Detecting Flaky Tests in Probabilistic and
Machine Learning Applications

Saikat Dutta
University of Illinois
Urbana, IL, USA
saikatd2@illinois.edu

Zhekun Zhang
University of Illinois
Urbana, IL, USA
zhekunz2@illinois.edu

ABSTRACT

Probabilistic programming systems and machine learning frame-
works like Pyro, PyMC3, TensorFlow, and PyTorch provide scal-
able and efficient primitives for inference and training. However,
such operations are non-deterministic. Hence, it is challenging
for developers to write tests for applications that depend on such
frameworks, often resulting in flaky tests — tests which fail non-
deterministically when run on the same version of code.

In this paper, we conduct the first extensive study of flaky tests
in this domain. In particular, we study the projects that depend
on four frameworks: Pyro, PyMC3, TensorFlow-Probability, and
PyTorch. We identify 75 bug reports/commits that deal with flaky
tests, and we categorize the common causes and fixes for them.
This study provides developers with useful insights on dealing with
flaky tests in this domain.

Motivated by our study, we develop a technique, FLASH, to sys-
tematically detect flaky tests due to assertions passing and failing
in different runs on the same code. These assertions fail due to
differences in the sequence of random numbers in different runs
of the same test. FLASH exposes such failures, and our evaluation
on 20 projects results in 11 previously-unknown flaky tests that we
reported to developers.

CCS CONCEPTS
« Software and its engineering — Software testing and de-
bugging.

KEYWORDS

Probabilistic Programming, Machine Learning, Flaky tests, Ran-
domness, Non-Determinism

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °20, July 18-22, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8008-9/20/07...$15.00
https://doi.org/10.1145/3395363.3397366

August Shi
University of Illinois
Urbana, IL, USA
awshi2@illinois.edu

Aryaman Jain
University of Illinois
Urbana, IL, USA
aryaman4@illinois.edu

211

Rutvik Choudhary

University of Illinois
Urbana, IL, USA
rutvikc2@illinois.edu

Sasa Misailovic
University of Illinois
Urbana, IL, USA
misailo@illinois.edu

ACM Reference Format:

Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman
Jain, and Sasa Misailovic. 2020. Detecting Flaky Tests in Probabilistic and
Machine Learning Applications. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA °20), July
18-22, 2020, Virtual Event, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3395363.3397366

1 INTRODUCTION

With the surge of machine learning, randomness is becoming a com-
mon part of a developer’s workflow. For instance, various training
algorithms in machine learning use randomness (in data collection,
observation order, or the algorithm itself) to improve their gener-
alizability [21, 33, 60]. As another example, probabilistic program-
ming [9, 10, 16, 25, 66] is an emerging framework for expressive
Bayesian modeling with efficient inference. Most existing inference
algorithms, such as Markov Chain Monte Carlo [44] and Stochastic
Variational Inference [7] are inherently randomized.

The traits of algorithms in various machine learning applica-
tions, including inherent randomness, probabilistic specifications,
and the lack of solid test oracles [5], pose significant challenges for
testing these applications. Recent studies identify multiple classes
of domain specific errors in frameworks for both deep learning [53]
and probabilistic programming [18]. For instance, probabilistic pro-
grams provide distributions as outputs instead of individual values.
Developers of projects that use probabilistic programming systems
typically have to design tests that run an inference algorithm and
check whether the outputs fall within some reasonable range or
differ by only a small amount from the expected result. However,
determining these thresholds or how many iterations to run is often
non-intuitive and subject to heuristics, which may be either too
liberal (e.g., assuming independence when one may not exist) or
too conservative (e.g., running programs too many times).

As aresult of non-systematic testing in this domain, many tests in
machine learning and probabilistic programming applications end
up being flaky, meaning they can non-deterministically pass or fail
when run on the same version of code [8, 40, 65]. Furthermore, as
developers evolve their code, they rely on regression testing, which
is the practice of running tests after every change to check that said
changes do not break existing functionality [47, 70]. Regression
testing becomes more challenging if the tests can pass and fail even
without any changes to the code.

ISSTA °20, July 18-22, 2020, Virtual Event, USA

Luo et al. previously investigated flaky tests in traditional soft-
ware [40]. They identified various reasons for flaky tests and found
that some of the most common causes include async wait, concur-
rency, test-order dependencies, and randomness. However, these
studies did not investigate the flaky tests in projects that use prob-
abilistic programming systems or machine learning frameworks,
where the inherent probabilistic nature of such systems can yield a
different spectrum of reasons for flaky tests in dependent projects,
or even new reasons altogether. Furthermore, the way developers
fix or mitigate flaky tests in these domains will also differ from how
developers of traditional software address them.

Our Work. We present a technique for detecting flaky tests in
projects using probabilistic programming systems and machine
learning frameworks. While common wisdom would suggest that
many problems with programs dealing with randomness could be
solved by simply fixing the seed of the random number generator,
this paper shows that fixing the seed is not always the best solution.
Moreover, fixing the seed may not be sufficient for identifying bugs
and can be brittle in the presence of program changes.

We conduct the first study of the common causes and fixes
for flaky tests in projects that build upon and use probabilis-
tic programming systems and machine learning frameworks.
We perform an extensive study on 345 projects that depend on four
of the most common open-source probabilistic programming sys-
tems and machine learning frameworks. We identify 75 bug reports
and commits across 20 projects where the developers explicitly fix
some flaky tests. We categorize these fixes based on (1) the cause
of flakiness and (2) the fix patterns. Unlike Luo et al. [40], we find
that projects that depend on probabilistic programming systems
and machine learning frameworks have a larger percentage of flaky
tests whose cause is what Luo et al. would refer to as randomness.

We do a more thorough analysis of the flaky tests due to ran-
domness in this domain, breaking them down into more specific
categories relevant to probabilistic programming systems and ma-
chine learning frameworks. We find that the majority of the causes
for flaky tests (45 / 75) are due to Algorithmic Non-determinism,
where tests have different results due to the underlying inference
mechanism and sampling using probabilistic programming systems
and machine learning frameworks. We also find that the most com-
mon fix pattern for flaky tests is to adjust the thresholds for the
assertions that have flaky failures.

As developers are fixing flaky tests by adjusting their assertions’
threshold, we develop FLASH, a novel technique for system-
atically detecting tests that are flaky due to incorrectly set
thresholds in the assertions. These assertions fail due to differ-
ences in the sequence of random numbers in different runs of the
same test. FLASH exposes such failures by running the tests using
different seeds. FLASH reports which seeds lead to runs where an
assertion fails, allowing the user to reproduce such failures.

A distinctive feature of FLASH is its use of statistical conver-
gence tests to identify potentially flaky test executions. FLASH
dynamically determines how many times to run each test and asser-
tion with different seeds by sampling the actual values computed
for each assertion and running a statistical test to determine if the
sampled values have converged, indicating that FLASH has likely
seen enough samples to form a distribution of the values. FLASH

212

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic

then reports the distribution of sampled actual values, providing
the user with information on how to fix the flakiness in the test.

We run FLASH on the 20 projects that historically had flaky tests,
as we found from our study. FLASH detects 11 previously unknown
flaky tests on the latest version of these projects, and we submit 4
patches to fix 5 flaky tests and 6 bug reports for the remaining flaky
tests to the developers. Developers confirmed and accepted our
fixes for 5 flaky tests and confirmed 5 other flaky tests that are still
pending fixes. The remaining 1 bug report is awaiting developer
response. We also run FLASH on the historical versions of each
project to target previously known flaky tests. We are able to detect
11 such flaky tests using FLASH.

Contributions. The paper makes several main contributions:

e We perform the first empirical study on flaky test causes and fixes
for projects that depend on probabilistic programming systems
and machine learning frameworks. We investigate 75 fixes for
flaky tests within 20 projects, where the most common cause for
flakiness is due to Algorithmic Non-determinism and the most
common fix is to adjust the flaky assertion’s threshold.

e We propose FLASH, a technique for systematically detecting
flaky tests that fail due to differences in the sequences of random
numbers required by computations running through a probabilis-
tic programming system or machine learning framework.

e Our evaluation of using FLASH on 20 projects results in 11 de-
tected flaky tests, and we submit 5 fixes and 6 bug reports for
these flaky tests to developers. Developers confirmed and ac-
cepted 5 fixes and confirmed 5 other flaky tests. We also detect
11 previously known historical flaky tests using FLASH.

Our datasets and tool for this paper are available for open-access
at https://github.com/uiuc-arc/flash.

2 EMPIRICAL STUDY

The goal of our empirical study is to understand the common causes
and fixes for flaky tests in projects that depend on probabilistic
programming systems and machine learning frameworks.

