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Abstract—With the increasing demand for location-based ser-
vice, WiFi-based localization has become one of the most popular
methods due to the wide deployment of WiFi and its low
cost. To improve this technology, we propose DeepMap, a deep
Gaussian process for indoor radio map construction and location
estimation. Received signal strength (RSS) samples are used in
DeepMap to generate accurate and fine-grained radio maps. A
two-layer deep Gaussian process model is designed to determine
the relationship between the location and RSS samples, while the
model parameters are optimized with an offline Bayesian training
method. To identify the location of a mobile device, a Bayesian
fusion method is proposed, which leverages RSS samples from
multiple access points (AP) to achieve high location estimation
accuracy. We conduct comprehensive experiments to verify the
performance of DeepMap in two indoor settings. DeepMap’s
robustness is validated using limited training data.

Index Terms—Deep Gaussian Process; Radio Map Construc-
tion; Indoor Localization; Deep Learning.

I. INTRODUCTION

Location-based service has drawn great interest in the
industry and research community [1]–[5], largely due to the
popularity of mobile devices and wide deployment of wireless
networks. However, producing accurate location estimates for
mobile devices using radio frequency (RF) signals is still a
challenging problem. This is because RF signals propagate
unpredictably in indoor environments (e.g., the multipath
effect degrades the localization precision of many indoor local-
ization systems [6]–[10]). To address the problem of accuracy
degradation that results from the complex signal propaga-
tion indoors, fingerprinting-based localization approaches have
gained notoriety and shown high promise. A fingerprinting-
based localization approach consists of an offline stage and an
online stage. Fingerprints, in the form of RF signal features
and location pair, are collected and stored in the offline stage,
consisting of exhaustive records of the serviced area. In the
online stage, location estimation is obtained by comparing the
newly collected records to the stored fingerprints [11].
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Owing to its low hardware requirement and ubiquitous
use, the received signal strength (RSS) of WiFi signals has
been leveraged as fingerprints in many proposed localization
systems. In the seminal work [12], the RSS was utilized
as fingerprints for the first time. Moreover, Youssef and
Agrawala in [13] developed a discrete-space estimator for high
localization accuracy of an RSS-based fingerprinting system.
In more recent years, the channel state information (CSI) has
gained much attention from researchers because it carries fine-
grained information of the wireless channel estimated from
each subcarrier [14]–[19]. However, the density of fingerprints
is a key factor that significantly affects the accuracy of
indoor fingerprinting. To achieve high-accuracy localization, a
wardrive is essential for fingerprint collection, which is usually
time-consuming and laborious.

To reduce the dependency on wardriving, a radio map can
be constructed with discrete training data in some localization
systems. The Gaussian process is a useful method for building
such radio maps. Regarding cellular networks, a Gaussian
process was used in the GPPS system for generating radio
maps [20]. In GPPS, the distribution of signal strength was
modeled by a Gaussian process and an unknown location was
estimated by maximizing a joint likelihood of received signal
strengths with respect to the position. Furthermore, a Gaussian
process regression was utilized to model the relationship of
signal strength and location in many positioning systems [21]–
[26]. With a model regressed by a Gaussian process, the
distance between mobile devices and access points (APs) could
be conveniently inferred, and the estimated location of the
mobile device can be obtained by triangulation. However, to
locate mobile devices, it is necessary to know the accurate
locations of the APs. In many real-world scenarios, it is usually
hard, if not impossible, to acquire the precise coordinates of
the surrounding APs.

A Gaussian process is depicted by its mean and covari-
ance functions. According to [20]–[26], Gaussian processes
are capable of measuring the uncertainty in the RSS data
over a continuous space. It belongs to the class of Bayesian
nonparametric models. Thus, the Gaussian process could be
leveraged to regress the relationship between RSS measure-
ment values and their corresponding locations. Furthermore,
the Gaussian process has the ability to accurately represent
data when there is sufficient training data. However, this
ability degrades dramatically when there is only sparse training
data, which typically happens in RF fingerprinting. In fact,
the Gaussian process is not effective at handling the non-
stationary components of RSS samples due to the lack of
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fusion of kernels for dealing with complex training data [27].
Therefore, the Gaussian process could perform poorly with
an unacceptable localization accuracy when it is trained with
inadequate training data.

To address these challenges, we propose DeepMap, a
deep Gaussian process-based system for indoor radio map
construction and location estimation [28]. Like traditional
fingerprinting-based methods, the DeepMap system includes
an offline training stage and an online location estimation
stage. In the offline stage, RSS samples, along with their
corresponding location coordinates, are passed into a two-layer
deep Gaussian process model that estimates the relationship
between RSS values and location coordinates in a continuous
space. In addition, we employ a Bayesian training method
to maximize the marginal distribution of the observed RSS
samples, to derive the optimal hyper-parameters, where a
variational lower bound is utilized to make the problem
tractable. Unlike the Gaussian process, a deep Gaussian pro-
cess is capable of constructing a precise radio map even with
inadequate training data. The structural advantage of a deep
Gaussian process enhances the learning capacity for training
complicated datasets associated with abstract information [29].
Thus the features of a small dataset could be better captured
by a deep Gaussian process when constructing radio maps.

