
Open Access. © 2020 Rui Han et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution
alone 4.0 License.

Concr. Oper. 2020; 7:45–54

Research Article Open Access

Rui Han, Ben Krause, Michael T. Lacey*, and Fan Yang

Averages Along the Primes: Improving and
Sparse Bounds
https://doi.org/10.1515/conop-2020-0003
Received September 6, 2019; accepted December 9, 2019

Abstract: Consider averages along the prime integers P given by

AN f (x) = N−1
∑

p∈P : p≤N
(log p)f (x − p).

These averages satisfy a uniform scale-free `p-improving estimate. For all 1 < p < 2, there is a constant Cp so
that for all integer N and functions f supported on [0, N], there holds

N−1/p
′
‖AN f‖`p′ ≤ CpN

−1/p‖f‖`p .

The maximal function A*f = supN |AN f | satis�es (p, p) sparse bounds for all 1 < p < 2. The latter are the
natural variants of the scale-free bounds. As a corollary, A* is bounded on `p(w), for all weights w in the
Muckenhoupt Ap class. No prior weighted inequalities forA* were known.

Keywords: primes, circle method, improving, sparse bounds, maximal function

MSC: Primary: 42A45, 42B25 Secondary: 11L05

1 Introduction
Let P = {3, 5, 7, . . . , } be the odd primes and de�ne the logarithmically weighted averages along the primes
by

AN f (x) = N−1
∑

p∈P : p≤N
(log p)f (x − p),

We prove scale-free `p improving bounds for these averages, and sparse bounds for the associated maximal
function

A*f = sup
N
|AN f |. (1.1)

For a function f on Z, and an interval I ⊂ Z, de�ne

〈f 〉I,p :=
(

1
|I|
∑
x∈I
|f (x)|p

)1/p

(1.2)

to be the normalized `p norm on I. Throughout the paper, if I = [a, b] ∩ Z, with a, b ∈ Z, is an interval on Z,
let 2I = [2a − b − 1, b] ∩ Z be the doubled interval (on the left-hand side), let 3I = [2a − b − 1, 2b − a + 1] be
the tripled interval which has the same center as I.

We prove that the averages along the primes improve integrability, uniformly over all scales.
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Theorem 1.1. For 1 < p < ∞, there is a constant Cp so that for all integers N, and interval I of length N, there
holds for all functions f ,

〈AN f 〉I,p′ ≤ Cp〈f 〉2I,p , (1.3)

where p′ = p
p−1 .

We turn to the sparse inequalities. They are the natural extensions of the `p improving inequalities above for
themaximal function (1.1). We say that a sublinear operator B has sparse type (r, s), for 1 < r, s < ∞ if there is
a constant C so that for all �nitely supported functions f , g there are a sparse collection of intervals S so that

|(Bf , g)| ≤ C
∑
I∈S

〈f 〉2I,r〈g〉I,s|I|, (1.4)

where (f , g) is the standard inner product on `2(Z). A collection of intervals S is said to be sparse if there are
subsets EI ⊂ I for I ∈ S which are pairwise disjoint, and satisfy |EI | > 1

10 |I|.

Theorem 1.2. The maximal operatorA* is of sparse type (r, s), for all 1 < r, s < 2.

This statement is much stronger than just asserting that A* is bounded on `p, for all 1 < p < ∞. It implies
for instance these weighted inequalities, which match the classical result of Muckenhoupt for the ordinary
maximal function. (Although the quantitative estimates of the norm will not match.)

Corollary 1.3. For any1 < p < ∞, and anyweight w in theMuckenhoupt class Ap, we have thatA* is a bounded
operator on `p(w).

We remark that for the simple averages along the primes, one can check that for non-negative f

sup
N

logN
N

∑
p∈P : p≤N

f (x − p) . A*f .

Therefore, the sparse bounds hold for the maximal function on the left. Our argument for the �xed scale
inequalities (1.3) requires the logarithmic averages.

