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ABSTRACT

Estimating the marginal and joint densities of the long-term average intakes of different dietary com-
ponents is an important problem in nutritional epidemiology. Since these variables cannot be directly
measured, data are usually collected in the form of 24-hr recalls of the intakes, which show marked patterns
of conditional heteroscedasticity. Significantly compounding the challenges, the recalls for episodically
consumed dietary components also include exact zeros. The problem of estimating the density of the
latent long-time intakes from their observed measurement error contaminated proxies is then a problem
of deconvolution of densities with zero-inflated data. We propose a Bayesian semiparametric solution to
the problem, building on a novel hierarchical latent variable framework that translates the problem to
one involving continuous surrogates only. Crucial to accommodating important aspects of the problem,
we then design a copula based approach to model the involved joint distributions, adopting different
modeling strategies for the marginals of the different dietary components. We design efficient Markov chain
Monte Carlo algorithms for posterior inference and illustrate the efficacy of the proposed method through
simulation experiments. Applied to our motivating nutritional epidemiology problems, compared to other
approaches, our method provides more realistic estimates of the consumption patterns of episodically con-
sumed dietary components. Supplementary materials for this article, including a standardized description
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1. Introduction
1.1. Problem Statement

Dietary habits are important for our general health and well-
being, having been known to play important roles in the etiology
of many chronic diseases. Estimating the long-term average
intakes of different dietary components X and their marginal
and joint distributions is thus a fundamentally important prob-
lem in nutritional epidemiology.

The dietary component may be a nutrient, like sodium,
vitamin A, etc., or a food group, like milk, whole grains, etc.
In any case, by the very nature of the problem, X can never
be observed directly. Data are thus often collected in the form
of 24-hr recalls of the intakes. Many of the dietary compo-
nents of interest are daily consumed. Examples include total
grains, sodium, etc., the recalls for which are all continuous,
comprising only strictly positive intakes. Compounding the
challenge, interest may additionally lie in episodically consumed
components whose long-term average intake is assumed to
be strictly positive but the recalls are semicontinuous, com-
prising positive recalls for consumption days and exact zero
recalls for nonconsumption days. Examples include milk, whole
grains, etc.

Since dietary patterns often vary with energy levels, mea-
sured in total caloric intake, adjustments with energy provide
a way of standardizing the dietary assessments. The recalls for
energy are always continuous. From a statistical viewpoint, they
can thus be treated just like the regular components, and hence,
with some abuse, will be referred to as such.

When the recalls are recorded within a relatively short span
of time, it may be assumed that the participants’ dietary patterns
X will not have changed significantly over this period. Treating
the recalls Y, like the ones shown in Table 1, to be surrogates
for the latent X, contaminated by measurement errors U, the
problem of estimating the joint and marginal distributions of
X from the recalls Y then translates to a problem of multivariate
deconvolution of densities with exact zero surrogates for some
of the components.

Throughout we adopt the following generic notation for
marginal, joint, and conditional densities, respectively. For ran-
dom vectors S and T, we denote the marginal density of S, the
joint density of (S, T), and the conditional density of S given T,
by the generic notation fs, fs T, and fs1, respectively. Likewise,
for univariate random variables S and T, the corresponding
densities are denoted by fs, fs, 7, and fs; 7, respectively. Additional
summaries of the variables and notations used can be found in
Table 2.
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1.2. The EATS Dataset and Its Prominent Features

The main motivation behind the research being reported here
comes from the Eating at America’s Table Study (EATS) (Subar
et al. 2001), a large scale epidemiological study conducted by
the National Cancer Institute in which i = 1,...,n = 965
participants were interviewed j = 1,...,m; = 4 times over the
course of a year and their 24-hr dietary recalls were recorded.

Data on many different dietary components were recorded in
the EATS study, including episodic components milk and whole
grains, whose recalls involved approximately 21% and 37% exact
zeros, respectively. Table 1 shows the general structure of this
dataset for one regularly consumed and one episodically con-
sumed dietary component.

Patterns of conditional heteroscedasticity are also generally
very prominent in dietary recall data. See, for example, the right
panels of Figure 1 which shows the plot of subject- spec1ﬁc means
Yg,, = Z] 1 Yi,i,j/4 versus subject-specific variances SY i =

ijl(Yg,,,] — Yy)?/3 for the 24-hr recalls of sodium and
energy, which provide crude estimates of the underlying true
intakes X, ; and the conditional measurement error variances
var(Uy,;j|Xe,i), respectively, suggesting strongly that var(U|X)
increases as X increases. Similar observation can also be made
for positive recalls of episodic components from the middle
panels of Figure 2.

Table 1. The general structure of the EATS dataset showing the recalls for one
episodically consumed and one regularly consumed dietary component.

. 24-hr recall
Subject ccals
Episodic component Regular component
1 Ye1r1 Ye12 Yeis Yersa Yo Y2 Y3z Yris
2 0 Yeao Ye23 Yeasa Vean Yr22 Yra3z  Yraa
3 Ye31 0 Ye33 Ye3a V31 Y32 Y33z Viza
4 0 Yea2 Yeas 0 Year Yra2 Yraz  VYraa
n Yen1  Yen2 0 0 Yena  Yen2  Yen3  VYrna

NOTE: Here, Yy ;; is the reported intake for the jth recall of the ith individual for the
£th dietary component.

Table 2. Variables representing the data and other random variables in our model.

As can be seen from the right and middle panels in Figures 1
and 2, respectively, for both regular and episodic components,
the variability of the positive recalls naturally decreases to zero
as the average intake on consumption days decreases to zero.
For all regularly consumed components, the histograms of the
recalls are mildly right skewed bell shaped. The histograms for
the episodically consumed components are, however, reflected
J-shaped—the frequencies of the bins start with their largest
value at the left end and then rapidly decrease as we move to
the right. These imply that, for regularly consumed compo-
nents, the distributions of the true long-term average intakes
smooth out near both ends, whereas, for episodically consumed
components, the distributions of the true long-term average
intakes have discontinuities at zero. The right panels of Figure 2
also show that, as expected, individuals consuming an episodic
component in smaller amounts also consume it less often on
average.