In the online stage, we leveraged a Bayesian method to
achieve high localization precision. The mobile device at
an unknown location will collect new RSS samples from
all the surrounding APs. With the radio maps generated by
the deep Gaussian process, the estimated location of the
mobile device can be obtained by using maximum a posteriori
(MAP) estimation. Although the original DeepMap system is
implemented with WiFi [28], this method is not restricted to
use with only WiFi RSS values. It could be applied in systems
using other types of wireless signals, such as RFID (radio
frequency identification) and BLE (Bluetooth low energy).

The main contributions made in this paper can be summa-
rized as follows.

• We propose the DeepMap system that is the first, to the
best of our knowledge, to use a deep Gaussian process
model for radio map construction and indoor localization,
and that effectively overcomes the drawbacks of the
Gaussian process by generating detailed radio maps using
sparse training data;

• We design a two-layer deep Gaussian process model to
regress the relationship between RSS samples and loca-
tion, a Bayesian training method that optimizes model
parameters, and a Bayesian fusion method that boosts
localization performance;

• We validate the performance of the proposed DeepMap
system in two indoor environments with various levels of
data availability and comparison with baseline schemes.

In the following, we discuss related works in Section II and
present the preliminaries and motivates in Section III. The
DeepMap design and analysis are introduced in Section IV,
and the performance study is presented in Section V. Conclu-
sions are given in Section VI.

II. RELATED WORK

Recently, various indoor localization systems have been
devoted to promoting localization precision with advanced
methods and algorithms. In this section, we review the
fingerprinting-based indoor localization systems and discuss
two classes of fingerprinting-based systems that are closely
related to DeepMap, i.e., (i) deep learning-based systems and
(ii) radio map-based systems.

The first RSS-based fingerprinting system, RADAR [12],
localized a target by comparing the fingerprints collected
during the online stage to the saved RSS fingerprints using
a deterministic method. To improve localization precision,
Horus [13] leveraged a K-nearest-neighbor based probabilistic
method. However, the nature of RSS restricts the performance
of RSS-based systems. First, the RSS values are significantly
influenced by the multipath and shadow fading effects. Thus,
due to the diversity of RSS, two consecutive RSS readings
collected at the exact same location could be very different.
Second, the RSS value is coarse information. Useful channel
information could be easily lost. Compared to RSS, CSI
is more fine-grained and depicts the characteristics of each
subcarrier. FIFS [30] and PinLoc [31] utilized CSI to build fin-
gerprints. Experimental results showed that both FIFS and Pin-
Loc outperformed Horus. Although these fingerprinting-based
systems had agreeable localization precision, the enormous
fingerprint databases they require limited their application on
mobile devices with limited storage.

Deep learning-based indoor localization systems rely on
deep neural networks to learn location features from CSI and
use these features as fingerprints. DeepFi [14], [32] was the
first work to use an autoencoder to extract features from CSI.
DeepFi utilized the bias and weights from a well-trained,
three-layered autoencoder as fingerprints. PhaseFi [15], [33]
and DFLAR [34] proposed to train the autoencoder with the
phase values and images generated by CSI. Bi-modal CSI data
was utilized in the BiLoc system [16] with an autoencoder
for improved location performance. Additionally, WiDeep [35]
improved the robustness of localization estimation by com-
bining a stacked denoising autoencoder deep learning model
with a probabilistic framework. Furthermore, References [36]
and [34] contributed to device-free indoor localization im-
provement with deep autoencoder networks. Due to the strong
abilities of the Convolutional Neural Network (CNN) in fields
such as computer vision, it has been used to improve the
performance of indoor localization systems. For example, a
6-layer CNN was employed in CiFi [17], [18]. In contrast to
previous fingerprinting-based systems, CiFi did not use the
fingerprinting database in the online stage and only stored
a set of weights and biases for localization. Alternatively,
Reference [37] contributed to improving localization precision
by preventing the “overfitting problem” with a limited training
dataset. ResLoc [19] utilized a deep residual network to obtain
submeter-level accuracy using a single AP.

However, due to the nature of fingerprinting-based systems,
the localization problem was treated as a matching prob-
lem or multi-classification problem. Therefore, the density
of fingerprints was closely related to the performance of
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the fingerprinting-based localization system. To address these
problems, He et al. in [21] and Kumar et al. in [38] generated
radio maps for an indoor environment with a Gaussian pro-
cess, which modeled the RSS values in a continuous space.
By producing interpretable radio maps, researchers provided
solutions to the existing fingerprinting-based localization prob-
lem. For example, WinIPS [39] leveraged Gaussian Process
Regression (GPR) with Polynomial Surface Fitting Mean to
predict RSS with virtual reference points. It overcame the
laborious fingerprint collection effort in the offline phase
and updated the radio map automatically in a dynamic en-
vironment. DncIPS [40] presented the FWA-GPR algorithm
based on GPR and a fireworks algorithm (FWA). It was
robust to environmental changes. However, the AP locations
were not essential in DncIPS, which helped to improve its
flexibility. Although both WinIPS and DncIPS solved the
problem of updating fingerprints in a dynamic environment,
their localization precision was not comparable to other deep
learning-based localization systems.

