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A B S T R A C T

In this paper, we present an RFID based human and Unmanned Aerial Vehicle (UAV) Interaction system, termed

RFHUI, to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment. It relies

on the passive Radio-Frequency IDentification (RFID) technology to precisely track the pose of a handheld

controller, and then transfer the pose information to navigate the UAV. A prototype of the handheld controller is

created by attaching three or more Ultra High Frequency (UHF) RFID tags to a board. A Commercial Off-The-Shelf

(COTS) RFID reader with multiple antennas is deployed to collect the observations of the tags. First, the precise

positions of all the tags can be obtained by our proposed method, which leverages a Bayesian filter and Channel

State Information (CSI) phase measurements collected from the RFID reader. Second, we introduce a Singular

Value Decomposition (SVD) based approach to obtain a 6-DoF (Degrees of Freedom) pose of the controller from

estimated positions of the tags. Furthermore, the pose of the controller can be precisely tracked in a real-time

manner, while the user moves the controller. Finally, control commands will be generated from the controller's

pose and sent to the UAV for navigation. The performance of the RFHUI is evaluated by several experiments. The

results show that it provides precise poses with 0.045m mean error in position and 2.5∘ mean error in orientation

for the controller, and enables the controller to precisely and intuitively navigate the UAV in an indoor

environment.

1. Introduction

The application of Unmanned Aerial Vehicle (UAV), which originated

in the military arena, has rapidly expanded to other areas, such as agri-

culture, research, commerce, and so on. Due to its prominent maneu-

verability, small form factor, and low cost, the UAV is widely adopted for

surveillance, entertainment, search and rescue, and inspection for

maintenance. In terms of personal UAV applications, over the past few

years, more and more advanced algorithms and sensors have been

introduced, which make their use increasingly powerful and compre-

hensive. These personal UAVs are usually used for human entertainment

activities, such as taking photos and videos. The mounting growth of

demands makes the interaction between the user and UAV a research

topic attracting considerable interests [1].

In this paper, we propose RFID-based Human UAV Interaction

(RFHUI), a low-cost, RFID-based system which provides an intuitive and

easy-to-operate way to control and navigate a UAV in a complex indoor

environment. The proposed method provides a means to precisely con-

trol a UAV to navigate it in a 3D space in a real-time manner. Specifically,

we attach N (N � 3) Ultra High Frequency (UHF) passive RFID tags to a

small board to create a hand-held controller. We record the position of

each tag against the built-in coordinates of the controller. This position is

denoted as a local one. We then deploy a Commercial Off-The-Shelf

(COTS) RFID reader with multiple antennas to gather the observation
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of the tags. The global position, which refers to the global coordinates in

the 3D space, of an RFID tag can be precisely tracked by the Channel State

Information (CSI) phase measurements of the RFID tag responses from

multiple antennas. A 6-DoF pose of the controller can be obtained from

the known local position and estimated global position of the N attached

tags. Finally, following the movement of the controller, the UAV re-

sponds and updates its pose and position in the air. The main contribu-

tions of this work can be summarized as follows:

1. A real-time RFID tag localizer is designed, which exploits the

measured phase information of received RFID responses at a COTS

reader. It localizes multiple UHF RFID tags simultaneously.

2. A real-time pose tracker is proposed. Based on the position of attached

tags, a precise 6-DoF pose for the UAV controller is estimated in a 3D

space.

3. We transform the pose of the controller into flying control commands

for UAV navigation.

4. We implement the RFHUI system with COTS RFID devices and

demonstrate its performance in a representative indoor environment.

Experimental results show that the RFHUI can provide precise poses

with 0.045m mean error in position and 2.5∘ mean error in orienta-

tion for the controller. Thus, it enables the controller to precisely and

intuitively navigate the UAV in an indoor environment.

The remainder of this paper is organized as follows. We review

related works in Section 2. We present the design and analysis of the

RFHUI system in Section 3 and our experimental study in Section 4.

Section 5 concludes this paper.

