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In this paper, we present an RFID based human and Unmanned Aerial Vehicle (UAV) Interaction system, termed
RFHUI, to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment. It relies
on the passive Radio-Frequency IDentification (RFID) technology to precisely track the pose of a handheld
controller, and then transfer the pose information to navigate the UAV. A prototype of the handheld controller is
created by attaching three or more Ultra High Frequency (UHF) RFID tags to a board. A Commercial Off-The-Shelf
(COTS) RFID reader with multiple antennas is deployed to collect the observations of the tags. First, the precise
positions of all the tags can be obtained by our proposed method, which leverages a Bayesian filter and Channel
State Information (CSI) phase measurements collected from the RFID reader. Second, we introduce a Singular
Value Decomposition (SVD) based approach to obtain a 6-DoF (Degrees of Freedom) pose of the controller from
estimated positions of the tags. Furthermore, the pose of the controller can be precisely tracked in a real-time
manner, while the user moves the controller. Finally, control commands will be generated from the controller's
pose and sent to the UAV for navigation. The performance of the RFHUI is evaluated by several experiments. The
results show that it provides precise poses with 0.045 m mean error in position and 2.5° mean error in orientation
for the controller, and enables the controller to precisely and intuitively navigate the UAV in an indoor
environment.

1. Introduction

The application of Unmanned Aerial Vehicle (UAV), which originated
in the military arena, has rapidly expanded to other areas, such as agri-
culture, research, commerce, and so on. Due to its prominent maneu-
verability, small form factor, and low cost, the UAV is widely adopted for
surveillance, entertainment, search and rescue, and inspection for
maintenance. In terms of personal UAV applications, over the past few
years, more and more advanced algorithms and sensors have been
introduced, which make their use increasingly powerful and compre-
hensive. These personal UAVs are usually used for human entertainment
activities, such as taking photos and videos. The mounting growth of

demands makes the interaction between the user and UAV a research
topic attracting considerable interests [1].

In this paper, we propose RFID-based Human UAV Interaction
(RFHUI), a low-cost, RFID-based system which provides an intuitive and
easy-to-operate way to control and navigate a UAV in a complex indoor
environment. The proposed method provides a means to precisely con-
trol a UAV to navigate it in a 3D space in a real-time manner. Specifically,
we attach N (N > 3) Ultra High Frequency (UHF) passive RFID tags to a
small board to create a hand-held controller. We record the position of
each tag against the built-in coordinates of the controller. This position is
denoted as a local one. We then deploy a Commercial Off-The-Shelf
(COTS) RFID reader with multiple antennas to gather the observation
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of the tags. The global position, which refers to the global coordinates in
the 3D space, of an RFID tag can be precisely tracked by the Channel State
Information (CSI) phase measurements of the RFID tag responses from
multiple antennas. A 6-DoF pose of the controller can be obtained from
the known local position and estimated global position of the N attached
tags. Finally, following the movement of the controller, the UAV re-
sponds and updates its pose and position in the air. The main contribu-
tions of this work can be summarized as follows:

1. A real-time RFID tag localizer is designed, which exploits the
measured phase information of received RFID responses at a COTS
reader. It localizes multiple UHF RFID tags simultaneously.

2. Areal-time pose tracker is proposed. Based on the position of attached
tags, a precise 6-DoF pose for the UAV controller is estimated in a 3D
space.

3. We transform the pose of the controller into flying control commands
for UAV navigation.

4. We implement the RFHUI system with COTS RFID devices and
demonstrate its performance in a representative indoor environment.
Experimental results show that the RFHUI can provide precise poses
with 0.045 m mean error in position and 2.5° mean error in orienta-
tion for the controller. Thus, it enables the controller to precisely and
intuitively navigate the UAV in an indoor environment.

The remainder of this paper is organized as follows. We review
related works in Section 2. We present the design and analysis of the
RFHUI system in Section 3 and our experimental study in Section 4.
Section 5 concludes this paper.