III. PRELIMINARIES AND MOTIVATION

As a kernel-based Bayesian model, the Gaussian process has
been successfully applied to solve regression and classification
problems [27]. With the help of the Gaussian process, the
uncertainty in input data distributed over a continuous space
could be measured. Generally, a Gaussian process could be
delineated by its covariance and mean function, which is a
generalization of a multivariate Gaussian distribution.

For issues with radio map construction, we could treat
measured RSS samples and the corresponding locations as a
Gaussian process regression model, that is

s(x) = f(x) + ε, (1)

where s(x) is the measured RSS sample at location x,
f(x) represents the pure RSS at location x, and ε is the
observation noise, which follows an i.i.d. (independent, iden-
tically distributed) Gaussian distribution with zero mean and
variance σ2

n. The Gaussian process model assumes that the
RSS measurements sp and sq at two different positions xp
and xq , respectively, follow a joint Gaussian distribution with
covariance k(xp, xq), which is a kernel function for the two
locations given by

k(xp, xq) = σ2
f exp

(
− 1

2l2
|xp − xq|2

)
, (2)

where σf and l are the hyper-parameters. Specifically, σ2
f

represents the variance and l is a length scale, both of which
describe the smoothness of the kernel function. The predicted
RSS for an unknown position x∗ can be obtained by

Pr(f(x∗)|X,Z, x∗) = N(f(x∗);u∗, σ
2
∗) (3)

u∗ = kT∗ (K + σ2
nI)−1Z (4)

σ2
∗ = k(x∗, x∗)− kT∗ (K + σ2

nI)−1k∗, (5)

where k∗ is an n × 1 vector of covariances between training
locations X and x∗, K is the covariance matrix of training
locations X , and Z is a matrix of training observation values.

In addition, the hyper-parameters σf and l can be estimated
by a maximum likelihood approximation method.

We use the Broun Hall dataset (see Section V-A) collected
on the third floor of Broun Hall in the Auburn University
campus as an example. The RSS radio maps constructed by
Gaussian process models using the Broun Hall dataset are
shown in Fig. 1(a). We utilized all the samples in the Broun
Hall dataset to train the Gaussian process model. Obviously,
the bell-shaped RSS radio map is consistent with most ground-
truth RSS measurements. Thus, this example verifies that a
Gaussian process could model the distribution of RSS values
in an indoor environment and regress the relationship with
adequate training data. However, the ability of the Gaussian
process to depict RSS data distributions degrades when there
is inadequate training data. Fig. 1(b) plots a RSS radio map
constructed with 20% of the training data in the Broun Hall
dataset using the Gaussian process. We find that the RSS radio
map in Fig. 1(b) is flat and lacks details. Clearly, most of
the variations in Fig. 1(a) are lost in Fig. 1(b), although the
upper-right corner is still the highest position in Fig. 1(b). In
other words, the non-stationary components of RSS values are
lost during radio map construction by the Gaussian process
model, due to the lack of fusion of kernels in the complex
input dataset. Therefore, this coarse RSS radio map is the
result of a deficiency of the Gaussian process that hampers
high localization accuracy during the online stage. To address
this problem, we propose a DeepMap system to construct RSS
radio maps using deep Gaussian process models in Section IV.

IV. THE DEEPMAP SYSTEM

A. The DeepMap System Architecture
Figure 2 presents the architecture of the DeepMap sys-

tem. The DeepMap system is a fingerprinting-based indoor
localization method that consists of two stages: the offline
training stage and the online location estimation stage. In
the offline stage, we recorded the RSS samples from training
positions along with their corresponding location coordinates.
For each training location, RSS measurements are collected
from as many available APs as possible to enhance localization
accuracy. To guarantee that the RSS records from all the
training locations are of the same size, we collect all potential
RSS readings (i.e., from all the APs)). If the RSS for a specific
AP is not detected, the corresponding RSS reading will be set
to -99 dBm. This way, a training dataset will be generated
with RSS records and their corresponding location labels. To
construct the RSS radio map of an indoor environment, we
used a deep Gaussian process to regress the training dataset.
The well-trained model (a constructed map) describes the
relationship between RSS samples and location labels in a
continuous space. This radio map will be used for location
estimation in the online stage.

In the online stage, we collect new RSS samples using
the mobile device at an unknown location and contrast the
new RSS samples with the RSS samples in the constructed
radio map. When we determine the similarities between the
measured RSS values and the recorded RSS values from the
radio map, we will be able to infer the location of the mobile
device using a Bayesian fusion method.
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Fig. 1. RSS radio maps constructed using the Gaussian process model using
different amount of training data.

Unlike traditional fingerprinting methods, which save the
original RSS samples as fingerprint [12], [13], or the previous
autoencoder-based methods, which use a bunch of well-trained
weights as fingerprint [14]–[16], [33], the DeepMap system
incorporates two different storage strategies. Depending on
each mobile device’s specifications, DeepMap allows users
to store the model at an edge device or in the cloud, and
use it to estimate location in the online stage if storage
space is limited. Alternatively, the constructed radio maps can
be saved at the mobile device to accelerate the localization
process. Furthermore, the resolution of the constructed radio
maps can be adaptive. In fact, a high-resolution map offers
high localization precision at the cost of localization speed,
while a low-resolution map achieves a coarse precision but
also fast localization. In the following sections, we will show
that satisfactory localization results can be achieved by the
proposed DeepMap system even with a low-resolution map.

