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reconstruction - how to assemble discrete samples into global structures, and inference -
how to extract geometric and topological information from data that are high-dimensional,
incomplete and noisy. Niyogi et al. (2008) have shown that by constructing an offset
of the samples using a suitable offset parameter could provide reconstructions that

fg%‘;’;ﬂal inference preserve homotopy types therefore homology for densely sampled smooth submanifolds
Topological data analysis of Euclidean space without boundary. Chazal et al. (2009) and Attali et al. (2013) have
Computational topology introduced a parameterized set of sampling conditions that extend the results of Niyogi et
Sampling al. to a large class of compact subsets of Euclidean space. Our work tackles data problems

that fill a gap between the work of Niyogi et al. and Chazal et al. In particular, we
give a probabilistic notion of sampling conditions for manifolds with boundary that could
not be handled by existing theories. We also give stronger results that relate topological
equivalence between the offset and the manifold as a deformation retract.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In manifold learning, a topic of high interest is to understand the structure of low-dimensional objects embedded in
high-dimensional space. Such objects are typically assumed to be (sub)manifolds of Euclidean spaces. In recent years, it is
becoming clear that the offsets of sampled data points on a manifold can reflect the geometric and topological structure of
the manifold itself (e.g. [1-3]). In particular, given sampled points drawn from a probability distribution that has support on
or near a submanifold without boundary, Niyogi et al. [3] have shown that one can learn the homology of the submanifold
with high confidence. More specifically, for a compact manifold M embedded in Euclidean space RN and a set of randomly
sampled data points X = {x1, ..., xp} on M, let U =J,.» Be(x) be the offset of the data set X', where B¢ (x) is a ball of
radius € centered at x and € is chosen to be small relative to the minimum local feature size of M. Then for any y € (0, 1),
there is a number m such that for all n > m, with probability y, M is a deformation retract of U. Therefore the homology
of U equals the homology of M (see [3, Theorem 3.1] for details).

Data that arise from smooth compact manifolds have been well-studied. However, the study of more complex spaces
that are not necessarily manifolds via data samples seems much more difficult. When samples arise not from manifolds
but from mixtures of manifolds with possible singularities, we are dealing with the notion of stratification learning. Roughly
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speaking, a stratified space is a space that can be decomposed into manifold pieces (referred to as strata) that are glued
together in a nice way. The study of stratified spaces is a classic topic in pure mathematics [4,5]. Statistical approaches rely
on inferences of mixture models, local dimension estimation and subspace clustering [6-8]. In geometric and topological
data analysis, progress has been made recently in the study of stratified spaces in the discrete and noisy settings [9-14],
which draw inspirations from computational topology [15], intersection homology [16-18], graph theory and sheaf theory.

Among stratified spaces, manifolds with boundary is one of the simplest forms. A manifold with boundary is a stratified
space: one stratum is its boundary, and the other stratum is the complement of such a boundary.

In this paper, we study the topology of offsets of data points on compact differentiable manifolds with boundary. We give
a probabilistic notion of sampling conditions for manifolds with boundary that could not be handled by existing theories.
In particular, we show that, with some care, a similar statement as [3, Theorem 3.1] holds for manifolds with boundary. We
also demonstrate via simple examples how our sampling lower bounds could be derived in practice (Section 5).

The main result of this paper, Theorem 3.1, is proved by following the framework of [3]. First, we prove that the offset of
data points deformation retracts to the manifold if the sample is sufficiently dense with respect to the local feature size of
the manifold and the radius of the offset (Theorem 3.2). Second, we show that such density is achieved with high confidence
when the data points are sufficiently abundant (Theorem 3.3). However, our proof in detail is very different from that of
[3]: particular efforts have been made to overcome the complexity caused by the boundary. When a data point is near or
on the boundary, the local geometry around it is more complicated, and the original ways [3] of performing deformation
retract and estimating distances and volumes no longer work. We found that, through our arguments, such issues can be
resolved by imposing concise and reasonable requirements regarding the minimum local feature size of both the manifold
and its boundary and the (local) projection of the manifold to its tangent spaces (see Condition (1) and (2)).

