SPECIAL SECTION ON ADVANCED COMMUNICATIONS AND NETWORKING TECHNIQUES FOR
WIRELESS CONNECTED INTELLIGENT ROBOT SWARMS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 27, 2020, accepted May 15, 2020, date of publication May 25, 2020, date of current version June 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2997304

IADRL: Imitation Augmented Deep Reinforcement
Learning Enabled UGV-UAV Coalition for Tasking
in Complex Environments

JIAN ZHANG!', (Member, IEEE), ZHITAO YU"'2, (Graduate Student Member, IEEE),

SHIWEN MAO “2, (Fellow, IEEE), SENTHILKUMAR C. G. PERIASWAMY',
JUSTIN PATTON', AND XUE XIA?, (Graduate Student Member, IEEE)

IRFID Laboratory, Auburn University, Auburn, AL 36849, USA
2Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA

Corresponding author: Shiwen Mao (smao@ieee.org)

This work was supported in part by NSF under Grant ECCS-1923163, and in part by the RFID Laboratory and the Wireless Engineering
Research and Education Center (WEREC), Auburn University, Auburn, AL, USA.

ABSTRACT Recent developments in Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehi-
cles (UGVs) have made them highly useful for various tasks. However, they both have their respective
constraints that make them incapable of completing intricate tasks alone in many scenarios. For example,
aUGYV is unable to reach high places, while a UAV is limited by its power supply and payload capacity. In this
paper, we propose an Imitation Augmented Deep Reinforcement Learning (IADRL) model that enables a
UGYV and UAV to form a coalition that is complementary and cooperative for completing tasks that they are
incapable of achieving alone. IADRL learns the underlying complementary behaviors of UGVs and UAVs
from a demonstration dataset that is collected from some simple scenarios with non-optimized strategies.
Based on observations from the UGV and UAV, IADRL provides an optimized policy for the UGV-UAV
coalition to work in an complementary way while minimizing the cost. We evaluate the IADRL approach
in an visual game-based simulation platform, and conduct experiments that show how it effectively enables
the coalition to cooperatively and cost-effectively accomplish tasks.

INDEX TERMS Unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV), coalition, deep

reinforcement learning (DRL), imitation learning.

I. INTRODUCTION

The last decade has witnessed significant developments
in unmanned aerial vehicle (UAV) and unmanned ground
vehicle (UGV) technologies, which have enabled their
wide deployment for various applications, such as surveil-
lance, search and rescue, inspection [1], inventory count-
ing [2], [3], and more [4]-[7]. Recently, researchers have
shown a growing interest to deploy them for more com-
plex tasks that require multiple UAVs or UGVs to coop-
eratively work together to improve efficiency [8]. Most
of the existing research focuses on the cooperation in a
multi-agent (or multi-robot) system that consists of a group
of UAVs or UGVs. For example, Koubda et al. intro-
duced COROS [9], a high-level conceptual architecture for
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multi-agent UGV/robotic systems that represents a generic
architecture for cooperative multi-agent applications. A coop-
erative architecture for the navigation of a swarm of robots
based on Dynamic Fuzzy Cognitive Maps was introduced
in [10]-[12], which allows for the development of homo-
geneous autonomous robot navigation without a global con-
troller. A multi-UAV system was introduced in [8] to optimize
target assignment and path planning. In addition to these
homogeneous systems, some works went further to create
a system that consists of heterogeneous agents/robots with
different capabilities. For example, Das et al. in [13] intro-
duced a distributed algorithm for task allocation in a system
of multiple heterogeneous, autonomous robots deployed in a
healthcare facility.

There are some essential limitations for both UGVs and
UAVs. For example, a UGV has limited vertical detec-
tive/access capability, and a UAV is restrained by inadequate
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operation range and time due to its limited power supply
capacity. These limitations impede them in many applica-
tions. For instance, a ground robot proposed in [2] failed to
perform inventory counting of items stored on high racks.
Recently, UAVs have been expected to be widely deployed for
disaster relief (e.g., survey, search and rescue, and providing
network access). However, the authors of [14] found that
a UAV’s limited fight time (usually 20-30 minutes) greatly
reduces their operating range. Obviously, for the above sce-
narios, we cannot solve the problem by simply deploying a
swarm of UGVs or a swarm of UAVs alone. Alternatively,
to pair them as a complementary team would help to over-
come these constraints for tasks that UGVs or UAVs would
be incapable of completing alone. However, an effective
and low-cost strategy for implementing such complementary
UGV-UAV coalition is lacking.

To remedy these limitations, this paper presents an inno-
vative method, named Imitation Augmented Deep Rein-
forcement Learning (JADRL), that enables a UGV and a
UAV to form a coalition that can complement each other
for complex tasks. The complementary UGV-UAV coalition
can be deployed for applications that are usually incapable
of being completed by a UGV or UAV alone. Using the
disaster relief scenario as an example, an IADRL-enabled
coalition can be deployed for autonomous search-and-rescue
tasks. In the chaotic and hazardous environment follow-
ing a disaster, a powerful UGV can autonomously carry a
UAV to remote destinations usually out of the UAV’s flight
range. Additionally, the UGV provides communication and a
power supply that greatly extends the operational range of
a resource-constrained UAV, and the UAV helps the UGV
with finding the best route and with navigating through
complex terrains that are out of the UGV’s navigational
capability (e.g., vertically unreachable or invisible to the
UGYV). To ensure that the coalition can successfully and
effectively accomplish tasks, the cooperation of its agents
(i.e., the UGV and UAV) must follow an underlying and
complex model that varies depending on the task or operating
environment.

