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Constrained by the fixed mathematical form of most empirical potentials used in classical molecular dynamics
(MD) simulations, many properties of materials cannot be captured within experimental accuracy. On the other
hand, accurate electronic structure calculations based on quantum theory, most notably density functional theory
(DFT), are limited to several hundred atoms within a picosecond, which makes the method inadequate for
modeling systems beyond the nanoscale. A combination of speed from classical MD and fidelity from DFT
can be achieved through machine learning methods. Herewith, we developed an approach named spatial density
neural network force fields (SDNNFFs) by training neural networks to “learn” and predict DFT-level forces. Our
model focuses on the usage of a three-dimensional mesh of density functions, which together act as a mapping of
the atomic environment and provides a physical representation of the forces acting on the central atom. Several
notable advantages arise from the SDNNFF, including (1) the avoidance of the chain rule on the total energy and
other variables by direct calculation of the forces from the neural network, (2) the ever large N x ¢ scaling of
the training data, where N is the number of atoms in a supercell and ¢ is the number of evaluated structures
by first-principles, and (3) the significant reduction in parameters and human effort needed to successfully
train a force- and/or property-converged neural network force field. Overall, we focus on modeling DFT-level
forces with minimal computational cost and parametrization for rapid prediction of phonon-based properties
and future molecular dynamics of large-scale systems. To demonstrate the SDNNFF, we trained several models
on diamond structures, including bulk silicon (Si), diamond, silicon carbide (SiC), and boron arsenide (BAs),
and predicted their phonon dispersions and lattice thermal conductivities using the direct solution to the phonon
Boltzmann transport equation. For phonon properties, we utilized a fitting method for obtaining the second-
and third-order force constants, which outperforms the highly force-sensitive finite displacement method when
employing neural network force fields. In comparison to DFT lattice thermal conductivity, we obtained high
precision results from our SDNNFF within 0.7% for Si, 6.2% for diamond, 2.76% for SiC, and 7.46% for BAs,
with further agreement with experiments. The phonon dispersions from the SDNNFF also matched those from
direct DFT and experiments. The developed approach for accurately predicting phonon transport properties of
crystalline materials would largely benefit the design of advanced materials with improved performance, such
as complex thermoelectric devices and low thermal resistance interfaces for nanoelectronics. Future applications
of our SDNNFF model could be extended toward including atomic energy into the algorithm and simulating
large-scale heterogeneous systems for quasielectronic representations for various properties.
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I. INTRODUCTION

The representation of atomic interactions, or the potential
energy surface (PES), is key for capturing realistic behavior
of materials and their properties. Classical molecular dy-
namics (MD) and density functional theory (DFT) are two
examples of conventional atomistic simulation methods. In
MD, the movements of point particles representing atomic
nuclei are dependent on the pairwise or many-bodied potential
functions with fixed functional forms. Since interactions vary
between atomic species, these potential functions typically
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consist of adjustable coefficients based on empirical data,
scientific knowledge, force-matching with ab initio [1], or a
combination of the three. An exemplary empirical potential
accounts for imaginary electrons surrounding the nuclei and
any realistic pair-wise or many-bodied interactions associated
with them, e.g., bond stretching, van der Waals forces, tor-
sions, etc. [2]. While the simple functional forms of these
potentials allow quick evaluation of the atomic forces and
resulting Newtonian dynamics, they are strongly limited in
modeling chemical reactions and in predicting multiple prop-
erties comparable to experimental data [3]. In addition, any
improvement to classical potentials is not straightforward
because the dependencies between parameters are not known
a priori [4]. On the other hand, DFT takes into explicit ac-
count the electron densities surrounding nuclei and computes
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stable structures via iterative minimization of global energy
according to the Schrodinger equation [5]. The PES in DFT is
represented by the Born-Oppenheimer approximation, where
the kinetic energies of nuclei are separated from the electronic
Hamiltonian due to their massive sizes in comparison to
electrons [6]. Since DFT is a “bottoms-up” or first-principles
approach, an in-depth understanding of material behavior is
possible, such as the phonon branch contributions to inverse
temperature thermal conductivity for monolayer gallium ni-
tride [7]. However, contrary to the almost linear scaling with
the number of atoms in MD, the explicit consideration of
electronic degrees of freedom limits DFT to several hundred
atoms, which makes the modeling of behaviors beyond the
nanoscale, such as the growth of a silicon anode in charging
a lithium-ion battery [8], an arduous or otherwise impossible
task.

Considering the drawbacks of classical and quantum-based
methods, it becomes clear why researchers are pursuing meth-
ods that combine the best in both simulation methods by
bridging the subatomic and atomic scales together. Recent
popularity in machine learning (ML) has inspired researchers
to merge this family of computational techniques with atom-
istic simulation [9]. Inspired by biological processes, ML is
oftentimes correlated with the “trial-and-error” mindset in
which the predictive power of a model is improved from
reference data with little to no human intervention. Here, the
reference data “teach” or fit the model iteratively for the most
optimum function between provided inputs and outputs with
a high degree of flexibility [10]. Recent computing advances
has given strong leeway for ML into materials research, where
the generation of data such as the ~10° compounds on the
Materials Project Genome [11] has led to some major ac-
complishments [12]. These efforts include, but are not limited
to, the discovery of eight new solid superionic lithium ion
conductors [13] and the prediction of interfacial thermal resis-
tance between two materials related to temperature, coupling
strength, and in-plane tensile strains [14].

This paper focuses on the application of ML for the quan-
titative development of interatomic interactions from accurate
quantum-based data. The machine learned potential (MLP)
has been a topic of consistent research for more than a decade,
with the interest of developing an accurate mapping of the
PES from high fidelity data with minimal prior knowledge of
the interatomic interactions. Out of the many ML algorithms,
feed-forward neural networks were chosen in this study as
the algorithm of choice due to their recent popularity in
commercial and academic research, and are applied to the
atomic simulation field as neural network potentials (NNPs)
[15]. These NNPs have yielded agreeable DFT energies and
forces for a wide variety of systems, including but certainly
not limited to condensed-phase water [16], Li-Si alloys [17],
CioHyo isomers [18], copper surfaces [19], and amorphous
Li3PO4 [20]. Other than the composition, structure, and size
of modeled systems, papers with NNPs are further broken
down by the treatment methods on network inputs prior
to training. Since ML algorithms are purely mathematical
models with no physical basis, the ability to learn meaningful
relationships in data is largely dependent on the quality and
consistency of the dataset itself [21]. For NNPs, the represen-
tations of the local chemical environment in the training data

are critical for accurate predictions of central-atom energies
and forces. As an example, suppose the inputs to a NNP are
all the Cartesian coordinates ?, = (x;, i, z;) of atoms i, with
the total system energy as the output. A rotation of these
atoms about an axis should realistically yield same energy
prior to rotation, since the relative distances and angles of
the atoms are consistent. Nonetheless, since the values of the
atomic coordinates suffer dramatic changes from the rotation,
an NNP not trained to support the rotated coordinates will
most likely output an energy largely different than that prior
to the spatial transformation.