It is worth noting that Chazal et al. [19] and Attali et al. [20] have extended the results of Niyogi et al. to a large class of

compact subsets of Euclidean space. Specifically, [19] shows that the offset K# of a compact set K is homotopy equivalent to
the offset K’* of another compact set K’, for sufficiently small 8 > 0, if « satisfies some inequality involving the p-reach of
K’ and the Hausdorff distance between K and K’; [20] shows that the offset X" of a compact set X is homotopy equivalent
to the Cech (respectively the Rips) complex of certain radius of a point cloud P in X if some inequality involving 5, the
radius and the p-reach of X holds. Compared to the result of [19] and [20], the one in this paper only deals with compact
manifolds with boundary. However, our result does have its own advantages. First of all, the topological equivalence between
the offset of data points and the manifold we get here is a deformation retract, which is stronger than homotopy equivalence
derived in [19] and [20]. Next, we get a probability estimate for the topological equivalence which is not provided in [19]
and [20]. Last but not least, it appears that there are elementary cases of data on manifolds with boundary where the result
in [19] does not apply, as the parameters associated with the data are completely outside the scope of [19, Theorem 4.6]
and [20, Theorem 13 and 14]. A scenario is discussed in Section 3 (Example 3.4), where our Theorems 3.1 and 3.2 become
applicable and work well. Finally, Turner [21] has also studied the reconstruction problem of compact sets with point clouds
from the perspective of deformation retraction. Specifically, given two compact sets, one is a finite point cloud sampled from
the other, [21, Theorem 4.3] gives a sufficient condition for when certain offsets of these two compact sets are homotopic
in terms of the absence of w-critical points in an annular region. We demonstrate in Example 3.4 that there exist scenarios
that are outside the scope of [21, Theorem 4.3] where our results are applicable.
Result at a glance. In short, this paper improves our understanding of topological inference for manifolds with boundary and
therefore enriches the toolbox for topological data analysis. Given a sample of n points from a differentiable manifold M
with boundary in a high-dimensional Euclidean space, for a sufficiently large n, the e-offset of the sample points is shown
to have the same homotopy type as and deformation retracts to M. The homotopy equivalence result has been proved by
Niyogi et al. [3] for manifolds without boundary. Chazal et al. [19] have extended the result of Niyogi et al. to manifolds
with boundary, however with weaker conclusions than the original paper. The current paper, instead, reaches the same
conclusion as Niyogi et al. [3] for manifold with boundary, but under two mild conditions for the boundary (i.e., regarding
the minimum feature size of the boundary and the uniform smoothness of the tangent bundle). A specific example shows
that the new method is more powerful than that of Chazal et al. [19]. Therefore, our results fill a gap between the original
work of Niyogi et al. [3] and the broader but weaker result of Chazal et al. [19]. Our proof techniques are nontrivial, although
they frequently use the results of Niyogi et al. and make necessary adjustments. The theoretical results are complemented
by experiments that confirm the theoretical findings.

2. Notations and preliminaries
2.1. Basics on manifolds

In this paper, for two points p,q € RN, we use |pq| to denote the line segment connecting p and g, 17()] to denote the
vector from p to g, and ||p —q| to denote the Euclidean distance between p and q. For a set K ¢ RN, d(p, K) :=inf{||p —q|| :
q € K} denotes the distance from p € RN to K. Moreover, for a non-negative real number o € R, we use K% to denote
the offset of K with radius o, K* = {p e RN | d(p, K) < at}. B;(p) denotes the open ball with center p and radius r.

Let M C RN be a compact, differentiable, k-dimensional manifold possibly with boundary. Let M denote the boundary
of M. Then 9. M is a compact manifold. Let M° denote the interior of M.
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The local feature size of M is the function Ifs : M — R defined by the distance from a point x € M to its medial axis.
The infimum of Ifs is the reach of M, reach(M). For every number 0 < r < reach(M), the normal bundle about M of
radius r is embedded in RN. In the same way we define reach(d.M), and since .M is also a compact manifold, reach(d.M)
is well-defined.

