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1 | INTRODUCTION

In epidemiology and other public health fields, there is a need to reduce complicated behavioural patterns into simple, interpretable terms. A
composite score, also referred to as an index, is commonly used to achieve this end, so as to be applied to different populations and different health
outcomes. Composite scoring systems compare an individual's health behaviour to an idealized standard. Based on compliance to a set of health
behaviours, an individual is assigned a score between 0 and 100. A score of O indicates poor compliance, and 100 is theoretical perfect behaviours.

We look at one particular challenge of working with composite scoring systems derived to be applied to multiple populations and diseases:
Given an existing scoring system, are all components in the system necessary? We follow the ideas put forward by Ma, Ma, Wang, Kravitz, and
Carroll (2017) and fit a logistic regression model using people from many populations who suffer from many diseases to develop a score. We
include non-linear terms in our regression model, which capture the effect of the score on disease risk in a particular population. Ma et al. (2017)
perform a similar analysis but include a nonparametric component in their model that we do not. The authors found that the flexibility of their
semiparametric model was not needed in their real-world data analysis.

We include an adaptive Lasso penalty (Zou, 2006) to perform variable selection. The literature for the Lasso is well developed but does not
apply to our particular model because of identifiability issues discussed in Section 2. Additionally, typical software packages for fitting Lasso
problems such as glmnet (Friedman, Hastie, & Tibshirani, 2010) or least angle regression (Efron, Hastie, Johnstone, & Tibshirani, 2004) are not
able to handle these non-linear models. To remedy this, we use the least squares approximation of Wang and Leng (2007). The least squares
approximation allows us to translate our estimation problem into a simpler asymptotically equivalent least squares minimization. We establish
that our variable selection technique chooses, asymptotically, the correct subset of components and has the optimal convergence rate. That is, it

has oracle properties.

Stat. 2019;8:€251. wileyonlinelibrary.com/journal/sta4 © 2019 John Wiley & Sons, Ltd. | 10f 10
https://doi.org/10.1002/sta4.251



2 of 10 | Wl LEY KRAVITZ AND CARROLL
TABLE 1 I?escription of the Healthy Eating Index Component Unit Healthy Eating Index 2005 score calculation
2005 scoring system X X i

Total fruit Cups min(5, 5 x (density/0.8))

Whole fruit Cups min(5, 5 x (density/0.4))

Total vegetables  Cups min(5, 5 x (density/1.1))

DOL Cups min(5, 5 x (density/0.4))

Total grains Ounces min(5, 5 x (density/3))

Whole grains Ounces min(5, 5 x (density/1.5))

Milk Cups min(10, 10 x (density/1.3))

Meat and beans  Ounces min(10, 10 X (density/2.5))

Qil Grams min(10, 10 x (density/12))

Saturated fat % of if density > 15 score =0

energy else if density < 7 score = 10

else if density > 10 score = 8 — (8 X (density — 10)/5)

else, score = 10 — (2 x (density — 7)/3)
Sodium Milligrams if density > 2,000 score=0

else if density < 700 score=10

else if density > 1,100

5 mm score = 8 — {8 x (density — 1, 100)/(2,000 - 1, 100)}

else score = 10 — {2 x (density — 700)/(1, 100 — 700)}
SoFAAS % of if density > 50 score =0

energy else if density < 20 score=20
else score = 20 — {20 x (density — 20)/(50 — 20)}

Note. Here, also, “SoFAAS” are calories from solid fats, alcoholic beverages, and added sugars,
whereas “DOL” are dark green and orange vegetables and legumes. Except for saturated fat and
SoFAAS, density is obtained by multiplying usual intake by 1,000 and dividing by usual intake
of kilocalories. For saturated fat, density is 9 x 100 usual saturated fat (grams) divided by usual
calories, that is, the percentage of usual calories coming from usual saturated fat intake. For
SoFAAS, the density is the percentage of usual intake that comes from usual intake of calories,
that is, the division of usual intake of SOFAAS by usual intake of calories. The total Healthy
Eating Index 2005 score is the sum of the individual component scores.