B. Deep Gaussian Process for Radio Map Construction

We propose a deep Gaussian process model for radio
map construction using WiFi RSS samples. This process is

RSS Collection
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RSS Map Construction

Location Estimation Algorithm
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Fig. 2. The DeepMap system architecture.
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Fig. 3. The deep Gaussian process model for RSS radio map construction.

represented by a graphical model with three different layers
of nodes, including the leaf nodes, the intermediate latent
nodes, and the parent nodes [29]. The model is illustrated in
Fig. 3. For radio map construction, the leaf nodes represent
RSS samples, denoted by Y ∈ <N×D, where N and D are
the number of training locations and the number of APs,
respectively. The intermediate latent nodes are denoted by
H ∈ <N×Q, where Q is the number of the intermediate latent
nodes in this layer. These latent nodes are not observable in
the training stage. For the DeepMap system, we adopt one
intermediate latent layer to obtain a deep Gaussian process
model. The parent nodes are denoted by X ∈ <N×M , where
M is the size of input data. For radio map construction, the
parent nodes X represent the training locations.

Our proposed deep Gaussian process model for radio map
construction is a generative model for regression. This gener-
ative process can be formulated as

hnq = fHq (xn) + εHnq, q = 1, 2, ..., Q, xn ∈ <M (6)

ynd = fYd (hn) + εYnd, d = 1, 2, ..., D, hn ∈ <Q, (7)

where fH ∼ GP(0, kH(X,X)) and fY ∼ GP(0, kY (H,H))
are Gaussian processes, and the latent nodes H connect them.
Note that these two processes only depend on the covariance
function k for different inputs, which is chosen to be the
automatic relevance determination (ARD) covariance function,
given by

k(xi, xj) = σ2 exp

(
−1

2

Q∑
q=1

wq(xi,q − xj,q)2

)
, (8)
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where σ is the hyper-parameter and wq is the weight for latent
node q. Irrelevant dimensions can be removed by setting their
weights to zero.

C. Offline Bayesian Training

The objective of Bayesian training is to maximize the
marginal distribution of observed RSS values Y to determine
the optimal hyper-parameters, which is formulated as

max log p(Y ) = log

∫
X,H

p(Y |H)p(H|X)p(X), (9)

Because of the nonlinear functions for H and Z, it is
difficult to solve the integral in (9) using the maximum
likelihood method. In DeepMap, we apply Jensen’s inequality
to find a variational lower bound for this marginal distribution,
denoted by L ≤ log p(Y ) and given by

L =

∫
FY ,H,FH ,X

Q · log

(
p(Y, FY , H, FH , X)

Q

)
, (10)

where Q is the variational distribution. FH is the collection of
latent function instantiations, which has a normal distribution
given by

FH =
{
fHq
}Q
q=1

, fHnq = fHq (xn). (11)

similarly, FY is given by

FY =
{
fYd
}D
d=1

, fYnd = fYd (hn). (12)

The term p(Y, FY , H, FH , X) is given by

p(Y, FY , H, FH , X)

= p(Y |FY ) · p(FY |H) · p(H|FH) · p(FH |X) · p(X). (13)

However, the integral (10) is still intractable due to the
nonlinearity in both p(FY |H) and p(FH |X). Consider the
probability space with K auxiliary pseudo-inputs H̄ ∈ <K×Q
and X̄ ∈ <K×M [41], whose function values are UY ∈ <K×D
and UH ∈ <K×Q, respectively. Then, we derive the aug-
mented probability space as

p(Y, FY , H, FH , X, UY , UH , H̄, X̄)

= p(Y |FY ) · p(FY |UY , H) · p(UY |H̄)·
p(H|FH) · p(FH |UH , X) · p(UH |X̄) · p(X). (14)

To remove the nonlinear items p(FY |UY , H) and
p(FH |UH , X), the variational distribution Q can be defined
as follows.

Q = p(FY |UY , H) · q(UY |H̄) · q(H)·
p(FH |UH , X) · q(UH |X̄) · q(X), (15)

where q(UY |H̄) and q(UH |X̄) are free-form variational dis-
tributions, and q(H) and q(X) are both Gaussian.

According to (13) and (15), we update the variational lower
bound in (10) as

L =

∫
Q log

(
p(Y |FY )p(UY |H̄)p(H|FH)p(UH |X̄)p(X)

q(UY |H̄)q(H)q(UH |X̄)q(X)

)
,

where the integration is with respect to {FY , H , FH , X , UH ,
UY }. By grouping the variables for Y and H , respectively, we
can rewrite the variational lower bound as

L = sY + sH − q(H) · log(q(H))− KL(q(X)||p(X)), (16)

where KL is the Kullback-Leibler divergence [42], sY is
calculated by

sY = (17)

Ep(FY |UY ,H)q(UY |H̄)q(H)

(
log p(Y |FY ) + log

p(UY |H̄)

q(UY |H̄)

)
,

and sH is calculated by

sH = (18)

Ep(FH |UH ,X)q(UH |X̄)q(X)

(
log p(H|FH) + log

p(UH |X̄)

q(UH |X̄)

)
.