We use ¢, o to denote the natural projection from M to T,(M), the tangent space to M at the point p. That is,
©p,. M : M — Tp(M). Conversely for any point q € Tp(M) we use go;M(q) to denote the set of points in M which maps

to q via @p Aq.
We take § =§(M) € R> to be any non-negative real number such that for any p € M, the following Condition (1) and
Condition (2) are satisfied:

8 < min{reach(M), reach(d M)}, (1)
©p, M |Bs(p)nM is a diffeomorphism onto its image. (2)

Finally, suppose X = {x1, ..., Xn} is a set of sampled data points from a compact, differentiable manifold M with bound-
ary. X is e-dense if for any p € M, there is a point x € X’ such that x € B¢(p). Let U =,y Be(x) denote the offset of X.
We also define the canonical map 7 : U — M by

m(y):=arg min ||y — p|.
) g min Iy —pl
By Condition (1) and the definition of reach, v is well-defined when € <.
2.2. Volume of a hyperspherical cap

Let S be a k-dimensional hypersphere of radius r. Let H be a hyperplane that divides S into two parts. We take the
a
smaller part as a hyperspherical cap. Let a be the radius of the base of the cap, and ¢ := arcsin(;). Then by [22], the
volume of the hypershperical cap is

k+1 1

1
V= SVl o (5 5).

where I'(x) is the Gamma function, Vi (r) is the volume of the k-dimensional sphere with radius r and Ix(a,b) is the
regularized incomplete beta function.

3. The main results

The main theorem of this paper (Theorem 3.1) is centered around a probabilistic notion of sampling conditions for
manifolds with boundary, which relates the topological equivalence between the offset (of samples) and the manifold as a
deformation retract. To the best of our knowledge, such a result has not been addressed by existing theories.

Theorem 3.1. Let M C RN be a compact differentiable k-dimensional manifold possibly with boundary. Let X = xq, X3, ..., X, be
1

drawn by sampling M in i.i.d fashion according to the uniform probability measure on M. Let € € (0, 55(./\/1)) and U = U, x Be(%).

Then for all

1
n> ﬂ(e)(lnﬂ(g) +ln(2y),
14

U deformation retracts to M with probability > 1 — y. In particular, with such confidence, the homology of U is the same as that of

M. Here, B(y) := vol(M)

cosk 6 (y) k+1 1 k
2k+1 Il_yz coszzﬁ(y) (Tv j)VOl(By)
166

and 6(y) = arcsin(g;).

Theorem 3.1 is implied by combining Theorems 3.2 and 3.3 below.

€ $
Theorem 3.2. Let X be any finite collection of points x1, ..., x, € RN such that it is z-dense in M. Then for any € < 7 we have that
U deformation retracts to M.

Theorem 3.3. Let X’ be drawn by sampling M in i.i.d fashion according to the uniform probability measure on M. Then with proba-
é
bility 1 — y, we have that X is E-dense (e < %) in M provided
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€ 1
X > ﬁ(e)(lnﬁ(i) +ln(;)).

As is mentioned in Section 1, compared to [19, Theorem 4.6] and [20, Theorem 13], Theorem 3.2 only deals with mani-
folds with boundary, but it establishes a criterion for deformation retract, which is stronger than homotopy equivalence as
in [19]. The following is an example where neither [19, Theorem 4.6] or [20, Theorem 13] applies but Theorem 3.2 does.

Example 3.4. Let C be a semi-unit-circle. Then C is a manifold with boundary and its boundary consists of the two end
points which are also the end points of a diameter. Let the data be the points Aq, Az, ..., Ag which divide the semi-circle
evenly into 7 arcs, with A1 and Ag being the end points. Denote A :={A1, ..., Ag} and let € =0.48.

We first treat this case with the result in [19]. We adopt the notations there. [19, Theorem 4.6] is the main reconstruction
theorem, and it requires the inequality

4dy (K, K")
2
in order for the offset K* to be homotopy equivalent to K’. Here we let K’ = C and K = A. It is easy to see that dy (K, K') =
b4
2sin 28 ~0.223928, and

<a <1, (K') —3du(K, K (3)

0 >1
k)= @ =11 07

If > 1, then as r, (K’) =0, the right half of (3) does not make sense. If 0 < i <1, then

4dy (K, K")

g
7 = (K K) =8sin 20 > 1~ 6sin o5 = Tu(K) = 3du (K, K.