2. Related works

With the development of robotics and growing demands for civilian
and industrial applications, the concept of interaction and collaboration
between human and robots has received a lot of attention. The study of
Human Robot Interaction (HRI) focuses on how their communication
achieves better real-time performance. It can be approximately divided
into three areas of applications: teleoperation in specific environments
[2-5], human-centric social interaction [6], and industrial
manufacturing [7]. For applications in social interaction, Santos et al.
proposed a tour-guide robot which is capable of recognizing the user's
hand gesture and providing voice feedback [8]. In the field of HRI tele-
operation in a specific environment, Urban Search And Rescue (USAR) is
a very interesting research topic for deploying an HRI teleoperation in a
specific environment. For example, Kohlbrecher et al. presented a
human-robot system for rescue missions [9].

Compared to traditional robotic Unmanned Ground Vehicles (UGV),
the UAV has significant differences, including flying freely, poor carrying
capability, and being unsafe to touch. These demand a different and
suitable new interaction method for human and UAV. The applications of
Human Drone Interaction (HDI) are primarily focused on jogging com-
panion UAVs involved in shooting videos, gesture recognition, and
floating display. Muller et al. designed and built an outside jogging
companion quadcopter system with GPS localization [10]. In Ref. [11],
Scheible et al. proposed a system that combines a quadrocopter, a video
projector, and a mobile phone for projecting contents onto walls or ob-
jects in an open space. Obviously, these UAVs are large and could only be
used outdoors, thus prohibiting close interaction between human and
drones. For gesture control applications, Cauchard et al. investigated the
problem of multiple participants and found that natural gesture control
leads to a more intimate relationship between user and UAV [12]. In the
current commercial UAV market, DJI announced a state-of-the-art small
gesture control based UAV product, called Spark [19], in May 2017. This
is the first time that gesture recognition technologies have been intro-
duced for consumer-class UAVs, enabling the removal of a traditional
remote controller.

Since the last decade, RFID technology has been widely recognized
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as a promising solution for item serialization and tracking. Due to its
cost-effective, lightweight, small form factor, and power-free properties,
the RFID has also been widely deployed for indoor localization [20-27].
A considerable number of studies have focused on accessing the phase
measurement of RF signals for localization [29,30]. Making use of Angle
of Arrival (AOA) is a classic solution, which is driven by measuring the
phase difference of the signals received at different antennas. In
Ref. [30], Azzouzi presented the new measurement results for an AOA
approach to localize RFID tags. In addition to localization applications,
RFID technology has also been employed for 3-D reconstruction. Bu
et al. proposed an approach based on the phase differences of RF signals
for 3-D reconstruction of cubes [31], which is free of the limitation of
line-of-sight and battery life constraint. Moreover, there are many other
interesting scenarios that access RFID technology. For example, in
Ref. [32], the reading patterns of RFID tags are leveraged to detect
customers’ behaviors in a physical clothes store. In Ref. [28], RFID tags
are attached to the clothes of a patient to measure his/her respiration
rate.

Motivated by the research of the aforementioned RFID applications,
we go beyond the above HRI and HDI works to design a practical HDI
navigation system based on the RFID technology and test it in a real-
world laboratory environment. Compared to traditional vision-based
HDI systems, the proposed RFHUI does not have the line-of-sight limi-
tation due to the penetrating characteristics of RF signals.

3. RFHUI design and analysis

RFHUI is a low-cost, RFID-based system aiming to offer flexible
human-UAV interaction. It provides an intuitive and easy-to-operate
means for controlling a UAV in a 3D space. The RFHUI system com-
prises N (N > 3) UHF passive RFID tags and a COST RFID reader with
M (M > 2) antennas. The tags are attached to the controller, and, when
tracking the RFID tags by querying the phase information of each tag, a 6-
DoF pose of the controller can be obtained. Then, the UAV can be
controlled by this pose. In this section, we will introduce the system
model and RFHUI architecture and design. Table 1 shows the important
notations used in this paper.