It can be seen that both sY and sX are Gaussian densities,
and are thus tractable. In fact, Bayesian training for a deep
Gaussian process can maximize the variational lower bound
L to find the sub-optimal hyper-parameters, inducing points
(i.e., H̄ and X̄), and variational parameters [29].

We use the same Broun Hall dataset as an example of
the proposed method. The constructed RSS radio map shown
in Fig. 4(a) is generated by a deep Gaussian process with
100% training data in the Broun Hall dataset. Although a
similar bell-shaped surface is created by the Gaussian process
(see Fig. 1(a)), our proposed deep Gaussian process produces
more details that help to improve localization precision. For
example, the slight fluctuations close to the coordinate’s origin
is captured by the deep Gaussian process model in Fig. 4(a).
However, the corresponding area in Fig. 1(a) tends to be a flat
surface, which is constructed by the Gaussian process model.
In Fig. 4(b), the RSS radio map is constructed by the deep
Gaussian process model using only 20% of the training data.
Clearly, a bell-shaped surface is maintained similarly as in the
radio map generated using 100% training data, even though
only 20% of the training data is utilized. Additionally, the
surface contains many nonlinear characteristics.

From this comparison example of Gaussian process and
deep Gaussian process models, it is safe to say that the deep
Gaussian process model can handle non-stationary compo-
nents, in contrast to the detail-less surfaces constructed by
the Gaussian process model in Fig. 1. Moreover, nonlinear
characteristics are also reproduced with only minimal training
data because the deep Gaussian process has a deep and
heterogeneous nonlinear structure that is more effective for
complex training data. Thus, WiFi RSS radio maps constructed
by the deep Gaussian process model capture more detailed
information about the distribution of real RSS samples in
indoor environments, which considerably contributes towards
improving localization precision.

D. Online Location Estimation

In the online localization stage, we use a Bayesian method
to estimate the location of a mobile device using newly mea-
sured RSS samples from totally D APs and the constructed
radio maps obtained in the offline stage. We discretize the



IEEE INTERNET OF THINGS JOURNAL, VOL.XX, NO.XX, MONTH YEAR. DOI: 10.1109/JIOT.2020.2996564 6

-100

0

-80

20

x

40 60

R
S

S
 (

d
B

)

y

-60

4060
20

0

-40 Estimated RSS

Ground Truth RSS

(a) Using 100% training data

0
20

40
60

80
20

40

60

−100

−80

−60

−40

 

y
x

 

R
S

S
 (

d
B

)

Estimated RSS

Ground Truth RSS

(b) Using 20% training data

Fig. 4. RSS radio map constructed using the deep Gaussian process model
using different amount of training data.

continuous RSS radio map to obtain T reference positions.
The size of T is dependent upon the resolution of the RSS
radio map.

The pseudocode for online location estimation is presented
in Algorithm 1. The input to Algorithm 1 are the newly
measured RSS values vj and the constructed radio map rj

for each AP j, and the total number of APs D. We have
T = |rj |. In the DeepMap system, we assume that the
likelihood function p(vj |li) is a Gaussian function. Thus, the
similarity between the measured RSS value vj and the data
rjli at location li from AP j is computed in Step 6 [14]. Here,
σ2 is the variance, and λ is the parameter of the variance of
input RSS samples.

Based on the likelihood function, the posterior probability
p(li|vj) for AP j can be obtained by

p(li|vj) =
p(li)p(vj |li)∑T
k=1 p(lk)p(vj |lk)

, (19)

where p(li) is the prior probability for the device placed at
position li. Generally, p(li) is assumed to have a uniform
distribution over the T reference positions. Therefore, the

Algorithm 1 Pseudocode for Online Location Estimation
Input: the newly measured RSS samples vj and the con-

structed radio map rj for each AP j, the total number
of APs D ;

Output: the estimated location l̂ ;
1: //j denotes the index of APs
2: //i represents the index of reference points in radio map
rj

3: for j = 1 : D do
4: for i = 1 : T = |rj | do
5: //compute the likelihood function p(vj |li)
6: p(vj |li) = exp

(
− 1
λσ2

∥∥∥vj − rjli∥∥∥) ;
7: end for
8: //compute the posterior probability p(li|vj)
9: p(li|vj) =

p(vj |li)∑T
k=1 p(vj |lk)

;
10: end for
11: //derive the the location of the mobile device using MAP

estimation
12: l̂ = argmax{l1,l2,...,lT }

(∏D
j=1 p(li|vj)

)
;

13: return l̂ .

posterior probability p(li|vj) is obtained in the Step 9, as

p(li|vj) =
p(vj |li)∑T
k=1 p(vj |lk)

. (20)

Additionally, we assume that the posterior probability p(li|vj)
is independent for each AP. Consequently, we derive the
location of the mobile device using MAP estimation as follows
(see Step 12).

l̂ = argmax
{l1,l2,...,lT }

 D∏
j=1

p(li|vj)

 . (21)

V. EXPERIMENTAL STUDY

A. Experiment Methodology

For this study, we prototype the DeepMap system with com-
modity WiFi devices to evaluate its localization performance.
Three baseline schemes are implemented and evaluated for
comparison purpose. The first one, termed “Gaussian Process,”
is implemented by replacing the deep Gaussian process model
with a Gaussian process model [38], while keep all other parts
the same. The RADAR [12] and Horus [13] are the two other
baseline schemes we implemented for comparison purpose.
Both RADAR and Horus are representative RSS-based finger-
printing schemes, while RADAR uses a deterministic scheme
and Horus utilizes a K-nearest-neighbor bases probabilistic
method for location estimation. To limit bias, all the schemes
are executed using the same Broun Hall and public datasets;
thus, the training data and test data for the schemes are
identical. Additionally, the same online location estimation
algorithm presented in Section IV-D is used for DeepMap and
Guassian Process schemes to ensure consistency.

