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Abstract
For a polynomial P mapping the integers into the integers, define an averaging operator
AN f (x) := 1

N

∑N
k=1 f (x + P(k)) acting on functions on the integers. We prove

sufficient conditions for the �p-improving inequality

‖AN f ‖�q (Z) �P,p,q N−d( 1
p − 1

q )‖ f ‖�p(Z), N ∈ N,

where 1 ≤ p ≤ q ≤ ∞. For a range of quadratic polynomials, the inequalities
established are sharp, up to the boundary of the allowed pairs of (p, q). For degree
three and higher, the inequalities are close to being sharp. In the quadratic case, we
appeal to discrete fractional integrals as studied by Stein and Wainger. In the higher
degree case, we appeal to the Vinogradov Mean Value Theorem, recently established
by Bourgain, Demeter, and Guth.
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1 Introduction

Discrete Radon averaging operators are our focus. Let P be a polynomial of one
variable mapping the integers to the integers and of degree d. Set an average and a
fractional integral operator to be

AN f (x) := 1

N

N∑

k=1

f (x + P(k)),

Iλ f (x) :=
∞∑

k=1

f (x + P(k))

kλ
, 0 < λ < 1. (1.1)

Throughout, functions f can be assumed to be finitely supported. We write A � B
if there exists an absolute constant C such that A ≤ CB. If the constant depends
on parameters λ,μ, . . . we denote that with a subscript, such as A �λ,μ,... B. The
inequalities of interest are

‖AN f ‖�q (Z) �P,p,q N−d( 1
p − 1

q )‖ f ‖�p(Z), N ∈ N, 1 < p < q < ∞. (1.2)

‖Iλ f ‖�q (Z) �P,λ,p,q ‖ f ‖�p(Z), 1 < p < q < ∞. (1.3)

The inequality in (1.2) should hold uniformly in N ∈ N. Using the notation�P,p,q we
emphasize that the estimate has to be uniform in N and f , but the implicit constant is
allowed to depend on P , p, and q. One should similarly interpret the notation�P,λ,p,q

in (1.3). The exponent in (1.2), −d(1/p− 1/q), is the best possible one, as is trivially
seen by taking f = 1{1,2,3,...,2P(N )} and letting N → ∞.

SetA(P) to be the set of all (p, q) for which (1.2) holds. Set I(P) to be the set of
all (p, q, λ) for which (1.3) holds. These two classes are related through

Proposition 1.4 These two relations between A(P) and I(P) hold, where d is the
degree of P.

(1) If (p, q) ∈ A(P), then (p, q, λ) ∈ I(P) for 0 < 1−λ < min{1, d(1/p− 1/q)}.
(2) If (p, q, 1 − d(1/p − 1/q)) ∈ I(P), then (p, q) ∈ A(P).

Wewill define two closely related concepts in Sect. 7, and phrase some conjectures
about them.

Concerning the collection I(P), the relevant conjecture [18, pg. 597] is

Conjecture 1.5 The inequality (1.3) holds if and only if 1 − λ ≤ d(1/p − 1/q),
1/q < λ, and 1 − λ < 1/p.

Discrete fractional integralswere studied by Stein andWainger [20,21], with further
contributions by Oberlin [17], and Ionescu and Wainger [9]. In particular, the case of
quadratic P(x) = x2 is completely resolved. Our first main theorem provides a sharp,
up to the endpoint, bound for most quadratic polynomials. Note that, when studying
(1.2), interpolation with the trivial estimates for q = p allows us to additionally
assume q = p′ and p < 2.



Journal of Fourier Analysis and Applications (2020) 26 :42 Page 3 of 11 42

Theorem 1.6 For a quadratic polynomial P(x) = ax2 + bx + c with non-negative
integer coefficients and N ∈ N, the inequality (1.2) holds in the range

{
(p, q) : 1

q ≤ 1
p , 2

q > 1
p , 1

q > 2
p − 1

}
.

More precisely, for every 3/2 < p ≤ 2 and N ∈ N one has

‖AN f ‖
�p

′
(Z)

�p

(

2a + b

N

)

(2aN + b)
−2( 1

p − 1
p′ )‖ f ‖�p(Z). (1.7)

It seems reasonable to conjecture that in (1.2) the bounds, provided they hold,
depend upon the polynomial only through its degree d. Right now, we do not know
that this is true even in the quadratic case.