Contrary to most referenced NNPs, including the high-
dimensional neural network potential (HDNNP) proposed by
Behler et al. [22], here we develop a neural network named
the spatial density neural network force field (SDNNFF) that
directly computes and predicts force fields rather than the
PES. Originally as an inspiration to our work, here we discuss
the HDNNP briefly. In the HDNNP, the Cartesian coordinates
of local atoms within a cutoff are transformed into a series
of radial and angular symmetry functions that maintain in-
variance between similar atomic environments, resulting in
consistent total energies. The net force F; acting on atom i
is subsequently computed from total energy (E) with respect
to its coordinates according to F; = —V;E. Here, our model
diverges from this approach as we pursue the per-atom forces
without the energies, since the forces are of interest to com-
pute the interatomic force constants (IFCs) and the dynamics
of atomic systems. Direct evaluation of the forces could save
computational resources in MD via removal of the total energy
and its derivative. In the HDNNP, the per-atom forces are
computed by the chain rule and require the evaluation of both
the symmetry functions and their derivatives, requiring more
CPU time than classical potentials [23]. However, to output
the central-atom forces directly, radial and angular symmetry
functions as inputs are not a feasible option since force vectors
are indistinguishable in a polar mapping of the environment,
e.g., a rotation of an atomic environment would yield an
unchanging set of symmetry function values while the force
vector components would experience dramatic changes. As
such, we decided to develop our own functional mapping of
nearby atoms in three-dimensional (3D) space rather than
polar space. Briefly, this is done by generating a mesh of
points about every central atom, where predefined density
functions measure the local density of the atomic neighbors
at each mesh point. Then, the collective group of atomic den-
sities distributed in 3D space serve as representative atomic
environments for the neural network to recognize DFT-level
force components in response to relative neighbor positions.
Overall, the goal of the SDNNFF is to output first-principles
based atomic forces at network speeds by proper treatment of
instantaneous atomic coordinates.

The structure of the paper is organized as follows: A tech-
nical background for the SDNNFF and other details for net-
work training are given in Secs. Il A-II D. Then, in Sec. ITE,
to show the reliability of our SDNNFF model, we compute the
harmonic (second order) and anharmonic (third order) force
constants and phonon properties (i.e., phonon dispersion and
lattice thermal conductivity) of Si from the developed neural
networks by the conventional finite displacement method
(FDM) [24] and the force constant fitting package ALM [25].
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Afterwards, in Sec. III, the ALM method is applied to neural
networks trained for similar bulk crystalline materials, includ-
ing diamond, SiC, and BAs. The resulting phonon properties
for each material were evaluated by running convergence tests
on various SDNNFF parameters and comparing the phonon
properties to those evaluated from DFT-FDM. In Sec. IV, we
analyze the results and comment on the SDNNFF in light
of other recently developed methods. Finally, in Sec. V we
provide a summary and some perspective for future study with
the SDNNFF method.

II. MODEL CONSTRUCTION AND VALIDATION
A. Theoretical background of SDNNFF

As previously mentioned, a successful neural network
force field must be capable of predicting DFT-level force
components as a function of neighboring atomic positions.
In a 3D orthogonal xyz coordinate system, because the force

vector F; = (F*, F/, F) is projected along the reference
global axes, the input descriptors should also quantify the
atomic positions in the same xyz space. A simple way to do
this is to take the Cartesian coordinates of nearby atoms and
directly insert them into a neural network. However, many
issues arise from this approach. First, during neural network
training, stability may be compromised from training data that
varies greatly due to translated or rotated coordinates. Here,
we intend to train networks on force components that differ
between spatially transformed varieties of the same system,
which is unlike the case when training for the energy. The
question then becomes how should the atomic coordinates be
fed into the neural network, such that the inputs are consistent
to avert large changes in the weights during training? An
example of instability from the inputs is the order in which
the atomic coordinates are fed into the neural network. Since
the weights of a given network are fixed numerical values,
inserting two equivalent atomic environments with random
ordering for the neighbor coordinates will certainly change
the network output. This problem is trivial for ordered systems
with no significant diffusion of atoms, since the network can
be fed inputs according to positionally equivalent atoms in
space (e.g., by ordering the xyz coordinates from greatest
to least for all atomic environments as the input). On the
other hand, the training of atomic coordinates in disordered
systems is infeasible since there are rarely any equivalent
atomic structures, which adds an element of randomness to
the inputs and prevents the fine tuning of the weights during
training. The second point against Cartesian coordinates as
inputs arises from the entering and exiting of atoms with
respect to a certain cutoff radius, which occurs frequently
during MD simulations. Treating the Cartesian coordinates
as inputs is impractical since neural networks are assigned
a fixed number of inputs at the start of training, which is
incompatible with the variable number of neighbors within
the cutoff that may arise during simulations. Again, while
this may be negligible for materials with a fixed number of
neighbors (e.g., low-temperature solids), the method becomes
unreliable for systems where atomic neighbors travel far from
the central atom. For the compatibility of neural network force
fields with any arbitrary system, the focus is to represent

the space surrounding the central atom independent of any
periodicity or possible atomic environments found in DFT or
MD.

Inspired by other works on atomic representations, we
decided to apply the concept of symmetry functions to rep-
resent 3D variations in the environment to avoid the issues
associated with Cartesian coordinates. We follow the simple
forms presented by Huang et al. [26], where equally spaced
cosine functions serve as mathematical indicators for the
atomic occupation surrounding a central atom. This form is
especially desirable considering that only three adjustable
hyperparameters are present: the cutoff radius (R,), the grid
resolution (k), and the density function width (D). The first
two parameters are physically intuitive since R, determines
the distance truncation of the force contribution to the central
atom and k provides the spatial resolution of the grid points
surrounding the central atom. The third parameter D measures
the range of each cosine function, and we show later in this
section a universal value for given structures can be found
using network convergence testing. Therefore, a good repre-
sentation of the local environment and the resulting central-
atom forces depends on the convergence of the force error and
material properties by adjustment of R, and k. Additionally,
the grid-centered cosine functions were modified to transform
xyz coordinates to a form independent of the quantity or peri-
odicity of the neighboring atoms. In other words, our method
was designed to represent any given atomic environment,
provided that the inputs to the neural network are treated as
fixed observers of the neighbors, and the quantity of atoms
inside R. does not change the number of inputs to the neural
network. Therefore, a high flexibility is achieved in these
SDNNFF functions, formally named density functions, which
allow neural networks to capture the complex force fields
involved in a wide variety of systems.