This is a contradiction to (3). Therefore in this case, [19, Theorem 4.6] does not apply.
Next we try [20, Theorem 13 and 14]. [20, Theorem 13] requires that

du(A,C) <€ < AN (uyr, (0),

where

_ 3u+3u—3+/—8u2+4u3 + 18 +2pt + 9+ b — 4uS
N —TU2 +22u + put —4pd +1

We have dy (K, K') =0.223928 as well as the value of r,(C) as is deduced above. On the other hand, from [20, Fig. 9]
—3+V22

13
dy(A,C) > )f“h(,u,)r# (C) for all u € R,. Therefore [20, Theorem 13] does not apply. [20, Theorem 14] requires that

Acech ('u)

we see that A () is increasing on (0,1], hence A®M () < A%ch(1) = ~ 0.130032. So it is easy to see that

dy (A, C) <€ < AP (1)ry, (C).

But by [20, Fig. 9], An"° (1) is always smaller than A%M(y), so [20, Theorem 14] does not apply either.

With some calculation, one can see that in order to apply [19, Theorem 4.6], at least 28 regularly sampled points along
the semi-unit-circle are necessary; in order to apply [20, Theorem 13], at least 14 regularly sampled points are necessary.
We also note that both [19] and [20] may handle some noisy sampling: they do not assume positive reach in general, and
points can be sampled on or near the compact set.

We then try [21, Theorem 4.3]. Setting K = C and L = A, using the notation of [21, Theorem 4.3], it requires condition

T
(a): an inequality such that (4+ u2)8 < u?r, where 8 > dy (K, L) =dy (A, C) = 2sin 28 ~0.223928, r is the offset parameter

of points in L = A, and u € (0, 1). [21, Theorem 4.3] also requires condition (b): Kr_s r—s4+25/,) contains no p-critical point.
If both (a) and (b) are satisfied, then L, deformation retracts to K,_s. To match the results obtained by our Theorem 3.2,
we would like K,_s = Ko = K; however, since r > § due to condition (a), we would like r — § to be minimized (such
that it is as close as possible to 0). Set § = 0.224 (as close as possible to dy (A, C)). To satisfy condition (a), we require

r> “‘*ﬂﬁ = % 48> 58 = 1.12. This means r — 8 > 45 = 0.896. Setting r — 8 = 0.9 (r = 1.124) and p = 0.99, the interval

[r—§8,r—38+28/u] however contains a p-critical point (which is the midpoint connecting A1 and Ag). This means condition
(b) does not hold. In summary, the best possible result from [21, Theorem 4.3] applied to our example is that Li 124
deformation retracts to Ko g; however such a result does not hold because condition (b) is violated.

Finally we try to apply Theorem 3.2 to this case. It is easy to see that reach(C) = reach(dC) =1, and it also satisfies

8(C T €
Condition (2) to let §(C) = 0.99. Now recall that € =0.48 < % Since dy (A, C) = 2sin 28 ~0.223928 < 0.24 = 3 as is

€
calculated above, A is E-dense. Therefore Theorem 3.2 applies, which means that Ug4g deformation retracts to C.
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Fig. 1. The worse case for Lemma 4.3, where ||[v — p||=||p —X|| = §.

4. Proofs of the main results

To prove our main results, we begin with a series of lemmas. Recall the canonical map 7 : U - M is defined by
7T (X) := argminpeaq ||x — pll. Lemmas 4.1-4.5 contribute to the proof of Theorem 3.2. Roughly speaking, they show that
7~ 1(p) is star-shaped for every p € M, hence the deformation retract is well-defined. Lemmas 4.6-4.8 contribute to the
proof of Theorem 3.3 by giving a lower bound to the volume of M N B¢ (p) for every p € M in terms of €. Then, by directly
applying results in [3], we get the estimation of the number of data points as in Theorem 3.3.

Lemma 4.1. Choose § = §(M) > 0 as in Section 2. Then for any X € (0, 8), any point q such that ||q — 7 (q)|| < A and any q' € |q7 (q)|,
we have 7 (q') = 7 (q).