Pierce [18,19] also studied the fractional integrals. In particular [18] points to the
relationship to the (at that point unresolved) Vinogradov Mean Value Conjecture. It
reveals itself through the need for bounds on the exponential sums

SN (t1, t2, . . . , td) := 1

N

N∑

k=1

e2π i(kt1+k2t2+···+kd td ); t1, t2, . . . , td ∈ T = R/Z.

(1.8)
This theme was further elaborated on by Kim [15]. Using the work of Bourgain, Guth,
and Demeter [1], we establish

Theorem 1.9 Let P be an arbitrary polynomial of degree d ≥ 3 mapping the set of
integers back into itself. Averages (1.1) satisfy estimate (1.2) for exponents p, q in the
triangular range

{
(p, q) : 1

q ≤ 1
p , d2+d+1

q > d2+d−1
p , d2+d−1

q > d2+d+1
p − 2

}
. (1.10)

Specializing q = p′ the range (1.10) reduces to

2 − 2
d2+d+1

< p ≤ 2. (1.11)

We will regard averages (1.1) as “projections” of the following higher-dimensional
polynomial averages. Writing (x1, x2, . . . , xd) ∈ Z

d , consider

ÃN f (x1, x2, . . . , xd) := 1

N

N∑

k=1

f (x1 + k, x2 + k2, . . . , xd + kd). (1.12)

This time we want to prove �p-improving estimates of the form

‖ ÃN f ‖�q (Zd ) �d,p,q N− d(d+1)
2 ( 1

p − 1
q )‖ f ‖�p(Zd ). (1.13)
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The exponent − d(d+1)
2 ( 1p − 1

q ) is the most improvement in N that one can expect,
as in easily seen by taking f to be the indicator function of {1, 2, . . . , 2N } × · · · ×
{1, 2, . . . , 2Nd}.
Theorem 1.14 If d ≥ 3, then averages (1.12) satisfy estimate (1.13) for exponents
p, q in the same range (1.10), as in Theorem 1.9.

As we explain in Sect. 6, the bounds above are very close to optimal. It would be
interesting to find the optimal open ranges of exponents p and q in Theorems 1.9 and
1.14.

Let us also remark that continuous-parameter results similar to Theorem 1.14 have
already been present in the literature for awhile. For example, Christ [2] has essentially
settled all Lp-improving properties of the convolution operator associated with the
continuous moment curve [−1, 1] → R

d , t 	→ (t, t2, . . . , td). Proofs of such results
do not rely on number theory and sometimes not even on the Fourier analysis (as
was the case with [2]), but rather on geometrical considerations and enumerative
combinatorics.

Our proof of Theorem 1.6 is done by using the essentially sharp results about
discrete fractional integrals due to Stein and Wainger. The argument can be reversed.
We use our higher degree results on �p-improving to deduce results about discrete
fractional integrals. To indicate the range of results that can be proved, we define

Ĩd,λ f (x1, . . . , xd) :=
∞∑

k=1

k−λ f (x1 + k, . . . , xd + kd), 0 < λ < 1

for finitely supported functions f . The following corollary extends works by Kim
[15, Corollaries 2.2, 2.3], and is very nearly sharp.

Corollary 1.15 Suppose that the indices (p, q) belong to the range (1.10).

(1) Let P be an arbitrary polynomial of degree d ≥ 3mapping the set of integers back
into itself. We have the inequality (1.3) provided that 0 < 1−λ < d(1/p− 1/q).

(2) Take d ≥ 3. We have the inequality ‖ Ĩd,λ f ‖�q (Zd ) �d,λ,p,q ‖ f ‖�p(Zd ) provided
that 0 < 1 − λ < (1/2)d(d + 1)(1/p − 1/q).

The study of improving estimates for averages has been studied for decades in the
Euclidean setting. It was recently recognized that some of these inequalities can be
further extended to so-called sparse bounds. The latter imply the strongest known
weighted estimates; see [3,7,16]. The study of the discrete variants has a much shorter
history. Qualitative results were established in [4,13] for discrete singular Radon trans-
forms. On the other hand, discrete spherical averages admit a robust variant of their
continuous analogs [8,10–12,14].

