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Abstract

‘We introduce a novel co-learning paradigm for manifolds naturally admitting an
action of a transformation group G, motivated by recent developments on learning a
manifold from attached fibre bundle structures. We utilize a representation theoretic
mechanism that canonically associates multiple independent vector bundles over
a common base manifold, which provides multiple views for the geometry of the
underlying manifold. The consistency across these fibre bundles provide a common
base for performing unsupervised manifold co-learning through the redundancy
created artificially across irreducible representations of the transformation group.
We demonstrate the efficacy of our proposed algorithmic paradigm through drasti-
cally improved robust nearest neighbor identification in cryo-electron microscopy
image analysis and the clustering accuracy in community detection.

1 Introduction

Fighting with the curse of dimensionality by leveraging low-dimensional intrinsic structures has
become an important guiding principle in modern data science. Apart from classical structural
assumptions commonly employed in sparsity or low-rank models in high dimensional statistics
[63, 11, 12, 49, 2, 64, 67], recently it has become of interest to leverage more intricate properties
of the underlying geometric model, motivated by algebraic or differential geometry techniques, for
efficient learning and inference from massive complex datasets [15, 16, 44, 46, 8]. The assumption
that high dimensional datasets lie approximately on a low-dimensional manifold, known as the
manifold hypothesis, has been the cornerstone for the development of manifold learning [62, 52, 18,
3,4,5,17,57, 66] in the past few decades.

In many real applications, the low-dimensional manifold underlying the dataset of high ambient
dimensionality admits additional structures that can be fully leveraged to gain deeper insights into
the geometry of the data. One class of such examples arises in scientific fields such as cryo-electron
microscopy (cryo-EM), where large numbers of random projections for a three-dimensional molecule
generate massive collections of images that can be determined only up to in-plane rotations [59, 72].
Another source of examples is the application in computer vision and robotics, where a major
challenge is to recognize and compare three-dimensional spatial configurations up to the action of
Euclidean or conformal groups [28, 10]. In these examples, the dataset of interest consists of images
or shapes of potentially high spatial resolution, and admits a natural group action g € G that plays
the role of a nuisance or latent variable that needs to be “quotient out” before useful information is
revealed.

In geometric terms, on top of a differentiable manifold M underlying the dataset of interest, as
assumed in the manifold hypothesis, we also assume the manifold admits a smooth right action of
a Lie group G, in the sense that there is a smooth map ¢ : G x M — M satisfying ¢ (e,m) = m
and ¢ (g2, ¢ (g1, m)) = ¢ (9192, m) for all m € M and g1, g» € G, where e is the identity element
of G. A left action can be defined similarly. Such a group action reflects abundant information
about the symmetry of the underlying manifold, with which one can study geometric and topological
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properties of the underlying manifold through the lens of the orbit, stabilized, or induced finite- or
infinite-dimensional representations of G. In modern differential and symplectic geomeltry literature,
a smooth manifold M admitting the action of a Lie group G is often referred to as a G-manifold (see
e.g. [40, §6], [50, 1, 33] and references therein), and this transformation-centered methodology has
been proven fruitful [42, 53, 40, 30] by several generations of geometers and topologists.

Recent development of manifold learning has started to digest and incorporate the additional infor-
mation encoded in the G-actions on the low-dimensional manifold underlying the high-dimensional
data. In [36], the authors constructed a steerable graph Laplacian on the manifold of images —
modeled as a rotationally invariant manifold (or U (1)-manifold in geometric terms) — that serves
the role of graph Laplacian in manifold learning but with naturally built-in rotational invariance by
construction. In [38], the authors proposed a principal bundle model for image denoising, which
achieved state-of-the-art performance by combining patch-based image analysis with rotationally
invariant distances in microscopy [47]. A major contribution of this paper is to provide deeper
insights into the success of these group-transformation-based manifold learning techniques from
the perspective of multi-view learning [56, 60, 37] or co-training [7], and propose a family of new
methods that systematically utilize these additional information in a systematic way, by exploiting the
inherent consistency across representation theoretic patterns. Motivated by the recent line of research
bridging manifold learning with principal and associated fibre bundles [57, 58, 22, 20, 19], we point
out that to a G-manifold admitting a principal bundle structure is naturally associated as many vector
bundles as the number of distinct irreducible representations of the transformation group G, and each
of these vector bundles provide a separate “view” towards unveiling the geometry of the common
base manifold on which all the fibre bundles reside.