First, we evaluate DeepMap’s performance with the Broun
Hall dataset (collected from the third floor of Broun Hall at
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Fig. 5. Layout of the third floor of Broun Hall at Auburn University: training
locations are marked as blue dots and testing locations are marked as yellow
squares.

Auburn University). In this scenario, we use Wi-Fi Scanner
3.4 to collect RSS measurements in the offline and online
stages within a surveillance area of about 2300 m2. The floor
plan is shown in Fig. 5, where 157 locations are included
in the training dataset (represented by blue dots). The space
between each blue dot is 2 m. The test data are gathered from
43 locations, each represented by a yellow square, and the
space between yellow squares was 4 m. In this dataset, the
RSS values are gathered from 433 APs (for the four-layer
building), which consists of both 5 GHz APs and 2.4 GHz
APs from various manufacturers. Furthermore, the RSS values
for out-of-range APs are set to −99 dBm, as discussed.

Additionally, we also tested the DeepMap system using a
public dataset to examine its localization performance [43].
The experimental area is approximately 860 m2 and includes
eight classrooms, four offices, and a main hallway. The floor
plan is shown in Fig. 6. Similar to the Broun Hall dataset,
the RSS measurements in the public dataset are also collected
from APs deployed on multiple floors. In the public dataset
layout, blue dots denote the training positions, red squares are
APs on the 5th floor, orange squares are APs on the 4th floor,
and white squares are the APs on the 3rd floor. All RSS values
in the dataset are collected from both 5 GHz APs and 2.4
GHz APs. The training data is collected for 82 locations, and
the test dataset includes RSS values from 34 locations (their
coordinates are known as ground truth, but are not shown in
the figure). The distance between two adjacent locations is
2.6 m. In the online localization stage, new RSS samples are
collected for every testing location twice, each time facing a

Fig. 6. Layout of the public dataset from [43]: blue dots denote the training
positions, red squares are APs on the 5th floor, orange squares are APs on the
4th floor, and white squares are the APs on the 3rd floor (figure courtesy [43]).

different direction.

B. Accuracy of Location Estimation

1) Comparison with Gaussian Process: First, we confirmed
the localization accuracy with adequate training data. Fig. 7
illustrates the cumulative distribution function (CDF) of lo-
calization errors for the proposed DeepMap system and the
Gaussian process-based baseline scheme. In both schemes,
we use all the RSS samples in the Broun Hall dataset to
train the models. For DeepMap, the median localization error
is 1.3 m, and the Gaussian process based scheme obtains a
median error of 1.5 m. This comparison shows that DeepMap
is more accurate than the Gaussian process based scheme.
Additionally, 60% of the localization errors are lower than 2
m for the Gaussian process, whereas 75% of the localization
errors are lower than 2 m with DeepMap. Furthermore, the
Gaussian process’s largest error is 6.182 m, which is greater
than DeepMap’s largest error of 5.207 m. Thus, DeepMap out-
performs the Gaussian process based scheme with respect to
localization accuracy, when adequate training data is available.

Similarly, Fig. 8 shows the localization performance of
both schemes using the public dataset [43]. When we use
the public dataset to train these two algorithms, the median
errors for DeepMap and Gaussian process are 1.668 m and
2.2017 m, respectively. Again, DeepMap achieves a better
localization accuracy than the Gaussian process based scheme
in this environment. For DeepMap, we also notice that more
than 80% errors are under 2.8 m; however, only 65% test
points for the baseline scheme could reach this same level
of accuracy. Therefore, for the experiment using the public
dataset, DeepMap also outperforms the Gaussian process
based scheme when the entire training dataset is available.

Additionally, we evaluated the performance of both schemes
using only a fraction of the training data. In Fig. 9, we plot
the mean distance errors achieved by the two schemes when
different percentages of training data in the Broun Hall dataset
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Fig. 7. CDF of localization errors for the proposed DeepMap system and the
Gaussian Process based scheme when 100% of the training data in the Broun
Hall dataset is used.
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Fig. 8. CDF of localization errors for the proposed DeepMap system and the
Gaussian Process based scheme when 100% of the training data in the public
dataset is used.