1.3. Existing Methods and Their Limitations

The literature on univariate density deconvolution for contin-
uous surrogates, in which context we denote the variable of
interest by X and the measurement errors by U, is massive. The
early literature, however, focused on scenarios with restrictive
assumptions, such as known measurement error distribution,
homoscedasticity of the errors, their independence from X, etc.,
which are all highly unrealistic, especially in nutritional epi-
demiology applications like ours. Reviews of these early meth-
ods can be found in Carroll et al. (2006) and Buonaccorsi (2010).
We cite below some relatively recent ideas that are directly
relevant to our proposed solution.

Bayesian frameworks can accommodate measurement errors
through natural hierarchies, providing powerful tools for solv-
ing complex deconvolution problems, including scenarios when
the measurement errors can be conditionally heteroscedastic.
Taking such a route, Staudenmayer, Ruppert, and Buonaccorsi
(2008) assumed the measurement errors to be normally dis-
tributed but allowed the variability of U to depend on X,

Notation Description

q Number of episodically consumed components.

p Number of regularly consumed components.

Yeij Observed recall of the ¢th dietary component for the ith individual on the jth sampling occasion—binary for ¢ = 1,..., g, zero if the component was
not consumed, one otherwise; zero or positive continuous for ¢ = g + 1,.. ., 2q, representing the reported intakes, zero when the component was not
consumed, positive continuous otherwise; positive continuous for £ = 2q + 1,...,2q + p, representing the reported intakes.

We,ij Proxy recall of the ¢th dietary component for the ith individual on the jth sampling occasion—always continuous; latent for £ = 1,..., g, negative if
Ye,ij = 0, positive if Yy ; ; = 1; latent or observed for £ = g + 1,.. ., 2q, latent when the component was not consumed, observed and equals Y ;; when
a positive recall was recorded; positive for £ = 2q +1,.. ., 2q + p, equaling Y ;;, the reported positive intake.

Xe,i Long-term daily average intake of the £th dietary component for the ith individual, consumption and nonconsumption days combined. Strictly positive
and continuous. For £ = 1,...,q + p, the observed recalls Vg ¢ ;; are unbiased for Xy ;.

XZ‘i Long-term daily average intake of the £th dietary component for the ith individual, on consumption days only. Strictly positive and continuous. For £ =

’ 1,...,q9 + p, the proxy recalls Waye,ij's are unbiased for the X"”

Pe(Xg,i) Probability of reportlng positive consumption on the £th dletary ‘component by the ith individual on any sampling occasion.

Y(q,‘ Functions of Xy j, X, v and P¢(Xg,i) such that Wy ; is unbiased fong,,

Ug,ij Measurement errors or pseudo-errors contaminating Yg,i to generate Wy ;;. The Uy ;s are all unbiased for zero. For £ = g + 1,...,2q + p, variability of
Uy,ij depends on the associated X[ i

sf ()N(Z,;) Variance function explaining how the conditional variability of Uy ;; depends on the associated Xg, fore =q+1,...,29+p.

€eij Scaled measurement error or pseudo-error obtained by scaling Uy, by s¢ (Xg i)- The €, j's are unbiased for zero, homoscedastlc and independent OfXg,

Zyi Long-term daily average normalized intake of the £th dietary component for the ith individual, normalized by energy.
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Figure 1. Exploratory plots for sodium (top row) and energy (bottom row). Left panels:
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utilizing mixtures of B-splines to estimate fx as well the con-
ditional variability var(U|X). Sarkar et al. (2014) relaxed the
assumption of normality of U, employing flexible mixtures of
normals (Escobar and West 1995; Frihwirth-Schnatter 2006)
to model both fx and fy|x. Sarkar et al. (2018) extended the
methods to multivariate settings, modeling fx and fyx using
mixtures of multivariate normals.

While Staudenmayer, Ruppert, and Buonaccorsi (2008) and
Sarkar et al. (2014, 2018) provided progressively flexible frame-
works for univariate and multivariate deconvolution with con-
tinuously measured surrogates, they cannot directly handle
multivariate zero-inflated dietary recall data. There are sev-
eral restrictive aspects of their approaches that also do not
allow them to be straightforwardly extended to deconvolution

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 3
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problems with zero-inflated surrogates, as we outline shortly
while describing our proposed approach.

The problem of estimating long-term nutritional intakes of
a single episodic dietary component from zero-inflated recall
data has previously been considered in Tooze, Grunwald, and
Jones (2002), Tooze et al. (2006), Kipnis et al. (2009), and
Zhang, Krebs-Smith, et al. (2011). The work was extended
to multivariate settings with both episodic and regular com-
ponents in Zhang, Midthune, et al. (2011). These approaches
all worked with component-wise Box-Cox transformed (Box
and Cox 1964) positive recalls which were then assumed to
decompose into a subject specific random effect component
and an error or pseudo-error component. Assumed indepen-
dent and homoscedastic, these components were then both
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Figure 2. Exploratory plots for milk (top row) and whole grains (bottom row). Left panels: Histogram of recalls Y ;; (red) and histogram of strictly positive recalls Yz (> 0)
(blue) superimposed on each other; middle panels: subject-specific means Vg,; versus subject-specific variances S,Z,e ; when multiple strictly positive recalls are available;

right panels: boxplots of proportion of zero recalls versus corresponding subject-specific means ¥ .

modeled using single component multivariate normal distri-
butions. Estimates of the long-term consumption day intakes
were then obtained via individual transformations back to the
original scale. Long-term episodic consumptions were finally
defined combining these estimates with probabilities of report-
ing nonconsumptions. As shown in Sarkar et al. (2014), Box-
Cox transformations for surrogate observations have severe
limitations, including almost never being able to produce trans-
formed surrogates that conform to normality, homoscedastic-
ity, and independence. Transformation-retransformation based
methods are thus highly restrictive, even for univariate regularly
consumed components.