The proposed IADRL model can learn the complementary
features of UGV-UAV from a demonstration dataset that is
collected from a simple and imperfect scenario. The model
also learns a policy that responds to the environment, such as
collision avoidance when around obstacles and other agents.
Based on observations of the UAV and UGV, the IADRL
model provides a series of actions for the UGV and UAV
that ensures an optimized and complimentary strategy for a
given task. Additionally, we extend the IADRL to support
multiple UGV-UAV coalitions working together within the
same space. To the best of our knowledge, this is the first
work to focus on creating such a coalition of robots with com-
plementary capabilities for task completion, where a single
agent in the team alone is incapable of completing. In a com-
plex scenario, a task is executed by the first agent, and then
another agent must continue the task based on the previous
agent’s success. Thus, the actions of all agents in the coalition
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are dependent upon each other, and agents must work as a
complementary, cooperative team. The main contributions of
this work are summarized as follows:

1) The proposed network enables a UGV and UAV to
form a coalition to complement and enhance each other
to accomplish complex tasks that either agent alone
could not complete. It also optimizes the complemen-
tary coordination strategy among the agents to accom-
plish various tasks with the lowest cost (e.g., minimum
power consumption, optimized navigational trajectory
with the minimum number of steps, etc.).

2) We develop an imitation learning model to learn the
intricate complementary features of UGVs and UAVs
in the coalition using demonstration data that was
collected from simple scenarios with non-optimized
strategies. This will greatly reduce the effort of mod-
eling the complementary behaviors of agents in the
coalition.

3) We test IADRL in a visual game-based simulated envi-
ronment, and show that the proposed IADRL approach
exploits the complementary behaviors of UGVs and
UAVs during search-related tasks and over-performs in
several baseline schemes.

In the remainder of this paper, we discuss related work in
Section II, introduce and analyze the proposed IADRL model
in Section III, present our experimental study in Section IV,
and conclude our work in Section V.

Il. RELATED WORKS

A. IMITATION LEARNING

Imitation learning methods focus on the problem of learning
and perform a task by learning from demonstration data.
These methods can be roughly divided into three categories:
Behavior Cloning (BC; or supervised learning) [15], [16],
Inverse reinforcement learning (IRL) [17], and Generative
Adversarial Network (GAN) imitation learning [18].

1) BEHAVIOR CLONING (BC)

This type of imitation learning was motivated by humans’
tendency to learn skills by imitating the behaviors of
others, and has been widely used in autonomous driv-
ing [19], [20], wireless communication [21], [22], and smart
grids [23], [24]. In BC, agents receive instructions from a
hand-crafted demonstrator (which serves as training data),
and then replicate actions from the expert policy. BC is able
to imitate the demonstrator immediately without any inter-
action with the environment. However, these agents cannot
handle situations that are not included in the demonstrator.
Furthermore, when the agents are limited in capacity, wrong
or unnecessary behavior may be replicated. The method is
simple, but is useful only with large amounts of high qual-
ity training data. Additionally, because agents merely learn
single-step decisions, the compounding error accumulation
caused by the covariate shift problem could lead to a large
learning deviation.
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2) INVERSE REINFORCEMENT LEARNING (IRL)

In aclassic Reinforcement Learning (RL) setting, the ultimate
goal is for an agent to learn a decision process to generate
behaviors that could maximize accumulated rewards by some
predefined reward functions. As demonstrated by Ng ef al.
in [25], IRL is given the observed agent’s behaviors and
observations of the environment to infer the optimal reward
function. IRL generally has a reward function that is difficult
to accurately quantify, and another system has to be able to
complete the tasks well to offer instructions for the model.
The difference between IRL and BC is that IRL generates a
reward function to infer an optimal policy instead of using a
fixed replication policy.

3) GAN FOR IMITATION LEARNING

Ho and Ermon proposed Generative Adversarial Imitation
Learning (GAIL) in 2016 [18]. They introduced the idea of a
GAN combined with imitation learning. Unlike GAN, GAIL
does not have an explicit Generator that acts as the policy
of agents. Learning in GAIL is divided into two steps. First,
to train the Discriminator adversarially with the data obtained
from the current policy sampling and expert data. Second,
the Discriminator serves as the replaced reward function to
train the policy. GAIL is superior for large-planning and high-
dimensional problems as compared to BC and IRL.

B. MULTI-AGENT SYSTEM PLANNING AND CONTROL

This is a hot topic that has attracted considerable research
interest in recent years. The existing studies have mainly
focused on operating multiple UGVs/robots and UAVs in
the same environment. For example, Sariel-Talay et al. pro-
posed a multi-robot cooperation framework to solve complex
tasks in a cost-efficient manner [26]. Swarm intelligence is
inspired by social animals and aims to form the behavior
of many decentralized autonomous cooperative agents. For
example, Wang et al. solved the multi-robot task allocation
problem using an ant colony algorithm [27]. In recent years,
RL has become extremely trendy in the field of multi-agent
systems. In [8], the author presented an innovative artifi-
cial intelligence method combined with a well-known RL
method, the Multi-Agent Deep Deterministic Policy Gradi-
ent Algorithm, to solve path planning and task allocation
problems in dynamic environments. However, these existing
methods have never been applied to a coalition of multiple
UGVs/robots and UAVs before.