Table 1
Important notations used in the paper.

Notation Description

N Amount of implemented RFID tags

M Amount of RFID antennas

In The position of the mth antenna in the global coordinate

Xt The hypothetical posterior state of a dynamic system at a given time
t. In RFHUI system, it refers to the position of an RFID tag at time t

u, The received control at time t. In RFHUI system, it denotes the speed
of an RFID tag at time t

2 Observation at time t

B(xt) The belief that denotes the probability of the system is in state x at
time t. In RFHUI system, it refers to the probability of a tag in
position x;

P(z | x¢,lm) The observation model of the mth antenna

0 RF phase measured from the reader

R The distance between the reader antenna and an RFID tag

A Wavelength of the RF radio signal

Or1,0R, 014G The RF phase distortion caused by the reader’s transmit circuits, the
reader’s receiver circuits, and the tag’s reflection characteristics,
respectively

X, Yo, 2. Unit vectors of the axes of the built-in coordinates of the controller

}?g, ?g, Zg Unit vectors of the axes in the global coordinates

T, R, The position and orientation of the controller at time ¢

Py The position (x, yﬁl,zfl)Tof the nth tag at time ¢ in the global
coordinates

éT, The rigid transform between the controller’s built-in coordinates and
the global coordinates at time t

H, Pose of the controller at time t

U, Pose of the UAV at time t
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3.1. System architecture

The system architecture of RFHUI is presented in Fig. 1. Our proposed
RFHUI system consists of three main components as follows:

e RFID Localizer: We deploy a Bayesian filter to estimate the global
location of the tags by utilizing the phase measurement from each tag,
which is obtained by the reader.

Pose Tracker: After the global location of N (N > 3) tags are obtained
by the RFID localizer and combined with the given local location of
each tag, we can track the pose of the controller with an SVD based
method. Here, the local location is given in the built-in coordinate of
the controller.

Control Module: It converts the pose of the controller into flying
control commands, which are transmitted to the UAV. Thus, the UAV
can be navigated following a trajectory that is guided by the move-
ment of the controller.

We present the design of the three components in the remainder of
this section.

3.2. RFID localizer

In the RFHUI system, phase measurements of the tag responses are
collected by an RFID reader with M antennas. We fix and measure the
positions of all the antennas. Hereafter, let [, denote the position of the
mth antenna in the global coordinate.

3.2.1. Bayesian filter updates for tag localizing

In RFHUI, a Bayesian filter is deployed to localize the tags mounted on
the controller. The Bayesian filter addresses the problem of estimating
belief over the hypothetical posterior state x of a dynamic system by
sensor observations. For the RFID localizer, the state x denotes the po-
sition of the tag against the global coordinate. The belief .%2(x;), which
denotes the probability that the system is in state x at time t, is recursively
updated by the Bayesian filter. The update is calculated from control u;,
observation z;, and prior belief %(x,_1) at time (t — 1), which is calcu-
lated previously.

Usually, one updating cycle of a typical Bayesian filter can be divided

Phase Measurements

RFID Localizer

Based on the phase observations to track
each tag, and output global positions of

the tags.
\ 4

Pose Tracker

Based on the global positions of tags to
estimate the 6DoF pose of the Controller.

4

Control Model

Based on the pose of the Controller to
navigate the UAV by flying command.

Fig. 1. The system architecture of RFHUI, where the global coordinates are
built in the real world.