Specifically, the main contributions of this paper are summarized as follows: (1) We propose a new
unsupervised co-learning paradigm on G-manifold and propose an optimal alignment affinity measurc
for high-dimensional data points that lie on or close to a lower dimensional G-manifold, using both
the local cycle consistency of group transformations on the manifold (graph) and the algebraic
consistency of the unitary irreducible representations of the transformations; (2) We introduce
the invariant moments affinity in order to bypass the computationally intensive pairwise optimal
alignment search and efficiently learn the underlying local neighborhood structure; and (3) We
empirically demonstrate that our new framework is extremely robust to noise and apply it to improve
cryo-EM image analysis and the clustering accuracy in community detection. Code is available on
https://github.com/frankfyf/G-manifold-learning.

2 Related Work

Manifold Learning: After the ground-breaking works of [62, 52], [5, 56, 41] provided reproducing
kernel Hilbert space frameworks for scalar and vector valued kernel and interpreted the manifold
assumption as a specific type of regularization; [3, 4, 14] used the estimated eigenfunctions of the
Laplace—Beltrami operator to parametrize the underlying manifold; [24, 25, 59] investigated into
the representation theoretic pattern of an integral operator acting on certain complex line bundles
over the unit two-sphere naturally arising from cryo-EM image analysis; [57, 58, 22] demonstrated
the benefit of using differential operators defined on fibre bundles over the manifold, instead of the
Laplace—Beltrami operator on the manifold itself, in manifold learning tasks. Recently, [20, 19, 23]
proposed to utilize the consistency across multiple irreducible representations of a compact Lie group
to improve spectral decomposition based algorithms.

Co-training and Multi-view Learning: In their seminal work [7], Blum and Mitchell demonstrated
both in theory and in practice that distinct “views” of a dataset can be combined together to improve the
performance of learning tasks, through their complementary yet consistent prediction for unlabelled
data. Similar ideas exploiting the consistency of the information contained in different sets of features
has long existed in statistical literature such as canonical correlation analysis [29]. Since then,
multi-view learning has remained a powerful idea percolating through aspects of machine learning
ranging from supervised and semi-supervised learning to active learning and transfer learning
[21, 43, 61, 13, 55, 56, 34, 35]. See surveys [60, 69, 70, 37] for more detailed accounts.

3 Geometric Motivation

We first provide a brief overview of the key concepts used in this paper from elementary group
representation theory. Interested readers are referred to [54, 9] for more details.



Groups and Representation: A group G is a set with an operation G x G — G obeying the following
axioms: (1) Vg1, 92 € G, 9192 € G5 (2) Vg1, 92,93 € G, 91(9293) = (9192)93; (3) There is a unique
e € G called the identity of G, such that eg = ge = ¢,Vg € G; (4) Vg € G, there is a corresponding
element g~ € G called the inverse of g, such that gg~' = g~ 'g = e. A d, x d,-dimensional
representation of a group G over a field IF is a matrix valued function p : G — F?%*% such that
o(g1)p(g2) = p(9192), Y91, 92 € G. In this paper, we assume F = C. A representation p is said to
be unitary if p(g~1) = p(g)* for any g € G and p is said to be reducible if it can be decomposed
into a direct sum of lower-dimensional representations as p(g) = Q' (p1(g) @ p2(g))Q for some
invertible matrix Q) € Cde*dp_ otherwise p is irreducible, the symbol € denotes the direct sum. For
a compact group, there exists a complete set of inequivalent irreducible representations (in brevity:
irreps) and any representation can be reduced into a direct sum of irreps.

Fourier Transform: In many applications of interest, the Lie group is compact and thus always
admits irreps, and the concept of irreps allows generalizing the Fourier transform to any compact
group. By the renowned Peter—Weyl theorem, any square integrable function f € Lo(G) can be
decomposed as

f(9) = diTr[Fypi(g)]. and sz/gf(g)p?i(g)dug, ¢))

k=0

where each py, : G — C% ¥ is a unitary irrep of G with dimension dj, € N. This is the compact Lie
group analogy of the standard Fourier series over the unit circle. The “generalized Fourier coefficient”
Fy, in (1) is defined by the integral taken with respect to the Haar measure on G.