Despite the limitations, to our knowledge, Zhang, Midthune,
etal. (2011) is the only available method that can handle multi-
variate zero-inflated dietary recall data. It is thus also our main
and only competitor.

1.4. Outline of Our Proposed Method

In this article, we develop a Bayesian semiparametric den-
sity deconvolution approach specifically designed to address
problems with zero-inflated surrogates, carefully accommo-
dating all prominent features of the EATS dataset described
above. We build on an augmented latent variable framework
which introduces, for each recall of the episodically consumed

component, one or two latent continuous proxies, depending
on whether the recall was positive or exact zero, effectively
translating a deconvolution problem with zero-inflated data to
one with all continuous surrogates, albeit some latent ones.
This requires modeling an additional pseudo-error distribu-
tion for each episodically consumed component, but returns,
as potentially useful by-products, estimates of the probabilities
of reporting zero recalls for the episodically consumed dietary
components. As the right panels of Figure 2 suggest, individuals
who consume an episodic component less often (in other words,
report more zero recalls) naturally also consume the compo-
nent in smaller amounts in the long run. The probabilities of
reporting zero consumptions are thus informative about the
true long-term consumption amounts and conversely. Our pro-
posed latent variable framework appropriately recognizes these
features.

Even though the multivariate latent consumptions X and the
associated multivariate errors and pseudo-errors U become all
strictly continuous in our augmented latent variable framework,
the approach of Sarkar et al. (2018) to model their distribu-
tions using mixtures of multivariate normals is still fraught
with serious practical drawbacks as it does not allow much
flexibility in modeling the univariate marginals fx, and fy,|x,,
especially the marginals of the episodic components which have
discontinuities at zero. The issue becomes more critical when
inference is based on samples drawn from the posterior using



Markov chain Monte Carlo (MCMC) algorithms. The latent X;’s
are also sampled in the process and the specific parametric form
of the assumed multivariate mixture kernel may influence this
step in ways that result in density estimates closely resembling its
parametric form even when the shape of the true density departs
from it.

As opposed to Sarkar et al. (2018) who focused on mod-
eling the joint distributions fx and fyjx first and then deriv-
ing the marginals from those estimates, we take the opposite
approach of modeling the marginals fx, and fy,x, first and
then build the joint distributions fx and fyx by modeling
the dependence structures separately using Gaussian copulas.
This approach allows us adopt different strategies for mod-
eling the different components of fx and fyx which proved
crucial in accommodating the important features of our moti-
vating datasets. Following Sarkar et al. (2014), we use flex-
ible mixtures of mean restricted normals and mixtures of
B-splines to model fy,x,’s and the associated conditional het-
eroscedasticity functions. Mixtures of normal kernels, as in
Sarkar et al. (2014), are, however, not suitable for modeling
fx,’s. We use normalized mixtures of B-splines and mixtures of
truncated normal kernels instead which are well suited to model
densities with bounded supports and discontinuities at the
boundaries.

The literature on copula models in measurement error-free
scenarios is vast. See, for example, Nelsen (2007), Joe (2015),
Shemyakin and Kniazev (2017), and the references therein. We
are, however, unaware of any published work in the context of
measurement error problems.

In contrast to Zhang, Midthune, et al. (2011), we model the
densities of the latent consumptions and the error and pseudo-
errors more directly using flexible models that can accom-
modate widely varying shapes with discontinuous bound-
aries as well as conditional heteroscedasticity. In our latent
variable framework, the probability of reporting zero recalls
depends directly on the latent true consumption day intake,
hence informing each other. Applied to our motivating nutri-
tional epidemiology problems, our method thus provides
more realistic estimates of the intakes of the episodically
consumed dietary components. Additional detailed compar-
isons of our method with previous approaches for zero-
inflated data are presented in Section S.4 in the supplementary
materials.

Compared to all previously existing density deconvolution
methods, including traditional methods for strictly continuous
data as well as methods designed specifically for zero-inflated
data, our proposed approach is thus fundamentally novel while
also being broadly applicable to both scenarios.

1.5. Outline of the Article

The rest of the article is organized as follows. Section 2 details the
proposed Bayesian hierarchical framework. Section 3 presents
results of our proposed method applied to the motivating nutri-
tional epidemiology problems. Section 4 concludes with a dis-
cussion. A brief review of copula, a detailed comparison of
our method with previous approaches to zero-inflated data,
an MCMC algorithm to sample from the posterior, simulation
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studies comparing the proposed method with its main competi-
tor, and some additional results are included in the supplemen-
tary materials.

2. Deconvolution Models
2.1. Latent Variable Framework

Our goal is to estimate the marginal and joint consumption
patterns of g + p dietary components of which the first g
are episodically consumed and the latter p are regularly con-
sumed, including energy. There are a total of n subjects with
m; 24-hr recalls recorded for the ith subject. We let Y;; =
(Yiijs oo Yogupi ,j)T denote the observed data for the jth recall
of the ith individual. For £ = 1...,q, Yy,; is the indicator of
whether the ¢th episodic component is reported to have been
consumed. For £ = g + 1,...,2q, Yy ;; is the reported intake
of the ¢th episodically consumed component, and for £ = 2q +
1,...,2q+p, Yy ;jis the reported intake of the £th regularly con-
sumed component. Let W;; = (Wyj,.. ., W2q+p,i,j)T denote a
vector with all continuous components that are related to the
observed data Y; by the relationships

Yi,ij = L(Wy,ij > 0),
Yoij = Yo—q,ijWeij
Yeij = Weij

For £ = 1,...,q, Wy,; indicates whether the £th episodic
component is reported to have been consumed in the jth recall
of the ith individual and is always latent except that we know
whether it is positive or negative. Thatis, for £ = 1,...,q, Wy,
is always latent with Wy ;; < 0if Y¢;; = 0 and Y44 ¢;; = 0,and
Wg,i,j > 0if Yg,,',j =1land Yq+€,i,j > 0.