are used. Regarding the Broun Hall dataset experiment, the
mean distance error is 1.569 m when all fingerprints are
used. However, when 90% training data is used by DeepMap,
the minimum mean distance error, 1.536 m, is reached. We
also find that distance errors are robust to changes in the
percentage of samples when more than 50% fingerprints are
available to DeepMap. The Gaussian process achieves its best
performance, 1.845 m, when all the training data are available.
Regardless, this value is greater than the lowest mean distance
error for DeepMap. Although the Gaussian process’s mean
distance errors are robust when more than 60% samples are
available, the distance error increases dramatically to 3.725 m
when 50% of samples are used. Additionally, the Gaussian
process mean distance error increases further to 8.3496 m
when 20% of fingerprints are used to train the model. The
distance error for our DeepMap system does not change such
abruptly; its largest distance error is 3.8447 m when 20%
of fingerprints are utilized to train the model. Note that in
Fig. 9, all errors obtained by DeepMap are lower than the
corresponding errors achieved by the Gaussian process based
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Fig. 9. Mean localization errors for the proposed DeepMap system and the
Gaussian Process based scheme using different percentages of training data
in the Broun Hall dataset.
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Fig. 10. Mean localization errors for the proposed DeepMap system and the
Gaussian Process based scheme using different percentages of training data
in the public dataset.

scheme.
Furthermore, we conduct similar experiments using the

public dataset. In Fig. 10, minimum distance errors of 2.12
m for DeepMap and 2.489 m for the Gaussian process are
obtained when all training data are available. However, dis-
tance error for the Gaussian process based approach increases
dramatically with a decrease in the available training data.
With only 20% training data available to the Gaussian process
based scheme, the maximum distance error is 11.67 m. Both
methods show larger errors when the algorithms are trained
with only 20% data, but the maximum error produced by
DeepMap is about half of that of the Gaussian process based
scheme. However, the performance of DeepMap is improved
significantly when at least 40% samples are used to train the
algorithm. For example, at 40% data availability, the mean
distance error for DeepMap becomes 3.892 m, which is similar
to the performance of the Gaussian process based scheme
when 70% of public data is available. Thus, DeepMap exhibits
a more robust performance with incomplete training datasets.
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Fig. 11. Mean localization errors for the Broun Hall dataset using different
percentages of fingerprints.

In conclusion, when there is sufficient training data, both
DeepMap and the Gaussian process based scheme are able to
regress the outline of the RSS surface. However, more detailed
maps are generated by DeepMap than by the baseline scheme.
Regarding the map constructed by the Gaussian process based
scheme, it does not contain much detail, such as non-stationary
components, and thus, the minimum error is slightly greater
than that produced by DeepMap. When only limited amounts
of RSS training samples are available, the localization error
of the Gaussian process based scheme increases dramatically,
while DeepMap is more robust to this change. Additionally,
nonlinear characteristics are captured by DeepMap even with
few available RSS samples. Thus, DeepMap achieves higher
localization accuracy and is more robust than the Gaussian
process based baseline scheme.

2) Comparison with RADAR and Horus: For more com-
parisons, we also evaluate the performance of two existing
localization methods, RADAR and Horus, using the Broun
Hall dataset and the public dataset. Both methods have been
introduced in Section II. Fig. 11 depicts the mean localization
errors achieved by the four schemes using either 50% or
100% of fingerprints in the Broun Hall dataset. We can see
that the precision of Horus is comparable to the performance
of DeepMap when all the fingerprints are leveraged to train
the model. Furthermore, the localization error of RADAR is
much higher than that of the other three methods. With 50%
fingerprints, the localization precision of all the four methods
degrades in varying degrees. The mean distance error of Horus
increases from about 1.5m to 2.0m, which is higher than
the corresponding error of DeepMap. Moreover, Horus shows
better performance than Gaussian process when the training
fingerprints are inadequate.

We present the mean distance errors for the public dataset
in Fig. 12. Overall, all the methods perform worse than with
the Broun Hall dataset. This is because the Broun Hall dataset
includes many more APs than the public dataset. We notice
that DeepMap has the best accuracy no matter fingerprints are
adequate or not. Even though the availability of fingerprints
does not affect the precision of Horus significantly, its mean
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Fig. 12. Mean localization errors for the public dataset using different
percentages of fingerprints.

distance error is much higher than DeepMap when 100% fin-
gerprints are utilized. Therefore, it is safe to say that DeepMap
has the best accuracy among these localization methods, and
it is sufficiently robust to deficiency of fingerprints.

C. Impact of Design Parameters

To investigate the impact of system parameters on the
localization precision of DeepMap, we use all the RSS samples
in the Broun Hall dataset in the following experiments. In
each experiment, we repeat the training process five times
with identical parameter settings. We recorded the average test
result and present it in the plots.

1) Impact of the Number of Inducing points: In the
DeepMap system, K represents the number of inducing points.
Although it could be different for every layer of the overall
structure, we keep the number of inducing points the same
in each layer to simplify this study. As is shown in Fig. 13,
we compare the mean distance errors for different values of
K. According to Fig. 13, the mean distance error gradually
decreases along with the increase in K. After K is greater than
40, the impact of K on the mean distance error decreases
and the mean distance error converges to 1.65 m. Fig. 14
depicts the corresponding training times for different values
of K. As shown, the mean training time increases along with
the increase in K. Considering that the training time (in the
offline stage) would not jeopardize the user experience in the
online stage, K is set to 48 for obtaining the best localization
performance in the following experiments.

