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Abstract—Intuitive control of prostheses relies on training
algorithms to correlate biological recordings to motor intent.
The quality of the training dataset is critical to run-time
performance, but it is difficult to label hand kinematics
accurately after the hand has been amputated. We quantified the
accuracy and precision of labeling hand kinematics for two
different approaches: 1) assuming a participant is perfectly
mimicking predetermined motions of a prosthesis (mimicked
training), and 2) assuming a participant is perfectly mirroring
their contralateral hand during identical bilateral movements
(mirrored training). We compared these approaches in non-
amputee individuals, using an infrared camera to track eight
different joint angles of the hands in real-time. Aggregate data
revealed that mimicked training does not account for
biomechanical coupling or temporal changes in hand posture.
Mirrored training was significantly more accurate and precise
at labeling hand kinematics. However, when training a modified
Kalman filter to estimate motor intent, the mimicked and
mirrored training approaches were not significantly different.
The results suggest that the mirrored training approach creates
a more faithful but more complex dataset. Advanced algorithms,
more capable of learning the complex mirrored training dataset,
may yield better run-time prosthetic control.

I. INTRODUCTION

Even though the physical hand is missing after an
amputation, most transradial amputees still retain the neural
circuits and much of the musculature that control the hand.
Electromyographic (EMG) signals, recorded from the
extrinsic hand muscles still present in the residual limb, can be
used to intuitively control prostheses.

Algorithms are typically trained to decode motor intent
from EMG under a supervised-learning paradigm that involves
a dataset consisting of EMG and labeled kinematics. The
quality of this dataset is critically important in developing
robust and accurate control algorithms. Ideally, this dataset
would be generated by simultaneously recording EMG from
the extrinsic muscles of the hand and recording kinematics
from the fingers of the hand. However, after the hand is
amputated, there is no direct way to determine motor intent
and correctly label hand kinematics.

Traditionally, motor intent is determined by assuming the
amputee participant is perfectly mimicking the predetermined
motion of a prosthesis with their missing hand (i.e., mimicked
training) [1]-[3]. However, the validity of this assumption is
unclear. There is at least some uncertainty in the temporal
alignment of the predetermined and mimicked motions due to
participant reaction time; algorithms often preprocess the
training data by aligning the preprogrammed kinematics with
EMG features in order to account for temporal delays [2], [3].

We hypothesized that, in addition to temporal delays, the
mimicked training approach would also not account for

variations in kinematic amplitude (i.e., the degree of flexion or
extension), biomechanical coupling, and changes in resting
hand position over time. To this end, here we precisely
quantify these potential sources of error in intact individuals
where the actual hand kinematics can be relatively accurately
determined. We also compare the errors associated with the
traditional mimicked training approach to an alternative
training approach that assumes a unilateral amputee
participant is perfectly mirroring their intact contralateral limb
during synchronized bilateral movements (i.e., mirrored
training) [4]. Furthermore, we directly compare the ability to
estimate motor intent, with a modified Kalman filter [3], using
training data gathered under the mimicked and mirrored
training approaches. These results can be used to generate
more accurate training datasets, and therefore constitute an
important step towards dexterous bionic arms.

II. METHODS

A. Human Subjects

A total of seven non-amputee human participants were used
in this study. All participants were between the ages of 18 and
30. Informed consent and experimental protocols were carried
out in accordance with the University of Utah Institutional
Review Board.

B. Experimental Setup

Participants were instructed to mimic preprogrammed
movements of a virtual hand (Modular Prosthetic Limb,
MSMS; Johns Hopkins Applied Physics Lab, Baltimore, MD)
displayed on a computer monitor. Participants mimicked the
virtual right hand with both their right and left hands
simultaneously. An infrared hand-tracking device (Leap
Motion; Ultrahaptics, San Francisco, CA) was placed
approximately eight inches below their hands to track the
motion of their fingers and wrist. EMG from the right forearm
was recorded in synchrony with hand kinematics using a
custom sleeve with embedded surface electrodes. Three
different kinematic signals were recorded simultaneously: 1)
True Kinematics — from the intact right hand, 2) Contralateral
Kinematics — from the intact left hand, and 3) Virtual
Kinematics — from the virtual right hand (Fig. 1).