Although our methods are general, we apply them to the 2005 Healthy Eating Index and use the 2005 Healthy Eating Index to motivate our
methods. We will refer to the 2005 Healthy Eating Index as the Healthy Eating Index, omitting the year. The Healthy Eating Index is based on
the key recommendations of the 2005 Dietary Guidelines for Americans (http://www.health.gov/dietaryguidelines/dga2005/document/default.
htm). The index includes ratios of interrelated dietary components to energy (caloric) intakes. The 2005 Healthy Eating Index comprises 12
distinct component scores and a total summary score. See Table 1 for a list of these components and the standards for scoring. See Guenther,
Reedy, Krebs-Smith, and Reeve (2008) and Guenther, Reedy, and Krebs-Smith (2008) for details on how the Healthy Eating Index was developed
and evaluated.

Intakes of each food or nutrient, represented by one of the 12 components, are expressed as a ratio to energy intake, assessed, and ascribed a
score. There are other competing measures of diet such as the 2010 Healthy Eating Index (Guenther et al., 2013), the Modified Mediterranean
Diet Score (Trichopoulou et al., 2005), and the MedDietScore (Panagiotakos, Pitsavos, & Stefanadis, 2006), all of which are associated with
lowered mortality risk and better overall health. Our aims are (a) to suggest improvements to the dietary guidelines of the Healthy Eating Index
and (b) to use model selection techniques to evaluate the relative importance of the 12 components. We find the unexpected fact that empty

calories (SOFAAS) are not predictive of increased mortality risk.

2 | ANON-LINEAR MODEL ACROSS POPULATIONS

We will use the term disease in a generic way, until our data analysis. The term should be understood to mean a collection of health outcomes,
which, for example, could be various combinations of overall mortality, mortality from various diseases, different chronic conditions, or the
development of different cancers.

Denote j = 1, ..., J as the index of the Healthy Eating Index components. There are k = 1, ..., K populations and # = 1, ..., Lk diseases in each

population. There are i = 1, ..., ny, individuals be evaluated for disease ¢ in population k. The data observed are

® Y, is abinary indicator of disease # for the ith person in population k.
® (X1, ..., Xy) is the Healthy Eating Index score for person i with components j =1, ..., J. In the 2005 Healthy Eating Index, J = 12.
e For each population and disease, there may be different covariates that include terms such as age, ethnicity, education, body mass index,

smoking, and physical activity. These covariates are denoted as Z;,.
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To better capture the risk of a particular disease, we introduce a vector a = (a4, ... a;)T that allows flexible rescaling of the Healthy Eating

Index components. We model the probability of a subject i of population # having disease k as

J

pr(Yie = X, Zike) = H(Pre injkfaj + Zlfekf) = Pike» (1)
=1

where H(-) is the logistic distribution function. The parameter a reweighs each person's original Healthy Eating Index score, Z}J:l Xije, to create
a new modified score, Z).X,-jkfaj. If a particular q; is greater than 1, this indicates that a particular Healthy Eating Index component should be
given more relative importance in the 0-to-100 score than in the Healthy Eating Index whereas a «; < 1 indicates that it should be given less
importance. The term g, allows the effect of the modified score to vary with population and disease. There is novelty in this modelling approach.
We are able to provide a single measure of diet for every population and disease. To emphasize this, and for notational convenience, we omit the
subscripts over k and # in X. This modelling approach is beneficial to public health practitioners as a single predictor, Y’ Xj«; , can be used for any
disease/population of interest, and the effect of this predictor, g, can be reassessed as needed.

Model (1) results in the composite loglikelihood function
Lo(@, 8,0) = 3\ " 3" { Vi 108 (D) + (1 = Vi) 108(1 = Py}
ki

The multiplication of the parameters a and g in model (1) means that they are not identifiable. To illustrate this, consider multiplying each «; by a
constant c. Then L,(c * a, 8,0) = L,(a, 1/c = p,0), and there is more than one value of the parameters that maximizes L,(-). Informally, in model
(1), the scale of a can be “absorbed” by g, for example, i, Z,‘J=1 XiieC % a5 = 1/C s Pye Zf=1 Xijkr * a.

