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Abstract—With  the fast-growing adoption of the
radio-frequency identification (RFID) technology, RFID-
based sensors have attracted great interest. Due to the limitation
of RFID tags, most existing RFID-based temperature sensing
works rely on hardware modification, which increases the
cost and hampers its deployment. In this article, we propose
RFThermometer, a remote temperature sensing system with
commercial ultra high frequency (UHF) RFID tags. We first
investigate the effect of temperature on RFID phases. To
alleviate the precision deterioration caused by missing phase
measurements, a tensor completion method is proposed to
restore missing phases and a Gaussian process model is lever-
aged to construct a phase-temperature map in the offline stage.
In the online stage, the unknown temperature is estimated by a
dynamic time warping (DTW)-based greedy method. Extensive
experimental results are presented to validate the performance
of RFThermometer with off-the-shelf RFID devices.

Index Terms—Gaussian process, radio-frequency identification
(RFID), remote temperature measurement, RF sensing, tensor
completion.

I. INTRODUCTION

ITH the rapid development of passive radio-frequency
W identification (RFID) technology, RFID tags have been
widely deployed in many areas, such as supply chain man-
agement, access control, and inventory tracking [1]. Due to
the ubiquitous employment, ease of deployment, and low cost
of RFID tags, it is possible and feasible to extend the appli-
cations of RFID to healthcare monitoring and environmental
sensing. Recently, because of the drastic growth of the Internet
of Things (IoT), RFID-based sensing systems have attracted
great interest in both industry and academia. RFID-based sens-
ing systems have been developed for gesture recognition [2],
localization [3], navigation [4], [5], material detection [6], and
breath monitoring [7]. RFID-based sensing systems are able
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to offer many convenient nonintrusive services, which is also
helpful for remote environmental temperature sensing.

Current RFID-based temperature sensing systems usually
depend on modified RFID tags. Some general sensors can be
embedded in RFID tags [8], to provide temperature readings
from —40 °C to 85 °C. However, the sensors could only be
used at 134.2 kHz. Experiments show that the operation range
of such tags is limited by the size of the reader antenna. For
example, the read range is only 25 cm with a square antenna
(80 x 100 mm). To overcome the limitation, Vaz et al. [9]
proposed a specific temperature sensor, which is compati-
ble with ultra high frequency (UHF) RFID tags. This design
achieves a resolution of 0.035 °C within a temperature range
from 35 °C to 45 °C. Even though the sensors offer temper-
ature reading reliably and accurately, the implementation of
the temperature sensors increases the tag cost and customer
expenses significantly. To avoid such costs, some RFID tags
exploit the characteristics of some substrate material to achieve
temperature sensing. Babar et al. [10] utilized paraffin wax as a
substrate material for RFID tags for heat sensing. Considering
the physical properties and characteristics of the paraffin layer,
the changes of layer resulted by heating are irreversible even
though the temperature of the tag can be brought back to orig-
inal state. Thus, such modified tag is not a perfect choice for
temperature sensing.

Zannas ef al. [11] also demonstrated the effect of temper-
ature on the material characteristics of the RFID tag. They
show that the impact of temperature can change the relative
permittivity of the antennas and the tag circuit, as well as
the size of the antennas. Thus, the complex impedance of the
tag is a function of temperature. Furthermore, Zannas ef al.
also proposed a temperature sensing method with self-tuning
RFID tags in [11] and [12]. To maximize the power extraction
efficiency, self-tuning RFID tags utilize a self-tuning circuit to
change the impedance of the tags, and to compensate the effect
of impedance change caused by temperature change. The
authors then propose to leverage the value of the self-tuning
capacitance to deduce the temperature. However, the precision
of the self-tuning RFID tags-based temperature sensing is lim-
ited by capacitance values of the self-tuning circuit. To achieve
a high-resolution temperature estimation, the specific tags are
essential. Thus, there is a strong demand for a temperature
estimation system using generic, low-cost UHF RFID tags.

Nowadays, many RFID-based applications leverage the
phase of RFID responses to achieve passive sensing [4], [7].
Compared to received signal strength (RSS), phase is
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much more sensitive to changes in the environment and
distance [13]. Many applications benefit from such charac-
teristics of phase. Tagscan [6] makes images of the cross
section of a target and detects the material of the target using
changes in phase and RSS. RED [14] detects the eccentricity
of high-speed rotating machinery by monitoring the change of
phase and RSS. RF-IDraw [15] realizes precise trajectory trac-
ing with a multiresolution positioning algorithm that analyzes
RFID phases. RIO [2] is a pervasive touch gesture interface,
which tracks fingers by monitoring the phase changes caused
by human touch on RFID tags. Even though such localiza-
tion and recognition applications are successful, there has been
no work on temperature monitoring using unmodified, generic
RFID tags.

In this article, we propose to use unmodified, commercial
RFID tags for remote temperature sensing [16]. The system
is not only cost-effective, since it is implemented with the
commercial tags, antennas, and reader but also incorporates
advanced signal processing/machine learning techniques, such
as tensor completion and Gaussian process, to ensure high
accuracy and robustness. Our target environment, includes the
refrigerated warehouses and refrigerated retail display cases,
etc., where the RFID tagged items are stationary against the
RFID readers and antennas in most of the times. In such
circumstance, the position of antennas and tags are fixed.
Thus, the relative position between tags and readers does
not affect the phase reading of backscattered signals. The
proposed system will greatly benefit the industry. The cost of
the cold chain will be significantly reduced by automatically
monitoring a temperature with the existing commodity
RFID tags. Moreover, the ability of remotely monitoring
temperature from RFID tags provides detailed information
for temperature management.