For £ = q+ 1,...,2q9, Wy, is latent if the £th episodic
component is reported to have not been consumed in the jth
recall of the ith individual and is observed and equals the
reported consumed positive amount Yy ; ; otherwise. That is, for
=q+1,...,2q, Wy;jislatentif Yy_g;; = Oand Yy;; = 0
and is observed with Wy,;; = Yy;;if Yo—4;; = 1 and Yy;; > 0.

For £ = 2q+1,...,2q+p, Wy,;j denotes the reported intake
of the £th regular component and is always observable. That is,
fort =2q+1,...,29+¢q, Weij = Yoij > 0.

We let X; = (Xl,i,...,Xqup,,-)T denote the latent daily
average long-term intakes of the ith individual, consumption
and nonconsumption days combined. We now let X;* =
(Xf:i,...,X;;_p’i)T denote the latent daily average long-term
intakes of the ith individual on consumption days only. We then
define ii = (351,15 . ,X2q+p,i)T as

fort =1,...,q
ford =q+1,...,2q, (1)
for{ =2q+1,...,2q+p.

Xoi = he(Xe), for¢ =1,...,q,
Xz,i = Xz'_q)i, fort =q+1,...,2q
X = Xe—gqiv for{ =29+1,...,2q+p.

Here, h¢(-) is an unknown function to be estimated from data.
The reasons behind defining X; in this manner will be clear
shortly.

For i = 1,...,nj = 1,...,m; we let Uj; =
(ULijs--+» U2q+p,,;j)T and consider the model

Wi,j = ii + Ui,j, E(Ul)] | )N(,) =0.
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Uijn

Figure 3. Graphical model depicting the dependency structure of the generative
deconvolution model described in Section 2 for one episodically consumed com-
ponent X; and one regularly consumed component X;. The unfilled and shaded
nodes with solid boundaries signify latent and observable variables, respectively.
The filled node with dashed boundary may be observed on some occasions and
latent on others.

For £ = 1,...,q, Wy;; is always latent and the associ-
ated Uy,;; represents a pseudo-error that account for their
within person daily variations. For £ = q + 1,...,2q, Ug,;;
denotes the measurement error contaminating Wy ;; when it
is observed and pseudo-errors when they are latent. Finally,
for £ = 2q + 1,...,29 + p, Up;; denotes the measure-
ment error contaminating Wy ;; which are always observed
(Figure 3).

According to our model, for £ = 1,..., g, the probability of
reporting a positive consumption on the £th episodic compo-
nent, denoted henceforth as Py(Xy,;), is obtained as Pr(Yy,;; =
1] Xgi) = Pr(Wyij > 0] Xgi) = Pr{Us;ij > —he(Xe) | Xe,i}
For¢ =1,...,q, we also h~ave E(Yetqij | Yeij = 1’5(“‘%") =
EWergij | Yeij = 1LXerqi) = EWergij | Xetg)
Xotgi = XZ:" The positive recalls Y ; ;s and the W 4, latent
or observed, are thus unbiased for the latent average long-term
intakes of the episodic components on consumption days only.
For £ = 1,...,q, the expectation E(Yy4g; | Xg,,-,XZi)
Pr(Weij > 0 | XeDEWeagij | X)) = Pe(Xe)X/; then
defines the overall long-term average intake, consumption and
nonconsumption days combined. By definition, this is also Xy ;,
giving us the relationship Xy ; = P¢(X¢,:) X,

For regularly consumed components Z = q +1,....9+p
of course, Xp14; = Xe = Xy ;. The recalls in these cases are
all observed and are unbiased for the latent long-term intakes as
E(Y6+q1] | X2+qz) = E(Wé—i-qz] | Xl+qz) = X€+qz

Written in terms of the long-term average intakes Xy ;, the
model thus becomes

Weij = he(Xei) + Ugijy forl=1,...,q,

Weij = Xe—gqi/Pe—q(Xe—qi) + Upijs ford=q+1,...,2q,

W(,i,j :leq,i“' U[,z’,j) for =2q+1,...,29+p. (2)

This formulation now allows the problem to be reduced to that
of modeling the components fx, fy; %, and P¢(Xy) in a Bayesian
hierarchical framework. It also simplifies the estimation of

the distribution energy-adjusted intakes. We address this latter
problem in Section 2.5.

The complex nature of our problem warranted the introduc-
tion of many different variables representing the many random
variables of our model. For easy reference, these variables and a
few others to be introduced shortly are listed in Table 2.

2.2. Modeling the Density fx

In this article, fx is specified using a Gaussian copula density
model

fx(X) = [Rx| 72 exp {— 3 YR (Ry" — L) Yx} TT74 fice(Xe),
with Fx¢(Xy) = ®(Yxy) for all £ and Ry is the correlation
matrix of X.

In initial attempts, we modeled the marginal densities fx ,
as flexible mixtures of truncated normal kernels TN(- |
W, 0%, [A, B]) with location y and scale o and range restricted
to the interval [A, B]. In multivariate applications such as ours,
where the components represent similar variables and have
highly overlapping supports, we can greatly reduce dimension
and borrow information across different dietary components,
by allowing the component specific parameters of the mixture
models to be shared among the variables. We thus modeled the
marginal densities as

FreXe) = 20K, e TN | 1.k % o [Aes BeD),
»ax,e/Kx),

1xk ~ Normal(ex,0,0% )»

~ Inv-Ga(aU)%,o, bg}z{)o).

wx,¢ ~ Dir(axe/Kx, ...

%k
The models for different components ¢ thus share the same
atoms (i4x k> a)%’k) but with varying probability weights mx ¢ k.