The theoretical background for the SDNNFF density func-
tions is provided here. For a 3D grid with k > 1 grid divisions,

a given spherical cutoff radius R., R, = (x,, y», Z») as the co-
ordinates of the nth atom relative to a given central atom, and
o = (o, a”, a%) as the grid positions with each component
ranging from 1 to k, the proposed spherical density function
is shown in Eq. (4), with Egs. (1)—(3) provided as definitions:

2R,
L= ,
k—1

Ry= —R.+(@—1xL, )

(D

RE = (=R + (0= R+ (2 — R )

If IRy = /R2 + R + R2 < R.,

o _{Zle%*[cos(lﬁ*kf)ﬂ] if RY<DxL

0 otherwise

“4)

o

where
L — is the distance between equally spaced grid points with
side length R,

035203-3



ALEJANDRO RODRIGUEZ, YINQIAO LIU, AND MING HU

PHYSICAL REVIEW B 102, 035203 (2020)

First Principles

Density Functions
(a) . o o

(C) @® Central Atom

* @ Atomic Neighbor
¢ @ Grid Point

Rc Cutoff Radius

SR

(b)

(F*, FY, F7)

Network Training

: )apid Phonon Props.
g : "

0 w0 10w

(O]

Hidden Layers

S @0 70
‘Temperature (K)

Hidden
Layers

FIG. 1. A schematic containing the workflow for the SDNNFF. First, we gather (a) the crystal structure and its (b) per-atom forces from
first principles, then for each atom we describe the local atomic environments by (c) density functions with a finite neighbor cutoff radius.
The result is a (d) atomic density mapping of the environment which can be fed into a (e) neural network. Specifically, we train the network
on (f) density values found at each grid point to obtain the force vector for various atomic configurations. Then, we can make DFT-level
force predictions at significantly improved speeds for applications such as (g) rapid phonon property predictions done here (shown: predicted
phonon dispersion and lattice thermal conductivity of Si) or (h) in the future simulate MD at DFT accuracy (shown: lithium ion diffusion

through silicon anode [8]).

R, — is the Cartesian coordinates of grid point o with 1€g =
(R}, Ry, RY),

RY —1is the distance between an atom 7 and a grid point a,

N — is number of atoms within R,.,

D —is the local density function cutoff factor,

¢ — is the local atomic density value at grid point a.

The basic requirement of the SDNNFF density functions is
to provide a description of the 3D atomic occupation in space,
as seen in Fig. 1, c-d. Hence, the grid space surrounding the
central atom is defined by the diameter of the cutoff sphere, or
2R.. This range is then divided into k partitions, generating the
intergrid distance L according to Eq. (1). In Eq. (2), the real-

space coordinates of the grid points R, are given from —R, at
a*¥* =1 to R, at «*>* = k in each of the x-/y-/z directions.

Equation (3) provides R, as the relative distance between a

neighboring atom n and a given grid point ;, which measures

the spherical vicinity of atoms with respect to a grid point.
These definitions lead to the density function in Eq. (4)

provided as a cosine function ranging from 0 to 1 varying with

radial distance R, as seen in Fig. 2. The density function ¢
considers the radial influence of up to N atoms inside R, and
their contributions are summed into one value per grid point to
provide a quasidensity of atoms in space. The summation also
acts as a necessary conditioning step for usage in neural net-
works since the number of atoms within the spherical cutoff
becomes independent of the number of inputs to the network.
Here, the number of grid points « translates to an equal
number of fixed inputs to the SDNNFF and scales with the
grid resolution k. Additionally, the “if”” statement preceding
the density function in Eq. (4) is a physical treatment, where
only the grid points within the atomic cutoff are considered
due to two primary reasons: (1) Like in MD, the forces are
strictly dependent on the radial proximity between the central
atom and the neighbors, so the consideration of atoms within
a cubic grid is obviously intangible. Instead, we limit the grids
to those within the cutoff sphere, making the description of the

forces in the neural network more realistic. (2) The number
of grids considered is significantly reduced when truncating
to the grids within the sphere of radius R, versus a cube
with side length 2R,. This effectively reduces the number of

necessary inputs to the neural network by a significant margin
4 3
37T XR,

(at least by volume fraction 5ok )3” x 100% = 52.36%). In

turn, we can increase the grid resolution k to describe the
atomic environment more precisely within the cutoff sphere.
A discussion of the density function parameter D is nec-
essary to understand its role in the SDNNFF. As per the
definition in Eq. (4), the density function ranges from unity

at RY = 0 and zero at a distance RY = D x L. Beyond R
D x L, the function is treated as zero throughout the rest of

A

1

FIG. 2. The shape of the per-node density function in two dimen-

sions, with radius D x L = 1 centered at R, = (0, 0). Atoms in the
black region would result in a value of zero, increasing to unity as

the atom approaches R,.
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the domain, providing a smooth curve delineating the local
concentration of atoms at each grid point. Here, the purpose of
the cutoff factor D is to control the size of the local spherical
domain that scales with a constant grid length L. The choice
in D is important to guarantee no gaps in the domain between
adjacent density functions, where a small value may cause the
density functions to completely neglect the presence of certain
neighbors critical for computing the forces. On the other hand,
a value that is excessively large would both desensitize the
@- set to smaller atomic displacements due to the greater
width of the local density functions and make each ¢ less
distinguishable to those of the surrounding grid points due to
the inclusion of more atoms in the summation. Furthermore,
because all the density functions here are uniform in size and
shape, D controls the degree of overlap with nearby density
functions and in turn serves as an implicit representation of
the angular positions of atoms. While the density functions
only depend on radial distance R and not on angular val-
ues, multiple sufficiently wide density functions that react
simultaneously to atomic movement can provide a good in-
terpolation of the atomic densities between the points in the
local environment. The idea is analogous to GPS systems,
where multiple orbiting satellites transmit long-range signals
to triangulate a position on the surface of the Earth. Here, the
value ¢ from each grid point “satellite” is simultaneously fed
into the neural network, and as a multidimensional nonlinear
model, we expect the network to recognize the set of ¢_. values
positioned at equally spaced 3D points as a unique description
of the atomic environment. As such, in Sec. II D, we find the
optimal value for D by comparing the performance of the
resulting material-based neural networks.

B. Data generation

For training the SDNNFF, data acquisition is vital for the
force prediction of all possible atomic configurations found
during long-time-scale simulations. Realistically, we would
require a nearly infinite number of data points to cover all pos-
sible combinations of atomic environments. However, since
neural networks excel at interpolation, the training data are
at a minimum required to cover the possible range of inputs
[27]. This implies that neural networks must be trained to
suit the application, and because the maximum displacement
of atoms scales with the temperature of the system, the
coverage of possible atomic configurations can be achieved by
training neural networks on a variety of temperatures. Here,
the goal was to predict the second- and third-order constants
of crystalline materials to find phonon-based properties with
ab initio accuracy. Since the force constants require small
atomic displacements less than 0.03 A, we decided it would be
enough to train neural networks on data far from the melting
temperatures (i.e., solid crystalline phase).