Motivation: Motivated by [38, 36], we consider the principal bundle structures on a G-manifold M.
Below we state the definitions of fibre bundle and principal bundle for convenience; see [6] for more
details. Briefly speaking, a fibre bundle is a manifold which is locally diffeomorphic to a product
space, and a principal fibre bundle is a fibre bundle with a natural group action on its “fibres.”

Definition 1 (Fibre Bundle) Let M, B, F be three differentiable manifolds, and let 7 : M — B

denote a smooth surjective map between M and B. We say that M = B (or just M for short)
is a fibre bundle with typical fibre F over B if B admits an open cover % such that 7= (U) is
diffeomorphic to product space U x F for any open set U € U. For any © € B, we denote
Fp =71 () and call it the fibre over x.

Definition 2 (Principal Bundle) Let M be a fibre bundle, and G a Lie group. We call M a principal
G-bundle if (1) M is a fibre bundle, (2) M admits a right action of G that preserves the fibres of M,
in the sense that for any m € M we have © (m) = 7 (g - m), and (3) For any two points p,q € M
on the same fibre of M, there exists a group element g € G satisfying p - g = q.

If M is a principal G-bundle over B, any representation p of G on a vector space V induces an
associated vector bundle over B with typical fibre V, denoted as M x, V, defined as a quotient
space M %,V := M x V / ~ where the equivalence relation is defined by (m - g,v) ~ (m, p(g) v)
forallm € M, g € G,and v € V. This construction gives rise to as many different associated vector
bundles as the number of distinct representations of the Lie group G. This allows us to study the
G-manifold M, as a principal G-bundle, through tools developed for learning an unknown manifold
from attached vector bundle structures, such as vector diffusion maps (VDM) [57, 58]. We consider
cach of these associated vector bundles as a distinct “view” towards the unknown data manifold M,
as the representations inducing these vector bundles are different. In the rest of this paper, we will
illustrate with several examples how to design learning and inference algorithms that exploit the
inherent consistency in these associated vector bundles by representation theoretic machinery. Unlike
the co-training setting where the consistency is induced from the labelled samples onto the unlabelled
samples, in our unsupervised setting no labelled training data is provided and the consistency is
induced purely from the geometry of the G-manifold.

4 Methods

Problem Setup: Given a collection of n data points {z1,...,2,} C R!, we assume they lie on
or close to a low dimensional smooth manifold M of intrinsic dimension d < [, and that M is a
G-manifold admitting the structure of a principal G-bundle with a compact Lie group G. The data
space M is closed under the action of G. That is, g - * € M for all group transformations g € G and



data points x € M, where ‘-’ denotes the group action. As an example, in a cryo-EM image dataset
each image is a projection of a macromolecule with a random orientation, therefore M = SO(3),
which is the 3-D rotation group, G = SO(2) which is the in-plane rotation of images. The G-invariant
distance d;; between two data points x; and x; is defined as

dij =min|z; —g-x;||, and g;; =argmin ||z; —g-z;]. 2)
ge€g 9€0G
where || - || is the Euclidean distance on the ambient space R! and g5 is the associated alignment

which is assumed to be unique. Then we build an undirected graph G = (V, E) whose nodes
are represented by data points, edge connection is given based on d;; using the e-neighborhood
criterion, i.e. (4, j) € E iff d;; <= €, or k-nearest neighbor criterion, i.e. ({,5) € E iff j is one of
the x nearest neighbors of i. The edge weights w;; are defined using a kernel function on d;; as
w;; = K,(d;i;). The resulting graph G is defined on the quotient space B := M /G and is invariant
to the group transformations g;; within data points, e.g. for the viewing angles of cryo-EM images
B = SO(3)/SO(2) = S2. In a noiseless world, G should be a neighborhood graph which only
connects data points on B with small d;;. However, in many applications, noise in the observational
data severely degrades the estimations of G-invariant distances d;; and optimal alignments g;;. This
leads to errors in the edge connection of GG, which connect distant data points on B where their
underlying geodesic distances are large.

Given the noisy graph, we consider the problem of removing the wrong connections and recovering
the underlying clean graph structure on B, especially under high level of noise. We propose a robust,
unsupervised co-learning framework for addressing this, it has two steps which first builds a series of
adjacency matrices with different irreps and filters the original noisy graph as denoising, further it
checks the affinity between node pairs for identifying true neighbors in the clean graph. The main
intuition is to systematically explores the consistency of the group transformation of the principal
bundles across all irreps of G, results in a robustness measurement of the affinity (see Fig. 1).