C. Signal Acquisition

Infrared hand images were converted to joint angle using
custom MATLAB software. A total of eight joint angles were
calculated for each hand: D1 abduction/adduction, D1-D5
flexion/extension, wrist flexion/extension, and wrist
pronation/supination. EMG was recorded from 32 single-
ended surface electrodes embedded in a custom neoprene
sleeve. EMG recordings were sampled at 1 kHz and filtered
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Figure 1: Experimental setup. Healthy participants were instructed to mimic
the preprogrammed movements of a virtual right hand with both their right
and left hands simultaneously. An infrared-camera-based motion-capture
device was used to track the kinematics of the participants’ hands.
Electromyography (EMG) was recorded from the right forearm using surface
electrodes embedded in a neoprene sleeve.

using the Grapevine Neural Interface Processor (Ripple Neuro
LLC, Salt Lake City, UT, USA) as described in [3]. EMG
features used for estimating motor intent consisted of the 300-
ms smoothed mean absolute value on 528 channels (32 single-
ended channels and 496 -calculated differential pairs),
calculated at 30 Hz [3].

D. Training Movements

Participants were instructed to mimic the movements of the
virtual hand (Virtual Kinematics) with their right hand (True
Kinematics) and left hand (Contralateral Kinematics)
simultaneously. These hand movements included individuated
movements of each DOF of the virtual prosthetic hand
(flexions/extensions of D1-D5; wrist flexion/extension; wrist
pronation/supination; thumb abduction/adduction) as well as
two combination movements (simultaneous flexion of D1-D5;
simultaneous extension of D1-D5), for a total of 20 unique
movements. The participants performed 10 trials of each
movement, for a total of 200 trials. All 10 trials of each
movement were performed sequentially, one after another, and
the total duration of each individual movement was 1.5 s
(made up of a 0.7-s deviation away from the resting hand
position, a 0.1-s hold-time at the position of maximum
deviation, and then another 0.7-s deviation back to the original
resting hand position). There was a 1-s intertrial interval and a
30-s resting period before the start of the first trial (to assess
resting hand posture).

E. Comparison of Virtual (Instructed) and Intact (Actual)
Hand Movements

Preprogrammed movements of the virtual hand are
perfectly consistent and isolated, ignoring the variability and
biomechanical coupling associated with endogenous hand
movements. To this end, we quantified the amount of
biomechanical coupling and drift in the resting hand position
throughout the data collection process using the True
Kinematics.

1) Biomechanical coupling.

We estimated and operationally defined biomechanical
coupling as the unintended movement of non-target DOFs
when attempting to move a target DOF. For example, the
virtual hand would perform D4 extension perfectly isolated

such that no other DOFs move. However, when the
participants attempted to perform isolated D4 extension, there
was often associated movement on D3 and/or DS.
Biomechanical coupling was quantified as the peak deviation
from the resting position of non-target DOFs, where the resting
position was defined as the mean value during the previous
intertrial interval.

2) Resting-hand-position drift.

We defined resting-hand-position drift as the changes in
resting position of the hand throughout the entire data
collection process. Drift was quantified at each intertrial
interval as the current resting position at that intertrial interval
to the resting position recorded during the 30 s prior to data
collection.

F. Comparison of Mimicked Training and Mirrored

Training

We hypothesized that participants would not be able to
recreate the precision of the virtual hand when attempting to
mimic the preprogrammed movements. To this end, we
quantified the differences in the magnitude and timing of the
movements between the True Kinematics and the
Contralateral Kinematics as well as between the True
Kinematics and the Virtual Kinematics. Likewise, we
quantified the differences in the magnitude variance and
timing variance.

1) Magnitude of movements

We defined the magnitude of movements as the maximum
deviation away from the resting hand position. For example,
the virtual hand would perform 10 trials of D4 extension such
that each trial had the exact same maximum deviation.
However, when the participants attempted to perform D4
extension, there was often variations in the maximum
deviation. For each trial, we calculated the error in magnitude
as the difference in maximum deviation of the True
Kinematics relative to the Virtual Kinematics (mimicked
training) or relative to the Contralateral Kinematics (mirrored
training).

2) Timing of movements

For each trial, the difference in timing was quantified as
the difference in the time at which the maximum deviation
occurred for the True Kinematics relative to when it
occurred for the Virtual Kinematics (mimicked training) or
to when it occurred for the Contralateral Kinematics
(mirrored training).

G. Comparison of Run-Time Estimates of Motor Intent

The EMG activity recorded during this task, as well as the
Virtual or Contralateral Kinematics, served as training data for
a modified Kalman filter (MKF) to estimate motor intent [3].
Two MKFs were trained: 1) using the Virtual Kinematics
(mimicked training) and 2) using the Contralateral Kinematics
(mirrored training).

To avoid complications due to the participant’s reaction
time for mimicked training only, we aligned the kinematics
with the EMG by shifting the kinematic positions by a lag that
was determined by maximizing the cross-correlation. This
alignment was performed uniformly across all trials [3].