Few studies have considered the use of multiple UGVs
and UAVs simultaneously to solve complex tasks in dynamic
environments. For example, Ghamry et al. proposed an algo-
rithm that controls UAV’s autonomous take-off, tracking, and
landing with a UGV [28]. They also presented an interesting
study on forming a team of cooperating UAVs-UGVs for
forest monitoring and fire detection [29]. Khaleghi et al.
studied the team formation approach of multiple UGVs and
UAVs [30]. The author in [31] introduced an auction-based
approach for applying an estimated utility to task assignment
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for heterogeneous, multi-agent teams. But these studies only
focus on one area (i.e., team formation or task allocation)
because of the huge computational cost and the communica-
tion difficulties between agents. Meanwhile, some companies
(e.g., Quanser Inc.) provide a variety of mobile robots and
UAYV swarm systems, but none of them focus on creating a
UGV-UAV coalition for complex tasks. Unlike these exist-
ing methods, our proposed approach creates a coalition that
enables a UGV and a UAV to complement each other during
complex tasks that are incapable of being completed by a
single UGV or UAV or by a swarm of UGVs or UAVs alone.
This approach not only concerns the optimization of path
planning, but also learns an underlying complementary model
for the agents from a set of non-optimized demonstration
data.

Ill. THE PROPOSED APPROACH

Our proposed IADRL approach enables a coalition consisting
of a UGV and UAV to complement each other for complex
tasks. Additionally, we extend IADRL to include a system of
multiple UGV-UAV coalitions working together.

A. IADRL ENABLED UGV-UAV COALITION
1) PROBLEM DEFINITION AND CHALLENGES
There are several essential limitations of UGVs and UAVs
that prevent them from being deployed for some tasks. Fig. 1
illustrates a motivating scenario where rescue teams must
reach a high-altitude position. The UAV is capable of reach-
ing that position; however, the destination is too far for it to
fly from the starting point with its limited battery capacity.
Alternatively, the UGV can move closer to the destination,
but is incapable of climbing up the high altitude. An intuitive
idea to reach the destination is to pair the UGV and UAV
together as a coalition that complements each other: the UGV
can carry the UAV closer to the destination, and then the UAV
launches from the UGV and flies to the target.

Motivated by the Decentralized Partially Observable
Markov Decision Processes (Dec-POMDPs) [32], this

Destination

. .

Destination

E=-—3

(b) s
Destination

(©)

FIGURE 1. An example of a UGV-UAV complementary coalition for task
completion: (a) the target destination is too far for the UAV to reach,
while too high for the UGV alone, (b) the UGV carries the UAV closer to the
destination, and, finally, (c) the UAV flies to the high-altitude destination.
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UGV-UAV complementary coalition for task completion
with minimum cost can be described by the tuple <
g,0,a,r,y, M >, where ¢ denotes the environment the
coalition will interact with; 0 = (01, 02) is the joint observa-
tions of the coalition, and consists of the UGV’s observation,
01, and the UAV’s observation, 07; a = (ay, az) denotes the
joint actions of the UGV, ay, and UAV, ajy, in the coalition;
r is the reward function of the coalition while joint actions a
impose ¢ with joint observations 0; y € [0, 1) is a discount
factor for future rewards; and M defines the complementary
cooperation model of the UGV and UAV. To achieve success-
ful task completion, the UGV and UAV must collaborate with
and complement each other; thus, their joint actions satisfy
a= (al,az) ~ M.

The goal of IADRL is to learn a joint value-action function
Q07 (0, a; 0) that enables a complementary UGV and UAV
coalition to achieve maximum overall rewards (or minimal
overall costs) while accomplishing various tasks. The equa-
tion for this complementary coalition is formulated as (1):

argmaxQ?” (o, a; 0) e))
st.a=(ay,a) ~ M, )

where 6 is the parameter of the value-action function Q7.
Note that o and a represent the joint observations and
actions in the coalition, and the joint actions follow an
underlying model, M, that complements each action during
tasks. To explicitly model the underlying complementary
cooperation model, M, of the UGV-UAV coalition during
tasks is difficult and, at least, requires significant effort and
expertise.

We faced several challenges when creating the IADRL
model under these requirements. For our method to suc-
cessfully complete generic and complex tasks, we have to
develop a straightforward way to represent the coalition’s
complementary cooperation model. Equation (1) shows that
the proposed network has to learn an optimized policy, 7,
for UGV-UAV joint actions. Reference [33] suggests that the
joint-action space increases exponentially with the number
of agents. Consequently, it is difficult for deep reinforcement
learning (DRL) methods to reach the optimized policy, =,
in such huge searching space. Furthermore, the trained pol-
icy, m, not only needs to provide optimized actions for task
execution, but also needs to follow the underlying model M
to enable the UGV-UAV coalition to successfully complete
tasks. State-of-the-art methods such as Value-Decomposition
Networks (VDN) [34] and QMIX [33] require that the actions
of agents at the same time step are independent so they
can be factorized. Obviously, this assumption does not hold
true for the UGV-UAV coalition. Additionally, it is nec-
essary to train the proposed model in a continuous-action
space that empowers the UGV-UAV coalition’s operation
in complex environments. This further increases the size
of the joint-action space and challenges the training of the
TADRL model.
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2) THE IADRL MODEL

To tackle the above challenges, first, instead of explicitly
modeling the collaboration between the UGV and UAV,
we captured their complementary cooperation using a set of
demonstration data. The dataset was collected by manually
controlling the UGV-UAV coalition to complete several sim-
ple tasks. The demonstration data do not need optimization,
but only a set of the most basic and important rules of the col-
laborative and complementary actions. As such, our method
needs to teach the coalition just as one would teach a new
sports skill to a team of kids, by showing them how to play
through imitation.