Weight Matrices Using Irreps:
We start from building a series of
weight matrices using multiple ir-
reps of the compact Lie group G. U
Given the graph G = (V, E) with
n nodes and the group transforma-
tions g € G, we assign weight on
each edge (i,j) € E by taking into
account both the scalar edge connec-

Figure 1: Illustration of our co-learning paradigm. leen a graph
with irreps pi, for k = 1, ..., kmax, we identify neighbors by inves-
tigating the following consistencies: Within each graph of a single

tion weight w;; and the associated
alignment g;; using unitary irreps pj
for kK = 1,..., kmax- The resulting
graph can be described by a set of

weight matrices Wj:

irrep py, if nodes 7, j and s are neighbors, the cycle consistency of
the group transformation holds: pi(g;s)pk(gsi)Pk(gij) = La, xdys
Across different irreps, if 7, 7 are neighbors, the transformation g;;
should be consistent algebraically (along the orange lines connecting
the blue dots).

Wi (i, j) = {wijl)k(!]z’j) (i,j) e E 5

0 otherwise

where w;; = wj; and py,(g;:) = pj;(9:5) forall (i, j) € E. Recall the unitary irrep py(g;;) € Cdrxdx
is a dy X dj, matrix, therefore Wy, is a block matrix with n X n blocks of size dj, X d. In particular,
the corresponding degree matrix Dy, is also a block diagonal matrix with the (i, i)-block Dy, (4,%) as:

Dy(i,4) deg(i) := ij(m)eE W )

The Hilbert space #, as a unitary representation of the compact Lie group G, admits an isotypic
decomposition H = @ Hy, where a function f is in Hy, if and only if f(xg) = ¢* f(x). Then for
each irrep py, we construct a normalized matrix Ay = D,:,ka, which is an averaging operator for
vector fields in Hj. That is, for any vector zi € Hy:

= dEg(Z)Idk Xdk )

. 1 .
(Apz)(i) = dea(d) Zj:(i’j)EE Wi pr(9iz) 2k (7)- ©)
Notice that Ay, is similar to a Hermitian matrix ﬁk as:
Ay = D}*A,D;Y? = DVPW, D2 (6)
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Algorithm 1: Weight Matrices Filtering

Input: Initial graph G = (V, E) with n nodes, for each (¢, j) € F the scalar weight w;; and alignment g;;,
maximum frequency Kkmax, cutoff parameter my, for k = 1, ..., kmax, and spectral filter 7,

Output: The filtered weight matrices Wy ; for k =1, ..., kmax

fork=1,..., kmax do

Construct the block weight matrix Wy, of size nd, x ndy, in (3) and the normalized symmetric matrix

Ay, in (6
Corlrclput(e t)he largest mdy, eigenvalues )\(lk) > /\ék), >, > /\ifz a of Kk and the corresponding
eigenvectors {ul®)ymdr
fori=1,...,ndo
Construct the G-equivariant mapping, 1" : i [nt()\ 2@, (A )Y fjidk (z’)]
(Optional) Compute the SVD of wg") (i) = UXV™ and the normalized mapping z/)(k)( )=UV".
end

Vertically concatenate z/)(k)( ) or 1/}“‘) (4) to form the matrix TSR of size ndy, x mrdy

Construct the filtered and normalized weight matrix Wk,t = \I/,Ek) (\Ifﬁk)) .

end

which has real eigenvalues and orthonormal eigenvectors {/\(k) A)}?d’f, and all the eigenvalues

are within [—1, 1]. For simplicity, we assume data points are umformly distributed on B. If not,
the normalization proposed in [17] can be applied to Wj,. Now suppose there is a random walk on
G with a transition matrix Ao and the trivial representations po(g) = 1,Vg € G, then A3!(i, ) is
the transition probability from i to j with 2¢ steps. Due to the usage of po(gi;), A& (i, ) not only
takes into account the connectivity between the nodes 7 and j, but also checks the consistency of
transformations along all length-2¢ paths between ¢ and j. Generally, in other cases when k > 1,
Ait(i, Jj) is a sub-block matrix which still encodes such consistencies. Intuitively if 4, j are true
neighbors on G, their transformations should be in agreement and we expect || A% (i, j)||#g or

|A2t(i, §)|| % to be large, where || - |uis is the Hilbert-Schmidt norm. Previously, vector diffusion
maps (VDM) [57, 58] considers k = 1 and defines the pairwise affinity as | A¥ (i, j) || %