Improving inequalities and sparse bounds are closely related, but the connection is
far more delicate in the discrete case. In particular, the sparse bounds proved in [5,6]
for averages along the prime and square integers, respectively, rely upon the Hardy–
Littlewood Circle method. We do not know another way to prove those bounds; see
the conjectures in Sect. 7.
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2 Relating Averages to Fractional Integrals and Vice Versa

Proof of Proposition 1.4 Assume that (p, q) ∈ A(P), that is (1.2) holds. For 0 <

1 − λ < min{1, d(1/p − 1/q)} we have

‖Iλ f ‖�q (Z) �λ

∞∑

j=1

2(1−λ) j‖A2 j f ‖�q (Z)

�P,p,q ‖ f ‖�p(Z)

∞∑

j=1

2(1−λ−d(1/p−1/q)) j �λ ‖ f ‖�p(Z).

In the reverse direction, observe that AN f ≤ N−1+λ Iλ f . So if (p, q, 1− d(1/p−
1/q)) ∈ I(P), the result follows. 
�
Proof of Corollary 1.15 assuming Theorems 1.9 and 1.14. The first part is a direct con-
sequence of Theorem 1.9 and Proposition 1.4. For the second part we again write

‖ Ĩd,λ f ‖�q (Zd ) �λ

∞∑

j=1

2(1−λ) j‖ Ã2 j f ‖�q (Zd )

and then apply Theorem 1.14 in exactly the same way.

3 Quadratic Polynomials

Case d = 2, P(x) = x2. For this particular choice of the polynomial, Conjecture 1.5
has been verified by Stein and Wainger [20,21]; also see [9, Cor 1.3]. Note that for
3/2 < p < 2, q = p′, and 1 − λ = 2(1/p − 1/q), we have (p, q, λ) ∈ I(x2), so the
result follows.

3.1 General Quadratic Polynomials

Let us turn to the proof of (1.7). In order to avoid confusion we will write the relevant
polynomial P in the superscript of AP

N .
We define g : Z → R by

g(4am) = f (m) for all m ∈ Z and g(n) = 0 if 4a � n.

Since f is supported in [−(aN 2 + bN + b2
4a ), aN 2 + bN + b2

4a ], we have that g is
supported in [−(2aN + b)2, (2aN + b)2]. Therefore

AP
N f (x) = 1

N

∑

n≤N

f (x + an2 + bn + c)

= 1

N

∑

n≤N

g(4ax + 4a2n2 + 4abn + 4ac)



42 Page 6 of 11 Journal of Fourier Analysis and Applications (2020) 26 :42

= 1

N

∑

n≤N

g(4a(x + c) − b2 + (2an + b)2)

≤ (2aN + b)

N

1

2aN + b

∑

k≤2aN+b

g(4a(x + c) − b2 + k2)

=
(

2a + b

N

)

Ax2
2aN+bg(4a(x + c) − b2).

Using this calculation and the previously established case of Theorem 1.6 we obtain

‖AP
N f ‖

�p
′
(Z)

≤
(

2a + b

N

)

‖Ax2
2aN+bg‖�p

′
(Z)

≤
(

2a + b

N

)

(2aN + b)2/p
′−2/pCp‖g‖�p(Z)

≤
(

2a + b

N

)

(2aN + b)2/p
′−2/pCp‖ f ‖�p(Z),

for every 3/2 < p ≤ 2.

4 Reduction to Vinogradov’s Mean Value Theorem

Proof of Theorem 1.14 Let �2(Zd) → L2(Td), f 	→ f̂ denote the Fourier transform
on the group Z

d . For finitely supported f this is simply the formation of the multiple
Fourier series with coefficients f (m); m ∈ Z

d .
We apply the Hausdorff–Young inequality twice to reduce the problem to bounds

for the exponential sums. To do so, we write

ÃN f (x1, x2, . . . , xd)

= 1

N

N∑

k=1

∫

Td
f̂ (t1, t2, . . . , td)e

2π i((x1+k)t1+(x2+k2)t2+···+(xd+kd )td )dt1dt2 · · · dtd

=
∫

Td
f̂ (t1, t2, . . . , td)SN (t1, t2, . . . , td)e

2π i(x1t1+x2t2+···+xd td )dt1dt2 · · · dtd ,

where SN are the normalized exponential sums given by (1.8). We recognize ÃN f as
the Fourier transform of the function f̂ · SN on the groupT

d . Applying the Hausdorff–
Young inequality on T

d , then Hölder’s inequality on T
d , and finally the Hausdorff–

Young inequality on Z
d , we get

‖ ÃN f ‖
�p

′
(Zd )