Proof. Suppose that this is not the case. Then

lg=m@l=lg—qll+lg —7@l>llg—qll+ g — @)= llg—m @]l
This is a contradiction to Condition (1). O

Suppose a certain point g € U deformation retracts to a point 7 (q) € M. Let |qm(q)| be the path of the deformation
retract for g. Lemma 4.1 tells us that along the path |g7r (q)], all the points deformation retracts to 7 (q).

From now on we set € < 7 For a point p € M and a point p’ € 9 M we define st((p) and styr((p’) as

st = | BexnTmh).
XeX;X€Be(p)
stom@) = | BeNTp@M)™).

XeX;X€Be(p)
For convenience, we also define sty rq(p) ;=¥ if p’ € M°. We present the next lemma, whose proof is exactly the same as
those corresponding ones in [3], although the statements are somewhat different.
Lemma 4.2 ([3], Proposition 4.1). st o1 (p) (resp. sty a4 (p)) is star-shaped for any p € M (resp. p € IM).
Lemma 4.3. 7~ 1(p) C sta(p) (resp. w1 (p) C sty (p)) for any p € M (resp. p € IM).

Proof. If p € M°, this is already proven in [3, Proposition 4.2]. So for the rest of the proof we assume that p € IM. It is
necessary to check that w~1(p) C Ty, (M)=. This is true since the reach of M is assumed to be positive.

Let v be an arbitrary point in 7 ~!(p). By the definition of st, we only need to consider the case where there is a
point g € X such that q ¢ B(p) and v € B¢(q). We also observe that by definition, our § is less or equal to thze T in [3,

€
Lemma 4.1], so all the conditions of [3] are satisfied. Therefore by [3], the distance between v and p is at most 5 Now by

€ . . . €
the i—dense condition, there is a point x € X such that ||x — p| < 7 Therefore

2

€ ¢ €
v—x|<|v- X< —+= —=€. O
[ I=lv—rpl+lp ”_8+2< +3

€
2

Remark 4.4. We note that the worst case in Lemma 4.3 can happen when p lies on the boundary of M. This is illustrated
in Fig. 1, where M is a plane region with boundary, v is also inside the plane, and |vp| and |xv| are both perpendicular to

8 5
d.M. This is why we require that € < X which is more restrictive than the requirement € < \/;8 in [3]. Note that this does

not show that Theorem 3.2 is tight.

Lemma 4.5. For any p € M, = ~!(p) is star-shaped with respect to p.
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Fig. 2. An illustration for Lemma 4.6 for the case when q € 9 M, where |[p’ — p|| =36, [Ip” — pll =36, [Ip” —qll > 8, 11g — @p.arm (@] < 8.

Proof. If p € M°, we have by Lemma 4.2 and 4.3 that 7 ~1(p) = st o4(p) which is star-shaped with respect to p. So for the
rest of the proof we assume that p € 9 M. By Lemma 4.2, stya¢(p) is star-shaped; by Lemma 4.1, for any ray | C Tp(a/\/t)l
starting from p, either 7 ~1(p) Nl = {p} or styr((p) NI S 7~ 1(p) NI; by Lemma 4.3 we know that 7~ (p) C sty (p). So if
qen'(p), then |pgl S~ (p). O

Then Theorem 3.2 generalizes [3, Proposition 3.1] to compact manifolds with boundaries. Its proof is as follows.

Proof. We define the deformation retract F(x,t) : U x [0,1] — U as F(x,t) =tx+ (1 —t) (x). By Lemma 4.1 and Lemma 4.5,
this deformation retract is well-defined. Moreover since U is contained in M?, there is no critical point for distance func-
tions, we get that U deformation retracts to M. 0O

Lemma 4.6. Let p € 0M and A = M N B¢(p), where € € (0, §). Then

k
cos* 60 k+1 1
I wa (—— 5)VOl(BE(D)),

vol(A
(A) > cos >

€
where I is the regularized incomplete beta function, B’é(p) is the k-dimensional ball in T, centered at p, and 6 = arcsin(%).

NN
Proof. Let p’ € Tp(M) be the point such that pp’ is perpendicular to T,(d.M) and points to the inside of M, and ||p —
p’|l = 8. We first want to show that

Blécosé)(p)ﬂBlg(p/) g(pP,M(A)- (4)

By Condition (2), ¢p ala is @ homeomorphism onto its image. In particular,

©p. MIA) = 3(@p, Mm(A)).