A particular challenge of using generic tags is the long delay
caused by missing phase readings. In a UHF RFID system,
if tags are interrogated simultaneously, the modulated signals
will collide, and no information is backscattered to the reader.
To avoid the collision problem, slotted ALOHA-based anti-
collision protocols are used in current standard EPCGlobal
Class 1 Generation 2 [17]. The UHF RFID readers operate on
a large number of channels to avoid interference. For example,
an RFID system in the USA operates in the 902 ~ 928 MHz
band, which is divided into 50 nonoverlapping channels, and
hops among these channels during interrogation, as required by
the federal communications commission (FCC). However, the
channel hopping mechanism hampers the continuous observa-
tion of a specific channel even though it enhances the data
transmission rate of RFID systems. Phase reading of a chan-
nel loses frequently in a complex environment, where there
are multiple RFID tags and more than one reader. It is diffi-
cult to obtain phases from all the 50 channels from one tag in
one reading cycle, when many tags are interrogated simultane-
ously. For example, a zebra RFID reader, FX9600, is leveraged
in our RFThermometer system. The reader interrogates tags
with 50 channels in sequence. Interrogation takes about 0.1
s in each channel. In other words, if a phase information
is missing in one channel, it has to wait for 5 s at least to
acquire the phase information from the same channel. Such
channel hopping mechanism prolongs the time for collecting
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enough phases for estimating the temperature. Also, the tem-
perature of a tag could change during the long period of data
collection. Actually, any RFID reader that is compatible with
EPCglobal Class 1 Generation 2 is friendly to our proposed
RFThermometer system.

To this end, we propose to utilize a big data analytics
technique, i.e., tensor completion, to restore the lost phase
samples. We then use the recovered phase data to model the
phase-temperature relationship with a machine learning tech-
nique, i.e., Gaussian process, based approach. Specifically, to
reduce the data collection time, we employ tensor completion
to restore the missing phases, which has been successfully
applied to color image recovery [18], video recovery [19], and
noise reduction [20]. We create a sparse phase tensor with the
phases collected in one round of reading, upon which ten-
sor completion is then applied to restore the missing phase
readings. The restored phase tensor is unfolded to obtain a
phase matrix, which is then leveraged to model the phase-
temperature relationship with Gaussian process, in the form
of a phase-temperature map.

In particular, we present RFThermometer, a temperature
measurement system with unmodified, generic RFID tags. In
RFThermometer, phases are collected first from different tem-
peratures with the Zebra FX 9600 reader [21]. A phase tensor
is generated by the collected data and the missing data are
then restored by tensor completion. The restored tensor is then
unfolded to generate a phase matrix, which includes the phases
of sampled temperatures on 50 channels. With Gaussian pro-
cess, the relationship between temperature and phase on the
50 channels is learned from the phase matrix. The phase-
temperature map of 50 channels is constructed with Gaussian
process and regression. In the online stage, the tensor com-
pletion is also applied to restore the missing phases in newly
sensed data. We then propose a dynamic time warping (DTW)
method to compare the similarity between the newly collected
test phases and the phases in the phase-temperature map. A
greedy method is used to determine the estimated temperature.

The main contributions of this article are summarized below.

1) To the best of our knowledge, this is the first work
to employ tensor completion for restoring the missing
phases, which effectively reduces the time consumption
of phase data collection, and it helps to avoid the degra-
dation of map resolution caused by an inadequate data
collection.

2) We design a Gaussian process model to regress the rela-
tionship between phase and temperature, as well as a
DTW-based greedy method to improve the accuracy of
estimated tag temperature.

3) We implement the proposed RFThermometer system
with commercial RFID tags, antennas, and reader.
Our extensive experimental results demonstrate that
RFThermometer is capable to provide temperature esti-
mation with an mean error of 5 °C when the phase
tensor only includes ten phases from each channel and
the phases are collected from only ten temperatures. The
results demonstrate the robustness and feasibility of the
RFThermometer system, as well as the flexible tradeoff
between time/computation and temperature resolution
that RFThermometer offers.
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In the remainder of this article, the preliminaries are intro-
duced in Section II. We present the RFThermometer system
in Section III and our performance evaluation in Section IV.
Section V summarizes this article.

Notation: Boldface Euler script symbols represent ten-
sors, e.g., M; bold upper case symbols denote matri-
ces, e.g., M; bold lower case symbols stand for vectors,
e.g., m, and the entries are denoted by lower case sym-
bols, e.g., my; the superscript m” represent the transpose
operator.

II. PRELIMINARIES
A. Passive RFID and Phase-Temperature Relationship

Passive RFID tags rely on a method called backscattering to
communicate with the readers. The chip on the passive RFID
tag harvests energy from the received interrogating signal sent
by the reader, and responds by varying its input impedance
and thus modulating the backscattered signal with ON-
OFF keying. According to [22], the maximum power trans-
fer occurs when the power transmission coefficient reaches
the maximum. The power transmission coefficient, a, is
given by

4R R,
e
\Ze + Zal?

where R., Z., R,, and Z, are the chip resistance, the chip
impedance, the antenna resistance, and the antenna impedance,
respectively. When the chip impedance and the antenna
impedance are conjugately matched, the power transmission
coefficient will reach the maximum.