Weight Matrices Filtering: For denoising the graph, we generalize the VDM framework by first
computing the filtered and normalized weight matrix Wk ;= nt(Ak) for all irreps py’s, where 7;(-)
denotes a spectral filter acting on the eigenvalues, for example 7;(\) = A% as VDM. Moreover, since
the small eigenvalues of Zk are more sensitive to noise, a truncation is applied by only keeping the

(k)

top mydy, eigenvalues and eigenvectors. Specifically, we equally divide u;" of length ndy, into n

blocks and denote the ith block as ul(k) (4). In this way, we define a G-equivariant mapping as:
) e [nt(Al)l/ng’“)(i), o) V2l (@) e cdmde =10 s (7)

It can be further normalized to ensure the diagonal blocks of Wk,t are identity matrices, i.e.
Wi(i,1) = Ig, xa, lorall nodes i. The steps for weight matrices filtering are detailed in Alg. 1. The
resulting denoised Wy, ; is then used for building our affinity measures.

Optimal Alignment Affinity: At each irrep py, the filtered W, involves the transformation
consistency of the graph represented by W}, and has its own ability to measure the affinity. Then
similar to the unsupervised multi-view learning approach, it is advantageous to boost this by coupling
the information under different irreps and to achieve a more accurate measurement (see Fig. 1).

Furthermore, notice that if 7 and j are true neighbors, for each irrep p;, the block Wk +(1,7) should
encode the same amount of associated alignment g;;. Therefore, by applying the algebraic relation

among kat across all irreps, we define the optimal alignment affinity according to the generalized
Fourier transform in (1) and the definition of the weight matrices in (3):

kmax
S0, ) = max - pPE: [Wk,t(ijj)p?;(g)] ®)
max k=1




which can be evaluated using generalized FFTs [39]. Here both the cycle consistency within each
graph and the algebraic relation across different irreps in Fig. 1 are considered.

Power Spectrum Affinity: Searching for the optimal alignment among all transformations as
above could be computationally challenging and extremely time consuming. Therefore, invariant
features can be used to speed up the computation. First we consider the power spectrum, which is
the Fourier transform of the auto-correlation defined as Py (k) = F}, F}! according to the convolution
theorem. It is transformation invariant since under the right action of g € G, the Fourier coefficients
Fi, — Fypr(g) and Pr.o(k) = Frpr(9)pr(9)*Fy = P¢(k). Hence, for each k& we compute the

power spectrum Py, of Wy, ; and combine them as the power spectrum affinity:

k
wer spec IS - . LN TS g oo
SPTT(i ) = D Tr[Pu(i )], with Py(i, ) = Wi (i ) Wi (i.5)", (9
max k=1

which does not require the search of optimal alignment and is thus computationally efficient. Recently,
multi-frequency vector diffusion maps (MFVDM) [20] considers G = SO(2) and sums the power
spectrum at different irreps as their affinity. Here, we extend it to a general compact Lie group.

Bispectrum Affinity: Although, the power spectrum affinity combines the information at different
irreps, it does not couple them and loses the relative phase information, i.e. the transformation across
different irreps py (see Fig. 1). Consequently, the affinity might be inaccurate under high level of
noise. In order to systematically impose the algebraic consistency without solving the optimization
problem in (8), we consider another invariant feature called bispectrum, which is the Fourier transform
of the triple correlation and has been used in several fields [32, 27, 72, 31]. Formally, let us consider
two unitary irreps pg, and pg, on finite dimensional vector spaces Hp, and Hy, of the compact
Lie group G. There is a unique decomposition of pg, Q) pi, into a set of unitary irreps pg, k € N,
where ) is the Kronecker product of matrices, and we use € to denote direct sum. There exists
G-equivariant maps from H, @ Hr, — € Hy, called generalized Clebsch—Gordan coefficients
Ck, .k, for G , which satisfies:

pkl(g)®f)kz(g):ch1,kz @ pe(9) | Ck, k- (10)

kEks @ k2

Using (10) and the fact that C},, r, and p;’s are unitary matrices, we have

|:/)k1 (g)®pk2 (g)] Ckl,kz @ PZ(!J) Cl?l,kg = Idk-ldkg Xdpq diy - (11
keki @ k2

Particularly, the triple correlation of a function f on G can be defined as a3 f(g1,92) =
fg £ (9)f(g91)f(gg2)dpg. Then the bispectrum is defined as the Fourier transform of a3 ; as