2. Related works

With the development of robotics and growing demands for civilian

and industrial applications, the concept of interaction and collaboration

between human and robots has received a lot of attention. The study of

Human Robot Interaction (HRI) focuses on how their communication

achieves better real-time performance. It can be approximately divided

into three areas of applications: teleoperation in specific environments

[2–5], human-centric social interaction [6], and industrial

manufacturing [7]. For applications in social interaction, Santos et al.

proposed a tour-guide robot which is capable of recognizing the user's

hand gesture and providing voice feedback [8]. In the field of HRI tele-

operation in a specific environment, Urban Search And Rescue (USAR) is

a very interesting research topic for deploying an HRI teleoperation in a

specific environment. For example, Kohlbrecher et al. presented a

human-robot system for rescue missions [9].

Compared to traditional robotic Unmanned Ground Vehicles (UGV),

the UAV has significant differences, including flying freely, poor carrying

capability, and being unsafe to touch. These demand a different and

suitable new interaction method for human and UAV. The applications of

Human Drone Interaction (HDI) are primarily focused on jogging com-

panion UAVs involved in shooting videos, gesture recognition, and

floating display. Muller et al. designed and built an outside jogging

companion quadcopter system with GPS localization [10]. In Ref. [11],

Scheible et al. proposed a system that combines a quadrocopter, a video

projector, and a mobile phone for projecting contents onto walls or ob-

jects in an open space. Obviously, these UAVs are large and could only be

used outdoors, thus prohibiting close interaction between human and

drones. For gesture control applications, Cauchard et al. investigated the

problem of multiple participants and found that natural gesture control

leads to a more intimate relationship between user and UAV [12]. In the

current commercial UAV market, DJI announced a state-of-the-art small

gesture control based UAV product, called Spark [19], in May 2017. This

is the first time that gesture recognition technologies have been intro-

duced for consumer-class UAVs, enabling the removal of a traditional

remote controller.

Since the last decade, RFID technology has been widely recognized

as a promising solution for item serialization and tracking. Due to its

cost-effective, lightweight, small form factor, and power-free properties,

the RFID has also been widely deployed for indoor localization [20–27].

A considerable number of studies have focused on accessing the phase

measurement of RF signals for localization [29,30]. Making use of Angle

of Arrival (AOA) is a classic solution, which is driven by measuring the

phase difference of the signals received at different antennas. In

Ref. [30], Azzouzi presented the new measurement results for an AOA

approach to localize RFID tags. In addition to localization applications,

RFID technology has also been employed for 3-D reconstruction. Bu

et al. proposed an approach based on the phase differences of RF signals

for 3-D reconstruction of cubes [31], which is free of the limitation of

line-of-sight and battery life constraint. Moreover, there are many other

interesting scenarios that access RFID technology. For example, in

Ref. [32], the reading patterns of RFID tags are leveraged to detect

customers’ behaviors in a physical clothes store. In Ref. [28], RFID tags

are attached to the clothes of a patient to measure his/her respiration

rate.

Motivated by the research of the aforementioned RFID applications,

we go beyond the above HRI and HDI works to design a practical HDI

navigation system based on the RFID technology and test it in a real-

world laboratory environment. Compared to traditional vision-based

HDI systems, the proposed RFHUI does not have the line-of-sight limi-

tation due to the penetrating characteristics of RF signals.

3. RFHUI design and analysis

RFHUI is a low-cost, RFID-based system aiming to offer flexible

human-UAV interaction. It provides an intuitive and easy-to-operate

means for controlling a UAV in a 3D space. The RFHUI system com-

prises N ðN� 3Þ UHF passive RFID tags and a COST RFID reader with

M ðM� 2Þ antennas. The tags are attached to the controller, and, when

tracking the RFID tags by querying the phase information of each tag, a 6-

DoF pose of the controller can be obtained. Then, the UAV can be

controlled by this pose. In this section, we will introduce the system

model and RFHUI architecture and design. Table 1 shows the important

notations used in this paper.

Table 1

Important notations used in the paper.