According to [11], the impedance of the tag is affected by
the tag temperature. Consequently, the phase of a backscat-
tered signal is affected by the temperature of the tag as well. To
understand the relationship between the phase of backscattered
signals and the temperature of the tag, we interrogate a single
RFID tag over a temperature interval of 50 °C. Fig. 1 plots
the phases from an RFID tag at increased tag temperature. It
can be seen that the phase changes evenly with increased tem-
perature of the tag on each of the four channels. Because of
the roughly linear relationship, it is possible for us to model
the phase-temperature relationship with a few phase samples
at different temperatures.

(D

B. Tensor Completion Preliminaries

Low-rank tensor estimation (LRTE) becomes a hot topic
attracting researcher’s attention. It has been used in many
areas, such as signal processing and RF sensing [23]. LRTE
relies on low-rank tensor decomposition. CP decomposition
and Tucker decomposition [24] are the two major tensor
decomposition techniques. However, CP decomposition is sus-
ceptible to the ill-posedness issue [25], while Tucker decom-
position suffers from being trapped at a local minimum, which
is a common issue for nonconvex optimization [24]. To this
end, tensor-singular value decomposition (t-SVD) is proposed
to overcome such drawbacks. Based on t-SVD, the associ-
ated notion of tensor multirank and its convex relaxation to
the corresponding tensor nuclear norm (TNN) for completion
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Fig. 1. Phase-temperature relationship measured on four different channels
from an RFID tag.

and recovery of multilinear data are introduced in [26]. In the
RFThermometer system, we employ a t-SVD-based multilin-
ear data completion method for restoring the missing phase
values.

Some essential definitions and equations of tensor decom-
position are given below. The nuclear norm of an n x n
matrix M, ||M]||,, is defined as [27]

My = Be(M) @
k=1

where B;(M) stands for the kth largest singular value of M.

For an N-mode tensor M e C4**a¥  the mode-
i unfolding M? ¢ (Caix(@iai1ai1--aN) - Fyrthermore, the
ith frontal slice of tensor M e (C4*92X4 jg denoted
as Mg, which is a matrix with size a; x a;. Based on
these tensor operations, block-based operators are intro-
duced [28]. For M e C**%92%43 3 plock circulant matrix is
given by

M) M@y  M@g- M)
M) M Mas) M3
bcirc(M) = : s : ) :
M@,—1y M- My My
M) M- Mgy Mgy

The bvec operation and vfold operation are opposite opera-
tions, which are defined as
T
bvec(M) = [M({)M(g) e M(a3)] (3)
vfold(bvec(M)) = M. 4

The bdiag operation and bfold operation are also opposite
operations as well, which are defined as
]
bdiag(M) = (3)

0 M(az)J
bfold(bdiag(M)) = M. (6)
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The t-product of a mode-3 tensor M of size j x k x [ and
a mode-3 tensor Q of size k x b x [ is given by

K = M % Q = vfold(bcirc(M) - bvec(Q)). @)

The result of f-product M % Q is a mode-3 tensor with size
Jj x b x L. In the Fourier domain, the product of frontal slices
of the two mode-3 tensors is represented by

7
Ky = My - ®)

where K{k} is the kth frontal slice of the Fourier transform of
K along the third dimension. X/ is the representation of K
in the Fourier domain. Based on the f-product, the t-SVD of
tensor M is defined as

M=UxSxVT )

where the size of tensor M is a; x a; x az; U and V are
orthogonal tensors of size a; x a; x a3 and a» x az x as,
respectively; and S is a f-diagonal tensor with size a; xaz x as.
For a f-diagonal tensor, each of its frontal slice is a diagonal
matrix. Similar to matrix SVD, M is a sum of outer products
of matrices, given by [29]

min(aj ,az)
Y UG, §, %8G VG G 9T (10)

j=1

M:

where the indexing method is similar to MATLAB’s indexing,
e.g., U(:,:,j) is the jth frontal slice of U. According to (5)
and (8), we have

bdiag(Mf) = bdiag(uf) -bdiag(sf) - bdiag(Vf)T. 1)

Similar to the nuclear norm of a matrix, the nuclear norm
(TNN) of a tensor M is defined as

min{aj,az) as

Minw= Y. Y. 5Gjb.

=1 k=l

(12)

Owing to the unitary invariance of the matrix nuclear norm
and the block diagonalization property of block circulant
matrices [29], we have

Hbdiag(Mf ) = H bdiag(sf) =My (13)
= | (F ® I)bcirc(M) (F* @ 1) |,
= ||beirc(M) ]|, (14)

where F is the normalized discrete Fourier transform matrix of
size a3 x a3; I and I, are identity matrices with size a; x a;
and ay x ap, respectively; and ® stands for the Kronecker
product. Following (13) and (14), we have:

libcire(M) |l = IM]ltan (15)

where ||bcirc(M)]| is the nuclear norm of bcirc(M), which
is obtained by unfolding M circularly. The nuclear norm
exploits the information of M in multidimension.

When M is a mode-3 tensor, such as a temperature-phase
tensor used in RFThermometer, the relationship between chan-
nel and phase, the relationship between temperature and phase,
and the observation redundancy could be depicted by the
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Fig. 2. RFThermometer system architecture.

nuclear norm of beirc(M). Thus, it is possible to restore the
missing phase values on a specific channel at a specific tem-
perature with the help of the matrix nuclear norm of beirc(M)
or the TNN of M. The detailed completion method will be
presented in the next section.