Therefore, we design IADRL by combining an imita-
tion model with a DRL model. The architecture of IADRL
is presented in Fig. 2. The imitation model and the DRL
model are contained in a pink block and green block, respec-
tively. The imitation model learns the cooperative features,
M, of complementary cooperation from the non-optimized
demonstration dataset and augments the DRL model’s train-
ing to develop an optimized strategy. As such, we learn
the optimized policy, 7, while following the complementary
cooperation model. Meanwhile, the DRL model also learns a
strategy to respond to dynamic environments, such as avoid-
ing collisions with obstacles and other UGVs and UAVs.

Imitation Network

“Expert”

Data Se
: IActions
POlle Tig (0) a= (a1 az)

TD error

Discriminator

Imitation
Reward:

Ti

Coalition Value function PANITSeS0 sl
QZ(0,a; 6)

Observations
0 = (01,0;)
Extrinsic
Reward:

rEX

Environment

FIGURE 2. The architecture of the IADRL model.

Deep Reinforcement Learning Network

a: THE IMITATION MODEL

The imitation model is inspired by the study of GAIL [18],
and it is based on a GAN [35] architecture that comprises two
basic entities: a discriminator, D, and a generator, G. Discrim-
inator D is created to distinguish between the “expert” data
and the data produced by generator G. Additionally, D and G
are simultaneously trained in an adversarial way: G is updated
to produce “‘counterfeited” data that could pass the detection
of D, while D is improved to distinguish the ‘““‘counterfeited”
data from the true “expert” data. The resulting competition
drives both entities to improve their capabilities. Thus, a well-
trained imitation model not only generates data with almost
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the same distribution of the “expert” data, but also precisely
measures the similarity of any given data with the “expert”
data.

Different from the original GAIL model, we replaced the
Trust Region Policy Optimization-based [36] generator with
the latest Proximal Policy Optimization (PPO)-based [37]
generator, which also serves as the policy, m, of the DRL
model. Thereby, the term generator G and policy 7 will be
used interchangeably in the rest of this paper. Policy 7 has
two roles in our JADRL, as it not only generates actions
following the distribution of the “expert” data, but also reacts
to the environment with an optimized strategy. The details
of policy w will be introduced when we discuss the DRL
model. Here, we focus on the discriminator, D(o, a; w), of the
imitation model.

In our imitation model, D : O x A — (0, 1) is a discrimi-
nator function with weight w, and O and A are the observation
and action space, respectively, of the UGV-UAV coalition. We
implement the discriminator D with a deep neural network,
which is a fully connected neural network with Mp hidden
layers. Each hidden layer has the same number of Np units.
The size of the input layer is determined by the size of the
concatenated input (o0, a). The size of D can be configured
using Np and Mp. Usually, a larger-sized network is required
if the UGV-UAV coalition is deployed for more complex
environments and tasks.

During the training process, we can improve the discrimi-
nator D by maximizing the following value function:

V(w) = Ex[log(D(o, a; ))]
+E;[log(1 — D(o, a; w))] — AH(w), (3)

where H () represents the causal entropy [38] of 7 defined
as H(r) = E,[—logm(alo)], and it severs as a policy
regulator to make the distribution of policy as evenly as
possible; A > 0 is the discount factor of H; and tg refers
to the “expert” policy provided by a demonstrated dataset
with length N, ie., tgx = [n1,12,...1nn8]. Here 5, =
[(0°, a%), (0!, al), ..., (o7, aT)] is the record of an episode
with T steps. It represents the model of the complementary
cooperation between the UGV and UAV; thus, iz ~ M.
Again, tg is not a perfect policy, but is collected from a few
sample scenarios in controlled settings navigated by manual
control and is, therefore, considered to be the “‘expert.”

Equation (3) is derived from the objective function of
GAIL [18]. It shows that during the training process, as dis-
criminator D is updated to increase V(w), its ability to detect
the similarity of a policy and the “expert” data is improved.
When it produces a lower value for a given action, a, it indi-
cates that the chance of action a is higher from the “expert”
data, and thus, shows with higher confidence that it is follow-
ing the underlying complementary model, a ~ M.

b: THE DRL MODEL
The proposed IADRL model must not only learn the com-
plementary cooperation model, but must also react to the
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dynamics of an environment and provide an optimized nav-
igation strategy for the UGV-UAV coalition. To this end,
we created the DRL model based on a PPO network [37]
with an actor-critic architecture, which enables the model
to produce continuous actions for the UGV-UAV coalition
during task completion in complex environments. The pro-
posed DRL model consists of two separate components: an
actor (i.e., policy ) and a critic (i.e., value function QF).
Policy 7 is responsible for generating action a based on the
given observation o. Additionally, policy 7 is learnt by a
neural network from the training and history data. The value
function, QF, processes the received rewards and evaluates
the current action prescribed by policy 7.

We implement Q7 and 7 using two deep neural networks
that are both fully connected networks with M, hidden layers
for m and Mg hidden layers for Q7 . Each hidden layer has the
same number of N and Ny units for the 7 and Q7 networks,
respectively. The size of the input layers is determined by
the size of the input vectors. The size of the output layer
of 7 is determined by the size of the joint action, a, of the
coalition. As in the case of discriminator network D, usually
larger-sized networks are required for 7 and Q7 if the UGV-
UAV coalition is deployed for more complex environments
and tasks.