2.1 Evaluation Projects

Table 1: Project Statistics

‘ Pyro ‘ PyMC3 ‘ TF-Prob. ‘ PyTorch
First Commit Jun15°17 | Apr13°12 | Feb 13’18 Jan 25°12
#Contributors 73 227 106 1246
#Commits 1823 7223 2254 23,263
#Dependents 4 24 27 290
Prog. Lang. Python Python Python Python, C++

Initially, we determine four well-known and commonly used
probabilistic programming systems and machine learning frame-
works: Pyro [9], PyMC3 [59], TensorFlow Probability [17], and
PyTorch [51]. We choose these systems because they are open
source, have a relatively long development history, and have a large
user base. Table 1 presents the statistics for these four frameworks.
The table shows for each framework its first commit date, number
of contributors, number of commits up until Dec 20, 2019, number

Detecting Flaky Tests in Probabilistic and Machine Learning Applications

Table 2: Details of Flaky Test Fixes in Dependent Projects

Proiect Dependent Filtered Filtered
) Projects Bug Reports | Commits
Pyro 1 8 7
PyMC3 1 0 2
TensorFlow-Prob 9 12 29
PyTorch 65 191 184
Total | 76 | 211 | 222
With “test” keyword | 33 | 110 | 105
Manual Inspection ‘ 20 ‘ 38 ‘ 37

of dependent projects! with more than 10 stars on GitHub, and the
major programming language. For PyTorch, we list both Python
and C++, because the core library is built using C++, but the API
and several utilities are designed using Python.

2.2 Extracting Bug Reports and Commits

We start with the 345 projects (summing up the row #Dependents
in Table 1) that depend on a probabilistic programming system or
machine learning framework . We collect each project’s bug reports
(both the Issue Requests and Pull Requests on GitHub) and commits.
We filter these bug reports/commits by searching for the following
keywords on the bug reports’ conversation text and commit mes-
sages: flaky|flakey|flakiness|intermit|fragile|brittle.
Next, we filter out the bug reports and commits that do not refer-
ence the word test. This step removes most irrelevant bug reports
and commits that do not deal with a flaky test directly. Finally, we
manually inspect the remaining bug reports/commits to filter out
false positives — bug reports/commits that actually are not related
to a flaky test/fix but still match our keyword search. We inspect the
bug reports first, because they usually contain a good description
of the flaky test and a possible fix. On the other hand, commit mes-
sages often leave out details concerning why or how flaky tests are
flaky. In some cases, the bug reports also have related fix commits
for flaky tests. Afterwards, when inspecting the commits, we ignore
the commits already referenced by the bug reports.

Table 2 shows the breakdown of our filtering process. We find 75
bug reports/commits related to fixing a flaky test across 20 projects.

2.3 Analyzing the Bug Reports and Commits

We divide the filtered bug-reports and commits among the authors
of the paper. For each test fixed in a bug report or commit, we aim
to classify the cause for the flaky test and the type of fix for the flaky
test. First, an author independently reasoned in detail about each
assigned bug to determine categories for the cause and fix. After
that, another author double-checks each bug-report/commit for any
incorrect classifications. Finally, we discuss together to determine
the distinct categories and merge all the results. We describe these
categories next.

2.4 Causes of Flaky Tests

From our manual inspection, we create eight categories for the
causes of the flaky tests in our study. Table 3 shows the breakdowns.
!We use the dependent “packages” as reported by the GitHub API, which are projects

that can compile into libraries to be used by others. We use packages because they are
more likely to be actively maintained by developers and have reasonable test suites.

213

ISSTA °20, July 18-22, 2020, Virtual Event, USA

Table 3: Causes of Flakiness

CauseCategory ‘ # of Bug Reports/Commits
Algorithmic Non-determinism 45
Floating-point Computations 5
Incorrect/Flaky API Usage 4
Unsynced Seeds 2
Concurrency 2
Hardware 1
Other 12
Unknown 4
Total | 75

24.1 Algorithmic Non-determinism. We classify a bug report/com-
mit in this category when the cause of flakiness is due to inherent
non-determinism in the algorithm being used in the test. Proba-
bilistic programming systems and machine learning frameworks
provide functionality for computations that are inherently non-
deterministic. For instance, Bayesian inference algorithms like
Markov Chain Monte Carlo (MCMC) [44] compute the posterior
distribution of a given statistical model by conditioning on observed
data. MCMC guarantees convergence to the target posterior distri-
bution in the limit. When designing a test, the developer typically
chooses a simple model and a small dataset, which ideally con-
verges very fast. The developer then adds an assertion checking
whether the inferred parameter (mean) is close to the expected
result. However, there is always a non-zero probability that the al-
gorithm may not converge even with the same number of iterations.
Hence, developers need to choose a suitable assertion that accounts
for this randomness but does not let any bugs slip through. This
behavior is also common for other systems using deep learning
algorithms and natural language processing. Given all the parame-
ters a developer has to consider when designing such tests, it is not
surprising that the majority of flaky tests in this domain are due
to this reason. There are five bug reports/commits related to the
randomness of input data, three due to non-determinism in model
sampling, and 37 due to non-determinism of algorithms during the
training process. Out of those 37 bug reports/commits related to
non-determinism of training algorithms, 14 of them involve NLP
training algorithms [6], 12 involve deep learning algorithms [61],
six involve deep reinforcement learning algorithms [23], and five
involve weak supervision training algorithms [72].

Example. The rlworkgroup/garage project provides a toolkit for
developing and evaluating Reinforcement Learning (RL) algorithms.
It also includes implementations of some RL algorithms. Listing 1a
shows an example of a test (simplified) for the DQN (Deep Q-
Network) model [43], which is used for learning to control agents
using high-dimensional inputs (like images). First, the test chooses
model training parameters (Lines 21-25). Second, it initializes a
game environment (Line 26), which the model should learn to play
and chooses an exploration strategy (Line 27). Third, it initializes
the DON algorithm with several parameters, including the explo-
ration strategy and number of training steps (Lines 30-31). Fourth, it
trains the model using specified training parameters and returns the
average score (last_avg_ret) obtained by the model (Lines 32-35).
Finally, the assertion checks whether the average score is greater
than 20 (Line 58). The algorithm is, however, non-deterministic in

ISSTA °20, July 18-22, 2020, Virtual Event, USA

nature — at any step of the game (when the method get_action in
Listing 1b is called), the algorithm chooses a random action (shown
in Listing 1b - Line 64-65) with some probability. Hence, the score
obtained by the algorithm varies across runs (even for same param-
eters), and it sometimes is less than the asserted 20, causing the test
to occasionally fail, i.e., it is a flaky test. In Section 2.5.1, we discuss
how developers fix such flaky tests.

test_dqgn.py

18 def test_dgn_cartpole(self):
19 """Test DQN with CartPole environment."""
20 with LocalRunner(self.sess) as runner:
21 n_epochs = 10
22 n_epoch_cycles = 10
23 sampler_batch_size = 500
24 num_timesteps = n_epochs * n_epoch_cycles *
25 sampler_batch_size
26 env = TfEnv(gym.make('CartPole-v@'))
27 epilson_greedy_strategy = EpsilonGreedyStrategy(
28 env_spec=env.spec,
29 total_timesteps=num_timesteps, ...)
30 algo = DQN(env_spec=env.spec,
— exploration_strategy=epilson_greedy_strategy, ...)
31 runner.setup(algo, env)
32 last_avg_ret = runner.train(
33 n_epochs=n_epochs,
34 n_epoch_cycles=n_epoch_cycles,
35 batch_size=sampler_batch_size)
36 assert last_avg_ret > 20

(a) Flaky test in test_dqn.py

epsilon_greedy_strategy.py

61 def get_action(self, t, observation, policy, **kwargs):
62 opt_action = policy.get_action(observation)

63 self._decay()

64 if np.random.random() < self._epsilon:

65 opt_action = self._action_space.sample()

66 return opt_action, dict()

(b) Source of randomness in get_action

Listing 1: A Flaky Test caused due to Algorithmic Non-
Determinism

2.4.2 Floating-point Computations. We classify a bug report/com-
mit in this category if the test is flaky due to incorrect handling
of floating-point computations such as not handling special values
(such as NaN) or having rounding issues. However, the floating point
computations only result in these erroneous conditions for certain
sequences of values, which can differ across executions due to ran-
domness. Hence, tests sporadically fail due to incorrect handling of
these special values.

2.4.3 Incorrect/Flaky APl Usage. We classify a bug report/commit
in this category if the related code uses an API incorrectly, or if
the API is known to be flaky but is not handled appropriately in
source/test code. As an example, in the rlworkgroup/garage project,
there are two tests that are testing some functionality of the project
that involves training a TensorFlow computation graph (which
persists across tests). However, neither of the tests reset the graph

214

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic

after use. Hence, when run back to back, TensorFlow crashes due
to duplicate variables in the graph, so the test that runs after fails.

2.4.4 Unsynced Seeds. We classify a bug report/commit in this
category if the test is setting seeds for random number generators
inconsistently. Many of the libraries that we study use multiple
modules that rely on a notion of randomness. For example, tensor-
flow/tensor2tensor uses tensorflow, numpy, and python’s random
module. Using different seeds (or not setting seeds) across these
systems can trigger different computations, therefore leading to
different test results than expected.