III. RFTHERMOMETER SYSTEM
A. System Architecture

RFThermometer is a fingerprinting-based remote tempera-
ture sensing system, which operates with an offline stage and
an online stage. The system architecture is shown in Fig. 2. In
the offline stage, the phase values are first collected from avail-
able channels and labeled by the corresponding temperatures.
In our proposed system, the FX9600 reader is able to collect
phases from 50 channels within a period of 5 s. We denote the
data collected in one reading cycle as an observation, which
includes the phases collected from channel 1 to channel 50.
Considering the relatively short channel occupancy time, we
assume that the phases collected in one cycle share the same
temperature label.

In the offline stage, the phases collected within a spe-
cific temperature interval could be represented by an order-3
tensor as shown in Fig. 3(a). Because of the dynamic envi-
ronment and the number of tags, it is usually inevitable to
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Fig. 3. Phase tensor (a) offline stage and (b) online stage.

lose phase readings in some channels, which hurt our temper-
ature prediction precision. To overcome the effect caused by
the loss of phase readings, we proposed a tensor completion
method to recover the lost phases. Compared with traditional
regression methods, tensor completion is able to learn the
high-order correlation from data and recover the unknown
data with the learned correlation. Multilinear Gaussian process
(MLGP) is also a popular machine learning algorithm in data
recovery, but it depends on the optimized hyperparameter to
achieve the best performance in regression. The 1-D Gaussian
process could not effectively leverage the multidimensional
information. To get rid of the burdensome hyperparameter
optimization and increase the phase recovery precision, low
rank tensor completion is utilized in RFThermomete because
of its high computational efficiency and easiness to implement.

Although tensor completion and Gaussian process are
employed in the offline stage, their relatively high time com-
plexity does not affect the user experience in the online stage.
To demonstrate the necessity of tensor completion, we con-
ducted a benchmark experiment, the results are given in Fig. 4.
It plots the phase pattern at 41 °C, which includes the phases
collected from all the 50 channels. The blue line represents the
true phases. The red line and green line represent the phases
recovered by tensor completion and 1-D Gaussian process,
respectively. To ensure fairness, the inputs to both algorithms
are identical, which includes 10% of the true phases. The mean
distance between the true phases and the phases recovered
by tensor completion is 0.918 rad, while the mean distance
between the true phases and the phases recovered by 1-D
Gaussian process is 1.5934 rad. Apparently, tensor comple-
tion could recover the lost phases precisely. Compared to
Gaussian process, the phases recovered by tensor completion
are more reasonable. According to Fig. 4, the phases recov-
ered by Gaussian process on channels 4, 7, and 26 are larger
than m, which are impossible values (since phase readings are
rounded to remain in [—m, ]). Thus, the tensor completion
is used in our RFThermometer system for better precision of
phase recovery.

With the restored phases, a 1-D Gaussian process is next
employed for regressing the model of phase-temperature rela-
tionship. Compared with the randomness of phase losses on
the channels, the phases are sampled in temperature evenly.
Fig. 1 shows the rough linearity of the relationship between
phase and temperature, which indicates that Gaussian process
should be effective to capture the relationship between phase
and temperature. Furthermore, to maintain the flexibility of the
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system, the phase-temperature model of each channel is con-
structed by Gaussian process independently. The well-trained
models depict the relationship between the phase and temper-
ature of the corresponding channel. Based on the model we
built, the resolution of the temperature-phase map could be
decided in the online stage. The variable resolutions of map
offer users a tradeoff between precision and computational
complexity.

In the online stage, new phase observations are collected in
a short period. We assume the temperature does not change
within the period. Test tensors, as is shown in Fig. 3(b),
are constructed with the new phases observations. Note that
the number of observations is the sum of observation; and
observationy. Similarly, the missing phases in the new obser-
vations are recovered by tensor completion. The completed
testing tensor is unfolded, and the result is compared with
the phases of specific temperatures in the temperature-phase
map. By leveraging the temperature-phase map, the temper-
ature associated with the new phase values is estimated by
using a DTW-based greedy method.

To the best of our knowledge, RFThermometer is the
first system that is focused on remote temperature sens-
ing with unmodified UHF RFID tags. Compared with prior
works, RFThermometer does not rely on a temperature sen-
sor embedded in RFID tags, which increases the cost of
the system. Moreover, a user can determine the temperature
precision to tradeoff computation and storage. Based on the
temperature-phase model, different temperature-phase maps
with variable resolutions can be easily generated. A high-
resolution map offers more accurate temperature estimations,
but more space is required to store the map and longer time
is taken to estimate the unknown temperature in the online
estimation. Alternatively, a low-resolution map provides a low
precision but it requires smaller storage space and takes shorter
computation time.

B. Tensor Completion for Channel Information Recovery

As discussed in Section II-B, the nuclear norm of a block
circulant matrix represents the multidimensional information
of a tensor, which is equal to the TNN. Thus, we consider
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a TNN penalized algorithm for tensor completion to recover
the missing phase readings on some channels. According
to [26] and [30], the missing phase values can be restored
by solving the following convex optimization problem:

min [|X lrnn
s.t. At = Mr.

(16)
a7

For the temperature-phase tensor completion problem, A’
and M in (16) are mode-3 tensors with an identical size. The
entries of A’ in the set I" are known, such as the phase read-
ings at some temperatures from some channels. The remaining
entries of A" are missing. The missing entries in A" should
be restored such that the TNN of A" is as small as pos-
sible. Using the general framework of alternating direction
method of multipliers (ADMM) [31], the convex optimization
problem (16) can be solved and the solution is given by

A’,':Mr+(y—iM) (18)
o r
where ) and M are tensors that are introduced to solve the
convex problem, and T is the complementary sets of T.