Following Bourgain’s work on arithmetic ergodic theorems 1], Wierdl 20] showed that A* is bounded on
`p for all 1 < p < ∞. At the time, this was the �rst arithmetic example for which this fact was known for all
1 < p < 2. Bourgain’s work 3] gave a comprehensive approach to the `p theory of arithmetic averages. The
subject continues to be under development, with important contributions by 8, 15, 16]. We point to the work
of Mirek-Trojan and Trojan 17,18] also focused on the primes. The methods therein are di�erent from those of
this paper.

Our subject, developing the `p-improving properties and sparse bounds started with 4], and continued
in 6,14]. It now encompasses the discrete spherical maximal operators 9,10,12], as well as the square integers
5].

We use the High Low Method 5, 7, 11]. This depends upon e�cient use of `2-methods, followed by a �ne
analysis of certain `1-type expressions. The latter are frequently themost intricate part. In this argument, they
depend upon a relatively accessible property of Ramanujan sums, Lemma 3.4. Our argument is new, even if
one is only interested in the `p → `p bounds forA*.

2 Preliminaries
Throughout, let ϕ(q) be the Euler totient function, let µ(q) be the Möbius function. The following estimate
for ϕ(q) is well known:

ϕ(q) &ε q1−ε . (2.1)
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We count primes in the standard logarithmic fashion. Put

ϑ(N) =
∑

p∈P : p≤N
log P. (2.2)

By the prime number theorem ∣∣∣∣ ϑ(N) − NN

∣∣∣∣ ≤ Ce−c√logN , (2.3)

holds for some constant c, C > 0. This obviously implies ϑ(N) ∼ N.
We now rede�ne the averaging operators AN , by setting

AN f (x) = ϑ(N)−1
∑

p∈P : p≤N
(log p) f (x − p) (2.4)

As this is a positive operator, there is no harm in this new de�nition.
The Fourier transform of a measure σ on Z is given by

σ̂(ξ ) =
∑
x∈Z

σ(x)e(xξ ),

where e(ζ ) = e2πiζ throughout. The inverse Fourier transform is denoted η̂. Occasionally, wemay also denote
the Fourier transform by F, and inverse Fourier transform by F−1.

We further set eq(ζ ) = e2πiζ /q. Recall that Ramanujan sums are de�ned by

cq(n) =
∑
a∈Aq

eq(an/q), (2.5)

where Aq = {1 ≤ a < q : (a, q) = 1} is the multiplicative group associated to q. De�ne by convention that
c1(n) ≡ 1.

A �ner property of Ramanujan sums is recalled in Lemma 3.4 below.

3 Approximating Multipliers
Wede�ne the approximatingmultipliers. Let 1[−1/8,1/8] ≤ η ≤ 1[−1/4,1/4] be a Schwartz function. For an integer
s, let ηs(ξ ) = η(8sξ ). De�ne the Fourier transform of the usual averages by

γ̂N = 1
N

N∑
n=1

δ̂n . (3.1)

The building blocks of the approximating multipliers are

L̂1,N(ξ ) = γ̂N(ξ )η1(ξ )

L̂q,N(ξ ) =
µ(q)
ϕ(q)

∑
a∈Aq

γ̂N · ηs(ξ − a/q), 2s ≤ q < 2s+1, s ≥ 1. (3.2)

Throughout, q and s have the relationship above, although this will be suppressed in the notation. (This is a
useful convention in the application of the multi-frequency maximal function inequality in the proof of the
sparse bounds, see (5.7).)

Theorem 3.1. Let A, N > 10 be integers. If K . (logN)A, there holds

ÂN =
∑
1≤q≤K

L̂q,N + rA,N,K , (3.3)

where ‖rA,N,K‖L∞ .A K−1+1/A.
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This is a consequence of standard facts in the number theory literature, and is very similar to how these facts
are used in 20]. We recall them here.