Six temperatures were arbitrarily chosen, namely 0, 50,
100, 300, 500, and 800 K, to train the material specific
SDNNFFs on a sufficiently wide range of atomic config-
urations. Here, the 0-K configurations are perfect crystal
structures. To model a variety of atomic environments, we use
ab initio MD (AIMD) with DFT from the Vienna ab initio
simulation package (VASP) with the projector augmented wave
(PAW) method and a 107%-eV energy convergence criterion

to generate the structures. The AIMD simulations were sped
up with alow 1 x 1 X 1 k-space resolution since at this
stage there was no concern for the accuracy of the forces
but for the rapid generation of the atomic configurations at
various temperatures. For each crystal at nonzero temperature,
5000 low-resolution steps were run for 3 x 3 x 3 primitive
supercells (54 atoms in total) containing Si, diamond, SiC,
and BAs. Also, a time step of 1 fs was chosen for Si, SiC, and
BAs, while a time step of 0.5 fs was chosen for diamond due
to its known high vibrational frequency. Then, 1250 structures
were randomly chosen out of the 5000 AIMD configurations
and pooled together to avoid biased training, where high-
resolution 4 x 4 x 4 k-space static DFT calculations with
10¢ eV energy and 103 eV /A force convergence criterions
were performed on each structure. A total of 4 x 10° nonzero
temperature atomic configurations for each Si, diamond, SiC,
and BAs were obtained. An arbitrary 1250 0-K (perfect crys-
tal) structures were added to the data pool for the inclusion
of equilibrium structures during training. Note that the 0-K
configuration for each material was run in static DFT to check
for equilibrium (i.e., 0 eV/A forces) and was not run in AIMD.

C. Neural network details

After the static DFT calculations by VASP, postprocessing
for the output data was performed in Python 3.6.8 with the
NumPy library package [28]. Our in-house Python script con-
verts the generated atomic configurations from the VASPoutput
to the SDNNFF input. The neural network inputs were pro-
cessed according to Eqs. (1)—(4) and saved in a separate file
along with the corresponding DFT forces. For training the
SDNNFFE, the TensorFlow library for Python was utilized
[29]. To compare with other papers containing NNPs, all neu-
ral networks here were similarly constructed with two hidden
layers and 500 nodes each with a default minibatch size of
32 [26,30]. The SDNNFF data from our earlier Python script
was read and split into 80% training data, 10% validation data,
and 10% testing data. In addition, the input density function
column vector and output force vector were normalized so that
they ranged from —1 to 1 according to

I— Imin
Inctwork =2k ——— — 17 (5)

Imax - Imin

where [ is a density function or force component from
DFT and Ipework 1S the converted input/output for the neural
network [27]. The values for I, and I, were taken as
the maximum/minimum values for each component out of
the entire dataset. As such, these values were saved in a
separate file since all future uses of the network require the
reapplication of Eq. (5) to the inputs and outputs for con-
sistency with the trained weights. The He uniform initializer
was used to generate the initial weights and biases of the
network [31], the Adam algorithm was used as the optimizer
for updating the weights with a learning rate of 0.0001 [32],
and the exponential linear unit (ELU) was implemented as the
activation function of choice [33]. The custom loss function
I was defined as an RMSE of the three force components
predicted by the neural network FXy against the DFT force
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components F ]f)Fr’ or

I'= * Z (Féy = Fer) ™ (6)

k=x,y,z

W =

After training, the testing loss was computed across the entire
testing set with Eq. (6) for comparison with other networks
trained on various cutoffs and grid resolutions.

D. Determining the local density cutoff factor

With the data generated and the network parameters de-
fined, we proceeded to investigate the necessary value for
the cutoff factor D in the density functions. At this stage,
we decided to start with high-resolution networks k = 12
(672 inputs) and a large R, containing the fifth neighbors
for Si (6 A), diamond (3.93 A), SiC (4.82 A), and BAs
(5.3 A). Note that these cutoff distances are approximately
0.05 A greater than the fifth-neighbor distance to guarantee
the capturing of displaced atoms when later computing the
force constants in Sec. II E. In addition, the number of inputs
is quite large in comparison to recent reports for HDNNP (i.e.,
41 inputs) [30]. Later these parameters would be reduced to
decrease the number of required density function calculations
for the network input and to improve the efficiency of the
force calculator, but for now these are simply test cases to
minimize noise error in analyzing D. To observe if a universal
value exists for D in the case of diamondlike materials, we
trained multiple high-resolution networks for each material
with different values of D and compared their testing RMSE
values according to Eq. (6). Specifically, we sampled values

D = %, ‘/75 ‘/Tg 1, V2, +/3, and 2, which correspond to
a D x L equal to the grid length (D =1 x L), the diagonal
of the grid length in 2D (D x L = +/2L), and the diagonal of
the grid length in 3D (D = +/3 x L) in multiples of %, unity,
and 2.

From Fig. 3, it is clearly seen that D plays a significant
role in the force accuracy of the network. Specifically, we
can see that there is a converged RMSE value at D = \/E
for all materials examined here. From an intuitive standpoint,
the convergence is due to the overlapping of density functions
with those at nearby grid points, which supports the earlier
idea that the angular information is preserved in the set of
input density functions and therefore the representation of the
atomic environment is improved. The overlap begins at D =
1, where the edges of the density functions lie on nearby grid
points. The results seem to converge at a slightly higher value
of D = /2, where the grid points are well within the influence
of multiple neighboring density functions. Recognizing the
negligible differences in RMSE when D > /2, we decided
to arbitrarily use D = /3 for all material neural networks
investigated here. These RMSE differences could be due to
statistical noise in training the network, and thus D = V3 was
chosen purely to guarantee force convergence due to the over-
lap of density functions. However, we recommend in future
studies that a convergence test for D should be performed
for new structures other than diamond, considering how the
packing of atomic neighbors may impose other requirements
on the range of the density functions for converged forces.
In addition, care should be taken in choosing a large cutoff

Log(RMSE)

Si Diamond SiC BAs

Materials

FIG. 3. The logarithm of the testing RMSE for various D values
evaluated by the high-resolution SDNNFF networks for the case of
bulk Si.

factor, since as mentioned before the density function values
could become “clouded” from the excessive number of atoms
included in the summation, thus generating difficulty for the
network to detect atomic configurations from the ¢_ set.
Furthermore, the inclusion of more atoms in the summation
for ¢- can increase computational cost, since more cosines
are required to be computed for every atom inside D x L at
each grid point.

For the trained networks with D = \/5, we also observed
the learning curves to compare the training and validation
losses. Normally we expect the validation loss to decay to a
minimum then rise after a given number of epochs (training
cycles), which is a symptom for overfitting. During train-
ing, the network with the lowest validation error is saved
since this model can best generalize untrained configurations.
However, we noticed that none of our networks experienced
this phenomenon, rather the validation curves were seen to
continue to slowly decay with no bound as seen in Fig. 4.
While overfitting could have occurred at an epoch much larger
than 500, at this point the two curves were visually close
to an asymptote, so we stop at 500 for all networks to save
computational resources.

E. Generation of the force constants and phonon properties

The performance of the neural networks was primarily
determined by their ability to reproduce DFT-level phonon
properties. Initially we investigated the properties by calcu-
lation of the force constants via conventional FDM. Here, we
started with Si as a benchmark case since it is a well-known
semiconductor. In this paper, we used the phonopy [34] and
phono3py [35] packages for evaluating the second- and third-
order force constants and for obtaining phonon dispersions as
well as lattice thermal conductivity. We used the same high-
resolution Si network as developed in Sec. IID to see if our
method could yield agreeable phonon properties to those from
direct DFT. With FDM, 181 3 x 3 x 3 primitive supercell
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FIG. 4. The training and validation learning curves for the high-
resolution Si network.

structures of Si were generated with the default displacement
of 0.03 A. We computed the forces for these structures by
static DFT with the parameters in Sec. II B and by the trained
high-resolution neural network. Then, the second- and third-
order force constants were computed followed by the phonon
dispersion and lattice thermal conductivity. The lattice thermal
conductivity was obtained with a 20 x 20 x 20 g-point
mesh using the direct solution of linearized BTE.