It is easy to see that B’S‘(p) N B’g(p’) N@p m(A) # 9 for any s > 0. Let g € M be a point on the boundary of A. Then
q € 9IM U 0Bc(p). We prove (4) by proving the claim that no matter whether q € M or q € 3B¢(p), ¢p Mm(q) is outside
B <o (P) N BX(p"). Indeed, if there exists a point ¢’ € B¥ ., (p) N BX(p) such that q' ¢ ¢p r1(A), we choose a point 0 €
B’é coso(P) N Bg(p’) N@p am(A). Then the line segment connecting o and q' must intersect with the 3(¢, a4(A)). But on the
other hand, by the convexity of BX ., (p)NBK(p"), any intersection point is inside B¥ ., (p)NB¥(p’). This is a contradiction.
So far we have reduced (4) to a claim in the previous paragraph. To prove the claim, we need to consider two cases
where q € M and q € 3B (p) respectively. This is done in the next two paragraphs.
— —_—
We first deal with the case where q € M. Let p” be the point where pp” is in the same direction with ¢, 51(q)q
and [|p” — pll =6 (if ¢p aA1(q) =q, then set p” = p’). By Condition (1), q is outside Bs(p”). Now q, ¢p a1(q) and ¢, s a1 (q)
form a right-angled triangle where |qg, yA4(q)| is the hypotenuse. Define g’ to be the point on the half line [¢p am(q), q)
at distance ||y am (@) — @p,m(@) | from ¢p snm(q). Since a rotation along an axis through p and ¢p s (q) that sends p’ to p”
will send the segment [p’, ¢p m(q)] to [p”,q'] and therefore ||p" — ¢, m(@)|| = lp” — q'|l. We also have

19" = @p.om @Il = l9p,0m (@ — Lo M@ = 1l1g — @p.am @

<lg—pl=€e<s=Ip" —pl.

These together with the fact that g is outside Bs(p”) implies that ¢, A((q) is outside Bg(p’). This case is illustrated in Fig. 2.
Next we consider the case where q € dB¢(p). This implies that ||g — p|| = €. We have that ||@, r1(q) — pll = € cos(¢)

where ¢ is the (smallest nonnegative) angle between pg and pg, r((q). Let p” be the point where pp” is in the same
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Fig. 3. An illustration for Lemma 4.6 for the case when q € 3B (p), where ||p —q|| =€, ¢ <0, |p” —p|| =46 and ||p” —q|| > 4.

direction with @, A1(@)q (if @p A1(q) = g, then choose an arbitrary p” such that pp” LT,(M)) and ||p” — pll = 6. Then by
Condition (1), ||p” —qll > 8. So by the definition of & we see that ¢ <6, and ||¢, A1(q) — pll = € cos(¢) > € cos(f). Hence
®p.Mm(q) is outside BX . (p). This is illustrated in Fig. 3.

So we have proved (4) by proving the claim. (4) implies that vol(A) > vol(B’; woso(P) N Blg(p/)), the right-hand
side of which consists of two hyperspherical caps. For convenience we choose the lower bound of the right side

to be the hyperspherical cap that belongs to B¥ ¢(P). By Section 2.2, the volume of this hyperspherical cap is

€ COoS
1 k+1 1 X k ) K
511_525529 (T’ E)VOI(BE cos9(P)). Moreover we know that vol(Bg ..., (p)) = cos* 8vol(B¢ (p)), so we are done. O

Using the same argument as in the third paragraph of the proof of the last lemma, we actually have

Lemma 4.7. Let p € M and € > 0 such that M N B¢ (p) = @. Let A := M N B¢ (p). Then
vol(A) > vol(B¥ o(P) = cosk 0vol(B’é(p)).