2.4.5 Concurrency. We classify a bug report/commit in this cate-
gory when the flakiness is caused due to interaction among multiple
threads. Different runs of the same test leads to different thread
inter-leavings, which in turn lead to different test results. As an
example, in the tensorflow/tensor2tensor project, there was a control
dependency on an input for a computation in the RNN. However,
when the tests run in parallel, the order of computations is uncer-
tain, which causes some tests to fail when the input has not yet
been computed.

2.4.6 Hardware. We classify a bug report/commit in this category
if the flakiness is from running on some specialized hardware. We
find one commit that disables a test on TPU (Tensor Processing
Unit), which is a specialized accelerator for deep learning. TPUs are
efficient in doing parallel computations like matrix multiplications
on a very large scale. However, these computations can be relatively
non-deterministic due to different orderings of floating point com-
putations. The randomness in the order of collecting partial results
from several threads can sometimes amplify the errors, leading to
different results.

2.4.7 Other. We group several bug reports/commits that are likely
flaky due to causes related to flaky tests in general software into
this category. These flaky tests include test failures due to flakiness
in the pylint checker, file system, network delays, and iterating
over an unordered key set in a python dictionary. There are 12 bug
reports/commits in this category.

2.4.8 Unknown. We classify a bug report/commit into the Un-
known category when we do not find enough information to prop-
erly categorize the cause for flakiness. These bug reports/issues do
not provide enough description of the cause of flakiness, neither in
the commit message nor in the developer conversations.

2.5 Fixes for Flaky Tests

Table 4 shows the common categories of fixes we observe for flaky
tests in our evaluation projects. Note that the total number differs
by four from the total in Table 3 (79 versus 75), because four of the
bug reports/commits includes two fixes each that we classify into
two separate categories.

2.5.1 Adjust Thresholds. In many cases, the developers reason that
the threshold for the assertion in a test is too tight, causing the test
to fail intermittently. In such scenarios, the developers prefer loos-
ening the threshold by some amount to reduce the test flakiness.
One example test is test_mnist_tutorial_tf in the tensor-
flow/cleverhans project. The test runs various ML algorithms on

Detecting Flaky Tests in Probabilistic and Machine Learning Applications

the MNIST dataset, perturbed by adversarial attacks. It then checks
various accuracy values generated in the report. Originally, the
test’s assertion compares the computed value with 0.06.

However, the developers observed that, on adversarial examples,
the accuracy occasionally exceeds 0.06. To fix [12] this flaky test,
the developers used a higher threshold of 0.07.

self.assertTrue(report.clean_train_adv_eval < 0.06)
self.assertTrue(report.clean_train_adv_eval < 0.07)

2.5.2 Fix Test and Fix Code. We classify 13 bug reports/commits
where developers fix a bug in the test code and 9 bug reports/com-
mits where developers fix a bug in source code, to mitigate flakiness
completely in the test instead of reducing the chances of flaky
failure (e.g., by adjusting thresholds in the assertion).

These two categories each cast a fairly wide net, as there is no one
kind of fix in this category that is common across all the projects.
For instance, Issue #727 of the allenai/allennlp project [3] exposes
the issue that their tests were creating modules during execution,
but python’s importlib could not find them. To fix this, developers
added importlib.invalidate_caches() (as recommended by the
importlib documentation) to the test code so that the newly created
modules can be discovered. In another case, the loss computation
in the cornellius-gp/gpytorch project was buggy since it was not
handling NaNs gracefully, leading to intermittent failures during
execution. In Pull Request #373 [31], the developers added a check
in the source code to account for NaNs during execution and provide
warning messages to the user instead of crashing.

2.5.3 Fix Seed. Fixing a seed for a non-deterministic algorithm
makes the computations deterministic and easier for the developers
to write assertions that compare against a fixed value.

An example from Pull Request #1399 in the project PySyft [55]
illustrates this strategy. Originally, the developers had a test called
test_federated_learning that creates a dataset and a neural
network model, and finally performs a few iterations of back-
propagation. Then, the test checks whether the loss in the last
iteration is less than the loss in the first iteration.

Table 4: Fixes for Flaky Tests

Fix Category ‘ # of Bug Reports/Commits
Adjust Thresholds 15
Fix Test 13
Fix Seed 12
Remove Test 10
Mark Flaky Test 10
Fix Code 9
Adjust Test Params 8
Upgrade Dependencies 1
Other 1
Total 79

The total number differs by four from the total in Table 3
(79 versus 75), because four of the bug reports/commits
include two fixes each that we classify into two separate
categories.

215

ISSTA °20, July 18-22, 2020, Virtual Event, USA

1 for iter in range(6):
2 for iter in range(2):

3 for data, target in datasets:

4 model . send(data.owners[0])

5 model . zero_grad()

6 pred = model(data)

7 loss = ((pred - target)*x2).sum()
8 loss.backward()

9
[}

if(iter == 0):

first_loss_loss = loss.get().data[0]

12 assert loss.get().data[@] < first_loss
13 if(iter == 1):
14 final_loss = loss.get().datal0]

15 assert final_loss == 0.18085284531116486

This test was problematic due to non-deterministic floating point
computations of gradients. As a result, there is always a possibility
that the loss may not reduce in a small number of steps (6 in this
case). To resolve the flakiness, the developers instead fixed the seed
earlier in the code using torch.manual_seed(42), changed the
test to perform just two iterations of back-propagation, and finally
changed the assertion to check the exact value of the loss.

This test, while seemingly fragile, is now deterministic due to the
fixed seed. In general, fixing seeds can make the test deterministic.
However, the test can potentially fail in the future if the sequence
of underlying computations (which deal with randomness) changes
due to modifications of the code under test or if the implementa-
tion of the random number generator changes. We provide a more
detailed qualitative discussion on the trade-offs of setting seeds in
the test code through a few case studies in Section 5.

2.5.4 Remove Test. Developers may remove or disable a flaky test
if they cannot fix the flakiness or tune the various parameters to
control the results. While such a solution does indeed “fix” a flaky
test, it is a rather extreme measure as a developer is deciding that
the flakiness in the test is more trouble than the benefit the test
provides. However, we still found 10 fixes where the developer
removes or disables a flaky test.

2.5.5 Mark Flaky Test. The Flaky plugin [22] for pytest allows the
developers to mark a test as flaky. The developer can annotate a test
function with the @flaky decorator, and then pytest by default re-
runs the test once in the case of a failure. The developer can also set
the maximum number of re-tries (max_runs) and minimum number
of passes (min_passes). pytest re-runs the test until it passes min_-
passes times or runs the test max_runs of times. The developers
usually prefer this setup when the test fails in some corner cases
that are expected to occur rarely but hard to handle specifically.
For example, in the allenai/allennlp project, the developers added

the @f 1aky decorator to test_model_can_train_save_and_load [2],

forcing pytest to rerun it in case of future failures.

2.5.6 Adjust Test Params. The accuracy of a machine learning
or Bayesian inference algorithm depends on the number of iter-
ations/epochs on which the model is trained. If the number of
iterations is not enough, then the results may not be stable and can
occasionally cause the assertions in tests, which check for accuracy,

ISSTA °20, July 18-22, 2020, Virtual Event, USA

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic

Table 5: Distribution of Fixes for Each Cause of Flakiness

Adjust Fix | Fix | Remove Mark Fix Adjust Upgrade
Cause\ Fix Thresholds | Test | Seed Test Flaky Test | Code | Test Params Deps Other | Total
Algorithmic Non-det 14 2 11 5 9 0 8 0 0 49
FP Computations 1 1 0 0 0 3 0 0 0 5
Incorrect/Flaky API Usage 0 2 0 0 0 2 0 0 0 4
Unsynced Seeds 0 0 1 1 0 0 0 0 0 2
Concurrency 0 1 0 0 0 1 0 0 0 2
Hardware 0 0 0 1 0 0 0 0 0 1
Other 0 6 0 1 1 3 0 1 0 12
Unknown 0 1 0 2 0 0 0 0 1 4
Total | 15] 13| 12| 10 0] 9 8 | 1| 1| 7

to fail. Apart from number of iterations/epochs, there are other
test parameters that a user can configure, like batch size, data set
generation parameters (size and distribution), and number of reruns
(for known flaky tests).

For example, in the allenai/allennlp project, developers noted that
the NumericallyAugmentedQaNetTest, from naganet_test.py,
was flaky and can cause failures when run on GPU. So, in commit
089d744 [1], the developers increased the maximum number of
runs and specified the minimum number of passes needed for the
test to be marked successful:

@flaky (max_runs=3, min_passes=1)
def test_model_can_train_save_and_load(self):
self.ensure_model_can_train_save_and_load(self.param_file)

The max_runs and min_passes parameters are part of the Flaky
plugin [22].