Despite being specifically tailored to capture boundary dis-
continuities, in numerical experiments, we found the model
to often produce steeply decaying and highly peaked estimates
with underestimated (local) variance in these regions. After
further investigations, we could attribute the issue to smooth-
ness properties of such models, characterized by the variance
components & k which are estimated “locally” utilizing only the
data points assoc1ated with the corresponding mixture compo-
nents. For the episodic components, the scarcity of informative
observations near the left boundaries often allows the sampled
latent X, ;s to cluster away from these boundaries, resulting
in the associated o k’s to be underestimated and hence the
estimated densities to be peaked away from the boundaries.
Setting informative lower bounds to the variance parameters
solves the problem. Determining such bounds for the latent
variables from their contaminated recalls, however, proved to
be difficult.

For episodic components, we thus needed models that can
accommodate local variations in shape but would also allow the
smoothness to be learned from regions where more informative
data points are available. To achieve this, we employed flexible
penalized normalized mixtures of B-splines with smoothness
inducing priors on the coefficients to model the densities of
the episodic components. For the £th component, we partition
the interval [Ag, B¢] of interest into Ly subintervals using knot
points Ag = fg1 = -+ = trd+1 < fed+2 < fed+3 < o0 <
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Quadratic B-spline Bases
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Figure 4. Plot of 9 quadratic (d = 2) B-splines on [A, B] defined using 11 knot points that divide [A, B] into K = 6 equal subintervals.

ted+r, < ted+ie+1 = -+ = tepdyr,+1 = Bg. Using these
knot points, J; = (d + L¢) B-spline bases of degree d, denoted
by Baej, = {bae1,bd025-..5bde), ), can be defined through
a recursion relation (de Boor 2000, p. 90). See Figure 4 and
Section S.2 in the supplementary materials. B-splines are nearly
orthogonal and locally supported. For equidistant knot points

with 8, = (tg; — t¢j—1), the areas under these curves can be
easily computed as
By 8¢/6 forj=1,],
Sg,j = bz,g,j(X)dX ={56/6forj=2,]Jp — 1,
Ag 8¢ forj=3,...,Jp — 2.

Mixtures of B-splines can therefore be easily normalized. A
flexible model for the density functions is then obtained as

-1

Je
fx,e(Xe) = Bag, (Xe) exp(§y) {Z Se,m eXP(Ee,m)} ,

m=1
& | Je02)) o 2maf ) expl—&[ P, /(207 ),
O’Ez’e ~ Inv-Ga(ag, bg).

Here, &, = 60158025580y} exp(§y) =
{exp(€¢,1), exp(£r)s . . ., exp(&e,)} s and Py = DDy, where
Dy is a (Jy + 2) x J; matrix such that D¢&, computes the
second-order differences in &,. The prior po(&, | aéz’e)
induces smoothness in the coefficients because it penalizes
Y (M%) =
order differences in &, (Eilers and Marx 1996). The parameters
asz)l play the role of smoothing parameters—the smaller the

}T

EP@E ¢» the sum of squares of the second-

value of GEZ’Z, the stronger the penalty and the smoother the
associated variance function. The inverse-Gamma hyper-priors
on ng, ; allow the data to influence the posterior smoothness and
make the approach data adaptive. Importantly, the smoothness
is now informed by data points across the entire range, resulting
in vast improvements in the density estimates near the left
boundaries.

For regularly consumed components with strictly positive
recalls, we found mixtures of truncated normals to slightly out-
perform normalized mixtures of B-splines. This is also consis-
tent with findings reported in Sarkar et al. (2014). For regularly
consumed components, we thus still use mixtures of truncated
normals with shared atoms. With densities smoothed out to
zeros at the boundaries, truncations are not strictly needed

for regularly consumed dietary components. We still retain the
truncations to make our approach broadly applicable to other
potential applications where boundary discontinuities may be
present even when the recalls are all continuous.

Next, we consider the problem of modeling Rx. The problem
of modeling correlation matrices has garnered some attention
in the literature (Barnard, McCulloch, and Meng 2000; Liechty,
Liechty, and Miiller 2004; Pourahmadi and Wang 2015; Tsay
and Pourahmadi 2017). Here, we adapt the model from Zhang,
Midthune, et al. (2011) based on spherical coordinate repre-
sentation of Cholesky factorizations that allows the involved
parameters to be treated separately of each other, simplifying
posterior computation while guaranteeing the resulting matrix
to always be a valid correction matrix. We prove in Section S.3.1
in the supplementary materials that the converse is also true.
That is, any correlation matrix can be represented in this form
which establishes its nonparametric nature. We drop the sub-
script X for the rest of this subsection to keep the notation clean.

Let V+P)*(@+P) be a lower triangular matrix such that R =
VVT. The form of V is

V1,1 0 . 0

V2.1 V22 ... 0
V =

Va+p.l Va+p2 - -+ Vatpq+p

We have rp 0 = Yt_, vexvery for all € < €. The restriction
that R is a correlation matrix then implies Zi:l V%,k =1 forall
£=1,...,(q+p). Therestrictions are satisfied by the following
parameterization

v =1,

2
v21 = by, v =4/1— by,
V3,1 = b, sin 0y, V32 = by cos 6y, V33 =4/1— bz,

v = bg—18in6; o),
Vek = bzfl CoS 9,‘1(5) Cos gil(ﬂ)—t-l ...COS 9i1(5)+k—2
sin 0;, (o)+k—1, fork=2,...,(£ —2),
Vee—1 = bg_l [0 9,‘1(@) CoS 9,‘1(4)_;,_1 ...COS 91'2(11)—1 CoS 9,’2(@),

Voo =4/1— b%—l’

where =4,...,(q+p), () =1+{1+---+ U —-3)} =
(02 —5¢+8)/2andir() = i1(0) + (£ —3) = (L2 =30 +2)/2,
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el < Lit=1,...,(q+p—1D, 16l <m,s=1,...,i2(g + p).
The total number of parametersis {1+2+4---+(q+p—1)} =

(@ + p)(q + p — 1)/2. We have [R| = a+p o

VPP =TS v, =
qup 'a - b?). The model for R is completed by assigning

umform priors on b;’s and 6,’s

by ~ Unif(—1,1), 6 ~ Unif(—m, ).