As seen from Figs. 5 and 6, while the phonon dispersion
from the SDNNFF-FDM agrees relatively well with that from
DFT-FDM, the comparison of thermal conductivity between
the two force calculators for FDM was significantly worse.
We assumed that the phonon dispersions, which only require
second-order IFCs, are much less sensitive to the force noise
error from the neural network than the thermal conductivity,
which require both the second- and third-order IFCs. To prove
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\
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>
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FIG. 5. The phonon dispersion of bulk Si evaluated by DFT with
FDM, SDNNFF with FDM, and SDNNFF with ALM.
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FIG. 6. The temperature-dependent lattice conductivity of bulk
Si evaluated by DFT with FDM, SDNNFF with FDM, and SDNNFF
with ALM.

this, we performed computer experiments by artificially im-
posing random noise into the DFT forces to see if the phonon
properties deteriorate in a similar manner. Noise values of up
to 107" eV/A, withn =2, 3, 4, 5, were added to the DFT
forces. The second- and third-order force constants, along
with the phonon dispersions and conductivities, were obtained
by the same procedure as before but with the noise-induced
forces. We show the resulting plots in Figs. 1 and 2 of the
Supplemental Material [36]. Briefly, we obtained a converged
phonon dispersion with n = 3, while convergence for the
thermal conductivity occurred later at n = 5. These figures
agree well with our earlier speculation, where the thermal
conductivity requires a demanding 10~ eV/A or 0.01 meV/A
force accuracy to match DFT results which is well below the
capabilities of the neural network even at a high resolution.
In Fig. 7 we summarize this point by plotting the thermal
conductivity of Si at 300 K against the artificial noise in
DFT. We observe again that the thermal conductivity from
DFT converges at a noise level of n = 5 (up to n = 8 plotted
to show convergence) while the thermal conductivity from
the SDNNFF was consistent with DFT noise levels between
n = 3 and n = 4, sharing values far below pure DFT results.
We quickly realized that FDM was not suitable for the
evaluation of the force constants via SDNNFF due to the
observable strong force sensitivity. While the possibility of
reducing the RMSE exists by increasing the grid resolution,
the number of inputs to the network would have quickly
made the method excessively demanding for, say, large scale
MD. Instead, we decided to use an alternative force-constant
calculator, namely the ALM method. While the details of
the method can be found from Tadano et. al. [25], a short
discussion is made here. In FDM, the force constants are
computed by systematic displacement patterns in crystalline
structures, where a minimum number of unique displacement
patterns or structures are generated. From a series expansion
on the potential energy, the second-order force constants re-
quire one atomic displacement, the third-order force constants
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FIG. 7. 300-K thermal conductivity of bulk Si vs artificial
noise to DFT. The result from SDNNFF-FDM is also shown for
comparison.

require a pair of atomic displacements, and further order terms
require more simultaneous atomic displacements [37]. Then,
the electronic structure calculations are done on all resulting
structures for the DFT forces and the second- and third-order
force constants can be computed. However, contrary to FDM,
ALM approaches the force-constants calculation stochasti-
cally by fitting the force constants rather than solving for them
directly. This is done by applying random displacements to
all atoms in the supercell up to a user-specified amplitude.
The result is an arbitrary number of randomly displaced
structures which, with statistical fitting methods, yields the
force constants. The downside to ALM is that many data
points are needed to obtain converged force constants, so a
number of structures greater than that from FDM need to be
evaluated and is therefore more time-consuming when using
direct DFT.

With the ALM extension in phonopy/3py, we were able to
evaluate the force constants from the same neural network for
Si. We chose to randomly displace atoms by 0.03 A for an ar-
bitrary 1000 structures. Here, the neural network evaluated the
forces for the Si 3 x 3 x 3 primitive supercell ~10° times
faster than DFT, so the force calculation for 1000 structures
was a trivial concern. In addition, we expect the neural net-
work cost to scale linearly with N atoms since the calculation
only depends on the relatively constant number of neighbors
in the local environment, similar to MD and contrary to the
scaling with the cubic electron count (NNg) in DFT [23].
Viewing the resulting phonon properties as seen in Figs. 5 and
6, we realized the exceptional performance in replicating the
DFT-FDM results from the SDNNFF-ALM force constants.
The most likely reason for the improvement is in the statis-
tical cancellation of noise provided by ALM, where many
atomic displacements (and therefore unique interactions) are
necessary to eliminate small discrepancies in the predicted
forces. Indeed, FDM is limited to a fixed number of displaced
structures with only one to two atoms displaced at a time for

TABLE I. The Corresponding number of grids / network inputs
to the grid resolution.

Grid resolution (k) 8 9 10 12
Number of grids/network inputs 160 257 360 672

the second- and third-order force constants. The small sample
of displacements increases the demand for accurate forces, as
we have seen previously with the artificial disturbance of the
DFT forces in FDM structures. Additionally, the finite dis-
placements in DFT generates a nonzero force for all the atoms
in the unit cell, whereas a real-space force cutoff approach
such as the SDNNFF generates equilibrium forces (i.e., 0+
noise) for atoms outside the cutoff of the displaced atom(s).
As such, the truncation of the forces outside the cutoff is
possibly another source of the incompatibility between the
SDNNFF and FDM. Note that we strongly wish to emphasize
the difference between the real-space force cutoff (R, ) and the
pairwise atomic displacement cutoff used often in FDM code,
where the latter is used to reduce the cost of third-order IFC
calculations by neglecting structures with distances between
displaced atoms beyond the specified cutoff. In practice, the
pairwise displacement cutoff in DFT-FDM does not define a
force cutoff for atoms in the cell, since the force is dependent
on the gradient of the electronic Hamiltonian [38] and is
attributed by all atoms in the supercell regardless of the
pairwise displacement cutoff. Although for SDNNFF-FDM
we tried a pairwise displacement cutoff equal to the real-space
force cutoff to capture as many atoms as possible for the
force calculation, some structures still had undisplaced atoms
outside the real-space force cutoff of the two displaced atoms,
and force information loss was inevitable. Accounting for
both information loss and inherent NNFF noise, the reduced
sensitivity of the force constants led us to prioritize ALM for
the evaluation of phonon properties using force calculators
involving noise.