Notation Description

N Amount of implemented RFID tags

M Amount of RFID antennas

lm The position of the mth antenna in the global coordinate

xt The hypothetical posterior state of a dynamic system at a given time

t. In RFHUI system, it refers to the position of an RFID tag at time t

ut The received control at time t. In RFHUI system, it denotes the speed

of an RFID tag at time t

zt Observation at time t

B ðxt Þ The belief that denotes the probability of the system is in state x at

time t. In RFHUI system, it refers to the probability of a tag in

position xt
Pðzt j xt ; lmÞ The observation model of the mth antenna

θ RF phase measured from the reader

R The distance between the reader antenna and an RFID tag

λ Wavelength of the RF radio signal

θT ;θR;θTAG The RF phase distortion caused by the reader’s transmit circuits, the

reader’s receiver circuits, and the tag’s reflection characteristics,

respectively

bX c;
bY c;

bZ c
Unit vectors of the axes of the built-in coordinates of the controller

bX g , bY g , bZg
Unit vectors of the axes in the global coordinates

Tt , Rt The position and orientation of the controller at time t

ptn The position ðxtn; ytn; ztnÞ
T
of the nth tag at time t in the global

coordinates
g
cTt The rigid transform between the controller’s built-in coordinates and

the global coordinates at time t

Ht Pose of the controller at time t

Ut Pose of the UAV at time t
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3.1. System architecture

The system architecture of RFHUI is presented in Fig. 1. Our proposed

RFHUI system consists of three main components as follows:

� RFID Localizer: We deploy a Bayesian filter to estimate the global

location of the tags by utilizing the phase measurement from each tag,

which is obtained by the reader.

� Pose Tracker: After the global location of N ðN� 3Þ tags are obtained

by the RFID localizer and combined with the given local location of

each tag, we can track the pose of the controller with an SVD based

method. Here, the local location is given in the built-in coordinate of

the controller.

� Control Module: It converts the pose of the controller into flying

control commands, which are transmitted to the UAV. Thus, the UAV

can be navigated following a trajectory that is guided by the move-

ment of the controller.

We present the design of the three components in the remainder of

this section.

3.2. RFID localizer

In the RFHUI system, phase measurements of the tag responses are

collected by an RFID reader with M antennas. We fix and measure the

positions of all the antennas. Hereafter, let lm denote the position of the

mth antenna in the global coordinate.

3.2.1. Bayesian filter updates for tag localizing

In RFHUI, a Bayesian filter is deployed to localize the tags mounted on

the controller. The Bayesian filter addresses the problem of estimating

belief over the hypothetical posterior state x of a dynamic system by

sensor observations. For the RFID localizer, the state x denotes the po-

sition of the tag against the global coordinate. The belief B ðxtÞ, which

denotes the probability that the system is in state x at time t, is recursively

updated by the Bayesian filter. The update is calculated from control ut ,

observation zt , and prior belief B ðxt�1Þ at time ðt� 1Þ, which is calcu-

lated previously.

Usually, one updating cycle of a typical Bayesian filter can be divided

into two essential steps. Control update or prediction is the first step of

the process, which is given as:

B ðxtÞ ¼
Z

Pðxt j ut ; xt�1ÞB ðxt�1Þdxt�1 (1)

where Pðxt j ut ; xt�1Þ provides the probability of a tag moving from po-

sition xt�1 to xt under the control of ut , referred to as a motionmodel, and

B ðxtÞ represents the probability of the tag at position xt after control ut is

executed. We assume that the speed of tags will remain constant for a

very short time interval, and hence, a constant speed model can be

deployed for the RFID localizer, which is expressed as:

Pðxt j ut; xt�1Þ ¼
1ffiffiffiffiffi
2π

p
δ

Z
Δt

0

exp

(

� ðxt � ðxt�1 þ ut � yÞÞ2

2δ2

)

dy (2)

where ut denotes the speed of the tag at time t � 1 and Δt represents the

time interval between t � 1 and t.