2.5.7 Upgrade Dependencies. Developers sometimes have to up-
grade their existing dependency versions, such as a dependency on a
probabilistic programming system or machine learning framework.
We observed 1 bug report from the project azavea/raster-vision,
where developers upgraded the version of TensorFlow on which
the project depends.

In Issue #285 in the azavea/raster-vision project [57], the develop-
ers were observing an intermittent failure that occurred roughly ten
percent of the time. The failure was triggered by using the command
export_inference_graph from the TensorFlow Object Detection
API, which would intermittently give a Bad file descriptor
error. The developers resolved this issue through upgrading their
dependency on TensorFlow 1.5 to TensorFlow 1.8.

2.5.8 Other. InIssue #167 of the tensorflow/cleverhand project [13],
a developer reported that some tests were both slow to run and
flaky. The developers applied a number of fixes to update the test
configurations and updated various test parameters to improve the
runtime of the tests. We classified this fix as “Other” as it did not
directly fit into any other category.

2.6 Distribution of Fixes for Each Cause

Table 5 presents the distribution of fixes for each cause of flakiness.
For the biggest cause of flakiness, Algorithmic Non-determinism,
we see that the most common developer fixes are to adjust the

216

accuracy thresholds in assertions, fix seeds, mark the tests as flaky
(equivalent to re-running), or even remove the test. This analysis
brings out two main observations: (1) Fixing flaky tests in the Al-
gorithmic Non-determinism cause category requires an intimate
understanding of the code under test and hence is non-trivial, some-
times even for developers familiar with the code base. (2) We ob-
serve that adjusting accuracy thresholds in assertions is the most
common fix developers choose overall.

These two observations motivated us to develop FLASH, a novel
technique for detecting flaky tests caused by Algorithmic Non-
determinism that focuses on tests with assertions that do approxi-
mate comparisons (using developer-specified accuracy thresholds)
between actual and expected values in tests.

3 FLASH

We propose FLASH, a technique for detecting flaky tests due to
non-deterministic behavior of algorithms. At a high-level, FLASH
runs tests multiple times but with different random number seeds,
which leads to different sequences of random numbers between
executions. FLASH then checks for differences in actual values in
test assertions and even different test outcomes. The main challenge
to this approach is to determine how many times FLASH should run
each test before it can make a decision as to whether the test is flaky.
We address this challenge by using a convergence test (Section 3.2)
to dynamically determine how many times to run a test.

3.1 System Overview

Figure 2 shows the overall architecture for FLASH. FLASH takes as
input a project and a set of assertion patterns to check for flakiness.

Assertions | Flaky Assertions

assert()

]l_
|

Instrumentor J_

G

= assert()

ssertion
Inspector

assert() |
I |
A |

Assertion |
Miner :
|

Assertion

Patterns

T

ir/

Project

Figure 2: Flash Architecture

Detecting Flaky Tests in Probabilistic and Machine Learning Applications

FLASH reports the assertions in the project that match the input as-
sertion patterns and that can fail due to sampling random numbers.
FLASH consists of four main components: (1) the Assertion Miner
collects all the assertions that match the assertion patterns specified
by the user, (2) the Test Instrumentor instruments a test assertion
to set necessary seeds and log the actual and expected values in
the assertion, (3) the Test Driver runs the test several times until
the distribution of actual values converge, and (4) the Assertion
Inspector compares the actual and expected values and determines
the probability that the assertion might fail. Algorithm 1 describes
the main algorithm for FLASH and how it uses all four components.
While FLASH currently runs on all tests in a project to detect flaky
tests (and we run on all for our later evaluation), developers can
instead run FLASH for tests only after they fail, or check only newly
committed tests, speeding up the flaky test detection over time.

Next, we first discuss the details of the convergence test, and
then we discuss each of FLASH’s components in detail and how
they use the convergence test.

Algorithm 1 FLASH Algorithm

Input: Project P, Assertion patterns Ap
Output: Set of resulting flaky assertions FA
: procedure FLASH(P, Ap)
: FA<0

1
2
3 As « AssertionMiner(P, Ap)

4 for (T, A) € As do

5: T; « TestInstrumenton(T, A)

6: S « TestDriver(T;)

7 status, P «— Assertionlnspector(T, A, S) = FLAKY
8: if status = FLAKY then

9: FA«—FAU{(A, S, P)}

10: end if
11: end for

12: return FA
13: end procedure

3.2 Convergence Test

Given an assertion A in a test function T, we want to compute the
probability of failure for the assertion. Computing this probability
requires the entire distribution of values that the expression in the
assertion can evaluate to. Let us assume we have an assertion of
the following form:

assert x < 0

Here, we would like to estimate the distribution for x so that we
can compute the probability of x exceeding 6.

We pose this problem in the form of estimating the distribution
of an unknown function ¥, where # essentially runs T and returns
the value of x. One approach for solving this problem is to use a
sampling-based approach, wherein we execute # multiple times
to obtain a number of samples, estimate the distribution from the
samples, and compute the probability of failure : P(¥ > 6). How-
ever, this approach has two main challenges. We need to decide
(1) whether we have seen enough samples and (2) how many samples
to collect at minimum.

To tackle the first challenge, researchers have proposed several
metrics to measure convergence of a distribution like Gelman-Rubin
diagnostic [26], Geweke diagnostic [27], and Raftery-Lewis [56]. In
this work, we specifically use the Geweke diagnostic [27] to mea-
sure the convergence of a set of samples. Intuitively, the Geweke

217

ISSTA °20, July 18-22, 2020, Virtual Event, USA

diagnostic checks whether the mean of the first 10% of the sam-
ples is not significantly different from the last 50%. If yes, then
we can say that the distribution has converged to the target dis-
tribution. To measure the difference between the two parts, the
Geweke diagnostic computes the Z-score, which is computed as the
difference between the two sample means divided by the standard
errors. Equation 1 shows the formula for the Z-score computation
for Geweke diagnostic, where a is the early interval of samples, b
is the later interval of samples,] is the mean of each interval and
Var is the variance of each interval of samples.

Aa—Ap
\Var(dq) + Var(Ap)

If the Z-score is small, then we can say that the distribution
has converged. We choose to use the Geweke diagnostic because
it does not involve any assumptions about the independence of
the samples and does not require samples from multiple chains
like other metrics. To use this metric with our approach, the user
can specify the minimum desired threshold. In FLASH, we use a
threshold of 1.0 in the algorithm, which intuitively translates to
choosing a maximum standard deviation of 1.0 between intervals.

Unfortunately, there is no one way to tackle the second challenge
i.e., how many samples to collect at minimum. If the minimum
sample size is too large, we waste too much time executing # even
when not needed. On the other hand, if the sample size is too small,
the conclusions may be questionable. Some studies [58] recommend
using a minimum sample size of 30 for statistical significance. We
allow the user to specify the minimum sample size, but by default,
and for our own evaluation (Section 4), we set it to 30 samples.

(1)

Computing probability of failure. Given a set of samples for 7,
we now need to determine the probability of failure: P(¥ > 0). For
this task, we fit an empirical distribution, D, over the samples, and
compute the cumulative distribution function (CDF): CDF¢(0) =
P(D < 0). Finally, the probability of failure is given by 1-P(D < 6).
We can easily transform any other kind of assertion into this form
to do this computation as well.

Comparison with hypothesis testing. An alternate approach to
using a convergence test is to use statistical hypothesis testing. In
this case, we would try to reason about two hypotheses: the null
hypothesis: P(F > 0) > k, and the alternative hypothesis: P(F >
0) < k. A common hypothesis test is the sequential probability
ratio test (SPRT) [68], which continuously samples from the given
function until it either rejects the null hypothesis or accepts the
alternative hypothesis. SPRT is proven to take the optimal number
of iterations for a desired level of accuracy. For this approach, we can
model # as a binomial random variable and only record whether it
passed or failed after each execution. Each sample of ¥ is assumed
to be independent.

However, there are several practical limitations of using hypoth-
esis testing for our purposes. First, to obtain a desired level of
accuracy, one needs to collect a very large number of samples. For
instance, for k = 0.01, to obtain a Type I error of less than 0.01 and
Type II error of less than 0.2, one needs at least 100 samples. For a
non-flaky assertion where the values of x are not non-deterministic,
hypothesis testing would still require many samples to determine
the assertion is not flaky, wasting time. Second, a flaky assertion

ISSTA °20, July 18-22, 2020, Virtual Event, USA

Table 6: Assertion Patterns

Source ‘ Assertion ‘ Count
Python assert expr < | > | <= | >= threshold | 62
Unittest assertTrue 64
Unittest assertFalse 0
Unittest assertGreater 168
Unittest assertGreaterEqual 7
Unittest assertLess 467
Unittest assertLessEqual 21
Numpy assert_almost_equal 252
Numpy assert_approx_equal 8
Numpy assert_array_almost_equal 222
Numpy assert_allclose 278
Numpy assert_array_less 4
TensorFlow | assertAllClose 1613
Total | | 3166

may exhibit a large variation in actual observations but may not
fail in the first 100 iterations (due to pure chance). The SPRT test
would miss detecting this flaky test. The convergence test, however,
has a better chance of capturing this behaviour as it monitors the
variation in the overall distribution of values. Given these limita-
tions, we choose to use a convergence test to determine the number
of times to run a test for our technique FLASH.