The identifiability issue can be fixed by adding constraints to the model. Carroll, Fan, Gijbels, and Wand (1997) give identifiability constraints
for single index models, which work for this non-linear model as well. A natural constraint would be to enforce that the maximum value of the
new score, ZI.X,»jaj, is 100. In the language of our previous example, g would not be able to “absorb” a because the constraint ZiXU«aj = 100
fixes the norm of @. We eventually use this constraint but do not impose it at first. That particular constraint makes (1) difficult to fit from a
computational perspective. Instead, we begin by setting f;;, = —1. The remaining parameters, «, B, and 6, are estimated in an iterative profiling
procedure, first fixing @ and maximizing L, with respect to g and 6, then fixing g and 6, and maximizing over a. This processes is repeated until
convergence. Ma et al. (2017) provide guarantees that this procedure will converge to the correct value of the parameters.

Once the estimates have converged, we rescale the a coefficients, so the new score is between 0 and 100. Define Crax = (Cmax1s --- » CmaxJ) ' @S
the maximum value that the original Healthy Eating Index assigns to a particular dietary component. Each element of « is set to a]ﬁ* = aj/(xTcmax.
This puts the newly assigned score on a scale from O to 100, and the constraint on « allows 4, to be estimated by refitting (1) with a* in place of a.

3 | VARIABLESELECTION

3.1 | Least squares approximation and adaptive Lasso

In our context of multiple diseases and populations, we next establish which Healthy Eating Index components have no effect on disease risk. To
test this, we add an adaptive Lasso penalty (Zou, 2006) to our likelihood (2). Like all Lasso-style penalties, the adaptive Lasso can perform variable
selection by maximizing a likelihood function which may force some coefficients to take on a value of 0. The adaptive Lasso has a number of
desirable properties that are explored in Section 3.2.

In our problem, we focus only on penalization of the a parameters. In principle then, we would minimize

J
~Lo(B, 0, 0) + 4 Y latgun | oy, (2)

j=1

with respect to g, @, and 0, where 4 is the tuning parameter, y is a prespecified positive number, and aj,; is an estimate of «; that has not been
subject to any penalization, found by maximizing the likelihood (2). If a component in « is shrunk to O by the adaptive Lasso method, we take this
as an indication that a particular Healthy Eating Index component is unnecessary in predicting outcomes of interest.

However, in practice, there is a computational problem. Typical tools for fitting Lasso problems such as glmnet (Friedman et al., 2010) or least
angle regression (Efron et al., 2004) are designed for standard linear and generalized linear models and do not handle the term Z].Xf,-aj correctly,
because they cannot penalize the a coefficient without also penalizing the B coefficient. For a conceptually simple and computationally fast
solution, Wang and Leng (2007) proposed a least squares approximation for unifying computation of all Lasso models. Consider a problem with
parameters ¥ = (w4, ..., yp) and a loss function L,(¥). Let ¥ be the minimizer of L,(-). The authors show that any reasonable loss function, in
parameters denoted as P,

d
La(®) + ) 41wl

=1
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can be expressed as an asymptotically equivalent least squares problem
d
QW) =T -V ST -0+ Y Iy,
j=1
where ¥ is the vector that minimizes L,(-) and £ is an asymptotically consistent estimate of the covariance matrix of P.
We approximate our penalized negative loglikelihood as
J J
La(©) + 4 Yl 7 og] ~ (O = ©)' 1@ = ©) + 4 Y lauyl ™ lagl, (3)

=1 =1

where ® = (4, a, 0).
The least squares approximation in (3) can be solved with standard optimization software or fit as a Gaussian family adaptive Lasso model
using the gimnet R package. Denote ©;s4(1) as the value that minimizes the right hand side of (3) as a function of 4. In our computation, we take

y = 2, a typical choice, though it can be set to any value satisfying Lemma 1 and Lemma 2 in Section 3.2.