€ COoS
Combining Lemma 4.6 and 4.7, we have

Lemma 4.8. Let p € M and A = M N B¢(p), where € € (0, ). Then

cosk o’ k+1

1 k
vol(A) > Wll_ellcg;; o’ (T’ E)VOI(BG (p),

where 8 := arcsin(i).
45

Proof. If d(p, o M) > % then aM N Bg(p) ={. So by Lemma 4.7,
vol(A) > cosk 0'vol(BX (p))
2
and we are done. If d(p, M) < g let p’ be a point on 9 M that has minimum distance from p. Then B%(p/) C Be(p). So

cosk 6’ k+1
11762 cos2 6/ (—
1652

vol(A) = vol(B¢ (p)) N M) = : %)vol(Bg )

2
k o/
cos® 6 k+1 1 K
= ST 11—‘21‘:2;;9/(—2 ,E)vol(Be(p)),

where the last inequality is by Lemma 4.6. O

vol(M)
B(€)

(note that the 6’ here corresponds to the 6 in Theorem 3.1). By [3, Lemma 5.1 and 5.2], a satisfactory number of points
vol(A)

vol(M)

1
%—packing—number. So by Lemma 4.8, it suffices to take o and [ to be % and ﬁ(%), respectively. Therefore we obtain

We observe that the right side of the inequality in Lemma 4.8 is

, where the function g is defined in Theorem 3.1

1 1
|X| as in Theorem 3.3 is of the form E(lnl +In ;). where « is any lower bound of and [ is any upper bound of

Theorem 3.3. Finally, combining Theorems 3.2 and 3.3, we arrive at Theorem 3.1.
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Fig. 4. Point cloud samples for cylinder (a) and torus (b).
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Fig. 5. Lower bounds for cylinder (a) and torus (b) for a fixed € = 0.49, x-axis corresponds to y while y-axis corresponds to n*.

5. Experimental illustration

In this section, we work on two typical examples of manifolds with boundary. The first example is a cylindrical surface,
referred to as the cylinder dataset, which has radius 1 and height 1. More precisely, it can be expressed as

{(x,y.20eR>: x> +y*=1,z¢[0,1]}.

The second example is a torus with a cap chopped off, referred to as the torus dataset. In R3, it can be expressed as the
torus with inner circle X2 + y2 =1 and the outer circle x> 4+ y2 =9, and the part with x > 2 is chopped off.
Sampling parameters. As stated in the main Theorem 3.1, the lower bound of sampling that guarantees deformation retrac-
tion with probability 1 — ¢ can be expressed as

1
n* =ﬂ(e)(lnﬁ(§) +In(—)),
V4

ol
where B(x) 1= —— Y (/1\:1)1 - — and 6 = arcsin(g5).
For w20 (57 3)VOI(BY
166

For cylinder, vol(M) =2m, k=2, vol(B,z() =mx?, § = 1. For instance, setting € =0.49, y = 0.1 gives rise to n* = 638, as
illustrated in Fig. 4 (a).

For torus, vol(M) = (8 — 0.522) - 2m, k=2, vol(B,z() =mx?, § = 1. For instance, setting € = 0.49, y = 0.1 gives rise to
n* =9809, as illustrated in Fig. 4 (b).
Distribution of lower bounds. For a fixed sample quality €, we demonstrate the distribution of lower bounds n* as y
increases from 0.05 to 0.95 (that is, confidence ranges from 95% to 5%). This is shown in Fig. 5. Intuitively, for a fixed
sample quality, we need more point samples in order to obtain higher confidence in topological inference.
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Fig. 6. Lower bounds for cylinder (a) and torus (b) for a fixed y = 0.1, x-axis corresponds to the € while y-axis corresponds to n*.
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Fig. 7. Persistent barcodes for cylinder. Each plot only shows the top 20 most persistent (longest) cycles. For a fixed € =0.49, r € [0,2.2]: (a) y =0.1,
n* =638; (b) y =0.2, n* =583; and (c) y = 0.3, n* =551. For a fixed y = 0.1 (90% confidence), r € [0,0.5]: (d) € = 0.2, n* = 4160; (e) € = 0.3,
n* =1763; and (f) € = 0.4, n* = 967. Notice different scales between the plots on the left and on the right.