Lemma 3.2. For positive integers B, there is an integer NB so that for all N > NB
1. If |ξ | < (log N)B

N , then
ÂN(ξ ) = γ̂N(ξ ) + O(e−c

√
log N). (3.4)

2. If |ξ − a/q| < (log N)B
N for (a, q) = 1 and 1 < q < (logN)B, then

ÂN(ξ ) =
µ(q)
ϕ(q) γ̂N(ξ −

a
q ) + O(e

−c
√
log N). (3.5)

3. If ξ does not meet any of the hypotheses of the prior two conditions, then

ÂN(ξ ) = O
(
(logN)4−

B
2
)
. (3.6)

4. The following holds for |ξ | ≤ 1/2
|γ̂N(ξ )| . min{1, (N|ξ |)−1}. (3.7)

The points (1), (2) and (3) above are in 19, Lemma 3.1 & Thm. 3.1], while the last point is well known.

Proof of Theorem 3.1. We note that by construction, the multipliers {L̂q,N : 2s ≤ q < 2s+1} are supported on
disjoint intervals around the rationals a/q, with a ∈ Aq, and 2s ≤ q < 2s+1. From this, it follows from (2.1)
that ∥∥∥ ∑

2s≤q<2s+1
L̂q,N

∥∥∥
L∞
≤ max
2s≤q<2s+1

ϕ(q)−1 . 2−s(1−1/A). (3.8)

Above, A is the integer in Theorem 3.1.
It su�ces to argue that for B = 2A + 8

ÂN =
∑

1≤q≤(log N)B
L̂q,N + O(logN)−A , (3.9)

because we can use (3.8) to complete the proof of (3.3).
We note that the intervals of ξ that appear in the conditions 1 and 2 of Lemma 3.2 are pairwise disjoint.

Let us assume that ξ meets the condition 2, so |ξ − a/q| < (log N)B
N for (a, q) = 1 and 1 < q < (logN)B. To prove

(3.3) in this case, we need to see that,

ηs(ξ − b/q) =
{
0, if Aq 3 b ≠ a
1, if b = a

Hence

L̂q,N(ξ ) =
µ(q)
ϕ(q) γ̂N(ξ − a/q),

and furthermore by (3.5),
|ÂN(ξ ) − L̂q,N(ξ )| ≤ e−c

√
log N . (3.10)

We also need to see that all the other Lq′ ,N(ξ ) are small. Indeed, for 1 < q′ ≠ q ≤ (logN)B, and a′ ∈ Aq′ , we
have |ξ − a′/q′| ≥ (log N)B

N . Hence, by (3.7), we have

|L̂q′ ,N(ξ )| . ϕ(q′)−1(logN)−B .

Similarly, we have |ξ | ≥ (log N)B
N , hence

|L̂1,N(ξ )| . (logN)−B .
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Summing the estimates for L̂q′ ,N over 1 ≤ q′ ≠ q ≤ (logN)B and using (2.1), we have∑
1≤q′≠q≤(log N)B

|L̂q′ ,N(ξ )| . (logN)−A . (3.11)

Putting (3.10) and (3.11) together, we have veri�ed (3.9) in this case. If ξ meets condition 1 of Lemma 3.2, the
proof is completely analogous.

We now assume that ξ does not meet the �rst or second condition of Lemma 3.2. Then, (3.6) holds. And,
similar to (3.11), we have ∑

1≤q≤(log N)B
|L̂q,N(ξ )| .

∑
1≤q≤(log N)B

ϕ(q)−1(logN)−B . (logN)−B+1.

Combining (3.6) with (3.11), we have completed the proof of (3.9).

The building blocks of the approximating multipliers have explicit inverse Fourier transforms.

Lemma 3.3. With the notation of (3.2), there holds

Lq,N(x) =
µ(q)
ϕ(q) cq(−x) · γN * η̂s(x) (3.12)

Proof. For q ≥ 2, compute

Lq,N(x) =
∫
T

L̂q,N(ξ )e(−xξ ) dξ

= µ(q)
ϕ(q)

∑
a∈Aq

∫
T

γ̂N · ηs(ξ − a/q)e(−xξ ) dξ

= µ(q)
ϕ(q)γN * η̂s(x)

∑
a∈Aq

eq(−ax) =
µ(q)
ϕ(q) cq(−x) · γN * η̂s(x),

where we are using the notation of Ramanujan sums (2.5). Above η̂s is understood as
̂
ηs,per, where ηs,per is

the 1-periodic extension of ηs. For q = 1, (3.12) holds since c1(x) ≡ 1.