The algorithms were trained using the same random 50% of
the trials for each movement. The remaining 50% of the trials
were used to evaluate the performance (root-mean-squared
error; RMSE) of the algorithms under two conditions: 1) the



ability to recreate the training data (i.e., Virtual Kinematics or
Contralateral Kinematics), and 2) the ability to recreate the
True Kinematics. Improvements in the second metric would
ultimately yield more dexterous and intuitive prosthetic
control. Alignment between the first and second metrics would
indicate that improvements in algorithm performance offline
are likely to translate to improvements online.

H. Statistical Analyses

The median values for each participant were analyzed such
that the total number of samples was equal to the number of
participants (N = 7). Outliers in the performance metrics (more
than 1.5 interquartile ranges above the upper quartile or below
the lower quartile) were removed from the data prior to
statistical analyses. One-sample t-tests were performed to
determine if the biomechanical coupling and resting-hand-
position drift associated with True Kinematics were
statistically non-zero (e.g., different from the Virtual
Kinematics). Two-sample paired t-tests were used to compare
between mimicked training and mirrored training for all other
metrics.

III. RESULTS

A. Preprogrammed movements of a virtual hand did not
account for biomechanical coupling or temporal changes
in resting hand position

Using an infrared motion-capture device, we quantified the
deviations in the True Kinematics due to biomechanical
coupling and temporal changes in resting hand position. We
found significantly non-zero kinematic deviations for both

(p’s < 0.001). Biomechanical coupling resulted in 11.43 +

0.57% (mean = S.E.M.) deviation in the recorded kinematics

and resting-hand-position drift resulted in 7.07 + 0.56%

deviation (Fig. 2).

B. Mirroring contralateral movements reduced the error
and variability of movement magnitude

We compared the ability of participants to accurately
mimic the preprogrammed movements of a virtual hand or
mirror their own contralateral movements during identical
bilateral movements. We found that the magnitude of

movements for the True Kinematics was significantly more
closely related to that of the Contralateral Kinematics than to
that of the Virtual Kinematics (6.67 + 0.42% vs 12.89 +
1.35%, p < 0.005). Furthermore, the variance in magnitude
errors was significantly less for the Contralateral Kinematics
than for the Virtual Kinematics (0.53 £ 0.07% vs 1.45 +
0.18%, p < 0.005; Fig. 3).

C. Mirroring contralateral movements reduced the error in
movement timing, but increased the variability of errors

We found that errors in the timing of movements were also
significantly less for the Contralateral Kinematics than for the
Virtual Kinematics (0.03 £ 0.02 s vs 0.08 £ 0.02 s, p <0.05).
However, the variance of timing errors was significantly
greater for the Contralateral Kinematics than for the Virtual
Kinematics (0.06 + 0.01 s vs 0.05 £ 0.01 s, p <0.005; Fig. 3).

D. True Kinematics were more closely aligned with
Contralateral Kinematics than with Virtual Kinematics

Overall, the RMSE between True Kinematics and
Contralateral Kinematics was significantly lower than the
RMSE between True Kinematics and Virtual Kinematics
(0.16 £0.01% vs 0.19 £ 0.01%, p < 0.05; Fig. 3).

E. Datasets gathered under the mirrored training approach
were more complex and difficult for algorithms to
recreate, but offline analyses of these datasets may be
more faithful to a participant’s intent

We trained two different MKFs to estimate motor intent
from EMG activity recorded in synchrony with hand
kinematics. We found that the MKF trained under the
mirrored training approach (i.e., using Contralateral
Kinematics) was significantly worse at recreating the training
data than the MKF trained under the mimicked training
approach (i.e., using Virtual Kinematics); the RMSE between
the kinematic predictions and the training data kinematics was
significantly greater for the mirrored training MKF (0.15 =
0.01% vs 0.09 £ 0.01%, p < 0.001). However, there was no
significant difference in the RMSE between the kinematic
predictions and the True Kinematics (p = 0.44; Fig. 4).
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Figure 2: Deviation in kinematics due
to biomechanical coupling and resting-
hand-position drift. Kinematic
deviations were significantly non-zero
for both coupling and drift. Data show
mean = S.EM. *** p < 0.001, one-
sample t-test.