Ultimately, the goal of training the DRL model is to maxi-
mize the UGV-UAV coalition’s state-value function Q7 for a
given policy 7, given by

07 (0,a;0) = E[rq(0,a) + yEy[07 (0, a)]], (4

where 6 is the parameter of function Q7; y € (0,1] is
the discount factor for future rewards; r,, is the augmented
reward function, given by

rau(0, @) = B - ryy(0,a) + (1 — B) - rex(0, a), (5)

where § € (0, 1) represents the confidence weight of the
“expert”” demonstration data, and a larger 8 can be deployed
if 7 is closer to the optimized policy; r, is the reward func-
tion that comes from the environment, which is the same as a
traditional Markov Decision Processes (MDPs) environment;
additionally, r;,, is the reward function of the imitation model
and measures how similar the coalition’s joint actions a are
with the “‘expert policy,” as

rim(0, @) = log(1 — D(o, a; w)). (6)

During the training, we aim to increase Q7. Equa-
tions (3), (4), and (6) show that as we increase QF,
we decrease the value of V(w). Thus, from the results of [18],
we increase the similarity of the policy, 7, and the “expert”
dataset, tg, as we increase Q7. Note that our goal is not to
train the policy, 7, to copy 7, but to learn the complementary
cooperative model that underlays tz while maximizing the
extrinsic reward. Therefore, we introduced the confidence
parameter S to augment the learning process by trading-
off between learning from expert data and the environment.
Alternatively, r., guides the IADRL to learn a strategy that
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reacts to the environment. Its configuration is straightforward
and lists several rules for the coalition when interacting with
the extrinsic environment. Usually, we can assign a penalty
for the coalition if any agent collides with either an obstacle
or other agent. This way, a trained Q7 enables the UGV and
UAV to choose the action that does not cause a collision.
We can also assign a small penalty for every step taken by
each agent, and this enables Q7 to provide the coalition’s best
navigational route for reaching a target. Here, the best route is
the one with the lowest sum of navigational costs of the UGV
and UAV. Note that the cost of operating a UAV is usually
higher than that of the UGV. Additionally, an example of 7,y
will be provided in the later experimental section. The value
function Q7 of the proposed DRL network can be trained end-
to-end by minimizing the following loss function:

L6) = Early — O7 (0, a; 0)1, 7

where y = ry, +y - maxy [Q7 (o', a"; 67)] and 6~ are param-
eters trained by the previous iteration. During the training,
we try to decrease the stochastic gradient of (7) with respect
to 6. Then, a trained state-value function Q7 precisely evalu-
ates action a of the UGV-UAV coalition.

From (4) and (5), we know that as long as a policy, m,
is found that guides the UGV-UAV coalition to achieve a
higher cumulative Q value, the proposed IDARL network will
enable the complementary cooperation between agents and
find the best strategy to accomplish a given task. To better
explain the process of updating the policy in our PPO-based
DRL model, we introduce an additional objective function
with respect to the ¢ weighted policy, 7y, as:

7(0)
T old (0)

J(p) =E [min ( Qe f(e, Qe )>] )
where € is a hyper-parameter set to 0.1 or 0.2; 7y, and
7, denote the policy before and after the training update,
respectively; and f(-) is a clip function defined as:

fle, Q) =(1+6)0Q,
fle. ) =(1-e0Q,

The training process aims to maximize J(¢) by ascending
the stochastic gradient of (8) with respect to ¢. Thus, policy
7 tends to provide actions that can impose higher Q values.
During the training, (9) limits the updated range of 7, so that
it remains close to the last policy, 7y, . This greatly improves
training stability by avoiding too much of a policy update in
one step.

We summarize the training process of IADRL in
Algorithm 1. During the training process, we recursively
update discriminator D of the imitation model to provide a
more accurate evaluation of how good the complementary
cooperation is between the UGV and UAV. Then, the value
function, QF, is updated to enable the model to precisely
assess the joint-action, o, of the coalition as compared to the
extrinsic environment and the intrinsic complementary coop-
eration model. Last, IADRL updates policy r that provides

ifQ>0

if 0 <0. ©)
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Algorithm 1: The Training Procedure of IADRL

1 Input: “Expert” dataset 7g, and initial parameters wg
and 6p;

2 for episode i = 1 to M do

3 Sample training dataset 7;;

4 Update discriminator D by ascending the stochastic

gradient of (3) with respect to w;

5 Update value function Q7 of the DRL by decreasing

the stochastic gradient of (7) with respect to 6;

6 Update policy m, of the DRL by ascending the

stochastic gradient of (8) with respect to ¢;

7 end

a series of actions to accomplish given tasks and to receive
higher cumulative Q values. Thus, a well-trained IADRL
model enables the UGV-UAV coalition to follow the comple-
mentary model, M, and provides an optimized strategy when
the coalition is deployed for various tasks.

B. MULTI-COALITION SYSTEMS

Our TADRL model can be easily extended to support a sys-
tem with multiple UGV-UAV coalitions. This system follows
the traditional Dec-POMDPs, and the coordination among
the coalitions is loose and satisfy the model of VDN [34].
Therefore, the global joint-action value function, denoted by
Qg, of a system with N coalitions can be represented as:

N
Qq(s.u) =Y OF (0;, a;; ), (10)

i=1

where 0; = (01, 02;) and a; = (ay;, az;) denote the joint
observations and actions, respectively, of the UGV and UAV
in coalition i. Additionally, s = (01,02,...,0y) and u =
(a1, ay, ..., ay) refer to the joint observations and actions,
respectively, for all N coalitions in the system. A joint obser-
vation, s, is created by concatenating all observations, o;, from
all the coalitions. Equation (10) indicates that based on the
current joint observation, s, we find a best joint-action for the
system, u, by decomposing the problem and finding all of the
best joint-action, a;, for each coalition, which is determined
by the trained IADRL model based on its observation o;.
The UGV-UAV coalition requires wireless communica-
tions to function well. From (1), the optimized policy, =,
of the coalition requires joint observation and joint action
data, which are created by the observations and actions from
both the UGV and the UAV. Thus, wireless communications
within the coalition is essential for sharing this information.
On the other hand, communications among UGV-UAV coali-
tions is not mandatory. In (10), it is shown that the global
joint-action value function, Q, is the sum of individual coali-
tion value functions, Q7 , which is conditional on the coali-
tion’s observations and actions. Therefore, a decentralized
optimized policy for a system with multiple coalitions can
be achieved when each coalition selects its own optimized

VOLUME 8, 2020



J. Zhang et al.: IADRL: Imitation Augmented DRL Enabled UGV-UAV Coalition

IEEE Access

policy, m, from a trained JADRL model without sharing
information among coalitions.