The term on the right in (3.12) includes an average γN . It also includes a Ramanujan sum term. One should
note that cq(0) = ϕ(q), but this is far from typical behavior. This crude estimate shows that for most x, cq(x)
is about one.

Lemma 3.4. For any ϵ > 0, and integer k > 1, uniformly in M > Qk, there holds

[ 1
M
∑
|x|<M

∣∣∣ Q∑
q=1

cq(x)
ϕ(q)

∣∣∣k]1/k . Qϵ . (3.13)

The implied constant depends upon k and ε.

Sketch of Proof. We will not give a complete proof. It follows from work of Bourgain 2, (3.43), page 126] that
we have, under the assumptions above, that for any integer P,[

1
M
∑
|x|<M

∣∣∣ ∑
P≤q<2P

|cq(x)|
∣∣∣k]1/k . P1+ϵ/2, M > Pk .

This is given a stand-alone proof in 12, Lemma 3.13]. Using the well known lower bound ϕ(q) & q1−ϵ/4, we
see that

1
M
∑
|x|<M

∣∣∣ ∑
P≤q<2P

|cq(x)|
ϕ(q)

∣∣∣k . P3kε/4. (3.14)
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Finally, let integer m0 be such that 2m0 ≤ Q < 2m0+1. We have

1
M
∑
|x|<M

∣∣∣ Q∑
q=1

|cq(x)|
ϕ(q)

∣∣∣k ≤ 1M ∑
|x|<M

∣∣∣ m0∑
m=0

∑
2m≤q<2m+1

|cq(x)|
ϕ(q)

∣∣∣k
≤(m0 + 1)k−1

m0∑
m=0

1
M
∑
|x|<M

∣∣∣ ∑
2m≤q<2m+1

|cq(x)|
ϕ(q)

∣∣∣k
.(logQ)k−1

m0∑
m=0

23mkε/4

.Qkε ,

where we used (3.14). This proves the claimed result.

4 Fixed Scale
The �xed scale result has fewer complications than the sparse bound. We show that for any 1 < p < 2, there
holds

N−1(AN f , g) ≤ Cp〈f 〉2E,p〈g〉E,p , (4.1)

where E is an interval of length N, and the inequality is independent of N. Since the condition is open with
respect to p, it su�ces to consider the case of p′ ∈ N, with f = 1F supported on 2E and g = 1G supported on
E. We trivially have

N−1(AN f , g) . logN · 〈f 〉2E,1〈g〉E,1
so that we conclude (4.1) if

(logN)(〈f 〉2E,1〈g〉E,1)1/p
′
≤ 1. (4.2)

We assume that this fails, thus
min{〈f 〉2E,1, 〈g〉E,1} > (logN)−p

′
. (4.3)

Now, we prove this auxiliary estimate–the High Low estimate. For constants 1 ≤ J ≤ (logN)p
′
, we can

writeAN f = H + L where

〈H〉E,2 . J−1+
1
p′ 〈f 〉1/22E,1 (4.4)

〈L〉E,∞ . J1/p
′
〈f 〉1/p2E,1. (4.5)

The implied constants depend upon p. The term H is the High term, and it satis�es a quanti�ed `2 estimate,
while L satis�es something close to the `1 → `∞ endpoint. It consists of the ‘low frequency’ terms.

From this, it follows that

N−1(AN f , g) . J−1+
1
p′ (〈f 〉2E,1〈g〉E,1)1/2 + J1/p

′
〈f 〉1/p2E,1〈g〉E,1.