Without loss of generality, we assume the movements of the tag

satisfy a typical Gaussian distribution with standard deviation δ. The

second step is the measurement update, which is written as:

B ðxtÞ¼ η �B ðxtÞ �Pðzt j xtÞ (3)

In (3), η is a constant to integrate the sum of all B ðxtÞ into 1, and

Pðzt j xtÞ represents the observation model. The RFID localizer is equip-

ped with M reader antennas. Thus (3) can be rewritten as:

B ðxtÞ¼
X

m¼1

M

η �B ðxtÞ �Pðzt j xt; lmÞ (4)

where Pðzt j xt ; lmÞ denotes the observation model for the mth antenna. It

provides the probability when the mth antenna in position lm observes

measurement zt of the tag, which is in position xt . The detail of the model

is presented in the following.

3.2.2. Model of RFID phase measurement

The relationship of the RF phase shift between transmitted and

received signals is given by the following equation:

θ ¼
�
2π �

�
2R

λ

�
þ θT þ θR þ θTAG

�
mod 2π (5)

where θ is the RF phase measured by the reader, R is the distance be-

tween the reader antenna and the RFID tag, λ is the wavelength of the RF

radio signal, θT ; θR; θTAG are the RF phase distortion caused by the

reader's transmit circuits, by the reader's receiver circuits, and by the tag's

reflection characteristics, respectively, and mod is the Modulo operation.

Experiments show that for the same reader antenna, the same RFID

tag, and the same radio frequency, θT ;θR, and θTAG are fixed, and can be

denoted as θ' ¼ θT þ θR þ θTAG. Thus, (5) can be rewritten as:

θ ¼
�
2π �

�
2R

λ

�
þ θ'

�
mod 2π (6)

We assume that a tag is in position xt�1 and a reader antenna in a

position lm observes the RF phase θ1 from the tag's response. Under the

same RF frequency, the tag moves to position xt and the RF phase θ2 is

observed from the tag. The differential RF phase measurement between

the two positions satisfies the following conditions:

Δθ12 ¼ ðθ1 � θ2Þmod 2π (7)

Δθ12 ¼
��

2π

�
2
��xt�1 � lgm

��
λ

�
þ θ'

�
mod 2π

�
�
2π

�
2
��xt � lgm

��
λ

�
þ θ'

�
mod 2π

�
mod 2π

(8)

Fig. 1. The system architecture of RFHUI, where the global coordinates are

built in the real world.
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Δθ12 ¼
�
4π

λ
�ðjxt�1 � lmj � jxt � lmjÞ

�
mod 2π (9)

Equation (9) shows that under the same frequency for the same an-

tenna and the same RFID tag, the differential RF phase Δθ12 is only

determined by the distance the tag moves from xt�1 to xt . In (9), jxt � lmj
denotes the distance between the two positions. Hereafter, we assume

that all the RF phases are measured for the same RFID reader and the

same RFID tag under the same RF frequency. The tag moves in a discrete

trajectory that is represented by a series of locations x1; x2; …; xt . The

antenna, which is stationary in position lm, collects the phase measure-

ment for each location as θ1;θ2;…;θm. Then, the discrete trajectory of the

movement of the tag should satisfy:

8
>>>>>>>>>><

>>>>>>>>>>:

���xi � lm
����

���xj � lm
��� ¼ λ

4π
�Δθij þ n � λ

2

Δθij ¼
�
θi � θj

�
mod 2π

n 2 f1; 2; 3; …g
i; j εf1; 2;…; tg and i 6¼ j

(10)

The observation model Pðzt j xt ; lmÞ can be updated by (10) to provide

the probability that if a tag moves from xt�1 to xt , the differential RF

phase Δθt;t�1 is obtained by the reader. We model the differential RF

phase by the following equation:

PðΔθt;t�1

�� xt�1; xt; lmÞ ¼

8
<

:
1; if ð10Þ is satisfied

0; otherwise
(11)

Let's consider the distortion of the RF phase that is caused by the

thermal noise. Experiments reveal that the thermal noises introduces

random errors to the phase measurement following a typical Gaussian

distribution. Thus, we denote the RF phase as θ � N ðμ;δÞ, where μ is the

RF phase without the distortion of thermal noise and δ denotes the

standard deviation. Hence, we can update the differential RF phase as

Δθij � N ðμi � μj;
ffiffiffi
2

p
δÞ, and (11) can be updated as:

PðΔθt;t�1

�� xt�1; xt ; lmÞ

¼ 1ffiffiffiffiffi
2π

p
δ

Z
Δθt;t�1

0

exp

(

� ðy� ðμt � μt�1ÞÞ2

2δ2

)

dy
(12)

μt � μt�1 ¼
�
2jxt � lmj

λ
� 2jxt�1 � lmj

λ

�
mod 2π (13)

Based on (12), (13) and (4), we can estimate the locations of the RFID

tags.

3.3. Pose tracker

The location of a tag, which is denoted as ptn ¼ ðxtn; ytn; ztnÞ
T
for the nth

tag at time t, can be estimated by the RFID localizer. When the controller

is located at T, with orientation R in the given global coordinate, T and R

together are called the pose of the controller. Here, we denote the posi-

tion of the controller at time t as Tt ¼ ðxt ; yt ; ztÞT , and the orientation at

time t as

Rt ¼

2

664

bX c � bX g
bY c � bX g

bZ c � bX g

bX c � bY g
bY c � bY g

bZ c � bY g

bX c � bZ g
bY c � bZ g

bZ c � bZ g

3

775 (14)

where bX c;
bY c, and bZ c represent the unit vectors of the axes of the built-in

coordinates of the controller, and bX g , bY g , and bZ g denote the unit vectors

of the axes in the global coordinates. The relationship of the two co-

ordinates is illustrated in Fig. 2.

We measure the location of each attached tag in the controller's built-

in coordinates, and the local location for the nth tag is denoted as pn ¼
ðxn; yn; znÞT . The transformation between the global location and local

location of the same tag is given by:

8
>><

>>:

~P
t

n ¼ g
cTt

�Pn

~P
t

n ¼
�
ptn; 1

�T

Pn ¼ ðpn; 1ÞT
(15)

where
g
cTt denotes the rigid transform at time t, ptn and pn is the location of

the nth tag in the global coordinates and the controller's built-in co-

ordinates, respectively. In (15),
g
cTt comprises the pose of the controller

in the global coordinate:

g
cTt

¼

2

4 Rt Tt

000 1

3

5 (16)

where Rt and Tt denote the global orientation and global position of the

controller at time t, respectively. Based on (15) and (16), we can obtain

the pose of controller by searching an optimal transform
g
cTt . When the

global locations of all the tags of the controller are provided by proposed

RFID localizer, (15) can be updated as follows:

8
>>>><

>>>>:

pt1 ¼ Rt � p1 þ Tt

pt2 ¼ Rt � p2 þ Tt

…

ptn ¼ Rt � pn þ Tt

(17)

where pt1, p
t
2, and ptn are the global locations for tag 1, 2, and n, respec-

tively; and p1, p2, and pn are the local locations for tag 1, 2, and n,

respectively. Therefore, the process of finding an optimal transform
g
cTt

can be formulated as a least square minimization problem as:

min
fRt ;Ttg

X

i¼1

N ��pti � ðRt � pi þ TtÞ
�� (18)

where N is the total number of tags and jj �jj is the norm of a vector.

Problem (18) is a typical problem of determining the rotation and

translation relationship between two sets of data points at different co-

ordinates, and a variety of methods have been introduced to solve such a

problem [34,35]. Based on the approach that is introduced in Ref. [34],

our proposed pose tracker is developed to find the optimal
g
cTt in three

steps:

Fig. 2. The global coordinates versus the built-in coordinates of the controller.

J. Zhang et al. Digital Communications and Networks 6 (2020) 14–22

17



Step 1. Finding the centroids of all the locations in both global and local

coordinates, which are denoted as C and C, respectively. Then, use the cen-

troids as the new origins of two coordinates and transfer the locations into two

coordinates, as:

8
<

:
pti ' ¼ pti � C; for i 2 ½1; 2;…;N�
pi ' ¼ pi � C; for i 2 ½1; 2;…;N� (19)

where N is the total number of tags.