≤ ‖ f̂ · SN‖Lp(Td ) ≤ ‖ f̂ ‖Lp′ (Td )
‖SN‖Ls (Td ) ≤ ‖ f ‖�p(Zd )‖SN‖Ls (Td ),

where 1/s = 1/p − 1/p′ = 2/p − 1. Thus, the �p-improving inequality depends
on the Ls-norm of the sums SN . Vinogradov’s mean value theorem, as established by
Bourgain, Demeter, and Guth [1], claims precisely the bound
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‖SN‖Ls (Td ) �d,s,ε N− d(d+1)
2s +ε

for any s > d(d + 1) and for any fixed ε > 0. Note that in the typical formulation
of Vinogradov’s mean value theorem number s needs to be an even integer, but the
analytic proof from [1] does not require that.Moreover, for d ≥ 3 one can even remove
the ε by performing the Hardy–Littlewood circle method, as in [22, Sect. 7] or [1, Sect.
5]. Therefore, we actually have

‖SN‖Ls (Td ) �d,s N− d(d+1)
2s . (4.1)

Combining (4.1) with the previous computation we get exactly the �p-improving
estimate (1.13) for 2 − 2/(d2 + d + 1) < p ≤ 2 and q = p′. Interpolation with the
trivial estimates for q = p settles the whole claimed range of (p, q). 
�

5 Projection of Higher-Dimensional Averages to One-Dimensional
Ones

Proof of Theorem 1.9 Take an arbitrary polynomial function P : R → R of degree
d ≥ 3 mapping Z back to Z. Let us write it as

P(x) = a0 + a1x + a2x
2 + · · · + ad−1x

d−1 + ad x
d ,

where a0, a1, . . . , ad ∈ R and, without loss of generality, ad > 0. By solving the Van-
dermonde linear system in the coefficients of P the conditions P(0), P(1), . . . , P(d) ∈
N imply that a0, a1, . . . , ad are rational numbers.Moreover, let v ∈ N be the least com-
mon denominator of a1, . . . , ad , so that we can write a j = b ju/v for j = 1, . . . , d,
where u ∈ N and b1, . . . , bd ∈ Z do not have a common multiple greater than
1. By the formula for the Vandermonde determinant we also know that v divides∏

0≤i< j≤d( j − i), so it has an upper bound depending only on d. Finally, since the
free coefficient of P simply translates the averages (1.1), it is safe to assume that
a0 = 0.

For any given function g : Z → C and a fixed number r ∈ {0, 1, . . . , u − 1} define
f : Z

d → C by

f (x1, x2, . . . , xd−1, xd) = 1{1,2,...,2N }(x1)1{1,2,...,2N2}(x2) · · ·1{1,2,...,2Nd−1}(xd−1)

g(a1x1 + a2x2 + · · · + ad−1xd−1 + ad xd + r)

1Z(a1x1 + a2x2 + · · · + ad−1xd−1 + ad xd).

This way

‖ f ‖�p(Zd ) �d,p N
(d−1)d

2p ‖g‖�p(Z). (5.1)
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For any d-tuple

(x1, x2, . . . , xd−1, xd) ∈ {1, 2, . . . , N } × {1, 2, . . . , N 2} × · · ·
×{1, 2, . . . , Nd−1} × Z

satisfying a1x1 + a2x2 + · · · + ad xd ∈ Z we have

ÃN f (x1, x2, . . . , xd) = AN g(a1x1 + a2x2 + · · · + ad xd + r).

From the theory of linearDiophantine equationswe know that b1Z+b2Z+· · ·+bdZ =
Z. Hence, for sufficiently large N ∈ N,

‖ ÃN f ‖q
�q (Zd )

≥
∑

x1∈vZ
1≤x1≤N

· · ·
∑

xd−1∈vZ

1≤xd−1≤Nd−1

∑

xd∈vZ

∣
∣(AN g)(a1x1 + · · · + ad xd + r)

∣
∣q

� P N
(d−1)d

2
∑

n∈r+uZ

|(AN g)(n)|q . (5.2)

Applying (1.13) and combining it with (5.1) and (5.2) we obtain

N
(d−1)d

2q

( ∑

n∈r+uZ

|(AN g)(n)|q
)1/q

�P,p,q N− d(d+1)
2 ( 1

p − 1
q )N

(d−1)d
2p ‖g‖�p(Z).