The tensor completion shows its accuracy in phase restora-
tion. As an example, Fig. 5 shows the phases restored by
tensor completion. The original phases are collected from all
the 50 channels when the temperature is 46 °C. The miss-
ing phases are restored with a phase tensor that includes 30%
of the phase samples of the original phases (i.e., 70% of the
phase readings are missing). In Fig. 5, the green stars, the
red triangles, and the blue line represent the restored phases,
the known phase samples, and the original phases (i.e., the
ground truth), respectively. Apparently, all the green stars (i.e.,
the restored phases), are on the blue line, which means that
the missing phases are successfully restored with only 30% of
known phase samples. Furthermore, Fig. 6 presents the cumu-
lative distribution function (CDF) of estimation errors between
the true phases and the restored phases. In Fig. 6, when only
30% phase samples are available, 90% of the errors are under
0.02 rad, which is lower than thermal noise. When 10% phase
samples are available, our phase restoring algorithm can still
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guarantee the phase error be smaller than 0.08 rad for 80%
of restored phases. We use the restored phases as inputs to
the following procedures in RFThermometer, thus saving con-
siderable time and efforts to collect phase samples, which is
helpful especially when there are a large number of tags.

C. Gaussian Process for Generating Phase-Temperature Map

To model the relationship between phase and temperature
on each of the channels, we propose to employ Gaussian pro-
cess to build the phase-temperature model (or, map), which
can effectively leverage the phases that are restored by tensor
completion. Gaussian process is a collection of random vari-
ables, where any finite subset of the random variables has a
joint multivariate Gaussian distribution depicted by its mean
and covariance function. In RFThermometer, the phase value
is given by

6)=pH+d+¢ (19)

where 6(f) is the measured phase at temperature £, p(f) is the
true phase at temperature £, § is the hardware offset, and ¢ is
the thermal noise. Consider two phase readings 6(f1) and 8(f2)
obtained for temperatures #; and f,, respectively. They have a
joint Gaussian distribution with covariance k(6(f1), 6(f2)). In
our system, we choose the squared exponential function as
kernel function, which is defined as

— B(t))2
_Om) e(rz))} i

k@(t1), 0(12)) = 27 expl 5

where d is a lengthscale and A is the phase variance, which
are updated in the training process of offline stage.
The predictive equations for unknown temperatures are

Pr(p(ts)|T, ©, 1) = N (p(12); Ve, A7)
v =kI(K+221) '@
22 = k(O(t), 0(t)) — KT (K + A21) 'k,

(21)

where £, represents the unknown temperature, T and ©® are
the known temperatures and corresponding phases, respec-
tively, k, is used to denote the vector of covariances between
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the unknown temperatures and known temperatures, K is the
covariance matrix of training temperatures t, and I is the iden-
tical matrix. To estimate the unknown phases of temperatures,
denoted as ®,, we minimize the loss function £(O,, ),
where Oy, = p(f.) is the true phase. In RFThermometer, we
choose mean square error as loss function, i.e.,

LIUP(ts), Oest)) = (P(ts) — Oest) .
As in [32], we have

(22)

Re(@eslty) = j L(p(ts), Ousy)) Pe(p(t) |t €)dO

where £ = {(®;, 1;)]i = 1, 2, ..., n). Finally, the reconstructed
phases are given by

Orec|ts = argmin R (Oest|ts)- (23)

[G)C’Jfl

Fig. 7 presents the reconstructed phases on channel 48,
which are obtained using the phases collected from 10% of the
temperatures. In Fig. 7, the green circles denote the original
phase samples (i.e., ground truth), blue crosses stand for the
phases samples from the original data, and red triangles are
the reconstructed phases. It is obvious that both the triangles
and circles overlap closely for most of the temperatures. Most
errors occur when the temperature is close to 80 °C, because
the phase rotation happens at this temperature for channel 48
(i.e., a sudden jump from —m to m). Fortunately, phase rota-
tion happens at different temperatures for different channels.
The effect caused by phase rotation could be effectively elim-
inated by using phases from multiple channels. For channel
48, the root mean square error (RMSE) between the original
phases and reconstructed phases is 0.14 rad within the range
that is not affected by the phase rotation. It is safe to say that
Gaussian process is capable of restoring the unknown phases
with the phases collected from only 10% of the temperatures.
With tensor completion and Gaussian process, a temperature-
phase map H is constructed in the offline stage. It consists
of the temperature-phase relationship over 50 channels for
temperatures in [f1, f,], as

H= [h,I B | P h,n] (24)
where h, is a 50-element column phase vector for temperature
t;,i=1,2,...,n, which consists of the reconstructed phases

on all the 50 channels.

D. Temperature Estimation

In the online stage, newly collected phase observations at
an unknown temperature are used to build a phase tensor, as
shown in Fig. 3(b). The phases are collected in a short period
of time during which the temperature is assumed to be con-
stant. It is common that the amount of phase values is lower
than that collected in the offline stage even though the ten-
sor completion is applied. To further mitigate the effect of
missing phases, we use DTW [23] in RFThermometer to cal-
culate the similarity between the new testing phases and the
phases stored in the temperature-phase map. DTW is different
from Euclidean distance, which is the sum of the distances
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Fig. 7. Phase reconstructed with phase data collected from 10% of the
temperatures (marked as blue cross).

between the corresponding point-pairs in two sets. Sets pro-
cessed by Euclidean distance method have to be in the same
size. However, DTW is an optimal matching method, which
is capable of handling sets of different sizes. Moreover, it
avoids resampling, which usually leads to loss of information
or introducing fake information.