Step 2. Determining the optimal rotation Rt with the Singular Value

Decomposition (SVD) method. First, cascade all the shifted locations of the

tags in both global and local coordinates to form two matrices:

8
<

:
A ¼

	
pt1 '; p

t
2 ';…; ptn '




B ¼ ½p1 '; p2 ';…; pn '�
(20)

where both A and B are 3� N matrices. Then, we decompose or factorize the

matrix ABT with the SVD method as:

½U;D;V� ¼ SVDðABT Þ (21)

where UUT ¼ VVT ¼ 1and D¼ diagðdiÞ; d1 � d2 � ⋯ � dn � 0. Based on

the result in Ref. [34], we obtain the optimal rotation Rt as:

Rt ¼ USVT (22)

where

S ¼

8
<

:
I; if detðUÞdetðVÞ ¼ 1

diagð1; 1;…; 1;�1Þ; if detðUÞdetðVÞ ¼ �1
(23)

In (23), I is an identity matrix, and diagð�Þ is a diagonal matrix.

Step 3. Obtaining the translation Tt . After obtaining the rotation Rt , Tt can

be determined by the following equation:

Tt ¼C� Rt �C (24)

Therefore, based on the locations of the tags in both global and local

coordinates, the proposed pose tracker can determine the controller's

pose, including the orientation Rt and the position Tt , referring to the

global coordinates.

3.4. Human UAV interaction module

The human UAV interaction module primarily links the change of the

controller's pose with UAV movement to achieve flexible remote control.

We use the estimated pose of the controller to control the navigation of

the UAV. To achieve real-time control, the UAV must react sensitively to

the change of the controller's pose in a manner that follows the trajectory

of the moving controller.

We use Ht to denote the pose of the controller, and Ut to denote the

pose of the UAV at time t. The process of the module can be divided into

four steps, which are detailed as follows:

1. Obtaining Ht and Htþ1 from the pose tracker.

2. Calculating ΔH ¼ Htþ1 � Ht , which contains the change of position

and orientation in the three-dimensional space.

3. Amplifying ΔH as ΔH' ¼ α �ΔH, where α is the parameter of the

amplification, and we usually set α ¼ 5. We can make a slight

movement of the controller to activate a large-scale movement of the

UAV.

4. Converting the ΔH' to flying control commands and send it to the

UAV.

Step 4 cooperates with the specific UAV platform, and it usually relies

on the API to communicate with the UAV. For example, in our experi-

mental platform, an ROS [33] based system is developed to communicate

with the ARDrone2.0 platform [13]. It updates the target position of the

UAV by

Utþ1 ¼Ut þ ΔH' (25)

and sends the Utþ1 to the UAV through the ROS message service.

4. Experimental validation and results

4.1. Experiment setup

We conduct a series of experiments to demonstrate the performance

of the RFHUI system. We establish a prototype of RFHUI using a COTS

reader and several UHF passive RFID tags. A Zebra FX7500 RFID reader

[14] with four Zebra AN720 antennas [15] is incorporated to query the

RFID tags. The Zebra FX7500 reader is widely deployed in retail,

manufacture factory, and warehouse applications, and meets the EPC

Gen2 standard requirements [16].

In our prototype system,we use the Low-Level Reader Protocol (LLRP)

through an Ethernet port to communicate with the reader and report the

RFID measurements. The Zebra AN720 Antennas provide a left circular

polarization with a 100∘ beamwidth and a 5:5 � 6 dB gain. Each antenna

is mounted on a holder of 1.4m height. The four antennas with their

holders are deployed in front of the user. In all our experiments, we set the

reader to work at the maximum RF transmission power, i.e., 33 dBm, to

enable each antenna to gain a detectable range up to 6m. Our experi-

mental setting is illustrated in Fig. 3 (side view) and Fig. 4 (top view). The

configuration of the four antennas created a detectablefield, which allows

the four antennas to interrogate an RFID tag simultaneously.