The two sides are equal provided that
J ' 〈f 〉1/2−1/p2E,1 〈g〉−1/2E,1 . (4.6)

By our lower bound on 〈f 〉2E,1 and 〈g〉E,1 from (4.3), this is an allowed choice of J. And, then (4.1) follows.
It remains to prove (4.4) and (4.5). Apply our decomposition of the averaging operator (3.3) with A = p′

and K = J. With the notation from (3.3), set H = F−1(rN,A,J f̂ ). The `2 estimate (4.4) on H follows from the L∞

bound on rN,A,J . Turning to (4.5), the estimate for L, from (3.12), we have∣∣∣ J∑
q=1

Lq,N * f (x)
∣∣∣ ≤ J∑

q=1

(
|cq(·)|
ϕ(q) |γN * η̂s(·)|

)
* f (x)

≤
N∑
y=1

J∑
q=1

|cq(y)|
ϕ(q) |γN * η̂s(y)| f (x − y).



Averages along Primes | 51

Here note that
|γN * η̂s(y)| ≤

1
N ‖η̂s‖`1 .

1
N . (4.7)

Hence ∣∣∣ J∑
q=1

Lq,N * f (x)
∣∣∣ ≤ 1

N

2N∑
y=1

J∑
q=1

|cq(y)|
ϕ(q) f (x − y)

.
[ 1
2N

2N∑
y=1

∣∣∣ J∑
q=1

|cq(y)|
ϕ(q)

∣∣∣p′]1/p′[ 1
2N

2N∑
y=1

f (x − y)
]1/p

. J1/p
′
〈f 〉1/p2E,1.

Above, we have appealed to Hölder inequality and (3.13), with appropriate choice of parameters. Note this
(3.13) only applies for N > Np, for a choice of Np that is only depending on p. After that, we simplify the
expression, since f is an indicator set. This completes the proof.

5 Sparse Bound
We prove the sparse bound in Theorem 1.2. The sparse bound is stronger for smaller choices of (r, s), and so it
su�ces to prove the (p, p) sparse bound for all 1 < p < 2. Again, by openness of the conditionwe are proving,
it su�ces to restrict attention to functions f , g that are indicator sets.

The sparse bound is proved by recursion, which depends upon the following de�nition. Let E be an inter-
val of length2n0 . Let f = 1F be supportedon2E, and g = 1G be supportedon E. Let τ : E → {2n : 1 ≤ n ≤ n0}
be a choice of stopping time.We say that τ is admissible if for any interval I ⊂ E such that 〈f 〉3I,1 > 100〈f 〉2E,1,
there holds

inf
x∈I

τ(x) > |I|. (5.1)

We will have direct recourse to this at the end of the proof of the Lemma below.

Lemma 5.1. For all admissible stopping times, and 1 < p < 2, there holds

(Aτ f , g) . (〈f 〉2E,1〈g〉E,1)1/p|E|. (5.2)

It is a routine argument to see that this implies the sparse bound as written in Theorem 1.2, see 5, Lemma 2.8]
or 11, Lemma 2.1]. We prove the Lemmawith the auxiliary High Low construction. For integers J = 2j, wewrite
Aτ f ≤ H + L where

〈H〉E,2 . J−1+1/p
′
〈f 〉1/22E,1, (5.3)

〈L〉E,∞ . J1/p
′
〈f 〉1/p2E,1. (5.4)

The conclusion of (5.2) is very similar to the earlier argument in (4.6), and we omit the details.
We proceed with the construction of the High and Low terms. We begin with the trivial bound, following

from admissibility,
〈Aτ f 〉E,∞ . sup

x
(log τ(x))〈f 〉2E,1. (5.5)

On the set B = {log τ(x) ≤ DpJ1/p
′
}, we see that (5.4) holds. Here, Dp is a constant that depends only on p,

which we specify in the discussion of the Low term below. We proceed under the assumption that the set B is
empty. Hence the following holds on E:

τ(x) ≥ DpJ1/p
′
. (5.6)

We are then concerned with averages A2n f , where n ≥ DpJ1/p
′
. Let

m := (p′ + 1)blog2 nc.
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Hence (n/2)p
′+1 < 2m ≤ np

′+1. Apply the decomposition (3.3) with N = 2n, A = p′ + 1 and K = 2m. Then, we
have

Â2n =
2m∑
q=1

L̂2n ,q + ρ2n ,

where ‖ρ2n‖∞ . n−p
′
. Our �rst contribution to the term H is H1 = |ρ̂τ * f |. Note that by a familiar square

function argument,

‖H1‖22 ≤
∑

n≥Dp J1/p′
‖ρ̂2n * f‖22

. ‖f‖22
∑

n≥Dp J1/p′
n−2p

′
. J−2+1/p

′
‖f‖22.