IV. EXPERIMENTAL STUDY AND DISCUSSIONS

A. EXPERIMENT CONFIGURATION

1) SIMULATION PLATFORM

We designed a simulation training and evaluation platform for
the TADRL system based on the Unity3D ML-Agents plat-
form [39]. The platform is illustrated in Fig. 3. It is designed
to simulate the scenario of deploying UGV-UAV coalitions
in a giant, high-bay warehouse crowded with high racks and
shelves. The coalitions are tasked with reaching given targets
to mimic item scanning applications (i.e., RFID or barcode) in
indoor spaces. The platform’s dimension is 50 x 50 x 7 m?,
and is divided into 4 sub-zones by cross shaped obstacles.
As Fig. 3 depicts, orange agents represent UGVs, blue agents
represent UAVs, and the green spheres suspended in air (they
are actually on different levels of racks in this space) represent
given targets.

FIGURE 3. Basic simulation experimental setup for five UGV-UAV
coalitions performing tasks cooperatively using the IADRL system. The
UGV-UAV coalitions are marked as orange (UGV) and blue (UAV) block
pairs; the tasks are marked as green balls.

We implemented our IADRL model using Tensorflow
on a computer with an Intel 9900K CPU and two Nvidia
2080 GPUs. We conducted each experiment with the same
IADRL configuration: the discriminator, D, has Mp = 2
hidden layers and Np = 128 units per layer; the coalition
value function, Q7 , has My = 3 hidden layers and Ng = 512
units per layer; the policy, 7, has M; = 3 hidden layers
and N; = 512 units per layer. In the following experiments,
we deployed 5 UGV-UAV coalitions. Their initial positions
and the positions of all targets were randomly generated.

The observations (or states of the environment) are col-
lected by each agent’s Ray-cast sensor, which is provided
by Unity3D. Similar to a Lidar sensor (e.g., the RPLidar
laser scanner), the Ray-cast sensor casts rays into the sur-
rounding environment, and the feedback is a vector that pro-
vides the position of all detected objects and their distances.
A UGV’s Ray-cast sensor detects only in the horizontal
direction (to identify obstacles on the floor), while a UAV
casts rays towards the horizon, and upward and downward
within 45 vertical degrees. The maximum detection range
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of all Ray-cast sensors is set to 20 meters with a 20-Hz
refresh rate. A UGV-UAV coalition’s observation, o, is cre-
ated by concatenating all of the observation vectors of its
UGV and UAV agents to form a new vector. The UGV’s
action is represented by a; = [ay, ay], and the UAV’s action
is represented by a; = [ay, ay, a;], where ay, ay, and a; are
accelerations in the x, y, and z direction, respectively. The
UGV-UAV coalition’s action, a = (ay, az), is also created by
concatenating a1 and ap to form a new vector.

2) EXTRINSIC REWARDS

The extrinsic rewards configuration is summarized in Table 1.
They are designed to capture basically every condition that
could be experienced when deploying UGV-UAV coalitions
for item scanning tasks. Considering that the average battery
life of a UGV is 5 to 10 times that of a UAV, we set the
UAV’s cost of each step to be 6 times that of the UGV. Thus,
the UAV tends to ride on the UGV when transiting between
positions, while simultaneously finding the best trajectory to
reach the destination by trading-off from the ride-on to fly
state. To encourage coalitions to complete tasks, we set the
reward of reaching each target to 100 times that of the step
cost for UAVs. Our intention is for the UGV to successfully
scan all the targets within its reachable vertical height and
define them as bad targets for the UAV. If the UAV mistakenly
reaches a bad target, a penalty as big as the reward (i.e., 60)
will be issued. Targets that are too high and out of the UGV’s
reach are considered good targets for the UAV.

TABLE 1. Extrinsic rewards configuration.

Reward Items Reward Value
UGV’s step cost -0.1
UAV’s step cost -0.6
UGV reaches a target +60
UAV reaches a bad target -60
UAV reaches a good target +60
UAV collides with an obstacle -60
UAV collides with another agent -60
UGV collides with an obstacle -30
UGV collides with another agent -30
Final reward +30

To ensure that the UGV and UAV avoid colliding into
obstacles and other agents, the penalty for a collision is equal
to the target reward (i.e., 60) for the UAV and half of that
for the UGV. The reason for setting a lower penalty for the
UGV is that UGVs are usually protected with anti-collision
sensors or bumpers. When the coalition reaches all targets
(or the given number of targets), it has completed the task and
wins a final reward. We set the confidence weight g in (5) to
0.1 for the remaining experiments.