Digital Communications and Networks 6 (2020) 14-22

into two essential steps. Control update or prediction is the first step of
the process, which is given as:

Z(x) = / Pl |t 5,1 ) B (51 )i &)

where P(x; | u;,x;—1) provides the probability of a tag moving from po-
sition x;_1 to x; under the control of u;, referred to as a motion model, and
‘% (x;) represents the probability of the tag at position x; after control u; is
executed. We assume that the speed of tags will remain constant for a
very short time interval, and hence, a constant speed model can be

deployed for the RFID localizer, which is expressed as:

1 o t — \Ar— t" 2
PO %) = m/o exp{ (x(xz‘;”y))}dy )

where u; denotes the speed of the tag at time ¢t — 1 and At represents the
time interval between t — 1 and t.

Without loss of generality, we assume the movements of the tag
satisfy a typical Gaussian distribution with standard deviation 5. The
second step is the measurement update, which is written as:

B(x)=n- @(x,) Pz | x) 3

In (3), # is a constant to integrate the sum of all .2(x;) into 1, and
P(z | x;) represents the observation model. The RFID localizer is equip-
ped with M reader antennas. Thus (3) can be rewritten as:

M
Bx) = n-Bx) P | xi,1) @)
m=1

where P(2; | x;, ln) denotes the observation model for the mth antenna. It
provides the probability when the mth antenna in position [, observes
measurement 2, of the tag, which is in position x;. The detail of the model
is presented in the following.

3.2.2. Model of RFID phase measurement
The relationship of the RF phase shift between transmitted and
received signals is given by the following equation:

2R
0= (271- (7) +6r + 6 + 0TAG)mod 2z 5)

where 0 is the RF phase measured by the reader, R is the distance be-
tween the reader antenna and the RFID tag, 1 is the wavelength of the RF
radio signal, Or,0g,07ac are the RF phase distortion caused by the
reader's transmit circuits, by the reader's receiver circuits, and by the tag's
reflection characteristics, respectively, and mod is the Modulo operation.

Experiments show that for the same reader antenna, the same RFID
tag, and the same radio frequency, 0r,0g, and 074 are fixed, and can be
denoted as §' = 07 + Or + O1ag. Thus, (5) can be rewritten as:

0= <2n~ <?) + 9') mod 27 6)

We assume that a tag is in position X, ; and a reader antenna in a
position [, observes the RF phase 0; from the tag's response. Under the
same RF frequency, the tag moves to position x, and the RF phase 6, is
observed from the tag. The differential RF phase measurement between
the two positions satisfies the following conditions:

Aglz = (01 — Hz)mod 2 (7)

2xey - B
AOp, = 2r -~ + 6' Jmod 27
2‘x,~lfﬂ|
—( 27 - + 6' |mod 27 |mod 27

(8
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Aby = (47”~(|x,,] | =[x ~lm|))m0d 21 Q)

Equation (9) shows that under the same frequency for the same an-
tenna and the same RFID tag, the differential RF phase A6, is only
determined by the distance the tag moves from x,_; to x;. In (9), |x; - L]
denotes the distance between the two positions. Hereafter, we assume
that all the RF phases are measured for the same RFID reader and the
same RFID tag under the same RF frequency. The tag moves in a discrete
trajectory that is represented by a series of locations xi, X, ..., ;. The
antenna, which is stationary in position [, collects the phase measure-
ment for each location as 0;,0s,...,0,,. Then, the discrete trajectory of the
movement of the tag should satisfy:

A A

= —.Ab; Z
az M0y

AG; = (6;— 6;) mod 27
ne{l,2 3 ...}

i,je{l,2,...;t}and i #j

X - Ly

‘xi : lm -

10

The observation model P(z, | x;, l,) can be updated by (10) to provide
the probability that if a tag moves from x, ; to x,, the differential RF
phase A, ; is obtained by the reader. We model the differential RF
phase by the following equation:

1, if (10) is satisfied

0, otherwise an

P(Aer‘r—l |xr—l-,xhlm) =

Let's consider the distortion of the RF phase that is caused by the
thermal noise. Experiments reveal that the thermal noises introduces
random errors to the phase measurement following a typical Gaussian
distribution. Thus, we denote the RF phase as 6 ~ ./"(u,5), where y is the
RF phase without the distortion of thermal noise and & denotes the
standard deviation. Hence, we can update the differential RF phase as
Aby ~ N (p; — pj, v/26), and (11) can be updated as:

P(Aet.r—l ‘ X,,I,X”lm)

SR Y BB (e (e V) 12)
~Voms) s P 25 Y

byl 20
TRT— < ‘th bnl —M)mod 27 13)

Based on (12), (13) and (4), we can estimate the locations of the RFID
tags.