III. APPLICATION TO THERMAL TRANSPORT

With success in reproducing Si DFT results, the next step
is to evaluate the phonon properties of the suggested materials
by adjustment of the SDNNFF parameters. Similar to bulk Si,
we began by testing the high-resolution neural networks for
bulk diamond, SiC, and BAs from Sec. IID using ALM. We
also developed other networks with combinations of fourth-
and fifth-neighbor cutoffs and k=8, 9, 10, and 12 for
convergence to DFT-FDM results with a minimum number of
grid points and atomic neighbors. Note that we again applied
a cutoff that is 0.05 A greater than that for the fourth- and
fifth-neighbor distances to account for displacements in ALM.
In addition, we noticed similar learning curve behaviors as
seen in Fig. 4 in these networks and do not show them here
for brevity. However, the final testing RMSE values for the
various atomic cutoffs and resolutions are displayed in Fig. 8
for comparison. We also provide the number of input nodes
(or the length of the ¢_- set) corresponding to each k in Table I,
since as mentioned in Sec. Il A only the nodes within the
cutoff radius are considered as the network inputs.
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FIG. 8. The resulting testing RMSE values from the material-specific SDNNFFs at various atomic neighbor cutoffs and grid resolutions.

Because of the previous disagreement with the thermal
conductivity via FDM, we prioritized our analysis on the con-
ductivity and show this first in Fig. 9. Here, we truncated the
converged solutions to DFT-FDM results for display purposes,
and only show one curve for each neighbor cutoff. Plots that
are not shown for a given combination of neighbor cutoff
and k have either equivalent or worse agreement to DFT-
FDM. Afterwards, the phonon dispersions corresponding to
the shown thermal conductivity curves are plotted against
DFT-FDM dispersions in Fig. 10. For the phonon dispersion
of SiC, we applied a nonanalytical term correction due to
its known LO-TO splitting near the gamma point [39]. We
also provide experimental data points in Figures 9 and 10
for comparison except for the thermal conductivity of BAs,
which requires four-phonon scattering theory to correct the
overestimated results here [40]. We also provide the force line
comparison plots for the same SDNNFF networks in Fig. 3 of
the Supplemental Material [36].

IV. DISCUSSION

As seen from Fig. 9, we obtained excellent agree-
ment in the lattice thermal conductivity from the SDNNFF
forces with the ALM IFC calculator. A maximum percent

difference of 0.7% for the 5—-10 Si network, 6.2% for the
5-9 diamond network, 2.76% for the 4—-10 SiC network, and
7.46% for the 5-10 BAs network in comparison to the DFT-
FDM curves was achieved. Considering BAs as the highest
percent error for the thermal conductivity, we decided to also
plot DFT-ALM to see if the percent error originates from
the IFC calculator (FDM vs ALM) rather than the atomic
force accuracy (DFT vs SDNNFF). Here we ran 300 ALM
structures for BAs instead of the previous 1000 due to the
demanding number of DFT calculations and the expectation
that fewer structures are required for fitting the force constants
with accurate DFT forces. The resulting thermal conductivity
from DFT-ALM was slightly lower than that of DFT-FDM
and improved the agreement with SDNNFF-ALM to 4.81%.
While we do not analyze the effects of the force-constant
calculators on the thermal conductivity here, the comparison
between FDM and ALM shows that the disagreement is not
purely due to the SDNNFF noise. Other sources of error
that may have contributed to the resulting percent difference
in the SDNNFF thermal conductivity include the number of
reference DFT structures in the training set, the temperature
range of the generated AIMD structures, the neural network
training parameters (e.g., number of layers, nodes, activation
functions, etc.), the number of random ALM structures, and
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FIG. 9. The temperature-dependent lattice thermal conductivities of all four diamond-structure materials studied here. For curves computed
from SDNNFF, the notation is the neighbor cutoff then the grid resolution & (e.g., 5-10 means a network with fifth-neighbor cutoff with k£ = 10).
All DFT curves were computed from FDM and all SDNNFF curves were computed from ALM unless otherwise specified. Experimental results

for Si [41], diamond [42], and SiC [43,44] are shown as symbols.

the amplitude of the random displacement. However, here
we focused on providing a generalization of the SDNNFF
performance, and as such did not share excessive concern for
tuning these parameters for each material. We only focused
on tuning the SDNNFF parameters (i.e., the neighbor cutoff,
the grid resolution, and the local cutoff factor) to showcase its
potential to successfully reproduce the conventional DFT-
FDM and experimental results. Given the various known
sources of errors, we were satisfied with the less than 10%
error in thermal conductivity and the agreement with both
DFT-FDM and experimental trends.

From the predicted phonon properties, we see that the com-
bination of the number of neighbors and the grid resolution
is not trivial and has serious impact when reproducing DFT
results. Here, the resolution represents the number of inputs
to the neural network, i.e., a higher number of grids equals
more information for the network to identify the atomic envi-
ronment and the corresponding central-atom forces. However,
we can see that the number of inputs required for the network
to sufficiently learn the forces reaches an upper limit, since
k values greater than what were provided for each material
in Fig. 9 do not improve the results. In other words, the

additional information obtained from higher grid resolutions
becomes redundant for predicting the thermal conductivities
accurately, even though the network RMSE continues to drop
as seen in Fig. 8. On the other hand, the number of neigh-
bors provides physical meaning to the neural network, where
atoms beyond the cutoff are neglected in the contributions
to the central-atom forces. At a minimum, the cutoff should
be large enough to where atomic contributions outside the
cutoff are negligible or otherwise inconsequential for property
prediction. We noticed for the thermal conductivity that the
fifth-neighbor contribution is quite significant in Si, diamond,
and BAs. However, the fourth neighbors seem to have nearly
equal contributions to the thermal conductivity in SiC. For
the phonon dispersions, the fifth-neighbor contributions for
Si are necessary to match DFT as seen by limited agreement
in the fourth neighbors with the low group velocity near
the Brillouin-zone center. Otherwise, the phonon dispersions
truncated at the fourth neighbors for the other materials are
relatively close to the DFT-FDM dispersions. Overall, the
SDNNFF parameters R, and k seem nontransferrable between
materials and require further convergence testing for optimal
network performances.
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FIG. 10. The phonon dispersions of all four diamond-structure materials studied here. All DFT curves were computed from FDM and all
SDNNFF curves were computed from ALM. Experimental results for Si [45], diamond [46—48], SiC [49,50], and BAs [51,52] are shown as

symbols.

Summarizing the performance of our method, a trained
SDNNFF is quite capable of reproducing DFT-level and ex-
perimental phonon properties with significantly lower cost
compared to full ab initio. For comparison with other pa-
pers, the RMSE for the Si network containing the minimum
neighbor cutoff and resolution in agreement with DFT-FDM
phonon properties was 8.17 meV/A, while others reported
values as low as 25.5 meV/A [30]. The well-tuned predictive
capabilities of the SDNNFF is a result of the direct training on
forces, allowing the use of 3D-distributed radial density func-
tions in contrast to arguably more complex descriptors such as
a simultaneous feed of radial and angular symmetry functions.
However, the SDNNFF, like any other machine learned model
for atomic interactions, requires both the generation of the
ab initio data and the training of the neural network before
evaluating the force constants, which is arguably slower than
by conventional DFT-FDM for the simple periodic systems
like the ones studied here. We recognized that the SDNNFF
method would be more valuable in situations where FDM
requires a higher number of displaced structures than that
required for training and DFT becomes computationally ex-
pensive. ALM is one example that requires the evaluation of

a potentially high number of randomly displaced structures
for converged force constants. Here, we found the phonon
properties of simple crystals to show the effectiveness of
the SDNNFF in reproducing these properties from elec-
tronic structure calculations and experiment. Once the training
data is generated and the network is trained, the speed for
calculating the properties is significantly faster than that of
DFT by the order of ~10°.