By (ky, ko) = [F,ﬁ ®Fk2] Coie | B F|Cin (12)
kE€k1 @ ko
Under the action of g, we have the following properties of the Fourier coefficients of f: (1) Fj, —

Fopr(g), and (2) Fi, @ Fry, — (Fky ok, (9)) Q (Fry oy (9) = (Fry @ Fiey) (k1 (9) @ pr (9))-
Therefore, By is G-invariant according to (11) and (12). By combining the bispectrum at different £,

and ko, we establish the bispectrum affinity as,

kmax kmax

Z Z Tr [B, k¢4, 7)]

ki=1ky=1

ispec /- . 1 .
SPSPeC( 5) = o , with (13)

max

Bklka»t(j’j) = [Wlﬁt(?v” ®Wk2>t(777)] Cry ks @ Wl:,t(ﬂn 0;51.,]4:2' (14
kek1 @ k2
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Figure 2: Histograms of arccos (v;, v;) between estimated nearest neighbors on M = SO(3), G = SO(2) and
B = S? with different SNRs. The clean histogram should peak at small angles. The lines of the bispectrum
and the optimal alignment affinities almost overlap in all these plots. We set kmax = 6, my, = 10 for all £’s and
t=1.

If the transformations are consistent across different k’s, the trace of By, 1, + in (14) should be large.
Therefore, this affinity not only takes into account the consistency of the transformation at each irrep,
but also explores the algebraic consistency across different irreps.

Higher Order Invariant Moments: The power spectrum and bispectrum are second-order and
third-order cumulants, certainly it is possible to design affinities by using higher order invari-
ant features. For example, we can define the order-d + 1 G-invariant features as: My, ., =

(Fro, @ Q Fr,] Chy.... ke [@kekl R @ ka F,;*] Cr, .k, wWhere Ck, g, is the extension of
the Clebsch—Gordan coefficients. However, using higher order spectra dramatically increases the
computational complexity. In practice, the bispectrum is sufficient to check the consistency of the
group transformations between nodes and across all irreps.

Computational Complexity: Filtering the normalized weight matrix involves computing the top
mydy, eigenvectors of the sparse Hermitian matrices Ay, for k = 1,. . ., knax, which can be efficiently
evaluated using block Lanczos method [51], and its cost is O(nmydj (my + 1)), where [y, is the

average number of non-zero elements in each row of Ay. We compute the spectral decomposition
for different k’s in parallel. Computing the power spectrum invariant affinity for all pairs takes

O(n? "™ d2) flops. The computational complexity of evaluating the bispectrum invariant affinity
is O(nQ(Zz‘;‘;’& Zg;‘:{) di di.)). For the optimal alignment affinity, the computational complexity
depends on the cost of optimal alignment search C,, and the total cost is O(n?C,,). For certain group

structures, where FFTs are developed, the optimal alignment affinity can be efficiently and accurately
approximated. However, C,, is still larger than the computation cost of invariants.

Examples with G = SO(2) and SO(3): If the group transformation is 2-D in-plane rotation, i.e.
G = SO(2), the unitary irreps will be py. () = e**, where a € (0, 27] is the rotation angle. The
dimensions of the irreps are d, = 1, and ki @ k2 = ki + k2. The generalized Clebsch—Gordan
coefficients is 1 for all (k1, k2) pairs. If G is the 3-D rotation group, i.e. G = SO(3), the unitary
irreps are the Wigner D-matrices for w € SO(3) [68]. The dimensions of the irreps are dj, = 2k + 1,
and k1 @ ko = {|k1 — k2|, ..., k1 + ko }. The Clebsch—Gordan coefficients for all (k1, ko) pairs
can be numerically precomputed [26]. These two classical examples are frequently used in the real
world and are investigated in our experiments.