3.3. Pose tracker

The location of a tag, which is denoted as p., = (xt,y",2%)" for the nth
tag at time t, can be estimated by the RFID localizer. When the controller
is located at T, with orientation R in the given global coordinate, T and R
together are called the pose of the controller. Here, we denote the posi-
tion of the controller at time t as T, = (x, yt,z[)T, and the orientation at
time t as

5
o
N

<) 3 0

N <) 5
f

~) ==

N~ 3
o

N NN

K = 300
.

o

o
S
S

R, = a4

S

o
s

o

where X o Y., and Z, represent the unit vectors of the axes of the built-in

coordinates of the controller, and X,, Y, and Z, denote the unit vectors
of the axes in the global coordinates. The relationship of the two co-
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ordinates is illustrated in Fig. 2.

We measure the location of each attached tag in the controller's built-
in coordinates, and the local location for the nth tag is denoted as p, =
(Xn,¥a,Za)". The transformation between the global location and local
location of the same tag is given by:

!

P,
)

o
=P
= (P,

Bl

t

!
~

(15)

==
—_

—_

)T

B

where §T, denotes the rigid transform at time t, p}, and p,, is the location of
the nth tag in the global coordinates and the controller's built-in co-
ordinates, respectively. In (15), ¢T, comprises the pose of the controller
in the global coordinate:

R, T,
000 1

8 =
[

(16)

where R, and T, denote the global orientation and global position of the
controller at time t, respectively. Based on (15) and (16), we can obtain
the pose of controller by searching an optimal transform ¢7T,. When the
global locations of all the tags of the controller are provided by proposed
RFID localizer, (15) can be updated as follows:

Prl = Rr 'ﬁ] + Tr
ptz =R, -p,+T: a7

pi’l =R:.-p,+T,

where p{, p, and p!, are the global locations for tag 1, 2, and n, respec-
tively; and p;, p,, and p,, are the local locations for tag 1, 2, and n,
respectively. Therefore, the process of finding an optimal transform T,
can be formulated as a least square minimization problem as:

N
min Z i — (R -p; + T, a8
(ReTi} 45
where N is the total number of tags and || -|| is the norm of a vector.

Problem (18) is a typical problem of determining the rotation and
translation relationship between two sets of data points at different co-
ordinates, and a variety of methods have been introduced to solve such a
problem [34,35]. Based on the approach that is introduced in Ref. [34],
our proposed pose tracker is developed to find the optimal ¢7, in three
steps:

Global
g| coordinate

N

!n><)

Fig. 2. The global coordinates versus the built-in coordinates of the controller.
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Step 1. Finding the centroids of all the locations in both global and local
coordinates, which are denoted as C and C, respectively. Then, use the cen-
troids as the new origins of two coordinates and transfer the locations into two
coordinates, as:
pl'=p;—C, forie[l,2,....,N]
p'=p;—C, forie[l,2,....N| (19)

where N is the total number of tags.

Step 2. Determining the optimal rotation R, with the Singular Value
Decomposition (SVD) method. First, cascade all the shifted locations of the
tags in both global and local coordinates to form two matrices:

A= [pzlv‘pzzv ----P”]
L2 2) e, (20)
B = WI 7p2 kl ----,Py,]
where both A and B are 3 x N matrices. Then, we decompose or factorize the
matrix ABT with the SVD method as:
[U,D,V] = SVD(AB") 1)
where UUT = VVT = land D = diag(d;),d; > dy > -~ > d, > 0. Based on
the result in Ref. [34], we obtain the optimal rotation R; as:

R, =USV" (22)

where

B 1, if det(U)det(V) = 1
§= diag(1,1,...,1,—1), if det(U)det(V) = —1 (23)

In (23), 1is an identity matrix, and diag(-) is a diagonal matrix.