Meanwhile, for a fixed y = 0.1, which corresponds to a confidence of 90%, we illustrate the distribution of lower bounds

n* as € increases from 0.15 to 0.5. By Theorem 3.1, it is rather obvious that we need more points to have higher quality
samples for a fixed confidence level. This is shown in Fig. 6.
Homology computation. Finally we can perform homology computation on the above point clouds; in particular, for a given
sample X and its corresponding U, we show that the homology of U equals the homology of M. Admittedly, homology
is a very weak verification of our main sampling theorem. In fact, if one’s goal is only to recover the same homology of a
manifold with point samples, our estimation from Theorem 3.1 is an obvious overestimation. In other words, our estimation
of the lower bound n* has to account for the boundary condition and to guarantee deformation retract (not just homology
or homotopy equivalence).

Nevertheless, we show the results of homology inference across multiple y with a fixed €, as well as the results across
multiple € with a fixed y. We rely on the computation of persistent homology to recover the homological information
of a point cloud sample. Persistent homology, roughly speaking, operates on a point cloud sample X and tracks how the
homology of U(r) = |Jycx Br(x) changes as r increases (where typically r € [ro = 0, r¢], for some positive real value ry).
Specifically, it applies the homology functor H to a sequence of topological spaces connected by inclusions,

Uro) = - > U(r) —» U(riq1) — -+ = U(rp),
and studies a multi-scale notion of homology,

H(U (r0)) = - -+ — HU (7)) > HU(ri41)) = -+ = HU (1)),
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0.0 0.1 02 03 04 05 0.6 0.7 0.8

Fig. 8. Persistent barcodes for torus, for € =0.49, y = 0.2, n* =9157, r € [0, 0.8]. Only the top 20 most persistent (longest) cycles are shown.

see [15,23,24] for introduction to persistent homology. We use the software package Ripser [25] for the computation of
persistent homology. Given a point cloud sample X, Ripser computes its persistent homology using Vietoris-Rips complexes
formed on X and encodes the homological information using persistence barcodes. In a nutshell, each bar in the persistence
barcodes captures the time when a homology class appears and disappears as r increases. As the homology of a union of
balls is guaranteed (by the Nerve Lemma) to be the one of a Cech complex, the results of [20] could be utilized to deduce
results on a Vietoris-Rips complex from a Cech complex. Note that using the Vietoris-Rips complexes to approximate Cech
complexes adds an additional approximation factor [26, Theorem 2.5]. This approximation factor, however, is not an issue
for the results described here.

For cylinder dataset, the 1-dimensional homology of its underlying manifold should be of rank one, as the dataset con-
tains one significant cycle (tunnel). For a fixed € = 0.49, we compute the 1-dimensional persistent homology of the point
clouds at parameter y = 0.1, 0.2, 0.3 respectively. Their persistent barcodes are shown in Fig. 7(a)-(c) respectively. For each
plot, the longest bar corresponds to the most significant 1-dimensional cycle, which clearly corresponds to the true homo-
logical feature of the underlying manifold.

Meanwhile, the 1-dimensional homology of the manifold underlying the torus dataset (with a cap chopped off) should
be of rank two, as the dataset contains two significant cycles (same as the classic torus dataset). We have similar results
as in the case of cylinder dataset. For simplicity, we give the persistent barcodes for € =0.49, y =0.2, n* = 9157 in Fig. 8.
Here, the first two longest bars correspond to the two most significant 1-dimensional cycles, which again clearly correspond
to the true homological features of the underlying manifold.

6. Discussions

Given a point cloud sample of a compact, differentiable manifold with boundary, we give a probabilistic notion of sam-
pling condition that is not handled by existing theories. Our main results relate topological equivalence between the offset
and the manifold as a deformation retract, which is stronger than homological or homotopy equivalence. Many interesting
questions remain.

First, while our sampling condition considers differentiable manifolds with boundary, it cannot be trivially extended to
handle manifolds with corners. The fundamental difficulty arises because the reach becomes zero in the case of manifolds
with corners. We suspect that deriving practical sampling conditions for manifolds with corners, and in general, for stratified
spaces, is challenging and requires new ways of thinking.

Second, we have conducted experiments that verify homological equivalence between the offset of samples and the un-
derlying manifold. However, such an experiment is a very weak verification of our main inference theorem. Experimentally
computing or verifying deformation retract in the point cloud setting (as stated in Theorem 3.1), possibly via the study of
discrete gradient fields, remains an open question.
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