Here, Unif(a, b) denotes a uniform distribution with support

(a, b).

2.3. Modeling the Density f X

The reported intakes of the regularly consumed components
exhibit strong conditional heteroscedasticity, so do the reported
intakes of the episodic components, when consumed. To accom-
modate conditional heteroscedasticity, we let

U,‘,j = S(i,‘)éi,j, with E(éi,j) =0, and

S(il) = dlag{la R Sq—‘rl()’zq-‘rl,i): v 352q+p(y(2q+p,i)}'

The above model implies that cov(U;; | X) = S()N()
cov(€;;) S(X) and marginally var(Uy;; | X[,) = Se(Xg i)
var(eg,ij). Other features of the distribution of U, including
its shape and correlation structure, are derived from fe. The
multiplicative structural assumption arises naturally for condi-
tionally heteroscedastic multivariate measurement errors; the
model also automatically accommodates multiplicative mea-
surement errors W[,] = Xg,Ug,j with E(Ug;j) = 1 and
Ug ij 1ndependent of Xy, via a 51mple reformulation Wy ; j =
X(Zz +XZ1(UZIJ -1 = XZI + S(Xﬂz)elzj with S(XZI) = XZI
and €y, = (Ug,,,] — 1) (Sarkar et al. 2018).

As in Section 2.2, we use a Gaussian copula density model
to specify the density fe but the model now has to satisfy mean
zero constraints. Specifically, we let

1 1 1
fe(€) = [ [ fee(e) x IRe| ™2 exp {—EYE(R;I - Ip)Ye}

(=1

2q+p

l_[ fee(€r), subjectto Er ,(ef) =0,
{=g+1

fort =1,...,29+p.

Here, Fc ¢(e¢) = ®(Ye,) for all £. The first g components of €
are independent of each other and also independent of the rest
of the g + p components. The latter g + p components may be
correlated with correlation matrix Re.

The copula approach again allows us to use different models
for the distributions of the pseudo-errors fc ¢(€),£ = 1,...,q,
and the distributions of the actual scaled measurement errors
fep(€),=q+1,...,29+p.

Here, we only model the correlation between different scaled
error components € ;;, €p';; for £ # £’ but ignore the correla-
tion between different sampling occasions €;,;j, €, for j # j'.
The correlation between Wy ;;, Wy ;v for j # j' is thus explained
entirely by their shared component )?g,,-. In post model fit cor-
relation analysis with estimated scaled “residuals,” presented in
Figure S.9 in the supplementary materials, we found no real

evidence that the errors €, €, ; y are significantly correlated for
J#F

For £ = 1,...,q, we model the marginal densities f., as
fe,e(€¢) = Normal(eg | 0, 1). This implies a probit model for the
probabilities of consumptions Py (X¢) = Pr{Uy > —h¢(X¢)} =
d{h(X,)}. Flexibility of this probability model thus depends on
the choice of hy(X¢). We discuss this issue in Section 2.4.

For{ =g+ 1,...,2q + p, we model the marginal densities
fe,e(€) using an adaptation of the moment restricted model in
Sarkar et al. (2014) but with shared atoms as

K. ~
fe,ﬁ(ef) = Zk:l ”e,@,kfcé (65 | Pe k> e k> 0162’](’1’0'62’](,2)’
e ~ Dir(aee/Ke, ..., ace/Ke), (pek’ﬁeka €2k1>
sz) ~ Unif(0, 1) Normal(0, a )IG(aE,b ) IG(ae, be ),

where fo. (e | p,it,08,0%) = {p Normal(e | u1,07) + (1 —
p) Normal(e | p2,09)}, with u1 = aifl, iz = ofi, o =
A =p)/ip* + 1 =p*)?and ; = —p/{p* + (1 — p)*}'/%
The zero mean constraint on the errors is satisfied, since pu; +
(1 = ppa = {pcr + (1 — p)ex}it = 0. Normal densities are
included as special cases with (p, f) = (0.5, 0) or (0, 0) or (1, 0).
Symmetric component densities are included as special cases
when p = 0.5 or i = 0. Specification of the prior for f; is
completed assuming non-informative priors for (p, /i, 0, 03).
Here Unif(¢, u) denotes a uniform distribution on the interval
[£, u].

As in the case of Rx, we assume R(q+P )>(tp) = ((ree0))) =
Vevz and parameterize the elements of Ve using spherical
coordinates. We assign uniform priors on be,t = 1,...,(q +

p—1Dandfess=1,...,i2(q+p)

bg,t ~ Unif(—l, 1), 95,5 ~ Unif(—n, 7T).

Finally, for £ = q + 1,...,2g9 + p, we model the variance
functions vy (Xg) =5 (Xg) by flexible penalized mixtures of B-
splines with smoothness inducing priors on the coefficients as
in Staudenmayer, Ruppert, and Buonaccorsi (2008) as

veXe) =5 Xe) = Y, bae(Xe) exp(De,)
= By, (X¢) exp(9),
@ | Je0f,) o Qrog ) exp{—9 [P/ (205 )},

Ug,e ~ Inv-Ga(ay, by).

Asbefore, the parameters ag’ ; Play the role of smoothing param-
eter, and the inverse-Gamma hyper-priors allow them to be
learned from the data themselves.

2.4. Modeling the Consumption Probabilities P;(X;)

We recall that, according to our model, the probability of report-
ing positive consumptions by an individual with long-term
average intake Xy is given by

Py(Xe) = Pr{U; > —he(X¢) | Xe} = P{he(Xe)}.
We model k¢ (Xy) using flexible mixtures of B-splines again as
he(Xe) = 37514 baej(Xo)Bej = Bae, (Xo)Be»

(ﬂ[ | ]K: Gé’[) "Lﬂ,ﬁa EIB,Z) X (znaé,[)_]e/z



exp{—Bi PeB/(205 )} MVN}, (B | g 0 Zpe0)>
aéj ~ Inv-Ga(ag, bg).