3.2 | Model selection and oracle properties

Variable selection procedures ideally should possess the oracle property. Fan and Li (2001) give an overview for what it means for a selection
procedure to have the oracle property. Denote A = {j : ©; # 0} and A ={: (:)(/I)LSA,,- # 0}. The procedure should have

o Selection consistency: pr{A(1) = A} — 1.
o Optimal estimation rate: \/E(C:)M5 —0,) = N(0,X%,) in distribution, where ©, are the nonzero components of ® and X, is the covariance matrix
knowing the true subset of predictors.

We derive the selection consistency and optimal estimation rate of the least squares approximation in our problem in a similar manner as
Zhang, Cao, and Carroll (2015). The following result provides the selection consistency for §;sx(4). The proof of this theorem, as well as all the

proofs in Section 3.2, is provided in the appendix.

Lemma 1. Asn— oo, if n¥21 - 0, and n**7/2 ) s o, then
priA()) =A} - 1.

Wang and Leng's proof of oracle properties relies extensively on what they call the covariance assumption. The covariance assumption specifies
a strict relationship between the asymptotic covariance matrix of the full model and the asymptotic covariance matrix of an overfitted model.
The exact assumption is stated as follows: Let = denote the variance of the limiting distribution of the parameters of the full model. Denote
Q=31 and Q as the submatrix of Q corresponding to the submodel S. Let =5 denote the variance of the limiting distribution of model S, and
Qs = 231 The covariance assumption states that Q) = Q for any overfitted S.

The variance-covariance matrix of model (1) is fit using a sandwich estimator. A sandwich estimator has the form = = J"*HJ™" where
J=1,(®) = VL,(®), H = H,(®) = V2L,(®), and JT = (YT, See the Carroll, Ruppert, Crainiceanu, and Stefanski (2006) section A.3.1 for a detailed
treatment of sandwich estimators. In general, = = (J"1HJT)® # J;lHSJ;T = X, and therefore, covariance matrices derived from sandwich
estimators will not satisfy the covariance assumption of Wang and Leng.

The selection consistency of Theorem 1 does not rely on the Wang and Leng's covariance assumption, but the optimal estimation rate does.
Therefore, Wang and Leng's theory will not guarantee asymptotically consistent parameter or variance estimates. However, we can get parameter
and variance estimates by fitting the model (1) using only the selected components. This is explained in the following theorem.

Lemma 2. Let A denote the set of nonzero covariates, 6, denote these nonzero covariates, ¥, denote the covariance matrix of the nonzero

covariates, and 8(A) denote the estimates of 6, found by fitting the logistic model from Section 2. As n — o, if %24 — 0 and n™*"/2),  co, then
Vn{OA) - 0,4} = N(O, Zp).

The results of Lemma 1 and Lemma 2 rely the proper choice of A. Like all Lasso methods, the least squares approximation provides a solution
for any 4; however, the optimal value of 1 must be selected. For finding the best fitting penalized model, Wang and Leng propose a BIC-style
criterion, namely,

BIC(4) = {O15a(4) — O} E7HO 1sa(4) — Oru} + g/ {nlog(n)},



KRAVITZ AND CARROLL | 50f 10

WILEY—————

where g, is the number of nonzero coefficients in ©,sa(4). Define Ay as the set of nonzero coefficients. The interval (0, o) can be partitioned

into three disjoint sets depending on whether A(4) is overfit, underfit, or equal to the true model:

R_={A€(0,00) : A(A) C Age},
RO = {/1 € (0, 00) : A(A) = Atrue}7
R, = {4 € (0,00) : A}) D Agues AD) # At )

Letting 4* « n~%3, which satisfies Theorem 1, then we have,
priA(A) =A} - 1.

Additionally, we have the following result for any A € R_ and 4 € R,.