5 Experiments

We evaluate our paradigm through three examples: (1) Nearest neighbor (In brevity: NN) search
on 2-sphere S% with G = SO(2); (2) nearest viewing angle search for cryo-EM images; (3) spectral
clustering with G = SO(2) or G = SO(3) transformation. We compare with the baseline vector
diffusion maps (VDM) [57]. In particular, since the greatest advantage of our paradigm is the
robustness to noise, we demonstrate this through datasets contaminated by extremely high level of
noise. The setting of hyper parameters, e.g. knax and myg, are shown in the captions, we point out
that our algorithm is not sensitive to the choice of parameters. The experiments are conducted in
MATLAB on a computer with Intel i7 7th generation quad core CPU.

NN Search for M = SO(3), G = SO(2), B = S?: We simulatec n = 10* points uniformly
distributed over M = SO(3) according to the Haar measure. Each point can be represented by a
3 x 3 orthogonal matrix R = [R!, R?  R®], whose determinant is equal to 1. Then the vector v = R?
can be realized as a point on the unit 2-sphere (i.e. B = S?). The first two columns R' and R? spans
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Figure 3: Nearest viewing angle search for cryo-EM images. Left: clean, noisy (SNR = 0.01) projections image
samples, and reference volume of 70s ribosome; Right: Histograms of arccos (v;, v;) between estimated nearest
neighbors. sPCA is the initial noisy input of our graph structure. The lines of power spectrum and bispectrum
almost overlap in all these plots. We set kmax = 20, my = 20 for all k’sand ¢ = 1.

the tangent plane of the sphere at v. Given two points ¢ and j, there exists a rotation angle «;; that
optimally aligns the tangent bundles [R?}, ?7] to [R}, R?] as in (2). Therefore, the manifold M is a
G-manifold with G = SO(2). Then we build a clean neighborhood graph G = (V, E') by connecting
nodes with (v, v;) > 0.97, and add noise following a random rewiring model [59]. With probability
p, we keep the existing edge (i, j) € E. With probability 1 — p, we remove it and link i to another
vertex drawn uniformly at random from the remaining vertices that are not already connected to :.
For those rewired edges, their alignments are uniformly distributed over [0, 27] according to the Haar
measure. In this way, the probability p controls the signal to noise ratio (SNR) where p = 1 indicates
the clean case, while p = 0 is fully random. For each node, we identify its 50 NNs based on the
three proposed affinities and the affinity in VDM. In Fig. 2 we plot the histogram of arccos (v;, v;)
of identified NNs under different SNRs. When p = 0.08 to p = 0.1 (over 90% edges are corrupted),
bispectrum and optimal alignment achieve similar result and outperform power spectrum and VDM.
This indicates our proposed affinities are able to recover the underlying clean graph, even at an
extremely high noise level.

Nearest Viewing Angle Search for Cryo-EM Images: One important application of the NN search
above is in cryo-EM image analysis. Given a series of projection images of a macromolecule with
unknown random orientations and extremely low SNR (see Fig. 3), we aim to identify images with
similar projection directions and perform local rotational alignment, then image SNR can be boosted
by averaging the aligned images. Therefore, each projection image can be viewed as a point lying on
the 2-sphere (i.e. B = S?), and the group transformation is the in-plane rotation of an image (i.e.,

G = SO(2)).

In our experiments, we simulate n = 10 projection images from a 3D electron density map of the
70S ribosome, the orientations of all projections are uniformly distributed over SO(3) and the images
are contaminated by additive white Gaussian noise (see Fig. 3 for noisy samples). As preprocessing,
we build the initial graph G by using fast steerable PCA (sPCA) [71] and rotationally invariant
features [72] to initially identify the images of similar views and the corresponding in-plane rotational
alignments. Similar to the example above, we compute the affinities for NNs identification. In Fig. 3,
we display the histograms of arccos (v;, v;) of identified NNs under different SNRs. Result shows
that all proposed affinities outperform VDM. The power spectrum and the bispectrum affinities
achieve similar result, and outperform the optimal alignment affinity. This result is different from
the previous example with the random rewiring model on S2. This is because those two examples
have different noise model, the random rewiring model has independent noise on edges, whereas the
examples using cryo-EM images have independent noise on nodes with dependent noise on edges.