Finally, summing in r = 0, 1, . . . , u − 1 gives estimate (1.2) for the function g. 
�

6 Examples

We formulate the examples that show certain sharpness in the �p-improving inequal-
ities. These are essentially known, and we include them for completeness.

Counterexamples similar to the ones in [5] show that (1.2) cannot hold outside the
range {

(p, q) : 1
q ≤ 1

p , d
q ≥ d−1

p , d−1
q ≥ d

p − 1
}

. (6.1)

Indeed, by taking f = 1{P(1),P(2),...,P(N )} we conclude

‖AN f ‖�q (Z)

‖ f ‖�p(Z)

≥ |(AN f )(0)|
‖ f ‖�p(Z)

= 1

N 1/p ,

so that d/q ≥ (d − 1)/p. Similarly, by taking f = 1{0} we get

‖AN f ‖�q (Z)

‖ f ‖�p(Z)

≥
( ∑N

m=1 |(AN f )(−P(m))|q)1/q
‖ f ‖�p(Z)

= N 1/q−1

1
,
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which forces (d − 1)/q ≥ d/p − 1. If one only cares about the case q = p′, then
(6.1) is simply the range

2 − 1
d ≤ p ≤ 2. (6.2)

Theorem 1.9 leaves a gap between the ranges (1.11) and (6.2) for large d.
Next, it is easy to see that (1.13) cannot hold outside the range

{
(p, q) : 1

q ≤ 1
p , d2+d

q ≥ d2+d−2
p , d2+d−2

q ≥ d2+d
p − 2

}
.

Indeed, by taking

f = 1{(11,12,...,1d ),(21,22,...,2d ),...,(N1,N2,...,Nd )}

we conclude

N− d(d+1)
2 ( 1

p − 1
q ) � d,p,q

‖ ÃN f ‖�q (Zd )

‖ f ‖�p(Zd )

≥ |( ÃN f )(0, 0, . . . , 0)|
‖ f ‖�p(Zd )

= 1

N 1/p ,

so multiplying by N 1/p and letting N → ∞ give (d2 + d)/q ≥ (d2 + d − 2)/p.
Similarly, by taking f = 1{(0,0,...,0)} we get

N− d(d+1)
2 ( 1

p − 1
q ) � d,p,q

‖ ÃN f ‖�q (Zd )

‖ f ‖�p(Zd )

≥
(∑N

m=1 |( ÃN f )(−m1,−m2, . . . ,−md)|q)1/q
‖ f ‖�p(Z)

= N 1/q−1

1
.

This forces (d2 + d − 2)/q ≥ (d2 + d)/p − 2. If one only cares about the cases
q = p′, then we are talking about the range

2 − 2
d2+d

≤ p ≤ 2.

Comparing it to (1.11) we see that Theorem 1.14 is “asymptotically optimal” as d →
∞.

7 Conjectured Sparse Bounds

Recall that a collection of intervals S is said to be sparse if for each interval I there is a
subset EI so that |EI | > |I |/4 and {EI : I ∈ S} are pairwise disjoint. For 0 ≤ λ < 1,
and a sparse collection S, set

�p,q,λ( f , g) :=
∑

I∈S
〈 f 〉p,I 〈g〉I ,q |I |1−λ,

where 〈φ〉I ,r :=
[
|I |−1

∑

n∈I∩Z
|φ(n)|r

]1/r
.
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Concerning the maximal function A∗ f = supN AN f , where AN is defined as in
(1.1), the main conjecture would be that if (p, q) ∈ A(P), that is when (1.2) holds,
one has

〈A∗ f , g〉 � sup
S

�p,q ′,0( f , g).

Notice that we are using the conjugate index q ′ = q/(q − 1) above. In fact, the main
result of [5] is that for the quadratic polynomial P(x) = x2, this is true, except possibly
at the boundary ofA(P). Nothing close to this is known for any other polynomial, as
far as we know.

Turning to the fractional integral operator, the main conjecture would be that if
(p, q, λ) ∈ I(P), that is when (1.3) holds, one has

〈Iλ f , g〉 � sup
S

�p,q ′,λ( f , g).

No such bound is known, even in the quadratic case.
The interest in sparse bounds comes in part as they immediately imply a range of

weighted inequalities and vector valued inequalities. The main results of [5,6] concern
sparse bounds for averages over the square integers and the primes. These results seem
to be much more difficult than the improving or fractional integral inequalities.
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