Lemma 3. Asn — oo, if £ is a consistent estimate of the variance-covariance matrix of the limiting distribution of the full model, then
pr{ inf BIC(1) > BIC(A*)} — 1. (4)
A€R_UR,

Theorem 3 tell us that any 4 that produces the incorrect model, that is, 4 € R_ and 4 € R,, will not be selected by the BIC criterion as the
optimal tuning parameter. Wang and Leng's BIC criterion is consistent in selecting the optimal tuning parameter.

4 | DATA ANALYSIS

4.1 | Background

Of particular interest to nutritionists and epidemiologists is the relationship between diet and cancer as well as diet and mortality. We conduct
our analysis on the 2005 NIH-AARP Study of Diet and Health. This longitudinal study tracks incidence of lung, colorectal, prostate, breast, and
ovarian cancer in adults between the ages of 51-75, as well as cause of death for those who died while the study was conducted. Table 2 lists
the number of adults surveyed as well as the breakdown of cancer by men and women, and Table 3 lists mortality. The study follows mortality
caused by cancer, cardiovascular disease, and all other causes of mortality for both men and women.

We consider three events of interest: cancer occurrence, mortality, and all-cause mortality. Cancer occurrence is defined as diagnosis of any
of the five types of cancer in Table 2, mortality is defined as mutually exclusive outcome of one of the three causes in Table 3, and all-cause
mortality is the aggregation of anytype of mortality. We consider these outcomes separately and fit separate models for each outcome. For each
outcome, the analysis is as follows.

e Model (1) is fit using all the components of the 2005 Healthy Eating Index.
e The least squares approximation with an adaptive Lasso penalty is used to identify the relevant subset of Healthy Eating Index components.

o Model (1) is refit using only components selected by the least squares approximation.

This results in three sets of selected components and three sets of parameter estimates.

TABLE2 Summary of the NIH-AARP data for cancer occurrence

Men Women
Description # Cases Percentage # Cases Percentage
Sample size 294,673 199,285
Breast cancer 7,736 3.88
Ovarian cancer 759 0.38
Prostate cancer 23,477 7.97
Colorectal cancer 4,693 1.59 2,291 1.15
Lung cancer 6,135 2.08 3,630 1.82

Men Women TABLE3 Summary of the NIH-AARP data for mortality

Description # Cases # Cases
Sample size 219,612 169,480
CVD mortality 8,112 4,028
Cancer mortality 12,247 7,344

Other cause mortality 10,821 6,547

Abbreviation: CVD, cardiovascular disease.
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TABLE4 Results from Section 4.2 when the outcome of
interest is cancer occurrence, various types of mortality, and
aggregated all-cause mortality

Whole grains
Total grains
Whole fruit
Total fruit
Total veg.
DOL veg.
Dairy

Meat and beans
Qils

Sodium
Saturated fats

Cancer
3.98[3.18, 4.78]
1.34[0.59, 2.09]
1.56[0.74, 2.37]
2.71[1.87, 3.55]
1.37[0.47, 2.26]
1.52[0.65, 1.14]
0.90[0.65, 1.14]
0

0.58[0.30, 0.86]
1.28[0.95, 1.61]
1.00[0.72, 1.28]

Mortality
5.59[5.04, 6.13]
0.87[0.41, 1.33]
0.22[-0.12,0.57]
0

2.13[1.57, 2.68]
0.81[0.39, 0.68]
0.53[0.39, 0.68]
1.06 [0.81, 1.31]
0.59[0.42,0.77]
1.96[1.78, 2.13]
1.04[0.88, 1.22]
0

All-cause mortality

5.61[5.03, 6.18]
0.93[0.47, 1.40]
0.39[0.02, 0.08]
0

2.04[1.46, 2.62]
0.73[0.30, 1.17]
0.58[0.43, 0.74]
0.98[0.71, 1.25]
0.63[0.44, 0.81]
1.85[1.66, 2.04]
1.09[0.91, 1.27]
0

Empty calories 0

Note. Provided estimates are found by fitting the logistic regression model from
Section 2 using only the subset of components chosen by the least squares approx-
imation. Parentheses are 95% confidence intervals. Bold Os indicate components
that are set to O by the least squares approximation.