Currently, the SDNNFF detects atomic environments
purely based on spatial configurations, i.e., no chemical in-
formation is included in the inputs. Based on this, we were
curious how the performance of the SDNNFF was acceptable
for materials with more than one atom type, i.e., SiC and
BAs, since each species may contribute to the central atom
forces distinctly. We decided to analyze the SiC network in
further detail by utilizing a recent tool in machine learning, ¢-
distributed stochastic neighbor embedding (7-sne) [53]. While
details about f-sne can be found in the referenced paper, in
short, a 7-sne plot reduces high-dimensional data into a 2D/3D
set of points, where the proximity of the points defines their
correlation (i.e., clustered points represents high similarity).
Because we wanted to observe how the neural network was
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“thinking” in response to the local atomic configurations to
produce the forces, we applied 7-sne to the final hidden layer
(i.e., before the force output) containing 500 nodes given the
SiC testing set. For brevity, we provide the resulting plot
in Fig. 4 of the Supplemental Material [36], which contains
two significant clusters of points. We found that each cluster
corresponds to configurations with central atoms correspond-
ing to an atom inside the primitive cell, one Si and one C atom,
which is intuitive since the primitive cell is the smallest unit
needed to reproduce lattice symmetry and its unique atomic
environments. For comparison, we also generated a 7-sne plot
for monoatomic Si (not shown) and again found two clusters,
confirming our observations about the unit-cell representation
trained into the SDNNFF. From these results, we were led to
believe that the SDNNFF was able to successfully reproduce
the atomic forces for materials like SiC and BAs because the
chemical environment is consistent with the structure, where
each atomic configuration is always comprised of specific
elements during training. For example, if we were to provide
a set of inputs to the neural network corresponding to a
central Si atom, then the network would recognize that the
second neighbors correspond to C, the third neighbors with
Si, etc., and correctly identify the forces associated with
the values in one of the two t-sne clusters. We realize that
each density function in space is consistently receiving the
same signals from the same atoms, so the neural network
learns indirectly what chemical species is contained in each
density function. Based on this observation, we expect the
performance of the SDNNFF will degrade when structure
and species become independent (i.e., in alloy or multispecies
amorphous material). In this case, each t-sne cluster would
only preserve the local structure and contain a mixture of
unknown elements, thereby further confusing the network.
We are currently working on inserting chemical information
into our density functions for future use in complex atomic
environments.

The primary difference between the SDNNFF and other
methods like HDNNP is the training on the atomic forces
rather than the total energy. This brings about an advantage
when training neural networks since the atomic forces are per-
atom quantity, unlike the total energy which is a global value.
Here, the DFT data for network training scale with N x ¢,
where N is the number of atoms in a supercell and ¢ is the
number of structures to be evaluated. In our case, we had 7500
structures from AIMD to be evaluated by static DFT for each
material, and for a3 x 3 x 3 primitive diamond supercell
with 64 atoms, the resulting dataset contained 7500 x 64 =
4.8 x 10° atomic configurations per material. This is unlike
training a network on the total energy, where the data set only
scales with ¢ (one total energy per structure) and therefore may
require additional DFT calculations to generate a sufficiently
large dataset for optimal neural network performance. We rec-
ognize other recent works that have provided schemes to take
full advantage of the data from DFT, such as the extraction
of and training on atomic energies from DFT by Huang et al.
[26], the inclusion of both total energies and atomic forces in
the loss function in training the HDNNP by Minimitani et al.
[30], and the additional inclusion of stress tensor by Marques
et al. [54]. However, in the latter two cases, atomic quantities
such as the force are still treated as a single update in the

HDNNP since the loss function involves an averaging across
all atoms, which is contrary to our loss function in Eq. (6)
where the network is updated based on each individual atomic
force [27]. This becomes a drawback for network training in
networks like the HDNNP since vital information for the force
minimization is lost with an update through one single average
and the new direction for the weights/biases during training
becomes less precise. In contrast, the SDNNFF preserves the
N X t nature by maintaining a loss function dependent solely
on each atomic force vector, and the network learns from a
more robust set of examples. In addition, our networks require
no additional postprocessing of the DFT data since the forces
are directly output from DFT, and no intermediate calculations
for the loss function are necessary since Eq. (6) only has
dependence on the output forces. In other words, the training
on forces in the SDNNFF not only increases the dataset size
obtained from DFT calculations by explicit and independent
training on each individual case, but also serves as a potential
computational cost savings for training data generation and
MD force calculations.

In addition to the force accuracy, another advantage of the
SDNNFF is that it is an “out-of-the-box” method, where the
description of the atomic environment can be controlled by
only three parameters: the grid resolution, the atomic cutoff,
and the local cutoff factor. As mentioned in Sec. II D, while
we recommend performing a convergence test for the cutoff
factor D, it was observed that a converged D value in one
material is highly transferable to other structurally equivalent
materials as seen in Fig. 3. This makes the training of the
forces very intuitive by reducing the network search to the
other two parameters: the grid resolution and the atomic
cutoff. Compared to the 2 x i parameters for the type-2 radial
symmetry functions plus 3 x j parameters for the type-4 an-
gular symmetry functions along with the atomic cutoff in the
HDNNP method (i and j are the number of radial and angular
symmetry functions respectively, also to be determined), the
simplicity of the SDNNFF makes the generation of DFT force
fields potentially less laborious than some existing methods
[55].

Further comparing with the HDNNP, the disadvantage of
the SDNNFF is that because of the equal spatial distribution of
density functions in the atomic environment, a larger number
of inputs may be required to cover all the important features
of the atomic forces. For Si, we used at minimum 360 nodes
(k = 10) to accurately predict its thermal conductivity, while
Minamitani et al. obtained competitive results with only 41
inputs using the HDNNP [30]. Because the HDNNP owns
more tunability, the method can obtain the feature space more
efficiently than SDNNFF, requiring a smaller number of de-
scriptors for the neural network to identify atomic configura-
tions. Additionally, calculation of NNP/NNFF inputs requires
M x N distances computed, where M is the number of radial
(symmetry/density) functions and N is the number of atoms
inside the cutoff, which is a disadvantage for the SDNNFF
since M scales with the number of points in xyz space and not
radial space (i.e., calculating distances between (£x, £y, £z)
points and all neighbors vs radial points with respect to the
central atom and all neighbors). However, we should point out
that the discussion about M x N points neglects the evaluation
of additional angular symmetry functions, which is not needed
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in the SDNNFF since the atomic information is already rep-
resented in Cartesian space. Furthermore, as we mentioned
previously, the customizability of the feature space in the
HDNNP requires an increased effort to optimize its handful
of parameters and is slowed down by the required total energy
to evaluate the atomic forces, but on the other hand the
evaluation of the HDNNP itself is quicker due to the smaller
number of inputs and required neighbor distances to calculate.
Therefore, at this stage it is difficult to judge which method
is faster for application in MD, and we plan on comparing
these two methods in future work. For now, however, we can
say that the SDNNFF is capable of directly predicting the
atomic forces and the resulting phonon properties of various
materials with DFT accuracy, providing an emphasis on force
accuracy via inclusion of 3D descriptors and inheriting a more
straightforward implementation strategy for representing the
atomic environment.