The flexibility of h;(X,) compensates for the parametric nature
of the probit link, making the model P, (X,) robust.

The right panels of Figure 2 suggest that as X, increases, the
probability of reporting a positive consumption also increases
on average. We model this flexibly as ®{hy(X,)}. It is certainly
possible that two individuals have (nearly) the same long-term
average intakes, even though one of them consumes less often
than the other but consumes larger amounts. One could hope
that additional subject-specific random effects terms would help
capture this heterogeneity. It is, however, not clear that such
models would be identifiable in the first place. To see this, con-
sider adding random effects Ry ; to model (2). Letting h; (X¢ ;) =
Xy,i for simplicity, we then obtain Wy ;; = X¢i+Re,i+ Us,ij, € =
1,...,q. With only the standard zero mean assumption on the
distribution of the random effects, it is impossible to separately
nonparametrically identify the distributions of X;; and R, ; in
this model.

2.5. Modeling Energy-Adjusted Intakes

We now consider the problem of modeling the distribution
of energy-adjusted long-term intakes. We now denote X =
Xts. . Xg4p) T = (X1,...,. Xp T with] = g+pand X; = Xg4)p
representing the energy intake. We are interested in the distribu-
tion of the intakes normalized by energy, that is, the distribution
ofZ = (X1/Xj,...,Xj—1/X)). The joint distribution of Z is then
straightforwardly obtained as

fz2(Z) = /X}fx(le], o 221X, Xy)dX;.

The marginal distribution of any Z; is likewise obtained as

fzu(Zo) = /X]fXg,X/(ZZX]:X])dXL

These are integrals of single variables and can thus be easily
numerically evaluated.

2.6. Model Flexibility

For most practical purposes, including our motivating applica-
tions, our models for the densities of interest fx ¢, the densities
of the scaled errors fy ¢, the variance functions s%, and the proba-
bilities of consumptions P;(Xy) are all highly flexible whenever
sufficiently large numbers of B-spline bases and mixture com-
ponents are allowed. Adapting similar results from Sarkar et al.
(2018), formal statements and proofs establishing theoretical
flexibility of these model components can be easily formulated
using known results for B-splines and mixture models. Our
model for the correlation matrices R is also nonparametric. A
formal proof is provided in Section S.3.1 in the supplementary
materials. The only real parametric component of our model
is thus the Gaussian copula. Extending the model to other
elliptical classes, like the multivariate t, would be conceptually
straightforward. It is, however, often difficult to distinguish
between such classes even in much simpler low dimensional
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measurement error-free scenarios (dos Santos Silva and Lopes
2008). The problem only gets an order of magnitude more
difficult when the variables whose densities are being modeled
using copulas are all latent. Since the number of parameters in
elliptical copulas increases only quadratically with dimension,
they also scale well to higher dimensions. It is thus also not clear
if other stylized copula classes could be any useful in nutritional
epidemiology datasets like ours. Exploration of these issues will
be pursued elsewhere.

2.7. Model Identifiability

In the following, we investigate identifiability of our model. For
notational simplicity, we drop the subscript i and consider for
j=L....,mYj= (Yij...,Yaq4pj)", and similarly W;, Uj, X
and X. Then our proposed hierarchical model can be written as
Y =yW), W;=X+U;, EU|X)=0 X=0¢®X),
where the functions ¥(-) : R2*? — R and ¢(-)
R24+P — R24*P are easily identified from models (1) and (2).
Specifically, ¢ (-) is given by

igZhg(Xg), forﬁ:l,...,q,

Xe = X¢—q/Pe—q(Xe—g), fort =q+1,...,29q, (3)

)N(ng@,q, ford =2q+1,...,29+p,
where, for £ = 1,...,q9, Py(Xy) = P(Wg; > 0|Xp) =

®{h¢(Xe)} for some arbitrary functions hg(-) : R — R.

We state the basic assumptions needed for identifiability and
our main result on identifiability below. The proof is deferred to
Section S.3.2 in the supplementary materials.

Assumption 1.

(A1) The number of replicates m > 3.

(A2) U; | x4 S(i)ej, € ~ fe.j = 1,2,3, where fe has a
Fourier transform that is non-vanishing everywhere.

Observe that (A2) includes the homoscedastic case, that is,
when sy (Xp) is a constant function of Xp.

Theorem 1. Under (A1) and (A2), given the observed density
fY.,Y,,Y;» the equation

le)Yz,Y3 (Yb Y, Y3) =

f Fog W 1 Xy, x (Y2 | Xfy, 5 (Y3 | X)fgX)dX

admits a unique solution for fy ng(Yj | X) forj = 1,...,3 and

fg(i). Furthermore, if X and X are reklted by (3), then fx(X)
is uniquely identified from ij‘;((Yj | X) forj = 1,...,3 and

H&X).

In practice, for identifiability, we require m; > 3 recalls for
at least some values of i. As long as this condition is satisfied,
missing values in recall data can be simply ignored. For our
motivating EATS dataset, we have m; = 4 for all i with no
missing recalls. So the conditions are easily satisfied.
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Figure 5. Results for the EATS datasets with sample size n = 965, g = 2 episodic components, milk and whole grains, and p = 2 regular components, sodium and
energy, each subject having m; = 4 replicates. From top to bottom, the left panels show the estimated densities fy ; (X;) of milk and whole grains, sodium, and energy,
respectively, obtained by our method (in blue) and the method of Zhang, Midthune, et al. (2011) (in red). The right panels show the associated distributions of the scaled
errors fe g ¢ (€g+¢) and the associated variance functions v, (Xp) = s% (X¢), estimated by our method.

3. Applications in Nutritional Epidemiology

In this section, we discuss the results of our method applied
to the EATS dataset. Specifically, we consider the problem of
estimating the distributions of long-term average daily intakes
of two episodic components—milk and whole grains, and two
regular components—sodium and energy. The surrogates for
milk and whole grains, we recall, had approximately 21% and
37% exact zeros.