In RFThermometer, the test tensor R is processed with ten-
sor completion and the result is unfolded to generate a matrix,
S, which is comprised with observations, given by

S == [51352$--'ssﬂ)<b] (25)

where s; is an observation that contains phase readings from all
50 channels. In RFThermometer, the size of the test tensor R
is set to 50 x 2 x 2. As shown in Fig. 3(b), the tensor is a sparse
tensor which includes four observations (i.e., observation; = 2
and observationy = 2).

The pseudocode for the online temperature estimation algo-
rithm is presented in Algorithm 1. The inputs to the algorithm
are the phase-temperature map H, which is obtained with
Gaussian process in the offline stage, and the test tensor K.
In the algorithm, the unknown phases in the test tensor is
first recovered. The completed tensor, S, is unfolded along
mode-1 to generate the test matrix, S, which consists of a x b
observations. Next, phases from all 50 channels for each tem-
perature are used to compare with each observation in the test
matrix. To better evaluate the similarity between the phase
vector hy; from the map and the observation vector s; from
the test matrix, a DTW method is incorporated to calculate
the distance between these two vectors, given by

D(i, ) = |si — by | + min[D(i — 1,1;), DG, 1)
x D(i—1,41)].

The results of DTW are saved in matrix D, e.g., the distance
between the f;th phase vector from the map and the ith obser-
vation vector from the test matrix is placed at the ith row, #th
column of matrix D. Considering that all the test observations
are collected for the same temperature, each column of matrix
D is summed up to depict the distance between the unknown

(26)
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Algorithm 1 Online Temperature Estimation Algorithm

Input: Phase-temperature map ‘H and test tensor R
Output: Temperature estimation 7,

1: //Tensor R is a sparse tensor with size 50 x a x b

2: § = tensor_completion(R);

3: //Test matrix S is the mode-1 unfolding of S

4 §=8W;

5:forj=1:L do

6:  //L: the range of temperatures in the phase-temperature
map ‘H

72 fori=1:axbdo

8: /la x b, the total number of observations in the test

matrix S

9: D(i, tj) = DTW(s;, hy);

10: end for

11: end for

12: e= ) DG, 1);

13: //Calculate the overall distance between the unknown
temperature and known temperatures

14: ty = {t; | e; = min(e)};

15: //Choose the temperature with the lowest distance

16: return f;

temperature and the temperature candidate corresponding to
the column (step 12). Then, we propose a greedy method to
select the estimated temperature. As is shown in step 14, the
temperature with the lowest distance in vector e is chosen as
the estimated temperature f..

IV. EXPERIMENTAL STUDY
A. Prototyping and Experiment Configuration

To evaluate the performance of RFThermometer, we imple-
ment the system with commodity RFID tags and read-
ers. Any RFID reader that is compatible with EPCglobal
Class 1 Generation 2 [17] can be used in our proposed
RFThermometer system. According to RFID frequency regula-
tions, different numbers of channels are available for different
regions in the world. For the U.S., RFID readers hop among
50 frequencies. In particular, a SMARTRAC R6 DOGBONE
tag [33] is attached to a water-filled glass cylindrical container,
which has a radius of 4.5 cm and a height of 24 cm. The tag
is interrogated by a Zebra FX9600 reader [21] equipped with
a Zebra AN 480 antenna [34]. The phase standard deviation of
FX 9600 is 0.1 degree in radians. A water heater is inserted
in the water to control the temperature. A DS180b20 temper-
ature sensor is attached to the inner wall of the container and
it is connected with an Arduino mega2560 board to provide
a real-time temperature report as a ground truth. The robot
operating system (ROS) is leveraged to synchronize the phase
data from the RFID reader and the temperature report from the
temperature sensor. The implementation of the experimental
RFThermometer system is illustrated in Fig. 8.

In the online stage, to avoid uneven temperature distribu-
tion caused by the water heater, the water heater is removed
when the temperature of water is increased up to about 85 °C
(the actual water temperature is sometimes up to 90 °C). We
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Fig. 8. Experiment configuration of RFThermometer.

monitor the temperature of water and the phase continuously
until the temperature decreases to 30 °C. In the offline stage,
we collected phase observations from random temperatures to
construct the phase-temperature map H.

B. Accuracy of Temperature Estimation

To evaluate the performance of RFThermometer, the phases
are collected from 50 temperatures while the temperature
of water is dropping. For each temperature value, 50 read-
ing cycles are conducted, and 30% of the phases in each
observation are deleted to imitate the phase loss in practi-
cal environments. A training tensor is constructed with the
phases collected from 70% of the temperature samples, while
the remaining phases are leveraged to generate the testing ten-
sor in the online stage. To ensure fairness, the temperature
samples are selected randomly. The experiment is conducted
20 times. The results of the experiment show that the aver-
age temperature error is 2.6 °C and the standard deviation is
0.2 °C.

However, the phases for training and testing are gathered
simultaneously, which is not matched with the practical situ-
ation of a thermometer. To better verify the performance of
RFThermometer in a practical environment, we collect the
phases for training and for testing separately, i.e., with a gap
of 15 min in between the training phase collection and the
testing phase collection.

In this experiment, five phase tensors with different sizes are
generated to build the phase-temperature map. The phases in
each tensor are collected from different numbers of temper-
atures and different numbers of phases are available for the
channels in each tensor. We collect phases from 10, 20, 30,
40, and 50 temperature samples to generate tensors. Moreover,
10, 20, 30, 40, and 50 phase observations are available for each
channel of the tensor collected from 10, 20, 30, 40, and 50
temperature samples, respectively.

