),g 1 and (g)g 1 from (4.3), this is an allowed choice of J. And, then (4.1) follows.
It remains to prove (4.4) and (4.5). Apply our decomposition of the averaging operator (3.3) with A = p’

and K = J. With the notation from (3.3), set H = 3 X(ry 4, ]f). The ¢? estimate (4.4) on H follows from the L*°
bound on ry 4 ;. Turning to (4.5), the estimate for L, from (3.12), we have

J J
< ‘Cq()| *x 7 (. )*
> tan ; (Lo = 501 )
N ]

Z 1O+ ) -

y=1¢q
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Here note that 1 1
o * )| = Il S - (47)

Hence

y\f(

J
> Law*f00] < 5
gq=1

v;mzs " [ ]

<]1/p <f>%3p .

Above, we have appealed to Holder inequality and (3.13), with appropriate choice of parameters. Note this
(3.13) only applies for N > N, for a choice of N, that is only depending on p. After that, we simplify the
expression, since f is an indicator set. This completes the proof.

5 Sparse Bound

We prove the sparse bound in Theorem 1.2. The sparse bound is stronger for smaller choices of (r, s), and so it
suffices to prove the (p, p) sparse bound forall 1 < p < 2. Again, by openness of the condition we are proving,
it suffices to restrict attention to functions f, g that are indicator sets.

The sparse bound is proved by recursion, which depends upon the following definition. Let E be an inter-
val oflength 2. Let f = 1z be supportedon 2E,and g = 1 besupportedonE.Let7 : E — {2" : 1<n < ng}
be a choice of stopping time. We say that 7 is admissible if for any interval I C E such that (f)3; 1 > 100(f),E 1,
there holds

inf 7(x) > |I]. (5.1)
xel

We will have direct recourse to this at the end of the proof of the Lemma below.
Lemma 5.1. For all admissible stopping times, and 1 < p < 2, there holds
(Aef, 8) S ((25,1(8)E,) P IE]. (52)

It is a routine argument to see that this implies the sparse bound as written in Theorem 1.2, see 5, Lemma 2.8]
or 11, Lemma 2.1]. We prove the Lemma with the auxiliary High Low construction. For integers J = 2/, we write
Azf < H+ L where

(H)g» S it (f)%;z,l, (5.3)
(L)ge STV (FIF,. (5.4)

The conclusion of (5.2) is very similar to the earlier argument in (4.6), and we omit the details.

We proceed with the construction of the High and Low terms. We begin with the trivial bound, following
from admissibility,
(Arf)Eee S sup(log ()21 (5.5)

On the set B = {log 7(x) < DpJ 1’ 1, we see that (5.4) holds. Here, Dy, is a constant that depends only on p,
which we specify in the discussion of the Low term below. We proceed under the assumption that the set B is
empty. Hence the following holds on E:

T(x) = DpJP". (5.6)

We are then concerned with averages A,-f, where n = D] 1Up' Let

m:=(p' +1)|log, n|.
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Hence (n/2)P"*! < 2™ < n?"*1, Apply the decomposition (3.3) with N = 2", A = p’ + 1 and K = 2™. Then, we
have

2m

— —

Azn = E LG,q +p2n,
gq=1

where ||pan|lee S n?’. Our first contribution to the term H is H; = |p7 * f|. Note that by a familiar square
function argument,

IHil3< > o3 *fII3

n=DpJj/p’

2 -2p’ —2+1/p’ 2
SIS n < fg s

n=D,Jur’

This satisfies the requirement in (5.3).
We continue with the construction of H. The second contribution is

z—sup! > Lang*f|

2Ji<g<2m
Sl 3 L
2k<q<2k+1

The point of this last line is that the inequality below is a direct consequence of Bourgain’s multi-frequency
maximal inequality, and the bound ¢(q) >, '~ /2);

-k(1-1/p")
Jsupl 3" Lang*fl]|, <k ma Nl S 274D (57)
2k<%k+1 2 ke q<2k+1 ¢(q)
Summing this estimate over k = j completes the analysis of the High term.

Remark 5.8. One of the main results of Bourgain 3] is the multi-frequency maximal inequality, a key aspect
of discrete Harmonic Analysis. In the form that we have used it in (5.7), see for instance 13, Prop. 5.11].

The term that remains is the Low term below. We appeal to (3.12), to see that

J
3 tar
g=1

Z (10 e =1 ) =0 (59)

We need the following simple Lemma concerning ¢ * 1{s.

Lemma 5.2. We have

,1 .
- T ifly| < 4t
Ive * s (V)] <
o 272k 1 ifly| € @*r, 21 1], fork = 2.

Proof. The proof for the case |y| < 47 follows from (4.7). Now, assume |y| € (2k7, 2%17] for k = 2. We have

- z 1 ¢ -z
e * T < g Zm(y 57 2 (1+
=1

-1 s
) < & 1
~ 22kg2 ~ 2kt

In the last inequality we used 8° < ¢° < J°> < 20/ ¢ (%), due to (5.6) with a proper choice of Dy. O
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Plugging the estimates in Lemma 5.2 into (5.9), we have

)ZLqr*f(X)’ << Z |Cq()’)| x-y)

lyls4t g=1
S |Cq(y)\
= fx-y)

k:zz yiczr 1 2@

"1 e P ;
s 5@ ¥ [ Zf(" )

y=1 q=1

2k+1T 2k+1

We use Holder’s inequality in /P -¢P ', and use (3.13) above to gain the factor of J1/P ". Recall that (3.13) holds in

this setting, since we assumed (5.6). Thus, JP" < 2Do] g 7(x), for appropriate choice of constant Dj. Note
that admissibility of 7, namely the condition (5.1), gives us the estimate in terms of (f), ;. This completes the
proof of (5.4), and completes the proof of the sparse bound.
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