The a* coefficients, which correspond to the rescaled Healthy Eating Index described in Section 2, are provided for cancer occurrence,
mortality, and all-cause mortality in Table 4. The variance of the unscaled a coefficients is calculated with sandwich estimator, and variance of
the rescaled a* is calculated using the delta method. This derivation is provided in Appendix 0.4. We do not provide confidence intervals for

components in a*, which are set to O by the least squares approximation.

4.2 | Results

The Healthy Eating Index puts a large penalty on diets high in empty calories. Empty calories, referred to as SOFAAS in Table 1 and made up
of solid fats, alcohol, and added sugars, make up 20 points of the Healthy Eating Index score. This means that someone with a diet high in
empty calories will always be assigned a score below 80 regardless of their other nutritional intake. This is the largest contribution by a single
component. This is in stark contrast to our results. In each analysis, the least squares approximation forces empty calories to take a value of O.
That is, we find that empty calories are not very predictive of mortality.

Total grains appear to be undervalued by the Healthy Eating Index. For example, a person receiving a perfect score of 5 for whole grains in
the original Healthy Eating Index would be reassigned a score of 5.61 x 5 = 28.05 if all-cause mortality was of interest. Similarly, our assessment
gives total vegetables over twice its original weight when predicting mortality. It is also apparent that for any kind of mortality, the 2005 Healthy
Eating Index may overstate the importance of fruit in general.

To some, the 2005 Healthy Eating Index may appear more appropriate for predicting cancer than it does for predicting mortality. This possible

concern may have prompted the development of the Alternative Healthy Eating Index by McCullough et al. (2002).

5 | SIMULATIONS
We justify the numeric results from Section 4.2 and the theory from Section 3.1 with two sets of simulations. The first simulation examines the
stability of the estimation procedure as the sample size changes. In the second simulation, we generate data from a similar model to the data

example in Section 4.

5.1 | Subset analysis

To ensure that the results presented in Section 4.2 are robust and not an artefact of the large sample size, we split the data by a factor of 1/4 and
1/8 and rerun the analysis. We present the results when all-cause mortality is the outcome of interest. We want to ensure that the estimation

procedure and the variable selection procedure are roughly similar for each subset. These results are given in Table 5. The results are fairly stable.

5.2 | Variable selection and coverage

We simulate from the model
J

Pr(Yice | Xig> Zie) = H(Bie Z Xijeaj + Z;legkf) = Pikes (5)
=1

where there are k = 2 populations, L; = 3 diseases in the first population, and L, = 4 diseases in the second population. We set g, =
(-1,-0.08,-0.04)" and p, = (-0.09,-0.06,-0.03,-0.01)". The Healthy Eating Index measurements, Xy;, and covariates, Z;,, are sampled
without being replaced from the NIH-AARP Study of Diet and Health. The Healthy Eating Index measurements for total fruit and whole fruit, as
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1/8 (N=48,636)

1/4 (N=97,273)

1(N=389,092)

Total grains 1.37 [-0.05, 2.8] 1.39[0.76,2.03] 0.93[0.47, 1.40]
Total fruit 0 0 0

Whole fruit 0.29[-0.83,1.41] 0.47[0.03,0.97] 0.39[0.46, 1.40]
Whole grains 5.26 [3.56, 6.96] 5.11[4.34,5.87] 5.60[5.02, 6.18]
Total veg. 1.64[0.13, 3.4] 2.08[1.29,2.87] 2.04[1.46,2.62]
DOL veg. 0.87[-0.43,2.17] 0.60[0.01,1.19] 0.73[0.30, 1.17]
Dairy 0.6[0.14, 1.06] 0.56 [0.35,0.77] 0.58[0.43,0.74]

Meat and beans

0.89[0.10,1.68]

0.97[0.61, 1.33]

0.98[0.71, 1.25]