3.3 FLASH Components

We now describe the main components of FLASH.

3.3.1 Assertion Miner. We consider only assertion methods that
do approximate comparisons between the actual computed value
and the expected value rather than checking for exact equality.
These assertions are similar to approximation oracles as defined by
Nejadgholi and Yang in their prior work [45]. Table 6 shows the
assertion patterns that we consider along with what library the
assertion comes from and how often each assertion appears within
our evaluation projects.

In Algorithm 1, FLASH calls the Assertion Miner to get all the
assertions that match the specified assertion patterns in the project
(line 3). The Assertion Miner iterates through all the test files in a
project and checks each test function to see if it contains one or
more assertions of interest. The Assertion Miner creates an assertion
record for each assertion of interest, which consists of the file name,
class name, test function name, and assertion location in the file.

3.3.2 Test Instrumentor. For each assertion record, FLASH uses the
Test Instrumentor to instrument the relevant assertion for the later
steps that runs the test (line 5 of Algorithm 1). The instrumentation
involves logging the actual and expected values during a test run
and introducing the logic for controlling the seed for the random
number generators during the test run.

The Test Instrumentor sets the seed by introducing a pytest fix-
ture function that performs setup before tests run. The fixture sets
a concrete seed for the random number generator in different mod-
ules (e.g., NumPy, TensorFlow, PyTorch). We configure the pytest
fixture to run at the session level, which means that the fixture runs
once before any test runs. If the developer has explicitly set some
seed for their tests, the fixture would not override that seed.

3.3.3 Test Driver. FLASH takes the instrumented test and passes it
to the Test Driver to run and collect samples for the relevant asser-
tion (line 6 in Algorithm 1). The Test Driver relies on a convergence

218

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic

Algorithm 2 Test Driver Algorithm

Input: Instrumented test T;
Output: Set of samples S

1: procedure TESTDRIVER(T;)
2: batch_size = INITIAL_BATCH_SIZE
3 i—0
4 S—0
5: while i < MAX_ITERS do
6 b0
7 while b < batch_size do
8: sample < ExecuteTest(T;)
9: S — SU {sample}
be—b+1
end while
score «— ConvergenceScore(samples)
if score < CONV_THRESHOLD then
break
end if
i « i+ batch_size
batch_size < BATCH_UPDATE_SIZE
18: end while
19: return S
20: end procedure

test to determine how many samples it needs to collect (which is
the number of times to run the test).

Algorithm 2 shows the high-level algorithm for the Test Driver.
Aside from the input instrumented test T;, the Test Driver requires
the user to set up some other configuration options related to the
convergence test (Section 3.2). These options include the initial
number of iterations to run the test (INITIAL_BATCH_SIZE, default
30), the maximum iterations to run if the values do not converge
(MAX_ITERS, default 500), the maximum threshold for the conver-
gence test score (CONV_THRESHOLD, default 1.0), and the additional
number of iterations to run at a time if the samples do not converge
(BATCH_UPDATE_SIZE, default 10). The Test Driver then returns the
set of collected samples.

TestDriver runs the test multiple times using the ExecuteTest
procedure (line 8 in Algorithm 2). The ExecuteTest procedure runs
the test using pytest in a virtual environment setup for the project.
After running the test, ExecuteTest returns a sample, which con-
sists of the actual value from the assertion, the expected value from
the assertion, a log of the output from the test run, and the seed set
to the random number generators for that one run. The actual and
expected value can be either a scalar, array, or tensor. Furthermore,
ExecuteTest can obtain multiple actual and expected values for
a single assertion, if the assertion is called multiple times within
a single test run, e.g., the assertion is in a loop. In such cases, the
actual and expected values in the sample are arrays containing the
values from each time the assertion is executed in the test run.

If the convergence test finds the samples to have converged after
the initial batch of runs (lines 7- 12), then the Test Driver continues
to collect more samples by iterating in batches of BATCH_UPDATE_-
SIZE iterations (line 17). the Test Driver returns the set of collected
samples after convergence or after reaching MAX_ITERS iterations.

3.3.4 Assertion Inspector. FLASH uses the Assertion Inspector to
determine if an assertion is flaky or not (line 7 in Algorithm 1).
The Assertion Inspector first checks if any of the collected samples
contain a failure (the assertion was passing in the production envi-
ronment before running with FLASH, so a failure should indicate
flakiness). If not, the Assertion Inspector takes the samples and the

Detecting Flaky Tests in Probabilistic and Machine Learning Applications

assertion, and it computes the probability of the assertion failing
(Section 3.2). If the probability of failure is above the user-specified
threshold, the assertion is also considered flaky. FLASH records all
the assertions the Assertion Inspector reports as flaky, along with
collected samples and probability of failure # for such assertions.

The Assertion Inspector also reports the bounds of the distribu-
tion of actual values sampled. The user can use the reports from the
Assertion Inspector to make a decision on whether to take action
in fixing the assertion or not, along with information that can help
with fixing the assertion.

4 EVALUATION

We evaluate FLASH on the same projects where we find flaky tests
from historical bug reports/commits from Section 2. Specifically,
we answer the following research questions:

RQ1 How many new flaky tests does FLASH detect?
RQ2 How do developers react to flaky tests FLASH detects?
RQ3 How many old, historical flaky tests does FLASH detect?

Experimental Setup. We run all our experiments using a 3 GHz
Intel Xeon machine with 12 Cores and 64GB RAM. We implement
FLASH entirely using Python. We use the Geweke test implemen-
tation provided by the Arviz library [35] in Python.

4.1 ROQ1: New Flaky Tests Detected by FLASH

For the 20 projects from our study with flaky test bug reports/com-
mits, we run FLASH on each project’s latest commit, collected on
Dec 20, 2019. For each project, we create a virtual environment us-
ing the Anaconda package management system [14] for Python to
run the tests, installing the latest version of each project’s specified
dependencies. We use a threshold of 1.0 for convergence test using
Geweke diagnostic (CONV_THRESHOLD). INITIAL_BATCH_SIZE is set
to 30 and BATCH_UPDATE_SIZE is set to 10. We are not able to run
FLASH for three projects. Of these three projects, we do not find
assertions matching the assertion patterns we support in FLASH for
pytorch/captum and azavea/raster-vision. For the remaining project,
rlworkgroup/garage, the tests time out when run with FLASH due
to the limited GPU support that we have on our machine, which
causes those tests to run very slowly.

Table 7 shows our results for running FLASH on the remaining
projects. The first column Projects shows the name of the project.
The second column Total shows the total number of assertions
FLASH collects samples from for each project. The third column
Pass shows the number of assertions that always pass across all
runs. The fourth column Fail shows the number of assertions that
fail at least once when FLASH runs them for several iterations.
The fifth column Skip shows the number of assertions that were
skipped due to several reasons (e.g., needing specialized hardware
like a TPU). The sixth column Conv-NZ shows the assertions that
have a convergence score of more than 0 in the first batch. The
seventh column Conv-Z shows the number of assertions that have
a 0 convergence score in the first batch. The eighth column Avg-
Runs shows the average number of iterations that FLASH runs for
the assertions. The last column Max-Runs shows the maximum
number of iterations that FLASH runs for the assertions.

From the Conv-Z column, we see that most of the assertions
always have the same actual value, which is why the convergence

219

ISSTA °20, July 18-22, 2020, Virtual Event, USA

score is 0 in these cases. As such, the average number of runs is
usually quite close to the initial batch size we set (30). The average
number of iterations per assertion over all projects is 45.32 (and
the average of the maximum number of iterations per assertion is
233.53, suggesting the convergence test is effective at reducing the
number of iterations FLASH should run per assertion.

There are 252 cases where an assertion never fails but has a
non-zero convergence score. The values of the expressions in these
assertions fluctuate, but we do not observe any failure. We rerun
FLASH for those assertions with a stricter threshold of 0.5 for the
convergence test and observe whether they reveal any more failures.
On average, while this configuration option makes FLASH take
more iterations for convergence, we still do not observe any failures.

Table 8 shows the details of the failing tests that FLASH detects
(we do not find a case where FLASH finds multiple assertions in
the same test to fail). The second column lists the total failing
tests for each project. We manually inspect each failure and reason
about whether the failure indicates a potential flaky test in the
project under test. The third column shows the number of tests
we determine to be a new flaky test. The fourth column shows
the number of tests where the developers confirm the flaky test
after we report them. The final column shows the number of tests
where we determine that the cause of failure is either due to a
mis-configuration in our local test environment or it is an already
confirmed flaky test. Overall, FLASH detects 32 failing assertions
across 11 projects, of which we determine 11 indicate flaky tests.