2) Impact of the Number of Latent Nodes: The number of
latent nodes in the deep Gaussian process is denoted by q.
Ideally, each latent node would have its own weight wq , but
the node could also be removed by setting the weight to 0. We
designed a specific experiment to evaluate the effect of q on
the performance of our DeepMap system and to optimize the
value of q that achieves the best localization precision. In this
experiment, the value of K is set to 48 to eliminate its effect.
Twenty different values of q are assessed with DeepMap to
evaluate their effect on the performance of our system. For
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Fig. 13. Mean distance errors at different values of K.
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Fig. 14. Mean training times at different values of K.

each q value, the training process was repeated five times to
minimize randomness in the results.

Figure 15 shows the mean distance errors as q is increased.
As the number of latent nodes raises from 1 to 9, the mean
distance error declines rapidly from about 6 m to about 2
m. When the value of q is between 11 and 27, the mean
distance error does not fluctuate significantly. The lowest error
is produced when q is between 15 and 19. When q becomes
greater than 27, it produces a sharp rise in the mean distance
error from 1.77 m to 8.4 m. Therefore, we conclude that
the localization precision of our DeepMap system could be
degraded with an oversized q value, even though the weight
for the excessive latent node could be set to zero. Additionally,
we investigated the impact of q on the mean training time. The
results are presented in Fig. 16. Similarly to the impact of
K, the mean training time goes up gradually with increases
in q. To obtain the highest localization precision, we set q
to 17 in the following experiments. Fig. 16 shows that the
training time is only about 14 minutes when q is 17. Note
that all the samples in the Broun Hall dataset are utilized in
this experiment. The training process would speed up if fewer
samples are utilized; thus, the DeepMap system could react to
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Fig. 15. Mean distance errors at different values of q.
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Fig. 16. Mean training times at different values of q.

the change of environment by updating the RSS samples and
training the deep Gaussian process model in real-time.

3) Impact of the Number of Iterations for Initializing the
Variational Distribution: Figure 17 plots the influence of the
number of iterations performed for initializing the variational
distribution on the localization precision of DeepMap. As
shown in Fig. 17, the mean distance error drops slightly when
the initialization iterations increase from 100 to 200. When
initialization iterations range between 200 and 500, the local-
ization precision remains stable and the mean distance error is
about 3 m. To better assess the effect of initialization iterations
on localization precision, we increased the initialization iter-
ation number in steps of 500 in the rest of the experiments.
With 1000 initialization iterations, the localization precision
is improved significantly. When the number of initialization
iterations reaches 1500, the mean distance error continued to
decrease. However, the localization performance of DeepMap
does not continue to improve once the number of initialization
iterations becomes greater than 1500. Moreover, the mean
distance error remains at the level around 1.6 m.

4) Impact of the Resolution of Constructed Radio Map:
Figure 4 depicts the reconstructed RSS radio map that was
generated by 100% of fingerprints in the Broun Hall dataset,
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Fig. 17. Mean distance errors at different numbers of iterations for initialising
the variational distribution.
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Fig. 18. Mean distance errors at different map resolutions.

where the green dots represent the reconstructed RSS values at
various reference positions. The resolution of the reconstructed
RSS radio map is decided by the density of the reference
points. To investigate the impact of map resolution on the
performance of the DeepMap system, we generate 15 maps
with different resolutions using the well-trained deep Gaussian
process model. As shown in Fig. 18, localization precision
is not significantly affected by map resolution when the
resolution is higher than 200 cm. Additionally, Table I shows
that the size of the RSS radio map shrinks rapidly when
map resolution is decreased from 50 cm to 200 cm. Thus, a
fine-grained RSS radio map is not essential for the improved
performance of the DeepMap system. However, mean distance
error gets larger if the map resolution is further decreased.
The worst localization precision is obtained with the map
resolution of 400 cm.

According to Table I, map size and time of map construction
are correlated to the map’s resolution. Although the mean
distance error is about 1.5 m when the map resolution is 50
cm, the RSS radio map would be enormous and cost a mobile
device 12.4 MB in storage. Correspondingly, testing and map

construction times are also higher than those obtained by lower
resolution maps. Combining the results from Table I and the
mean distance errors in Fig. 18, the best performance of the
DeepMap system is achieved when the resolution of an RSS
radio map is set to 200 cm. At this resolution, map construction
and testing times decrease to 1.24 and 0.11 seconds, respec-
tively. With the help of this shorter testing time, DeepMap has
the potential to provide real-time localization and navigation
services to indoor mobile device users. Additionally, at this
optimal resolution, map size is only 0.83 MB, which can fit
on most mobile devices.

VI. CONCLUSIONS

In this paper, we presented the DeepMap system, a deep
Gaussian process model for indoor radio map construction and
location estimation. Compared to traditional Gaussian process
models for constructing radio maps, the DeepMap system
consists of a two-layer deep Gaussian process model that is
able to extract nonlinear characteristics from RSS samples.
We also proposed a Bayesian training method to optimize
the model parameters in the offline stage and a Bayesian
fusion algorithm in the online stage for location estimation.
We conducted extensive experiments to evaluate DeepMap’s
performance using two datasets. The results indicated that
DeepMap outperforms the Gaussian process based baseline
scheme in all the experiments with respect to location preci-
sion and that it is robust to deficient training data.
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