Oils 0.81[0.26, 1.36] 0.65[0.40,0.90] 0.63[0.44,0.81]
Sodium 1.9[1.33, 2.48] 2.04[1.79,2.30] 1.85[1.66,2.04]
Saturated fats 1.08[0.53, 1.63] 0.95[0.71,1.19] 1.09[0.91, 1.27]

0

0

TABLE5 Results for the subset analysis in Section 5.1 when
all-cause mortality is the outcome of interest

Empty calories 0

Note. The fraction refers to the proportion of the original data set used to fit the
model. It is followed in parenthesis by the sample size used in the analysis. All results
refer to refitting the stratified model of Section 2 using the subset of components
identified by the least squares approximation. Point estimates are given, and 95%
confidence intervals follow in parenthesis. Bold Os indicate parameters set to O by
the least squares approximation. The results are stable through across all subsets.

TABLE6 Simulation results from Section 5.2

Sample size % Selected V1 V2 V3 V4 V5

10,000 97.9 94.6 95.6 960 947 96.8
5,000 94.6 94.6 945 950 953 964
2,500 94.4 944 949 946 946 96.0
1,000 93.6 93.6 93.6 930 923 932

Note. The second column gives the proportion of the 1,000 sim-
ulations that identified the correct five predictor subsets. The
remaining columns, V1 through V5, give the approximate coverage
of 95% confidence intervals for the five nonzero predictors.

well as total grains and whole grains, are summed together to create two components representing fruit and grains. This is done because the
measurements are highly correlated. This means that the dimension of X is 10, instead of 12 as in the real data set. We set « to be a vector of
length 10 with five nonzero components. The nonzero components of a are set to 3,3,2.5,2.5, and 2. Two continuous covariates are selected
from Z, and the parameters 6,; are drawn from uniform [—2, 2] distribution. We simulate N = 1,000 data sets with a range of sample sizes. The y
tuning parameter is set to 2.

The theory in Section 3.1 makes two guarantees: The probability of selecting the correct subset of predictors approaches 1, and the asymptotic
covariance matrix of the nonzero parameters, X;, is correctly estimated. We demonstrate these claims by simulation. We test for variable
selection with

N
N1 Z I(@sa; = ar),

i=1

where @ sa; is the subset of a chosen by the least squares approximation on the ith simulation, a7 is the set of true nonzero predictors, and “="
denotes set equality.

We demonstrate the asymptotic consistency of fr by showing that we can construct confidence intervals for the nonzero components that
have proper coverage. Coverage is tested separately for each component of a with

N
— A~ {1/2 A~ {172
N ! 21]1{(1] S ((Xj - a/zzjj/ N +Z‘1/22]j/ )},
i=

where g; is the jth nonzero component of a, 2;/2 is the standard error of @;, and z, is the upper a percentile of the standard normal distribution.
The estimates @ and S refer to the estimates obtained after refitting (5) with only the variables selected by the least squares approximation.

The results are given in Table 6. We point out that although the coverage probabilities are close to nominal at n = 1,000, consistent variable
selection requires larger sample sizes. Proper variable selection is seen at n = 10,000, though acceptable results can be seen at smaller sample
sizes. A large sample size is likely required because we use two asymptotic approximations: a sandwich estimator for the covariance matrix and
the least squares approximation for variable selection. Regardless of the sample size requirements, the NIH-AARP Study of Diet and Health is

more than large enough for consistent variable selection and proper confidence interval coverage.
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6 | DISCUSSION

Using non-linear models and adaptive Lasso penalization, we have introduced a method to continually reassess composite score techniques.
Our method produces parameter estimates and covariance estimates that are asymptotically consistent. Asymptotically, the penalization method
chooses the correct subset of coefficients. Our empirical results are similar to Ma et al. (2017), though they included a nonparametric component
in their model that we do not. The authors found that the flexibility of their semiparametric model was not needed in their actual data analysis.
Although highly technical, it is possible to expand our analysis into their framework.