4.2 ROQ2: Fixing Flaky Tests

For the 11 potential flaky tests FLASH detects, we sent 4 Pull Re-
quests (PRs) and 6 Issue Requests to the developers of the projects
on GitHub. Developers accepted 3 PRs that fix four flaky tests, while
the other is closed. For the closed PR (in zfit/zfit), the developers
confirmed that the test is flaky but made a different fix than what
we proposed. Out of the 6 Issue Requests, the developers have con-
firmed 5 and fixed one of them, and the last is pending review. We
discuss the flaky tests that are confirmed and fixed in more detail.

FLASH finds four flaky tests in allenai/allennlp. In one flaky test,
the test randomly generates a list of predictions and corresponding
labels, then computes the AUC (Area Under Curve) metric and
checks whether the result matches the expected result, which is
computed using a similar implementation from the scikit-learn
package. However, the metric fails when there are no positive labels
in the randomly generated list of labels. We could easily reproduce
the error using the seed(s) FLASH finds. After discussing with the
developers, we conclude that this is an expected behaviour for the
AUC implementation. Hence, we fix the test by explicitly setting
one label to positive always before calling the metric. In the three
other flaky tests, the tests run various training algorithms and
compute their F1 scores (harmonic mean of precision and recall).
Then, the tests check whether the computed F1 score is greater than
0. FLASH finds at least one PyTorch seed for each test that causes
the F1 score to be 0, and hence the assertion fails. After discussing
this issue with the developers, we conclude that the best fix is to
mark the test as flaky. An F1 score of 0 is expected when there are
no positive samples in a dataset.

ISSTA °20, July 18-22, 2020, Virtual Event, USA

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic

Table 7: Distribution of Passing and Failing Asserts

Projects Total Pass Fail Skip Conv-NZ Conv-Z Avg-Runs Max-Runs
allenai/allennlp 428 424 4 0 97 331 43.29 200
cornellius-gp/gpytorch 1180 1179 1 0 126 1054 35.66 200
deepmind/sonnet 185 166 1 18 0 167 30.00 30
geomstats/geomstats 467 464 3 0 0 467 30.00 30
HazyResearch/metal 19 18 1 0 3 16 35.79 80
OpenMined/PySyft 12 11 1 0 8 4 110.83 500
PrincetonUniversity/PsyNeuLink 198 166 0 32 0 166 30.00 30
pytorch/botorch 86 85 1 0 2 84 35.81 500
pytorch/vision 7 7 0 0 3 4 42.86 80
Qiskit/qiskit-aqua 113 75 9 29 7 77 53.33 500
RasaHQ/rasa 19 19 0 0 9 10 85.26 400
snorkel-team/snorkel 58 58 0 0 7 51 42.76 500
tensorflow/cleverhans 79 75 2 2 6 71 31.82 70
tensorflow/gan 108 100 0 8 2 98 31.00 90
tensorflow/magenta 21 21 0 0 0 21 30.00 30
tensorflow/tensor2tensor 157 150 7 0 9 148 38.22 500
zfit/zfit 29 27 2 0 13 16 63.79 230
Sum/Avg 3166 3045 32 89 292 2785 45.32 233.53
Table 8: Failures for Each Project Table 9: Old Flaky Tests Detected by FLASH
Project Failures Flaky Tests Confirmed Other Project Commit Cause Failures/Iters Threshold
allenai/allennlp 4 4 4 0 allenai/allennlp 5e68d04 FP Computations 2/100 1.0
cornellius-gp/gpytorch 1 0 0 1 allenai/allennlp 5dd1997 Algo. Non-det. 28/100 1.0
deepmind/sonnet 1 1 1 0 tensorflow/tensor2tensor 6edbdéb Algo. Non-det. 2/70 1.0
geomstats/geomstats 3 0 0 3 pytorch/botorch e2el132d Algo. Non-det. 2/170 0.5
HazyResearch/metal 1 0 0 1 pytorch/botorch 7ac0273 Algo. Non-det. 6/50 1.0
OpenMined/PySyft 1 1 1 0 tensorflow/cleverhans b2bb73a Algo. Non-det. 5/40 1.0
pytorch/botorch 1 1 1 0 tensorflow/cleverhans 4249afc Algo. Non-det. 19/80 1.0
Qiskit/qiskit-aqua 9 0 0 9 tensorflow/cleverhans 58505ce Algo. Non-det. 7/50 1.0
tensorflow/cleverhans 2 2 2 0 snorkel-team/snorkel 3d8ca08 Algo. Non-det. 1/90 0.5
tensorflow/tensor2tensor 7 1 0 6 OpenMined/PySyft b221776 Algo. Non-det. 1/270 0.5
zfit/zfit 2 1 1 1 pytorch/captum d44db43 Algo. Non-det. 4/40 1.0
Total 32 11 10 21

FLASH finds one new flaky test in zfit/zfit. The test creates four
random variables, each of which is assigned a Gaussian distribution.
Then, it creates another random variable that is just the sum over
those four Gaussian random variables. Finally, the test fetches the
dependent random variables from that summed random variable
through the call get_dependents(), which returns an ordered set.
The test asserts that the iteration order of the ordered set is different
than the iteration order of the regular, unordered set of these depen-
dent random variables. FLASH finds an execution where this test
fails, which is expected since there is always a non-zero probability
that iterating through the unordered set leads to the same order
as the ordered set. We proposed a fix to this test in a PR, where
we marked it as flaky using the @flaky annotation in pytest. The
developers confirmed that the test is flaky (and buggy) but they
made a different fix. They reasoned that the test should just be
checking that multiple calls to get_dependents() return the same
ordered set, so they refactored the test to check that the return of
get_dependents() is the same across subsequent calls.

220

FLASH finds another flaky test in pytorch/botorch. The test cre-
ates a probabilistic model, generates data, runs a few steps of gradi-
ent computation, and checks whether the gradient is greater than
a fixed threshold. However, FLASH finds an execution and the cor-
responding Torch seed where this checks fails. After reporting this
behavior to the developers, they confirm that the test is indeed
flaky and adjust the threshold to reduce the chance of failure.

4.3 RQ3: Old Flaky Tests Detected by FLASH

For the same 20 projects, we evaluate how effective FLASH is at
detecting the old, already identified flaky tests. We only run FLASH
for flaky tests that fail due to the assertions FLASH tracks.

First, for each commit related to a fix for a flaky test from our
study, we checkout its immediate parent commit (before the fix) and
create a virtual environment to run the test on that commit. Like in
Section 4.1, we create this virtual environment using Anaconda, but
we ensure that the version of each dependency we install is set to
the latest version at the time of the commit, not the current latest,
as to better reproduce the environment developers were initially
running the tests and encountering flakiness. Once we set up this

Detecting Flaky Tests in Probabilistic and Machine Learning Applications

environment, we run FLASH only on the flaky test in question to see
if FLASH can detect this flaky test. We use the same configuration
for FLASH as we describe in Section 4.1.

Table 9 shows our results on using FLASH to detect old flaky
tests. The table shows the project and old commit SHA where we
run FLASH, the cause of the flaky test, the fix for the flaky test
by the developers, the number of iterations FLASH runs the test
based from using Algorithm 1, the number of times the test fails
in those iterations, and the threshold we eventually set for the
Geweke test to check for convergence. We are unable to run FLASH
on the other old flaky tests, because either we cannot reproduce
the exact environment to make any tests pass on the old commit,
or the old flaky test in question was not failing due to assertions
FLASH supports. For example, there are projects where we could
not reproduce the environment due missing old dependencies.

Overall, FLASH requires at most 100 iterations to detect most of
these flaky tests (only two require more iterations). For three flaky
tests, we have to use a tighter threshold of 0.5 to detect the known
flaky test. A tighter threshold is expected in some cases, because it
might require longer to converge to the target distribution.

5 DISCUSSION

For many assertions, FLASH obtains the same actual value for
every run, despite changing the seeds. We suspect that developers
are purposely setting the seed to a specific value tests, overriding
FLASH’s attempt at changing the seed. Setting the seed guarantees
a deterministic execution of the tests, a common fix for flaky tests
(Section 2.5). However, setting the seed to a specific value can
“lock” the developer into a specific execution for all test runs, and
developers can potentially miss bugs if other seeds lead to different
values that the code is not handling properly. Furthermore, if the
underlying random number generator changes, or if the developer
changes their code where only the random number generator’s
sequence of random numbers changes, the assertions can end up
failing, because they are too dependent on the specific sequence of
random numbers and are therefore flaky.

To evaluate how flaky existing assertions are when run under
different seeds for a project, we disable all explicit seed settings
throughout the tests in the project 2. Then, we run FLASH on this
modified code. We experiment on two projects: PrincetonUniversi-
ty/PsyNeuLink and geomstats/geomstats.

We sample several of the assertions that FLASH finds as flaky
after running on the modified code. For the assertions we determine
to be flaky with our manual inspection, we send PR(s) to the devel-
opers for fixing the flakiness. We observe both a positive response
and a negative response from the two projects.