3) DEMONSTRATION DATA COLLECTION

The demonstration dataset tg is collected by manually con-
trolling a UGV-UAV coalition through several simple sce-
narios that are displayed in Fig. 4. The dataset tr consists
of 40 total episodes of completed tasks (10 tasks per scenario)
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FIGURE 4. The scenarios that allow for collection of demonstration data
7g: (a) a target (green ball) within reachable height of the UGV, (b) a
target reachable only by the UAY, (c) one target each for the UAV and UGV
to reach within the same sub-zone, (d) one target each for the UAV and
UGV to reach, but within different sub-zones.

according to the scenarios described in Fig. 4 (10 for each
scenario). For the scenario shown in Fig. 4(a), a target is
created within the reachable height of the UGV, and we
controlled the coalition in a way that allowed the UGV to
reach the target. In Fig. 4(b), a target at a higher place is
generated for the UAV to reach. The UAV first rides on the
UGYV to move closer to the target, and then flies to the target
to scan it. In Fig. 4(c), we create two targets, one for the
UAV and the other for the UGV, in the same sub-zone. Again,
we navigated the coalition so the UGV and UAV could reach
their targets cooperatively. Fig. 4(d) is a scenario similar to the
scenario in Fig. 4(c), but we place the two targets in different
sub-zones. Note that the targets in each scenario are generated
randomly.

During this process, we manually controlled the coalition
with some non-optimized strategies. For example, we do not
optimize the route when moving towards any target. For the
scenarios in Figs. 4(c) and 4(d), we do not consider the
order of targets for optimizing the moving trajectory. Thus,
Tp serves as an instructor that guides all agents to learn
complimentary behavior patterns rather than only copying the
sample actions provided in the training stage.

B. EXPERIMENTAL RESULTS
1) TRAINING PROCESS RESULTS
In the training process, the maximum number of steps, S#ax,
for one episode is 1 x 10%, which includes the steps of
the UGV-UAV coalition. If the coalitions reach all of the
targets, the training episode is terminated immediately and
the final reward is received. Otherwise, it will keep task-
ing until st,,,, is reached. As a baseline scheme for perfor-
mance comparison, we implemented three existing models,
including:
o the original GAIL model, termed GAIL, introduced
in [18];
« the PPO model, termed PPO, presented in [37]; and
o a supervised learning method, termed BC (Behavior
Cloning) from [16].
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FIGURE 5. Accumulated training rewards values for PPO, GAIL, IADRL,
and BC methods.

Moreover, to guarantee a fair comparison, we used the same
training parameter (i.e., number of targets achieved, learn-
ing rate, maximum number of steps, etc.) for the three
approaches.

First, we conducted several experiments with five coali-
tions using the four models. As shown in Fig. 5, the accumu-
lated rewards of IADRL and PPO are convergent, while the
GAIL and BC curves do not converge. Obviously, compared
to the other three algorithms, the cumulative reward value of
the IADRL approach is the highest and it is the most stable
given the same reward settings. This result is consistent with
our preliminary theoretical conjecture that GAIL only repli-
cates the behaviors and policy offered by the demonstration
dataset tg, rather than by the optimal policy for achieving
higher rewards. Although the cumulative reward obtained by
the PPO model is high and convergent, it cannot successfully
complete all the cooperative tasks. This is because PPO is
incapable of learning the complementary model between the
UGV and UAV. Fig. 6 shows that all episodes of the PPO
model are terminated when they reach the maximum number
of steps, Stpax = 10°, and, thus, are incapable of successfully
reaching all the targets. The task completion rate for the
PPO model is consistently zero, indicating that the model
is not able to provide an optimized policy that enables the
UGV-UAV coalition to complete tasks exploiting comple-
mentary cooperation. Therefore, in the following section,
we will not discuss the performance of PPO. Furthermore,
Fig. 7 shows the training loss values during the training
process. It is clear that the loss values of IADRL, GAIL, and
BC are significantly minimized after st,,,,x = 10° steps are
completed.

Note that every training episode will be terminated if all
targets are reached before the maximum number of steps are
taken. Thus, the average steps to complete an episode varies
for each models. To compare the models and better present
the training process, the results in Figs. 5 and 7 are obtained
with different numbers of steps for the models.
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2) PERFORMANCE ANALYSIS

To further prove the superiority of IADRL, we evaluate three
additional indicators: (i) number of collisions in one episode,
(ii) steps needed for completing one episode, and (iii) the
overall task completion rate. Fig. 8 describes the task com-
pletion rate, denoted by N, for IADRL, GAIL, and BC.
We defined the task completion rate as:

Nfailed (11

Neask = s
total

where Nyiieq is the number of episodes that the UGV-UAV
coalitions fail to reach all targets, and Ny, is the total
number of completed episodes. For our task setting, the key
point towards completing a mission is the complementary
cooperation between UGVs and UAVs. Fig. 8 shows that
the task completion rate N, of IADRL quickly converges
to 1, which indicates that after it fails in the first several
episodes, IADRL quickly learns the complementary model
from tr and succeeds in all the subsequent episodes. The
three curves close to each other illustrates that IADRL has
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FIGURE 9. Number of steps needed to complete each training episode
using IADRL, GAIL, and BC methods.

a similar capability of learning a model from t¢ to that of
GAIL and BC, which are designed to directly replicate the
policy from demonstration data.

To evaluate the efficiency of tasking, we compare the
number of steps taken to reach all the targets with these three
schemes, and the results are presented in Fig. 9. Obviously,
IADRL achieves the given tasks within 600 steps for each
episode, which is far less than the number of steps GAIL and
BC take given the same mission. Furthermore, the number of
steps required for IADRL training is much more sustainable
than that of GAIL and BC, as it reaches the optimized policy
within fewer episodes (around 200 training episodes). Fur-
thermore, the BC method not only uses the most steps to com-
plete tasks, but even at the end of the training, no convincing
task completion strategies have been determined, as shown
by the large fluctuations at the tail end of the BC curve.

Collision avoidance is a key factor when deploying
UGV-UAV coalitions for many applications, and, therefore,
the number of collisions for all agents is a critical gauge for
measuring the quality of our work. According to Fig. 10,
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methods.