Fig. 9 presents the CDF of temperature estimation errors
obtained from different tensors. The median temperature error
is 3 °C when the phase-temperature map is constructed by
the phases collected from ten temperatures. We also find
the median temperature error remains at 2 °C for different
maps constructed with phases collected at 20, 30, 40, and
50 temperatures, respectively. It is noteworthy that the ten-
sor collected at ten temperatures only consists of ten phase
data on each channel, thus we can see that inadequate tem-
perature sampling does not hurt much the performance of
RFThermometer. The map could be built with fewer temper-
ature samples and fewer observations in each channel, which
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Fig. 9. CDF of temperature estimation errors for RFThermometer using
phases sampled from different numbers of temperatures.

means that the cost of building a map can be significantly
reduced. Moreover, the temperature errors are under 8 °C for
88% of testing data for all the maps. These results validate
the robustness of RFThermometer. For the map constructed
with phases obtained from 50 temperatures, about 96% of
estimation errors are less than or equal to 3 °C.

To better evaluate the accuracy of our RFThermometer
system, a Ryobi IR002 infrared thermometer is compared
with our RFThermometer. Because the IR002 thermometer
cannot provide a continuous temperature report, ten temper-
ature inspection points are chosen to evaluate the accuracy
of two systems. For RFThermometer, phase-temperature maps
are constructed with phases collected from eight temperature
samples. Ten observations are available in each phase ten-
sor. The comparison result is shown in Fig. 10. We find the
RFThermometer is more accurate than Ryobi IR002 infrared
thermometer at inspection points of 85 °C, 80 °C, 70 °C,
65 °C, 50 °C, and 45 °C. However, RFThermometer does
not show an outstanding performance at the rest of inspec-
tion points. The average temperature error for Ryobi IR002
infrared thermometer is 2.2833 °C, while the average temper-
ature error is 2.34 °C for RFThermometer. The result exhibits
that the average precision of RFThermometer is comparable to
the commercial infrared thermometer. Note that in this exper-
iment, the manually chosen inspection points exclude extreme
points (i.e., the temperature higher than 85 °C and lower than
40 °C), which will be included in following experiments.
Therefore, the result of this experiment is better than those
of the following experiments.

C. Impact of Various Design Parameters

1) Impact of Tensor Completion: The effect of tensor com-
pletion on the mean temperature error is shown in Fig. 11.
Similarly, 5 tensors are utilized to evaluate the effect. The red
bars represent the mean temperature errors obtained by the
maps that are constructed without tensor completion, while the
blue bars are calculated by the maps that are generated with
tensor completion. Even though the temperature error goes
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Fig. 11. Mean temperature estimation errors with and without the tensor
completion method.

high when fewer temperatures are sampled for map construc-
tion, the largest error is only about 5.2 °C, which occurs when
the map is constructed with a phase tensor that is processed
by the tensor completion and is collected from ten temper-
atures. Similarly, only ten observations are available in each
channel in this phase tensor. Such error is acceptable in most
cases that does not require a precise temperature estimation.
The lowest error is about 3.022 °C when the phases obtained
from 40 temperatures are used to build the map. However, the
high precision relies on the laborious data collection in the
offline stage. Thus, the estimation precision and the labor cost
are a tradeoff here. Furthermore, it is obvious that all the red
bars are higher than the corresponding blue bars, indicating
that the phases restored by tensor completion help Gaussian
process to build a more precise phase-temperature map.

2) Impact of the Number of Observations of Training
Tensor: To investigate the impact of the number of observa-
tions on temperature estimation, we tailored the phase tensor
before tensor completion. All phase tensors include phases col-
lected from 39 °C, 46 °C, 53 °C, 60°C, 67 °C, 74 °C, 81 °C,
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Fig. 12.  Mean temperature estimation errors with different numbers of
observations.

and 88 °C. To imitate the phase losses in a complex environ-
ment, 70 phases in each channel are randomly deleted. And 20
experiments are conducted with each number of observations.

As shown in Fig. 12, the number of observations does not
significantly affect the mean temperature estimation error. All
temperature estimation errors are around 5.5 °C. The lowest
error, 4.9 °C, occurs when the tensor is composed of phases
collected from eight reading cycles. The error is 5.5 °C when
the tensor includes the phases collected from three obser-
vations. The temperature error is 5.8 °C when the tensor
contains 50 observations. Thus, the temperature error is not
greatly affected by the increasing number of observations.
We also notice that the standard deviation of temperature
estimation errors decreases slightly when more observations
are used. With 50 observations, the lowest standard devia-
tion, 0.07 °C, is achieved. The highest standard deviation,
0.91 °C, occurs when phases collected with three observa-
tions. Thus, it is safe to say that the number of observations
does not significantly influence the estimation precision of
RFThermometer. According to [21], the FX9600 reader is able
to complete a reading cycle within a period of 5 s. Therefore,
an acceptable temperature estimation could be obtained by
our RFThermometer with a data collection stage that takes
15 s at most in each temperature. In other words, the time
consumption for data collecting is reduced remarkably.

3) Impact of the Percentage of Deleted Phases in the
Training Tensor: We next design a specific experiment by set-
ting different percentages of deleted phases in each channel to
evaluate their impact on temperature error. All the phase ten-
sors in this experiment are generated with the phases collected
from eight temperatures and each tensor includes only three
observations. Furthermore, 10%, 30%, 50%, 70%, and 90%
phases in each observation are deleted to investigate the impact
of missing phases. For each percentage of deleted phases, the
experiment is repeated 20 times to ensure credible results.