Fig. 3. Side view of the RFID detectable field.

Fig. 4. Top view of the RFID detectable field.
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Three UHF passive RFID tags are attached to a foam board working as

our prototype controller, which is shown in Fig. 5. Fig. 6 shows how the

controller is operated by a user during the tests. Our experimental RFID

tag is Smartrac Dogbone Monza R6 [17], which is widely used in the

retail business. We choose the Parrot ARDrone2.0 Elite Edition drone

[18] as our UAV platform, which is shown in Fig. 7. It is equipped with a

front camera, a bottom camera, a sonar, and an Inertial Measurement

Unit (IMU). Based on the measurements of the onboard sensors, it can

localize itself by using a sensor fusion method. For example, the Parallel

Tracking and Mapping (PTAM) technique [19] can be implemented to

estimate the 3D pose of the ARDrone2.0 drone.

4.2. Accuracy of RFID tracking and pose estimation

4.2.1. Effect of the number of antennas

Before revealing the performance of the proposed RFHUI system, we

first conduct a set of benchmark experiments to discover the effect of the

number of RFID antennas on the system performance. We configure the

RFID reader with 1, 2, 3, and 4 antennas in each benchmark experiment,

respectively. During every benchmark experimentation, the controller is

moved along the same trajectory, which is shown in Fig. 8. We first

moved the controller with 20 cm in the direction of the x-axis, and then

moved it for another 20 cm along the y-axis direction. We sampled the

trajectory every 2 cm, which is illustrated by the red points in Fig. 8.

There were totally 21 sampled points. At every sampled point we record

the ground truth location and the estimated location that are provided by

the RFID localizer for every tag and collect the ground truth and the

estimated pose of the controller.

First, we evaluate the accuracy of the RFID localizer by comparing the

estimated location to the ground truth location of every tag at all sampled

points. The average location error of each tag at different antenna con-

figurations is shown in Fig. 9. We can see that the more antennas are

deployed, the more accurate the estimated localization. The results are

consistent with the conclusion of (4): the more antennas are deployed,

the more accurate estimation can be made.

We also evaluate the accuracy of the controller's pose, including po-

sition and orientation, which is measured by our RFHUI system. The

results in each antenna configuration are shown in Fig. 10 and Fig. 11.

From Figs. 10 and 11, the average errors of both position and orientation

Fig. 5. A prototype of our RFHUI controller.

Fig. 6. A user holds the controller in hand during an experiment.

Fig. 7. The ARDrone2.0 Elite Edition drone used in our experiments.

Fig. 8. The moving trajectory of the benchmark experiments: the red points are

the sampled locations.

Fig. 9. The average error and standard deviation of the localization error of the

controller's tags for different antenna configurations.
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are reduced dramatically when the number of deployed antennas is

increased. For the configuration with 4 antennas, the system achieves an

average error of 0.021m in position and 1.8∘ in orientation. Therefore, all

hereafter experiments are implemented with the 4-antenna configuration

with the setup shown in Fig. 4.

4.2.2. RFID tags tracking

To evaluate the performance of the RFID localizer in RFHUI, we

launch another experiment by attaching three UHF passive RFID tags to

the controller. A user holds the controller and moves it following a given

trajectory, which is inside the experiment field. In contrast to the simple

trajectory in our benchmark experiments, we move the controller in a

more complex and longer trajectory with more variety in moving direc-

tion, thus to mimic the actual user behavior while operating the UAV.

During the experiment, the RFID localizer of RFHUI provides estimated

locations for each tag while the controller is moving. We obtain the

ground-truth locations by measuring the sampled points every 5mm

along the trajectory. The accuracy of the proposed method is evaluated

by calculating the errors between the ground-truth locations and the

estimated locations of the sampled points.