GAIL and BC perform poorly when avoiding collisions. To
better present results, we limited the range of the y-axis
to [0,1500]. In the early training stages of GAIL and BC,
there are many poor performance results, and some even
exceed 4000 times that of JADRL. After training conver-
gence, the number of collisions of IADRL for all agents in
each episode is reduced to very low levels compared to that
of GAIL and BC.

Additionally, we plotted the total number of collisions,
the number of UGV collisions, and the number of UAV
collisions in Fig. 12. As shown, UGVs experience the most
collisions, and the more vulnerable UAVs work safely in a
majority of cases. This is consistent with our initial design
that the penalty for UGV collision is only half of that of a
UAV’s, as established in Table 1. Note that in real deployment
scenarios, UGVs are more robust to collisions than UAVs,
as most UGVs are equipped with bumpers and bumper sen-
sors that help them protect against and avoid collision. Fur-
thermore, UGVs utilize collisions to detect and navigate
around the surrounding environment (e.g., iRobot Roomba
Vacuums).

After a further analysis, we find that the collisions are
mainly caused by the sparse observation of UGV and UAYV,
as agents in IADRL are not able to detect obstacles and
other agents. Although this result is already acceptable for
many real-world robotic applications, we are confident that
the addition of more sensory information to our system would
allow for a much better performance on avoiding collisions.

To illustrate the path planning performance of each
scheme, we designed a simple test with two targets, one
located at (—5, —5, 5) and the other at (—5, —5, 1)1. The
planned paths for the three schemes obtained in five trials
are plotted in Fig. 12. An optimized strategy for the coalition
would have the lowest cost associated with reaching both
targets. The UAV should ride on the UGV as close to the

IOtherwise, the planned paths would be hard to plot and see.
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FIGURE 12. Planned paths for the UGV and UAV to reach two objects in
five trials as computed by IADRL, GAIL, and BC schemes.

first target as possible, and then fly to reach the first target.
The UGV should then continue on to reach the second target.
Due to the physical size differences of UAVs and UGVs,
we ploted their trajectories individually. For the trajectories
generated by JADRL, we can see that the initial parts of the
red lines (UAV) are parallel to the blue lines (UGV) because
the UGV carries the UAV during this interval. The five lines
for the UAV and UGV are for each of the five trials. Obvi-
ously, the path planning of our proposed algorithm enables
the UGV-UAV coalition to reach targets with an optimized
route at a greatly reduced cost than that of GAIL or BC
methods. Additionally, each IADRL planned route is almost
identical in every trial, further proof of its stable performance.

3) ROBUSTNESS IN DIFFERENT ENVIRONMENTS

The proposed IADRL scheme is robust to changes in the
environment and can be directly deployed in an environment
different from where it was trained. As such, we train the
model in an environment similar to Fig. 3 and deploy it in
a more complex environment shown in Fig. 13. We add more
obstacles, marked in red in Fig. 13, to simulate a warehouse
with higher obstacle density. The same UGV-UAV coalitions
with the well-trained IADRL model are deployed in this
new environment to complete the same missions. We then
compare the previous results with that in Fig. 3 using the three
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FIGURE 13. A complex simulation environment representing a
high-density warehouse.
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FIGURE 14. Number of collisions in the simple and complex
environments.

measurements introduced in the section IV-B2. To guarantee
the credibility of comparison results, all parameters, includ-
ing reward settings, materials, and shape of agents, are kept
identical in these two environments. In the rest of this section,
we will refer to the results of experiments in Fig. 13 as the
“Complex Environment,” whereas the result in Fig. 3 will be
referred to as the “Simple Environment.”

Fig. 14 depicts the number of collisions during the testing
process. Even challenged by higher environmental complex-
ity, the number of collisions for each episode is only slightly
increased due to the increased complexity of the environ-
ment. We also note that there is only a slight decrease in the
accumulated reward values in the complex environment as
compared to the simple environment, as illustrated in Fig. 15.
Additionally, we investigate the amount of steps needed to
complete the tasks in each episode. The results displayed
in Fig. 16 show that it takes about 200 more steps for the
coalitions to accomplish all tasks in the complex environ-
ment. These observations meet our expectations, as coalitions
require more steps to bypass extra obstacles in the complex
environment, and, thus, have a higher step cost and a decrease
in accumulated rewards.

VOLUME 8, 2020

5000 T T T
Simple Envinronment
***** Complex Environment

4800

4600 b

IS

S

=)

S
T

I

IS
hS)
=]
S

IS
o
]
S

Cumulative Rewards
g
o
o

3600 - N

3400 N

3200 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Episodes

FIGURE 15. Accumulated rewards in the simple and complex
environments.

1200 T T T

Simple Envinronment
***** Complex Environment

1000 1

200 [ 7

Steps for Completing One Episode

0
0 100 200 300 400 500 600 700 800 900 1000
Episodes

FIGURE 16. Number of steps needed to complete one episode in the
simple and complex environments.

V. CONCLUSIONS

This paper presented IADRL, a novel method that enables
UGVs and UAVs to form a coalition for the complementary
accomplishment of tasks that neither the UAV or UGV could
not complete independently. IADRL learns the complemen-
tary behavior features of the UGV-UAV coalition from a
demonstration dataset that can be readily collected from some
simple and imperfect settings alike. It also optimizes the
strategy to achieve given goals with minimum overall costs
required to complete task in dynamic environments. We also
extended the IADRL model to facilitate the cooperation of
multiple UGV-UAV coalitions deployed together for complex
tasks. The experimental results proved that the proposed
IADRL approach was effective for solving intricate tasks
requiring heterogeneous agents to complement each other in
dynamic environments.
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