Step 3. Obtaining the translation T. After obtaining the rotation R,, T, can
be determined by the following equation:

T,=C—R-C 249

Therefore, based on the locations of the tags in both global and local
coordinates, the proposed pose tracker can determine the controller's
pose, including the orientation R, and the position T, referring to the
global coordinates.

3.4. Human UAYV interaction module

The human UAV interaction module primarily links the change of the
controller's pose with UAV movement to achieve flexible remote control.
We use the estimated pose of the controller to control the navigation of
the UAV. To achieve real-time control, the UAV must react sensitively to
the change of the controller's pose in a manner that follows the trajectory
of the moving controller.

We use H; to denote the pose of the controller, and U, to denote the
pose of the UAV at time t. The process of the module can be divided into
four steps, which are detailed as follows:

1. Obtaining H, and H,,; from the pose tracker.

2. Calculating AH = H;1 — H;, which contains the change of position
and orientation in the three-dimensional space.

3. Amplifying AH as AH' = a-AH, where « is the parameter of the
amplification, and we usually set @ = 5. We can make a slight
movement of the controller to activate a large-scale movement of the
UAV.

4. Converting the AH' to flying control commands and send it to the
UAV.

18
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Step 4 cooperates with the specific UAV platform, and it usually relies
on the API to communicate with the UAV. For example, in our experi-
mental platform, an ROS [33] based system is developed to communicate
with the ARDrone2.0 platform [13]. It updates the target position of the
UAV by

U. =U +AH (25)

and sends the U, to the UAV through the ROS message service.
4. Experimental validation and results
4.1. Experiment setup

We conduct a series of experiments to demonstrate the performance
of the RFHUI system. We establish a prototype of RFHUI using a COTS
reader and several UHF passive RFID tags. A Zebra FX7500 RFID reader
[14] with four Zebra AN720 antennas [15] is incorporated to query the
RFID tags. The Zebra FX7500 reader is widely deployed in retail,
manufacture factory, and warehouse applications, and meets the EPC
Gen2 standard requirements [16].

In our prototype system, we use the Low-Level Reader Protocol (LLRP)
through an Ethernet port to communicate with the reader and report the
RFID measurements. The Zebra AN720 Antennas provide a left circular
polarization with a 100° beam width and a 5.5 ~ 6 dB gain. Each antenna
is mounted on a holder of 1.4 m height. The four antennas with their
holders are deployed in front of the user. In all our experiments, we set the
reader to work at the maximum RF transmission power, i.e., 33 dBm, to
enable each antenna to gain a detectable range up to 6 m. Our experi-
mental setting is illustrated in Fig. 3 (side view) and Fig. 4 (top view). The
configuration of the four antennas created a detectable field, which allows
the four antennas to interrogate an RFID tag simultaneously.

antenna
{
100° |

A

1.4m

L1777 77777777777/ /)

Fig. 3. Side view of the RFID detectable field.

antenna antenna

R == =

P

9,
%
2,
)
4

@ user with the
controller

Fig. 4. Top view of the RFID detectable field.
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Three UHF passive RFID tags are attached to a foam board working as
our prototype controller, which is shown in Fig. 5. Fig. 6 shows how the
controller is operated by a user during the tests. Our experimental RFID
tag is Smartrac Dogbone Monza R6 [17], which is widely used in the
retail business. We choose the Parrot ARDrone2.0 Elite Edition drone
[18] as our UAV platform, which is shown in Fig. 7. It is equipped with a
front camera, a bottom camera, a sonar, and an Inertial Measurement
Unit (IMU). Based on the measurements of the onboard sensors, it can

Attached
RFID tags

Fig. 5. A prototype of our RFHUI controller.