Experience with geomstats/geomstats. Tests in geomstats/geom-
stats run with different backends, including NumPy, TensorFlow,
and PyTorch. We run FLASH on the project using each backend
while changing seeds. FLASH finds only one test in geomstats/-
geomstats that fails when run with the TensorFlow backend, but
always passes in other backends. The test creates an object that
represents an N-dimensional space, samples a random point from
the defined space, then checks whether the sample belongs to the

Interestingly, developers across different projects like to use very similar seeds, such
as 0, 1234, or 42.

221

ISSTA °20, July 18-22, 2020, Virtual Event, USA

defined space using the exposed APL The test uses a predefined
tolerance of 1~ for the check. After reporting to the developers,
they confirmed that this is likely a precision issue: the TensorFlow
backend uses single precision floating point by default, whereas the
NumPy backend uses double precision. Hence, the NumPy back-
end can handle higher tolerance levels than TensorFlow for this
test. We send a PR to reduce the tolerance level to 14, which the
developers accepted. This case demonstrates that setting seeds in
tests can be problematic and sometimes hide subtle bugs. Hence,
developers must be careful about using fixed seeds in their tests
and reason judiciously about the entailing risks of fixed seeds.

Experience with PrincetonUniversity/PsyNeuLink. FLASH finds
several tests in PrincetonUniversity/PsyNeuLink to fail when run
with different seeds. We send a PR to fix one test to start. The test
is testing an integrator mechanism that gives deterministic results
modulo noise sampled from a normal distribution from NumPy.
The assertion checks that the actual value should be close to the ex-
pected value with a very specific tolerance level, which is the actual
value from running with the specific seed set by the developers. We
also find that developers had to several times update the assertion
in the past due to changes in the sequence of random numbers, even
though they never change the seed itself. We update the assertion
to accept a wider tolerance, representing the distribution of values
FLASH reports. The goal is to make the assertion fail less often in
the future due to changes in just the sequence of random numbers.

However, the developers were against the change, because they
indeed want the test to fail even when the failure is solely due to
changes in the sequence of random numbers. They want to examine
all failures, and if they decide the problem is not in their code, they
will update the expected value of the assertion accordingly. As such,
the developers seem not bothered by the times the test has a flaky
failure unrelated to changes in their code under test.

6 THREATS TO VALIDITY

We study only a subset of projects that use probabilistic program-
ming systems and machine learning frameworks, so our results
may not generalize to all projects. To mitigate this threat, we study
four popular open-source probabilistic programming systems and
machine learning frameworks on GitHub, and we consider all of
their dependent projects with more than 10 stars (indicating they
are somewhat popular and used). Our study on historical bug re-
ports/commits referencing flaky tests may not include all such bug
reports/commits. We use a keyword search similar to prior work on
studying flaky tests in project histories. We are still able to identify a
substantial number of bug reports/commits referencing flaky tests.

FLASH samples seeds to use for random number generators,
so the test executions we run through FLASH is only a subset of
all possible test executions given different possible sequences of
random numbers. The tests FLASH finds to be flaky are for sure
flaky, as we confirm the test can pass when run on the code, and
we can reproduce the test failure using the seeds FLASH reports.
Furthermore, we report these flaky tests to developers and receive
confirmation from them that we have detected flaky tests. There
may be more flaky tests that FLASH does not detect due to not
running enough. As such, our results on flaky tests FLASH detects
is an under-count of how may flaky tests exist in these projects.

ISSTA °20, July 18-22, 2020, Virtual Event, USA

7 RELATED WORK

Testing of systems dealing with randomness. Machine learn-
ing frameworks like TensorFlow [64] and PyTorch [51] have revolu-
tionized the domain of machine learning. A recent surge of interest
in probabilistic programming has also led to the development of
numerous probabilistic programming systems both in academic
research and industry [10, 11, 28-30, 41, 42, 46, 52, 54, 67, 69]. How-
ever, tests written by developers in these domains suffer from the
problem of inherent non-determinism and lack concrete oracles.
Recent work has proposed techniques to systematically test and de-
bug probabilistic programming systems [18, 19], machine learning
frameworks [20, 53], and randomized algorithms [34].

Nejadgholi and Yang [45] studied the distribution and nature
of approximate assertions in deep learning libraries. They report
adjusting thresholds as one class of changes that developers typi-
cally do for approximate assertions. We also find fixes in the same
category in our study (Section 2.5), and we made similar fixes in
Section 4.2. However, in other cases in our study, the fixes are more
involved and belong to other categories.

Study of Flaky Tests. Recently, there has been much work on
studying flaky tests. Harman and O’Hearn [32] reported the prob-
lems with flaky tests at Facebook, and they have even suggested
that future testing research should adjust to assuming all tests to be
flaky. Luo et al. studied the various causes and fixes for flaky tests
in open-source software [40]. They studied flaky tests in traditional
software, finding that common causes for flaky tests include async
wait, concurrency, and test-order dependencies. In this work, we
study flaky tests specifically in the domain of software that de-
pends on probabilistic programming systems and machine learning
frameworks. In our study, we find that most causes of flaky tests
would fall under the category prior work would consider as “ran-
domness”, which did not show up as a prominent cause of flakiness
in their evaluation. Zhang et al. conducted a survey of machine
learning testing and found that flaky tests arise in metamorphic
testing whenever floating point computations are involved [71]. In
our study, we find floating-point computations to be a major cause
for flakiness, such as tests not handling special values (such as NaN)
or having rounding issues.

Detecting Flaky Tests. Concerning flaky test detection, Bell et
al. proposed DeFlaker [8], a technique for detecting when test
failures after a change are due to flaky tests by comparing the
coverage of the failing tests with the changed code. There has also
been work on techniques that detect specific types of flaky tests.
Lam et al. proposed iDFlakies [38], a framework for detecting order-
dependent flaky tests, tests that fail when run in different orders,
by running tests in different orders. Gambi et al. also detect order-
dependent flaky tests using PRADET [24], a technique that tracks
data dependencies between tests. Shi et al. proposed NonDex [62],
a technique for detecting flaky tests that assume deterministic
iteration order over unordered collections by randomly shuffling
unordered collections and checking if tests fail. Our tool FLASH
also focuses on a specific type of flaky tests that rely on random
number generators used through probabilistic programming system
and machine learning frameworks. FLASH accomplishes this task
through running tests multiple times under different seeds, while
using statistical tests to determine the number of runs.

222

S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic

There has also been prior work on analyzing the impact of flaki-
ness. Cordy et al. proposed FlakiMe [15], a laboratory-controlled
test flakiness impact assessment and experimentation platform, that
supports the seeding of a (controllable) degree of flakiness into the
behavior of a given test suite. Our tool FLASH also supports setting
seeds for non-deterministic flaky tests and checking the posterior
distribution of the testing objects.

Debugging and Fixing Flaky Tests. Recent work has started to
focus on how to debug and ultimately fix flaky tests. Lam et al.
developed a framework at Microsoft to instrument flaky test exe-
cutions and collect logs of the traces for both passing and failing
executions, which they then find differences between so they can
determine the root cause of flakiness [36]. Lam et al. followed up
this work with an additional study on how developers at Microsoft
attempt to fix flaky tests [37]. Based on their study, they proposed
a technique for handling the common case of async waits by modi-
fying wait times in the async waits to reduce flakiness [37]. Shi et
al. studied how to fix another type of flaky tests, order-dependent
flaky tests, finding that order-dependent flaky tests can be fixed
using code taken from other tests in the test suite [63].

Fuzz Testing. Our approach for FLASH is also similar to fuzz
testing. Fuzz testing involves generating random data as inputs to
software to find bugs in the software. Fuzz testing has been used to
find security vulnerabilities [4], performance hot-spots [39], bugs
in probabilistic programming systems [18], etc. Many recent fuzz
testing techniques are guided to increase coverage of code as to find
more bugs [48-50]. While fuzz testing techniques generate random
values that are explicitly passed as inputs to the code under test,
FLASH generates random values for the seeds to random number
generators that code depends on, exploring how different seed
values can lead to different test outcomes when existing tests are
run on the same version of code.

8 CONCLUSION

Randomness is an important trait of many probabilistic program-
ming and machine learning applications. At the same time, software
developers who write and maintain these applications often do not
have adequate intuition and tools for testing these applications,
resulting in flaky tests and brittle software. In this paper, we con-
duct the first study of flaky tests in projects that use probabilistic
programming systems and machine learning frameworks. Our in-
vestigation of 75 bug reports/commits that reference flaky tests in
20 projects identified Algorithmic Non-determinism to be a major
cause of flaky tests. We also observe that developers commonly
fix such flaky tests by adjusting assertion thresholds. Inspired by
the results of our study, we propose FLASH, a technique for sys-
tematically running tests with different random number generator
seeds to detect flaky tests. FLASH detects 11 new flaky tests that
we report to developers, with 10 already confirmed and 6 fixed. We
believe that a new generation of software testing tools (like FLASH)
based on the foundations of the theory of probability and statistics
is necessary to improve the reliability of emerging applications.