Spectral Clustering with SO (2) or SO(3) Transformations: We apply our framework to spec-
tral clustering. In particular, we assume there exists a group transformation g;; € G in addition to
the scalar weight w;; between members (nodes) in a network. Formally, given n data points with K
equal sized clusters, for each point ¢, we uniformly assign an in-plane rotational angle a; € [0, 27),
or a 3-D rotation w; € SO(3). Then the optimal alignment is o;; = a; — ¢, Or w;; = wiwj_l. We
build the clean graph by fully connecting nodes within each cluster. The noisy graph is then built
following the random rewiring model with a rewiring probability p. We perform clustering by using
our proposed affinities as the input of spectral clustering, and compare with the traditional spectral
clustering [45, 65] which only takes into account the scalar edge connection, and VDM [57], which
defines affinity based on the transformation consistency at a single representation. In Tab. 1, we
use Rand index [48] to measure the performance (larger value is better). Our three affinities achieve
similar accuracy and they outperform the traditional spectral clustering (scalar) and VDM. The results
reported in Tab. 1 are evaluated over 50 trials for SO(2) and 10 trials for SO(3) respectively.



Table 1: Rand index (larger value is better) of spectral clustering results with SO(2) or SO(3) group transformation.
We set the number of clusters Left: K = 2 and right: K = 10. For K = 10 and SO(3) case, each cluster has 25
points, otherwise each cluster has 50 points. We set my = K, knax = 10 and ¢ = 1 for all cases.

K = 2 clusters

K = 10 clusters

g method | p=0.16 p=0.20 p=0.25 p=0.16 p=0.20 p=0.25

Scalar 0569 +0.060 070540092 083740059 | 086840010 094840015 0981 4 0.013
s00) VDM 0526+ 0.036  0.64440076 0857+ 0057 | 08920010 09630011  0.994 % 0.008
k Power spec. (ours) | 0.670 £ 0.065  0.899 +0.051 0981 £0.021 | 09750010 0991+ 0011  0.998 = 0.006
Opt (ours) 06870011 09120009 0986 = 0.007 | 0976 +0.012 0994 +0.008  0.997 % 0.005

Bispec. (ours) 0.664£0.073 09010062 0983+ 0019 | 0967 +0.014  0.997 = 0.003 1+0
Scalar 05724+ 0061  0.66640.095 0862+ 0056 | 0.838+0.003 083840007 0909 % 0.019
S0(3) VDM 0.600 £ 0.048  0.840 £0.056 0974+ 0023 | 0850 £0.011 0919 £0.013 0965 % 0.014
Power spec. (ours) 0.921 + 0.038 0.986 + 0.016 1£0 0.874 = 0.011 0.939 & 0.011 0.981 + 0.017
Bispec. (ours) 09110043  0.990 £ 0.010 1+0 08690012 0.943£0.009 0979 % 0.011

Scalar VDM Bispec. (ours) ky=1,kg =3 ky=1,ky=5 ky =1,ky=7 k3 =1ky=9
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Figure 4: Spectral clustering for K = 2 clusters with SO(3) group transformation. The underlying clean graph
is corrupted according to the random rewiring model. Left: Plot of the affinity matrix by different approaches.
The clusters are of equal size and form two diagonal blocks in the clean affinity matrix (see the scalar column at
p = 1). Here we do not include the affinity of each node with itself and the diagonal entries are 0; Right: Plot of

the bispecturm affinity | Tr B, k,,¢ (¢, 7)] | at different k1, k2, p = 0.16.

For a better understanding, we visualize the n x n affinity matrices by different approaches as shown
in Fig. 4a at K = 2 and G = SO(3). We observe that at high noise levels, such as p = 0.16 or 0.2,
the underlying 2-cluster structure is visually easier to be identified through our proposed affinities.
In particular, as the bispectrum affinity in (13) is the combination of the bispectrum coefficients
By (k1, k2), Fig. 4b shows the component |Tr [By, x,.:(4, )] | at different k1, k2. Visually, the 2-
cluster structure appears in each (k1, k2) component with some variations across different components.
Combining those information together results in a more robust classifier.

6 Conclusion

In this paper, we propose a novel mathematical and computational framework for unsupervised
co-learning on G-manifolds across multiple unitary irreps for robust ncarest neighbor search and
spectral clustering. We have a two stage algorithm: At the first stage, the graph adjacency matrices
are individually denoised through spectral filtering. This step uses the local cycle consistency of the
group transformation; The second stage checks the algebraic consistency over different irreps and we
propose three different ways to combine the information across all irreps. Using invariant moments
bypasses the pairwise alignment and is computationally more efficient than the affinity based on the
optimal alignment search. Experimental results show the efficacy of the framework compared to the
state-of-the-art methods, which do not take into account of the transformation group or only use a
single representation.
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