Figure 3: Errors associated with assuming an individual is perfectly mimicking preprogrammed movements
of a virtual hand (Virtual Kinematics) or assuming an individual is perfectly mirroring their contralateral
limb (Contralateral Kinematics). The True Kinematics were more closely aligned with the Contralateral
Kinematics than were the Virtual Kinematics. Contralateral Kinematics had lower Root Mean Squared
Error (RMSE) and lower errors associated with movement magnitude and movement timing. Contralateral
kinematics also had lower variance in magnitude errors but had higher variance in timing errors. Data show
mean £ S.EM. * p <0.05, ** p <0.01, two-sample paired t-test.
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Figure 4: Accuracy of kinematic
predictions. Two modified Kalman
filters (MKF) were trained, one
under the mimicked training
approach and one under the mirrored
training approach. The mimicked

IV. DISCUSSION

Accurately labeled
training data is critically
important for algorithm
performance. Here, we
compared the accuracy of
two different approaches to

label motor intent for
prosthetic control
algorithms. Overall, we

found that labeling hand
kinematics with bilaterally
mirrored movements is
more accurate and precise
than is mimicking
preprogrammed virtual

training  MKF was significantly
better at recreating the training than
was the mirrored training MKF.

movements, although these
benefits have not yet been

There was no significant difference translated into improved
between the MKFs when attempting  prosthetic control for
to recreate the True Kinematics. recreating the True

Data show mean + S.EM. *** p <

0.001, two-sample paired t-test. Kinematics and presumed

user intent.

For four of the five metrics we analyzed, the Contralateral
Kinematics were better than the Virtual Kinematics. Overall,
the RMSE was less between the True Kinematics and the
Contralateral Kinematics than between the True Kinematics
and the Virtual Kinematics, likely due to biomechanical
coupling that was observed for both the right and left hands
but not for the virtual hand. In addition, there was a 48%
reduction in errors associated with movement magnitude for
the Contralateral Kinematics. To this end, the participants
demonstrated superior accuracy and precision when mirroring
the magnitude of their own hand movements than when
mimicking the magnitude of virtual hand movements.

With respect to errors in timing, the Contralateral
Kinematics were more accurate, but less precise than the
Virtual Kinematics. This is likely attributed to the fact there
is a visual reaction time associated with mimicking
preprogrammed movements of a virtual hand, and this leads
to a large but consistent delay in timing. In contrast, bilaterally
mirrored movements are more temporally aligned, but minor
inconsistencies can be seen in both directions (i.e., the
Contralateral Kinematics can either precede or lag behind the
True Kinematics).

Taken together, the overall results generally suggest that
the mirrored training approach is a better way to label motor
intent. Importantly from a practical perspective, however, the
MKEF using the mimicked training approach was better at
recreating the training data than was the MKF using the
mirrored training, and was as good at recreating the true
kinematics. Why didn’t the potential benefits of mirrored
training translate to improved MKF decodes? We propose
that the mirrored training approach results in a more faithful,
but much more complex dataset. In contrast, the Virtual
Kinematics provide a relatively simple dataset that can be

easily learned and recreated. When the training dataset is
complicated by biomechanical coupling and temporal
changes in resting hand position, the performance of the MKF
degrades. The MKF performance was similar for recreating
the mirrored training dataset and the True Kinematics,
suggesting that offline performance on the mirrored training
dataset may be more indicative of online performance.

Ultimately, more complex datasets require more complex
algorithms. We hypothesize that deep neural networks
capable of capturing non-linear changes in kinematics due to
biomechanical coupling or resting-hand-position drift will be
able to take advantage of this more complex, but more
accurate, mirrored training dataset to improve estimates of
motor intent.

There is some error associated with the infrared hand-
tracking device, although it was not measured here. We
propose that algorithms trained on Contralateral Kinematics
should be trained to recreate a confidence interval of
kinematics instead of an absolute value. For this reason,
dataset aggregation [5] may be better suited for mirrored
training.

Future work should also validate the performance of
algorithms online, through functional activities of daily
living. There may be benefits to exploiting the full capabilities
of bionic arms, and these could be realized by excluding some
aspects of endogenous hand kinematics from the training data.
Contrastingly, it has been shown that more faithful and
biomimetic motor control can enhance prosthesis
embodiment [6]-[8]. When coupled with biomimetic sensory
feedback [9], [10], prosthetics may be able to recreate the
physical and psychological experience of the human hand.

V. CONCLUSION

In order to train algorithms to accurately recreate motor
intent, we need to accurately identify and label of motor
intent. Here, we demonstrate that when the physical limb is
missing, motor intent is best determined by tracking the
motion of the contralateral limb while the participant
performs bilaterally mirrored movements. This approach
captures the complex hand kinematics that arise from
biomechanical coupling and temporal drifts in hand posture.
Algorithms that are able to learn this complex dataset will
likely yield more dexterous and biomimetic prosthetic
control.
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