ACKNOWLEDGMENTS

This work was partially funded by NSF grants CNS-1646305, CCF-
1703637, OAC-1839010, and CCF-1846354.

Detecting Flaky Tests in Probabilistic and Machine Learning Applications

REFERENCES

1

™o
— [l

==

[10]

[11]

[12]

[13]
[14
[15

[16]

(17

[18

[19

™
A=A

[21]

[22
[23]

[24

[25]

[26

[27]

[28]

[29]

[30]

[31

[32]

[33]

AllenNLP Commit 089d744 2019. https://github.com/allenai/allennlp/pull/2778/
commits/089d744.

AllenNLP Commit 53bba3d 2018. https://github.com/allenai/allennlp/commit/
53bba3d.

AllenNLP Issue 727 2018. https://github.com/allenai/allennlp/pull/727.
American Fuzzy Loop 2014. http://lcamtuf.coredump.cx/afl.

Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The oracle problem in software testing: A survey. IEEE transactions on software
engineering (2015).

M. Bates. 1995. Models of natural language understanding. Proceedings of the
National Academy of Sciences of the United States of America (1995).

Matthew James Beal. 2003. Variational algorithms for approximate Bayesian
inference.

Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In ICSE.
Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-
han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D
Goodman. 2019. Pyro: Deep universal probabilistic programming. The Journal of
Machine Learning Research (2019).

Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Michael A Brubaker, Jigiang Guo, Peter Li, Allen Riddell,
et al. 2016. Stan: A probabilistic programming language. JSTATSOFT (2016).
Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and
Johannes Borgstrém. 2013. Bayesian Inference Using Data Flow Analysis. In
ESEC/FSE.

Cleverhans Commit 58505ce 2017. https://github.com/tensorflow/cleverhans/
pull/149/commits/58505ce.

Cleverhans Issue 167 2017. https://github.com/tensorflow/cleverhans/issues/167.
Conda package management system 2017. https://docs.conda.io.

Maxime Cordy, Renaud Rwemalika, Mike Papadakis, and Mark Harman. 2019.
FlakiMe: Laboratory-Controlled Test Flakiness Impact Assessment. A Case Study
on Mutation Testing and Program Repair. arXiv:1912.03197 [cs.SE]

Marco Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Vikash K. Mansinghka,
and Martin Vechev. 2018. Incremental Inference for Probabilistic Programs. In
PLDIL

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan,
Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. 2017.
Tensorflow distributions. arXiv preprint arXiv:1711.10604 (2017).

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing
probabilistic programming systems. In ESEC/FSE.

Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Misailovic. 2019. Storm:
program reduction for testing and debugging probabilistic programming systems.
In ESEC/FSE.

Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M Rao, RP Ja-
gadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. 2018. Identifying
implementation bugs in machine learning based image classifiers using meta-
morphic testing. In ISSTA.

Eric Jang. Why Randomness is Important for Deep Learning 2016.
//blog.evjang.com/2016/07/randomness-deep-learning.html.

Flaky test plugin 2019. https://github.com/box/flaky.

Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,
and Joelle Pineau. 2018. An Introduction to Deep Reinforcement Learning.
arXiv:1811.12560 [cs.LG]

Alessio Gambi, Jonathan Bell, and Andreas Zeller. 2018. Practical Test Depen-
dency Detection. In ICST.

Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic
Inference for Probabilistic Programs. In CAV.

Andrew Gelman, Hal S Stern, John B Carlin, David B Dunson, Aki Vehtari, and
Donald B Rubin. 2013. Bayesian data analysis.

John Geweke et al. 1991. Evaluating the accuracy of sampling-based approaches
to the calculation of posterior moments. Federal Reserve Bank of Minneapolis,
Research Department Minneapolis, MN.

Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. 1994. A language and
program for complex Bayesian modelling. The Statistician (1994).

Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B
Tenenbaum. 2012. Church: a language for generative models. arXiv preprint
arXiv:1206.3255 (2012).

Noah D Goodman and Andreas Stuhlmiiller. 2014. The design and implementation
of probabilistic programming languages. http://dippl.org.

GPytorch Pull Request 373 2018. https://github.com/cornellius-gp/gpytorch/
pull/373.

Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportuni-
ties and Open Problems for Static and Dynamic Program Analysis. In SCAM.
Jason Brownlee. Embrace Randomness in Machine Learning 2019. https://
machinelearningmastery.com/randomness-in-machine-learning/.

https:

223

(34

(35]

W
& o

=
&

~
)

N
X2

‘o
2

o
S

ISSTA °20, July 18-22, 2020, Virtual Event, USA

Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2019. Statistical algorithmic
profiling for randomized approximate programs. In ICSE.

Ravin Kumar, Colin Carroll, Ari Hartikainen, and Osvaldo A. Martin. 2019. ArviZ
a unified library for exploratory analysis of Bayesian models in Python. The
Journal of Open Source Software (2019).

Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root Causing Flaky Tests in a Large-Scale Industrial Setting. In
ISSTA.

Wing Lam, Kivan¢ Muslu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A
Study on the Lifecycle of Flaky Tests. In ICSE.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A Framework for Detecting and Partially Classifying Flaky Tests. In ICST.
Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In ISSTA.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In FSE.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-
order probabilistic programming platform with programmable inference. arXiv
preprint 1404.0099 (2014).

T. Minka, J.M. Winn, J.P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spen-
gler, and J. Bronskill. 2013. InferNET 2.5. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

Radford M Neal et al. 2011. MCMC using Hamiltonian dynamics. Handbook of
markov chain monte carlo (2011).

Mahdi Nejadgholi and Jingiu Yang. 2019. A Study of Oracle Approximations in
Testing Deep Learning Libraries. In ASE.

Aditya V Nori, Chung-Kil Hur, Sriram K Rajamani, and Selva Samuel. 2014. R2:
An efficient MCMC sampler for probabilistic programs. In AAAL

Akira K Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma. 1998.
Regression testing in an industrial environment. Commun. ACM (1998).

Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-Guided
Property-Based Testing in Java. In ISSTA DEMO.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In ISSTA.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints. Proc.
ACM Program. Lang. OOPSLA (2019).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS.

Avi Pfeffer. 2001. IBAL: a probabilistic rational programming language. In I[JCAL
Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
cross-backend validation to detect and localize bugs in deep learning libraries. In
ICSE.

PyroWebPage 2018. Pyro. http://pyro.ai.

PySyft Issue 1399 2018. https://github.com/OpenMined/PySyft/pull/1399.
Adrian E Raftery and Steven M Lewis. 1995. The number of iterations, conver-
gence diagnostics and generic Metropolis algorithms. Practical Markov Chain
Monte Carlo (1995).

Raster Vision Issue 285 2018. https://github.com/azavea/raster-vision/issues/285.
John A Rice. 2006. Mathematical statistics and data analysis.

John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic
programming in Python using PyMC3. Peer] Computer Science (2016).

Simone Scardapane and Dianhui Wang. 2017. Randomness in neural networks: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
(2017).

Jurgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural Networks (2015).

August Shi, Alex Gyori, Owolabi Legunsen, and Darko Marinov. 2016. Detecting
Assumptions on Deterministic Implementations of Non-deterministic Specifica-
tions. In ICST.

August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A framework for automatically fixing order-dependent flaky tests. In ESEC/FSE.
TensorFlowWebPage 2018. TensorFlow. https://www.tensorflow.org.

Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An Empirical Study of
Flaky Tests in Android Apps. In ICSME.

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy,
and David M. Blei. 2017. Deep probabilistic programming. In ICLR.

Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and
David M. Blei. 2016. Edward: A library for probabilistic modeling, inference, and
criticism. arXiv (2016).

Abraham Wald. 1945. Sequential tests of statistical hypotheses. The annals of
mathematical statistics (1945).

ISSTA °20, July 18-22, 2020, Virtual Event, USA S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and S. Misailovic

[69] Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A new [71] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learning
approach to probabilistic programming inference. In AISTATS. Testing: Survey, Landscapes and Horizons. arXiv:1906.10742 [cs.LG]

[70] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection [72] Zhi-Hua Zhou. 2017. A Brief Introduction to Weakly Supervised Learning.
and prioritization: a survey. Software Testing, Verification, and Reliability (2012). National Science Review (2017).

224

	Abstract
	1 Introduction
	2 Empirical Study
	2.1 Evaluation Projects
	2.2 Extracting Bug Reports and Commits
	2.3 Analyzing the Bug Reports and Commits
	2.4 Causes of Flaky Tests
	2.5 Fixes for Flaky Tests
	2.6 Distribution of Fixes for Each Cause

	3 FLASH
	3.1 System Overview
	3.2 Convergence Test
	3.3 FLASH Components

	4 Evaluation
	4.1 RQ1: New Flaky Tests Detected by FLASH
	4.2 RQ2: Fixing Flaky Tests
	4.3 RQ3: Old Flaky Tests Detected by FLASH

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References