If researchers suspect that a particular composite score does not apply well to their population of interest, they use the methods outlined in
this paper to reweigh the relative importance of each score component and see if each component is necessary. Analysing composite scores in
this way can lead to important new finding. Our analysis of the Healthy Eating Index suggests that the negative effects of empty calories may
be overstated. Similarly, the relative importance of fruit and whole grains can change dramatically when considering mortality risk instead of
cancer risk.

There is considerable scope for future work. Empirically, future work should address the correlation between many of the dietary components.
It is, for example, impossible to consume total grains without also consuming whole grains. The components selected and parameter estimates
may change if the collinearity is addressed. The methodology in this work may be extended to variable selection while using a nonparametric
or semiparameteric model for diet. Diet may be modelled with a single index model (Carroll et al., 1997), letting the reweighted sum of Healthy
Index scores vary freely as in Ma et al. (2017), or with a generalized additive model (Wood, 2017), modelling each dietary component separately

with a smooth function.
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APPENDIX A: SKETCH OF TECHNICAL ARGUMENTS

A.1 | Proof of Theorem 1

By Theorem 2 of Wang and Leng,

lim prA C Ap) = 1, (A1)
and by Theorem 1 of Wang and Leng, o

lim pr(A c A;) =0. (A2)
Then (A1) and (A2) imply that e

lim priA=Ar) =1. (A3)

A.2 | Proof of Theorem 2

Denote O(A) as the estimates from regressing Y on the subset of © specified by A and ©(A;) as the estimates from regressing Y on the true subset
of coefficients. Then (A3) means that
lim pr{®@A) = OA)} = 1. (A4)

We have o

n'2{6(Ar) - Or} = N(O,Zy).
Thus for any vector a,

n'?[a"{O(A7) - ©1}] = N, 5?).
where 62 = a'Z,a. Thus,
prin'/2a"{B(A7) — O} /6 < ] - D(2).

where @(-) is the normal cumulative distribution function. Because (A4) holds, we have

prin*2a"{&(A) — 11} /0 < 7] > D(2).
This can be expressed as

prin'/2a"{(6A) — ©r} o <z,A=Ar]} +prin¥2a"{(6A) — ©;} o2 <z, A # A
=prin2a"{OAr) — O} o <z, A=Ar} +prin2a"{OA) — 07} o <z,A # A}
= pr[n*2a"{O(Ar) — Or} /o < z,A = Ar] + 0,(1)
= prin*2a"{O(Ar) — Or} /o < z] — prin*2aT{O(Ar) — Or} /o < 2,A # A7l +0,(1)
= ®(2) + 0,(1).

A.3 | Proof of Theorem 3

Theorem 3 is a direct application of Wang and Leng's Theorem 4.
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A.4 | Variance calculation of rescaled coefficients

Let H = (hy, ..., h)T, where hj(a) = o;/(cT . ). Define D = (dy, ...,d,,)" where d; = (dh;/da, ..., 0h;/da)). The diagonals of matrix D are given by

D; = (Zk#,ckak)/(cl,axa)z. Fori # j, Dy = (Ga;)/(chax@)?. The delta method states that the covariance of H is given by cov{H(a)} ~ Dxz,D".
Now, we move on to calculating the variance of .. Fork=1, ...,Kand ¢ = 1, ..., L, the logits are

BieX a + 770,

with the initial constraint is that f,, = —1 for identifiability.
Denote c(a) = ¢, . After model (1) converges, replace a with a* = a/c(a). Then the logits become

B XTa* + 270 = fred(@XTa, +Z" 0.

For k = £ = 1, this means that f;, = —c(«). By the delta method, var(ﬁ;‘f) ~ cov{c(@)} =~ ¢, (@)Tcov(@)d, (@), where the subscript a indicates the
J x 1 vector of derivatives of d(a).

If (k,?) # (1,1), we have that /?:/ = ﬁAkfc@). We can express this as B, = 8(Bker @) and use the delta method to get var(//i;jf) ~
Vg(frr, Q)T COV(frs, RV (i, &). Here, Vg(fy,) is the gradient of g(-) with respect to g, and a.
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