Fig. 6. A user holds the controller in hand during an experiment.

Fig. 7. The ARDrone2.0 Elite Edition drone used in our experiments.

19

Digital Communications and Networks 6 (2020) 14-22

localize itself by using a sensor fusion method. For example, the Parallel
Tracking and Mapping (PTAM) technique [19] can be implemented to
estimate the 3D pose of the ARDrone2.0 drone.

4.2. Accuracy of RFID tracking and pose estimation

4.2.1. Effect of the number of antennas

Before revealing the performance of the proposed RFHUI system, we
first conduct a set of benchmark experiments to discover the effect of the
number of RFID antennas on the system performance. We configure the
RFID reader with 1, 2, 3, and 4 antennas in each benchmark experiment,
respectively. During every benchmark experimentation, the controller is
moved along the same trajectory, which is shown in Fig. 8. We first
moved the controller with 20 cm in the direction of the x-axis, and then
moved it for another 20 cm along the y-axis direction. We sampled the
trajectory every 2cm, which is illustrated by the red points in Fig. 8.
There were totally 21 sampled points. At every sampled point we record
the ground truth location and the estimated location that are provided by
the RFID localizer for every tag and collect the ground truth and the
estimated pose of the controller.

First, we evaluate the accuracy of the RFID localizer by comparing the
estimated location to the ground truth location of every tag at all sampled
points. The average location error of each tag at different antenna con-
figurations is shown in Fig. 9. We can see that the more antennas are
deployed, the more accurate the estimated localization. The results are
consistent with the conclusion of (4): the more antennas are deployed,
the more accurate estimation can be made.

We also evaluate the accuracy of the controller's pose, including po-
sition and orientation, which is measured by our RFHUI system. The
results in each antenna configuration are shown in Fig. 10 and Fig. 11.
From Figs. 10 and 11, the average errors of both position and orientation

0.5

Z—axis

0.9 0.9

08 08 X—axis

Y-axis

Fig. 8. The moving trajectory of the benchmark experiments: the red points are
the sampled locations.

Avg Distance Error(m)

3 antennas 2 antennas 1 antenna

4 antennas

Fig. 9. The average error and standard deviation of the localization error of the
controller's tags for different antenna configurations.
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Fig. 10. The average position error of the controller for different antenna
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Fig. 11. The average orientation error of the controller for different antenna
configurations.
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Fig. 12. CDF of RFID tags tracking error with a more complex and
longer trajectory.

are reduced dramatically when the number of deployed antennas is
increased. For the configuration with 4 antennas, the system achieves an
average error of 0.021 m in position and 1.8’ in orientation. Therefore, all
hereafter experiments are implemented with the 4-antenna configuration
with the setup shown in Fig. 4.

4.2.2. RFID tags tracking

To evaluate the performance of the RFID localizer in RFHUI, we
launch another experiment by attaching three UHF passive RFID tags to
the controller. A user holds the controller and moves it following a given
trajectory, which is inside the experiment field. In contrast to the simple
trajectory in our benchmark experiments, we move the controller in a
more complex and longer trajectory with more variety in moving direc-
tion, thus to mimic the actual user behavior while operating the UAV.
During the experiment, the RFID localizer of RFHUI provides estimated
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Fig. 13. (a) CDF of the controller position estimation error; (b) CDF of the
controller orientation error.

locations for each tag while the controller is moving. We obtain the
ground-truth locations by measuring the sampled points every 5mm
along the trajectory. The accuracy of the proposed method is evaluated
by calculating the errors between the ground-truth locations and the
estimated locations of the sampled points.