This satis�es the requirement in (5.3).
We continue with the construction of H. The second contribution is

H2 = sup
n

∣∣ ∑
2j<q≤2m

L2n ,q * f
∣∣

≤
m∑
k=j

sup
n

∣∣ ∑
2k<q≤2k+1

L2n ,q * f
∣∣

The point of this last line is that the inequality below is a direct consequence of Bourgain’s multi-frequency
maximal inequality, and the bound ϕ(q) &p q1−1/(2p

′):∥∥∥sup
n

∣∣ ∑
2k≤q<2k+1

L2n ,q * f
∣∣∥∥∥

`2
. k max

2k≤q<2k+1
1
ϕ(q) · ‖f‖`2 . 2−k(1−1/p

′)‖f‖`2 . (5.7)

Summing this estimate over k ≥ j completes the analysis of the High term.

Remark 5.8. One of the main results of Bourgain 3] is the multi-frequency maximal inequality, a key aspect
of discrete Harmonic Analysis. In the form that we have used it in (5.7), see for instance 13, Prop. 5.11].

The term that remains is the Low term below. We appeal to (3.12), to see that

∣∣∣ J∑
q=1

Lq,τ * f (x)
∣∣∣ ≤ J∑

q=1

(
|cq(·)|
ϕ(q) |γτ * η̂s(·)|

)
* f (x) (5.9)

We need the following simple Lemma concerning γτ * η̂s.

Lemma 5.2. We have

|γτ * η̂s(y)| .
{
τ−1 if |y| ≤ 4τ
2−2k τ−1 if |y| ∈ (2kτ, 2k+1τ], for k ≥ 2.

Proof. The proof for the case |y| ≤ 4τ follows from (4.7). Now, assume |y| ∈ (2kτ, 2k+1τ] for k ≥ 2. We have

|γτ * η̂s(y)| ≤
1
8sτ

τ∑
z=1
|η̂( y − z8s )| . 1

8sτ

τ∑
z=1

(
1 + ( y − z8s )2

)−1
.

8s
22kτ2

.
1

22kτ
.

In the last inequality we used 8s ≤ q3 ≤ J3 < 2Dp J
1/p′

< τ(x), due to (5.6) with a proper choice of Dp.



REFERENCES | 53

Plugging the estimates in Lemma 5.2 into (5.9), we have

∣∣∣ J∑
q=1

Lq,τ * f (x)
∣∣∣ .1

τ
∑
|y|≤4τ

J∑
q=1

|cq(y)|
ϕ(q) f (x − y)

+
∞∑
k=2

1
22kτ

∑
|y|≤2k+1τ

J∑
q=1

|cq(y)|
ϕ(q) f (x − y)

.
[ τ∑
y=1

1
τ

∣∣∣ J∑
q=1

|cq(y)|
ϕ(q)

∣∣∣p′] 1
p′
[1
τ

τ∑
y=1

f (x − y)
] 1
p

+
∞∑
k=2

1
2k
[2k+1τ∑
y=1

1
2k+1τ

∣∣∣ J∑
q=1

|cq(y)|
ϕ(q)

∣∣∣p′] 1
p′
[ 1
2k+1τ

2k+1τ∑
y=1

f (x − y)
] 1
p

.J1/p
′
〈f 〉1/p2E,1.

We use Hölder’s inequality in `p-`p
′
, and use (3.13) above to gain the factor of J1/p

′
. Recall that (3.13) holds in

this setting, since we assumed (5.6). Thus, Jp
′
< 2Dp J

1/p′

< τ(x), for appropriate choice of constant Dp. Note
that admissibility of τ, namely the condition (5.1), gives us the estimate in terms of 〈f 〉2E,1. This completes the
proof of (5.4), and completes the proof of the sparse bound.
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