We repeat the experiment several times, and the experimental results

are presented in Fig. 12 in the form of the Cumulative Distribution

Function (CDF) of localization errors between estimated and ground-

truth positions. We can see that the maximum error of the RFID local-

izer is less than 0.095m for all the three tags. Moreover, with the RFID

localizer of RFHUI, 80% of the localization errors are less than 0.045m

and 90% of them are under 0.06m. Therefore, it is safe to state that the

RFID localizer achieves very precise localization for tracking the moving

RFID tags. Note that the average error of every tag is a little bit higher

than that in the benchmark experiments because we consider much more

sampled points and the controller moves along a more complex trajectory

in this experiment.

4.2.3. Controller pose estimation

We next conduct an experiment to verify the feasibility and accuracy

of our proposed pose tracker, including position and orientation esti-

mations. The controller moves along a trajectory in our experiment field,

held by a user.

The results are presented in Fig. 13. Fig. 13(a) shows that about 78%

of the position errors of the proposed pose tracker are under 0.05m, and

the maximum error is less than 0.083m. Additionally, as shown in

Fig. 13(b), we can see that 60% the orientation errors are less than 2.5∘.

Moreover, for the pose tracker, almost 90% of the orientation estimations

achieve an error under 3.5∘. Obviously, regardless of position and

orientation estimations, the proposed pose tracker of RFHUI is suffi-

ciently accurate for most practical human-UAV interaction scenarios.

Also note that similar to the result in the of RFID tags tracking experi-

ment, due to the greater number of sampled points and increased

complexity of the moving trajectory in this experiment, the average of

errors in both position and orientation is a little bit higher than that in the

benchmark experiments.

4.3. Overall system performance

Finally, we conducted an experiment in our indoor lab environment

to demonstrate the feasibility of our system in a real-time manner. The

typical experimental environments are shown in Fig. 14 and Fig. 15. The

Fig. 10. The average position error of the controller for different antenna

configurations.

Fig. 11. The average orientation error of the controller for different antenna

configurations.

Fig. 12. CDF of RFID tags tracking error with a more complex and

longer trajectory.

Fig. 13. (a) CDF of the controller position estimation error; (b) CDF of the

controller orientation error.

J. Zhang et al. Digital Communications and Networks 6 (2020) 14–22

20



complex indoor environment, with intricate features and layouts with

shelves, clothes stands, and furniture as shown in Fig. 15, requires our

proposed RFHUI system to provide an accurate and robust control

method to safely operate the UAV indoors. During this experiment, a user

holds the controller, which is attached with 3 RFID tags, to control the

UAV. We compared the ideal movement trajectory of the UAV, which is

amplified by the trajectory of the controller, and the actual movement of

the UAV to illustrate the performance of the proposed RFHUI.

A typical experiment result is presented in Fig. 16. The movement of

the controller follows a random trajectory, which is illustrated by the

black curve in Fig. 16. The blue curve represents the trajectory of the

controller. The red curve denotes the ideal trajectory of the UAV, which is

an amplified version of the trajectory of the controller. Clearly, we can

tell that the UAV precisely follows the ideal trajectory, with only tiny

disturbances around the ideal occurred. This is caused by the inherent

errors of the UAV, especially when the UAV is in a hovering mode. It is

apparent that our RFHUI system achieves high accuracy in real-time

navigation. This experiment validates that our RFID-based controller

strategy is robust and practical. This is mainly due to the fact that our

proposed RFHUI system can provide a highly accurate pose estimation,

which plays a critical role in UAV navigation.

5. Conclusions

In this paper, we proposed the RFHUI, an RFID based system for

navigation control of a UAV using a COTS RFID reader. We experimen-

tally validated the feasibility of utilizing an RFID localization-based

method as the core of the UAV controller. We leveraged a Bayesian fil-

ter to estimate the location of RFID tags using the phase information in

RFID tag responses. Then an SVD algorithm was employed for data pre-

processing to track the pose of the controller. Finally, the control module

converted the pose data into flying control commands to achieve UAV

navigation control in real-time. The extensive experiments in a repre-

sentative lab environment demonstrated the capability of the proposed

RFHUI system. To the best of our knowledge, the proposed RFHUI is the

first practicable UHF passive RFID based UAV navigation control system,

which provides a promising method for Human-UAV interaction.
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