We repeat the experiment several times, and the experimental results
are presented in Fig. 12 in the form of the Cumulative Distribution
Function (CDF) of localization errors between estimated and ground-
truth positions. We can see that the maximum error of the RFID local-
izer is less than 0.095 m for all the three tags. Moreover, with the RFID
localizer of RFHUI, 80% of the localization errors are less than 0.045m
and 90% of them are under 0.06 m. Therefore, it is safe to state that the
RFID localizer achieves very precise localization for tracking the moving
RFID tags. Note that the average error of every tag is a little bit higher
than that in the benchmark experiments because we consider much more
sampled points and the controller moves along a more complex trajectory
in this experiment.

4.2.3. Controller pose estimation

We next conduct an experiment to verify the feasibility and accuracy
of our proposed pose tracker, including position and orientation esti-
mations. The controller moves along a trajectory in our experiment field,
held by a user.

The results are presented in Fig. 13. Fig. 13(a) shows that about 78%
of the position errors of the proposed pose tracker are under 0.05 m, and
the maximum error is less than 0.083m. Additionally, as shown in
Fig. 13(b), we can see that 60% the orientation errors are less than 2.5".
Moreover, for the pose tracker, almost 90% of the orientation estimations
achieve an error under 3.5°. Obviously, regardless of position and
orientation estimations, the proposed pose tracker of RFHUI is suffi-
ciently accurate for most practical human-UAV interaction scenarios.
Also note that similar to the result in the of RFID tags tracking experi-
ment, due to the greater number of sampled points and increased
complexity of the moving trajectory in this experiment, the average of
errors in both position and orientation is a little bit higher than that in the
benchmark experiments.

4.3. Overall system performance

Finally, we conducted an experiment in our indoor lab environment
to demonstrate the feasibility of our system in a real-time manner. The
typical experimental environments are shown in Fig. 14 and Fig. 15. The
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Fig. 14. The empty lab environment.

Fig. 15. The cluttered lab environment.
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Fig. 16. Trajectory comparison.

complex indoor environment, with intricate features and layouts with
shelves, clothes stands, and furniture as shown in Fig. 15, requires our
proposed RFHUI system to provide an accurate and robust control
method to safely operate the UAV indoors. During this experiment, a user
holds the controller, which is attached with 3 RFID tags, to control the
UAV. We compared the ideal movement trajectory of the UAV, which is
amplified by the trajectory of the controller, and the actual movement of
the UAV to illustrate the performance of the proposed RFHUI

A typical experiment result is presented in Fig. 16. The movement of
the controller follows a random trajectory, which is illustrated by the
black curve in Fig. 16. The blue curve represents the trajectory of the
controller. The red curve denotes the ideal trajectory of the UAV, which is
an amplified version of the trajectory of the controller. Clearly, we can
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tell that the UAV precisely follows the ideal trajectory, with only tiny
disturbances around the ideal occurred. This is caused by the inherent
errors of the UAV, especially when the UAV is in a hovering mode. It is
apparent that our RFHUI system achieves high accuracy in real-time
navigation. This experiment validates that our RFID-based controller
strategy is robust and practical. This is mainly due to the fact that our
proposed RFHUI system can provide a highly accurate pose estimation,
which plays a critical role in UAV navigation.

5. Conclusions

In this paper, we proposed the RFHUI, an RFID based system for
navigation control of a UAV using a COTS RFID reader. We experimen-
tally validated the feasibility of utilizing an RFID localization-based
method as the core of the UAV controller. We leveraged a Bayesian fil-
ter to estimate the location of RFID tags using the phase information in
RFID tag responses. Then an SVD algorithm was employed for data pre-
processing to track the pose of the controller. Finally, the control module
converted the pose data into flying control commands to achieve UAV
navigation control in real-time. The extensive experiments in a repre-
sentative lab environment demonstrated the capability of the proposed
RFHUI system. To the best of our knowledge, the proposed RFHUI is the
first practicable UHF passive RFID based UAV navigation control system,
which provides a promising method for Human-UAV interaction.
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