Figure 5 shows the estimated marginal densities fx ¢ obtained
by our method and the method of Zhang, Midthune, et al.
(2011). For sodium and energy, there is general agreement
between the estimates obtained by our method and the method
of Zhang, Midthune, et al. (2011). For the episodic compo-
nents milk and whole grains, on the other hand, the estimated
densities look very different, especially near the left boundary.
Our method shows these densities to continually increase as
we approach zero from right, as is expected from Figure 2.
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Figure 7. Results for the EATS datasets with sample size n = 965, g = 2 episodic components, milk and whole grains, and p = 2 regular components, sodium and energy,
each subject having m; = 4 replicates. From left to right, the estimated distributions of normalized intakes of milk, whole grains and sodium, normalized by total energy,
estimated by our method (in blue) and by the method of Zhang, Midthune, et al. (2011) (in red).

Consistent with Figure 2, compared to milk, the distribution of
whole grains is also more concentrated near zero. The estimates
produced by Zhang, Midthune, et al. (2011), on the other hand,
dip near zero, as was also observed in simulation scenarios.

The right panels in Figure 5 show the estimates of the den-
sities of scaled measurement errors f g4¢(€4+¢) and the esti-
mates of the variance functions sﬁ ()N((). The estimated fe 41¢s
are positively skewed for all components. And, as expected
from Figures 1 and 2, the estimated si’s show strong pat-
terns of conditional heteroscedasticity for all components.
For the episodic components, our method also provides esti-
mates of the probabilities of reporting positive consump-
tions which are shown in Figure 6. The recalls for whole
grains have more zeros than the recalls for milk. Its dis-
tribution is also more concentrated near zero. The proba-
bility of reporting positive consumptions for whole grains
thus increases more rapidly as its true daily average intake
increases.

Figure 7 shows the distributions of normalized intakes
obtained by our method and the method of Zhang, Midthune,
etal. (2011). The estimates look very different, including the one
for the regular component sodium. Our method provides more
realistic estimates of the distribution of normalized intakes that
are more concentrated near zero but are more widely spread.

Figure S.7 in the supplementary materials shows the esti-
mated bivariate marginals for produced by our method and the
method of Zhang, Midthune, et al. (2011). Figure S.8 in the sup-
plementary materials additionally illustrates how the redundant
mixture components become empty after reaching steady states
in our MCMC based implementation. Figure S.8 also shows
how in practice the mixture component specific parameters get
shared across different dimensions in our models with shared
parameters for the marginal densities.

More formal model comparisons for real data, using com-
ponent wise log pseudo marginal likelihoods (Geisser and
Eddy 1979) and widely applicable information criteria (WAIC)
(Watanabe 2010), are discussed in Section S.9 in the supplemen-
tary materials.

4, Discussion
4.1. Summary

In this article, we considered the problem of multivariate den-
sity deconvolution when replicated proxies are available but,
complicating the challenges, the proxies also include exact zeros
for some of the components. The problem is important in
nutritional epidemiology for estimating long-term intakes of
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episodically consumed dietary components. We developed a
novel copula based deconvolution approach that focuses on the
marginals first and then models the dependence among the
components to build the joint densities, allowing us to adopt
different modeling strategies for different marginal distributions
which proved crucial in accommodating important features of
our motivating datasets. In contrast to previous approaches of
modeling episodically consumed dietary components, our novel
Bayesian hierarchical modeling framework allows us to model
the distributions of interest more directly, resulting in vast
improvements in empirical performances while also providing
estimates of quantities of secondary interest, including prob-
abilities of reporting nonconsumptions, measurement errors’
conditional variability, etc.

4.2. Other Potential Applications

Applications of the multivariate deconvolution approach devel-
oped here are not limited to zero-inflated data only but also
naturally include data with strictly continuous recalls, as was
shown in the simulations. Advanced multivariate deconvolution
methods are also needed to correct for measurement errors in
regression settings when multiple error contaminated predictors
are needed to be included in the model.

4.3. Methodological Extensions

Other methodological extensions and subjects of ongoing
research include inclusion of associated exactly measured
covariates like age, sex, etc. that can potentially influence
the consumption patterns, establishing theoretical convergence
guarantees for the posterior, accommodation of dietary compo-
nents which, unlike regular or episodic components, are never
consumed by a percentage of the population, accommodation
of subject specific survey weights, exploration of non-Gaussian
copula classes, inclusion of additional information provided by
food frequency questionnaires, etc.

4.4. HEIlIndex

Aside being of independent interest, episodic dietary compo-
nents also contribute to the Healthy Eating Index (HEI, https://
www.cnpp.usda.gov/healthyeatingindex), a performance mea-
sure developed by the US Department of Agriculture (USDA) to
assess and promote healthy diets (Guenther, Reedy, and Krebs-
Smith 2008; Krebs-Smith et al. 2018). The index is based on
13 energy adjusted dietary components, as many as 8 of which
are episodic, and is currently calculated using the NCI method
discussed in Section S.4 in the supplementary materials. The
methodology developed in this article provides a much more
sophisticated framework for modeling the HEI index and makes
up an important component of our ongoing research.

Supplementary Materials

The supplementary materials present a brief review of copula and explicit
formula of quadratic B-splines for easy reference. The supplementary
materials also provide a detailed comparison of our method with previous

approaches to zero-inflated data and numerical experiments comparing it
with its main competitor. The supplementary materials additionally detail
the choice of hyper-parameters and the MCMC algorithm used to sample
from the posterior, presents some additional figures, and the results of some
additional numerical experiments. R programs implementing the deconvo-
lution methods developed in this article are included in the supplementary
materials. The EATS data analyzed in Section 3 can be accessed from
National Cancer Institute by arranging a Material Transfer Agreement. A
simulated dataset, simulated according to one of the designs described in
Section S.6 in the supplementary material, and a “readme” file providing
additional details are also included in the supplementary material.
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