In comparison to classical potentials, which provides both
the per-atom energies and the forces, the SDNNFF presented
herein can only provide the atomic forces so far. However,
we decided to use the training, validation, and testing data
generated and made available by Huang et al. to predict
both forces and atomic energies of amorphous silicon using
our SDNNFF method [26]. Because of the flexibility of
neural networks, we were able to generate a SDNNFF+E,
where we output both the force components and the atomic
energies. We also generated a SDNNFF with only forces
to compare with the SDNNFF+E. Briefly covering the de-
tails, we closely followed the parameters chosen by Huang
et al., including a cutoff of 6 A, 360 input features (i.e.,
k = 10), which is on the same order of magnitude as their
550 features, D = +/3, two hidden layers with 500 nodes,
training up to 250 cycles, and a similar loss function defined
as Loss = RMSE({E;}) + o x RMSE({F;}) (note that we ar-
bitrarily used o = 1, as well as RMSE instead of MSE). The
resulting RMSE from the SDNNFF+E were 47.29 meV/A
and 15.31 meV for the forces and energies, respectively, while
the RMSE from the SDNNFF was 42.94 meV/A, which was
slightly more accurate in exchange for no atomic energy
information. In comparison to the SANNP, the SDNNFF+E
obtained an unprecedented ~50% and ~70% improvement
in the forces and atomic energies, respectively. We realized
that the method presented here was flexible for predicting
the atomic energies, although we should note that the energy
is not completely invariant to spatial transformations due to
the 3D representation of atomic environments. Future work
should determine whether this significantly improved RMSE
justifies the inclusion of rotationally variant energy into the
SDNNFF for, e.g., bulk Green-Kubo thermal conductivity
calculations. Nonetheless, the improvement in both force and
energy RMSE is testament for the improved description of
the atomic environment via 3D density functions in contrast
to radial and angular symmetry functions. Moreover, we
recognize that the evaluation of thermal conductivity through
the nonequilibrium molecular dynamics (NEMD), such as
the Miiller-Plathe method, is possible with only the forces
available, since the atomic kinetic-energy exchange is used for
launching the heat flux in the Fourier’s law and does not in-
volve the atomic potential energy [56]. Overall, further study
is required to bridge neural network force fields with thermal

conductivity calculations in MD, with the intent to model the
conductivity including all levels of phonon anharmonicity.

V. CONCLUSION

We have developed and trained a neural network force
field, dubbed “SDNNFE,” capable of reproducing DFT forces
and phonon properties of materials by transformation of the
local atomic environment through density functions. Here,
each atom was surrounded by a grid containing equidistant
points within a cutoff radius. We then measured the local
density of atomic neighbors at each point via a summation
of radial cosine functions across all neighbors. The resulting
set of density function values across all grid points led to
distinguishable atomic environments for neural networks to
successfully predict DFT-level force components as well as
phonon dispersions and lattice thermal conductivities.

In the realm of modeling interatomic interactions through
machine learning models, three achievements are accom-
plished in this paper. First, our neural networks are directly
trained on the DFT atomic forces without the need to compute
derivatives from the total energy. The removal of intermedi-
ate calculations for the atomic forces simplifies the method,
where a single neural network can directly predict atomic
forces without the need to impose the chain rule involving
the total energy and the atomic positions. Without the total
energy, a direct 3D representation of the environment provides
a more explicit description of force fields in comparison to
that from radial and angular descriptors, as shown from our
consistently improved force RMSE. If the atomic energy is
needed, the SDNNFF can output this along with the forces,
although the calculation for the atomic energy is relatively
new and, according to our knowledge, not yet standardized in
DFT packages such as VASP. Additionally, the treatment of the
atomic neighbors in three dimensions prevents the SDNNFF
from preserving the rotational invariance of the atomic energy,
although the improved accuracy of the SDNNFF may or may
not generate negligible differences in energy. Second, training
on atomic quantities such as forces allows the dataset to scale
largely with N x ¢, the atomic population of the structure
times the number of evaluated DFT steps. Training on such
a tremendously large data set strengthens the prediction capa-
bilities of neural networks for the detection of a wide range of
atomic structures one may encounter during dynamics. Con-
sequentially, maximizing the data collected from costly DFT
calculations by training the forces on a case-by-case basis
becomes advantageous for neural network training. Third, we
found a significant reduction in human/computational effort
in the search for converged neural network force fields by
representation of the atomic environment with only three
parameters: the atomic cutoff radius, the grid resolution, and
the local density cutoff factor. The cutoff factor D may own
transferability with similar structures and thus even reduce the
network search down to two parameters, but transferability
needs to be shown in the future for structures other than
diamond structure (i.e., BCC, hexagonal, etc.).

We conclude this paper with a brief discussion on future
applications of the SDNNFF. While the SDNNFF is capable
of computing phonon properties with DFT-level accuracy,
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the speed of the SDNNFF is not utilized to its fullest po-
tential. As mentioned before, for the above simple systems
the calculation of the phonon properties with DFT-FDM is
much faster than SDNNFF-ALM since the latter requires one
to generate DFT data, train the network, and finally fit the
force constants with the evaluated random structures before
computing the phonon properties. The SDNNFF is more
beneficial in applications where large systems, in particular
inhomogeneous systems like amorphous materials or inter-
faces, and/or long time steps are required for force evaluation,
which cannot be handled by DFT due to unbearable compu-
tational cost. In other words, with a well-trained SDNNFEF,
large scale quasielectronic MD simulations become possible.
The DFT-level force predictions from neural networks such
as the SDNNFF are critical for the analysis of microscale
systems where direct DFT becomes unreachable and classical
MD falls short in realistically modeling these systems. In
addition to thermal conductivity, applications of SDNNFF
in MD simulations also include the evaluation of other dy-
namical properties such as diffusion coefficients and ionic
conductivity, mechanical deformation, and other observables
such as radial distribution function. As such, our next step
for the SDNNFF is implementation into MD simulation
package [e.g., the [large-scale atomic/molecular massively
parallel simulator (LAMMPS)] and investigating large-scale

dynamics of systems of interest, such as lithium ion diffu-
sion in crystalline and amorphous silicon [57], or the bulk
thermal conductivity of materials and interfacial heat transfer
via Miiller-Plathe method, at improved speeds by directly
computing DFT-level forces, as well as finding other ways
to improve the computational efficiency of the method (e.g.,
the reduction of network inputs or the explicit consideration
of atomic species in the neural network as seen in recent
studies [58,59]).
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