Fig. 13 depicts the average temperature errors for increased
percentage of the deleted phases. It can be seen that the
temperature error does not grow dramatically with increased
percentage, until 90% phases are deleted on each channel.
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When the percentage of deleted phases is below 90%, the
average temperature error is 5.3 °C. The minimum temperature
error, 5.1 °C, happens when 10% of the phases are deleted on
each channel. When the percentage of deleted phases is 90%,
the temperature error escalates to 9.0 °C. Meanwhile, the stan-
dard deviation of the temperature error also goes up with the
deletion percentage. Similar to temperature error, the standard
deviation increases from 0.4 °C to 0.9 °C when the deletion
percentage is below 90%. The maximum standard deviation,
2.5 °C, occurs when 90% of the phases are deleted.

According to the results of this experiment, RFThermometer
exhibits great robustness when a large part of phases is
unavailable, which is meaningful for practical environments.
In such environments, a bunch of tags and readers are usually
deployed, which result that and it is challenging to gather all
the phases for a tag in one observation. The temperature error
remains low when only 30% of phase are available in each
observation. That is, the precision of temperature estimation
can be guaranteed even with an inadequate phase data.

4) Impact of Map Resolution: To study the impact of
map resolution on temperature error, five sets of maps with
different temperature intervals (i.e., resolution) are gener-
ated with RFThermometer. To ensure fairness, all the maps
are constructed with the same phase tensor. Similar to the
previous experiments, the phase tensor contains the phases col-
lected from eight temperature samples. Furthermore, the tensor
includes ten observations for each temperature, and 70% of the
phases in each observation are deleted to imitate the phase
losses in a practical environment. Each set of maps is com-
prised with ten maps with an identical resolution. We choose
five different temperature intervals for the maps to investigate
the impact of map resolution on temperature error.

As shown in Fig. 14, the lowest mean temperature error,
which is 5.1 °C, is obtained with the maps that have a tempera-
ture interval of 1 °C, and the corresponding standard deviation
is 0.63 °C. With an increased temperature interval, the aver-
age temperature error goes up significantly. For the maps with
a temperature interval of 2 °C, the error increases to 8.9 °C,
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which is about twice of the lowest error. The largest error
occurs when the temperature interval is 5 °C. When the map
resolutions are below 5 °C, the standard deviations remains
around 0.5 °C; but it increases to 1.4 °C when the temper-
ature interval is 5 °C. Clearly a high-resolution map ensures
more precise temperature estimation.

However, the price for temperature estimation using a high-
resolution map, is the estimation latency. The average time
consumption in temperature estimation is presented in Fig. 15.
Fig. 14 shows that the lowest temperature estimation error is
obtained when the temperature interval is 1 °C, while Fig. 15
shows that the corresponding time consumption of the online
stage is 9.42 s. The estimation latency is inversely proportional
to the temperature interval of phase-temperature map.

5) Impact of the Number of Tags: To verify the robustness
of our RFThermometer system, we further test the system in an
experiment where more than one tags are deployed. Similar
to the previous experiments, the phases are collected from
eight temperature samples, and 20 observations are included
in each phase tensor. But we employ 1, 5, 10, 15, and 20 tags
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in the interrogating area to mimic a multiple-tag environment.
To avoid the randomness in experiments, each experiment is
repeated for ten times with each group of tags. The mean
errors are the bars and the standard deviation are plotted as
error bars. As shown in Fig. 16, the mean temperature error is
not affected by the number of tags significantly. Even though
the mean errors increase when 5, 15, and 20 tags are deployed
in the interrogating area, the error reaches the lowest value
when ten tags are present in the experiment. For the standard
deviation of temperature errors, 1.803 °C and 1.859 °C occur
when 10 and 15 tags are in the interrogating area, respectively.
However, the deviation is 0.4667 °C when 20 tags are interro-
gated by the reader, which is even smaller than the deviation
of temperature error of the one tag case.

We also investigate the availability of phases in this
multiple-tag environment. In the experiment, the tags are inter-
rogated within a period of 10 s. Fig. 17 depicts the average
number of available phase readings in each channel. It shows
that the plenty of readings are available when there is only one
tag in the interrogation area. When the number of tags in the
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interrogation area is increased, the number of phase readings in
each channel decreases significantly. When 20 tags are within
the interrogation area, the average number of available phase
samples drops to 4.38. Considering that each training tensor
contains 20 observations, most of the phases are lost when 20
tags are within the interrogation area. However, the decline of
available phase readings does not affect the temperature esti-
mation of the RFThermometer system. Fig. 16 demonstrates
that the RFThermometer system is able to provide a reliable
temperature estimation in a multiple-tag environment.

V. CONCLUSION

In this article, we presented RFThermometer for remote
temperature measurement using commodity RFID tags. To
mitigate the effect of missing phases, a tensor completion-
based method was employed to restore the missing phases.
The RFThermometer system also employed Gaussian pro-
cess to construct a phase-temperature map with the phases
restored by tensor completion in the offline stage, and a
DTW-based greedy method to estimate the unknown temper-
ature in the online stage. We evaluated the performances of
RFThermometer with commodity RFID tags and reader. The
experimental results showed that RFThermometer was capable
of building reliable phase-temperature maps with only a small
amount of phase measurements, and that tensor completion
effectively improved the temperature estimation precision.
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