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ABSTRACT: Structural information of materials such as the crystal systems and space
groups are highly useful for analyzing their physical properties. However, the enormous
composition space of materials makes experimental X-ray diffraction (XRD) or first-
principle-based structure determination methods infeasible for large-scale material
screening in the composition space. Herein, we propose and evaluate machine-learning
algorithms for determining the structure type of materials, given only their compositions.
We couple random forest (RF) and multiple layer perceptron (MLP) neural network
models with three types of features: Magpie, atom vector, and one-hot encoding (atom
frequency) for the crystal system and space group prediction of materials. Four types of models for predicting crystal systems and
space groups are proposed, trained, and evaluated including one-versus-all binary classifiers, multiclass classifiers, polymorphism
predictors, and multilabel classifiers. The synthetic minority over-sampling technique (SMOTE) is conducted to mitigate the effects
of imbalanced data sets. Our results demonstrate that RF with Magpie features generally outperforms other algorithms for binary and
multiclass prediction of crystal systems and space groups, while MLP with atom frequency features is the best one for structural
polymorphism prediction. For multilabel prediction, MLP with atom frequency and binary relevance with Magpie models are the
best for predicting crystal systems and space groups, respectively. Our analysis of the related descriptors identifies a few key
contributing features for structural-type prediction such as electronegativity, covalent radius, and Mendeleev number. Our work thus
paves a way for fast composition-based structural screening of inorganic materials via predicted material structural properties.

■ INTRODUCTION

Computational material screening based on high-speed
machine-learning algorithms has become a reality, as shown
by a growing number of related works.1−5 There are two types
of screenings: one for screening known materials with desired
properties3,6,7 and one for screening hypothetical materials that
have not been discovered or synthesized and usually have only
composition information available.1,2,4 Usually, some kind of
enumeration procedures8 or generative machine-learning
models9 can be used to generate many (millions) of
hypothetical material compositions as the combinations of
selected set of elements, which requires fast algorithms to
evaluate their stability,10 to predict their crystal structures11 or
physical properties of interest.12

The crystal structure plays a critical role in determining the
properties of materials. Knowing how the atoms of a material
are arranged in the space helps understand its properties.13

The structural information such as atomic coordinates or space
groups can then be incorporated into the advancement of
material design. Takahashi L. and Takahashi L.14 use the
Gaussian mixture model to reveal two data clusters, and then,
Random Forest (RF) is used to classify the crystal structures
using eight descriptors. Further, first-principles calculations are
performed to confirm the stability of predicted materials.
However, predicting the atomic coordinates of a crystalline
only from its composition using crystal structure prediction

algorithms such as USPEX15 (Universal Structure Predictor:
Evolutionary Xtallography) is challenging and time-consuming,
as expensive density functional theory (DFT) simulations are
needed.16 In this case, prediction of the space groups or other
structural information (such as atomic bonding angles and
relative distances) of materials that have no crystal structure
information can be useful to understand their physicochemical
properties. For example, Ward et al.16 use composition-based
features of elemental properties and the Voronoi tessellation of
the materials’ crystal structure as inputs to ML to predict
formation energies in their work.16

Conventionally, the crystal structures of materials can be
determined experimentally by the X-ray diffraction (XRD)
technique in which X-ray beams are used to hit nanoparticles
and the scattered intensity of the beams are observed and
measured. Novel materials can be unveiled by mapping XRD
patterns to the measured or simulated XRD patterns of known
materials. This method has led to the determination of a huge
number of crystal structures, as deposited in databases such as
Materials Project17 and ICSD.18,19 A large number of methods
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have been developed to analyze the XRD data such as
programs for indexing and space-group determination. ITO,20

TREOR,21 DICVOL,22 McMaille,23 EXPO,24 and X-CELL25

are part of cutting-edge software packages for indexing and
space group determination. Space groups of materials can also
be determined using machine-learning methods from their
XRD data. Recently, Park et al.26 showed that deep learning
techniques can outperform rule-based programs without
human involvement for space group determination from
XRD data. The successful prediction of the crystal system of
two novel inorganic compounds further confirms the potential
of their method26 in crystal structure determination. Another
deep neural network algorithm5 is proposed by Oviedo et al. to
predict the space group and crystal dimensionality of materials
through a limited number of experimental thin-film XRD data.
This method augments small datasets based on physics
knowledge, and their deep neural networks achieved high
accuracy among other machine-learning algorithms.
Despite the success of XRD-based methods for material

structure determination, this is not a feasible solution for high
throughput material screening in which millions of possible
elemental compositions need to be evaluated, which makes
experimental method expensive, time-consuming, or just
infeasible.1 Next, the success of XRD method is heavily reliant
on the quality of XRD results, which is not always easy to
achieve.27 It also takes hours to acquire and analyze XRD data
to recognize the crystal structure for each material.5

Theoretically, given the chemical composition of a material,
computational prediction of its crystal structure is possible. A
couple of works utilize evolutionary algorithms or particle
swarm optimization (PSO) and DFT to determine crystal
structures.15,27 USPEX15 leverages the evolutionary algorithm
to find the most stable crystal structures, of which local
optimization, spatial heredity, and lattice mutation are three
key components to minimize the free energy. Wang et al.27

proposed an algorithm to search the free-energy space using
the PSO algorithm within the evolutionary scheme together
with ab initio structural optimization, symmetry constraint, and
the geometrical structure parameter technique. Gator28 uses
various settings of first principles calculation and genetic
algorithms to increase the chance of locating the numerous
low-energy minima. Despite their powerful prediction abilities,
these first-principles-based approaches are computationally
demanding, which makes it impossible to perform high-speed
screening for novel material discovery. For example, it is shown
that it takes tens of thousands of CPU hours to calculate 45
DFT calculations of formation energy.29

In this paper, we propose a machine learning-based method
for predicting the space group and the crystal system for an
inorganic material, given only its composition information.
Such models allow us to conduct fast screening of millions of
potential chemicals as done in ref 1. We evaluate three types of
features/descriptors: Magpie,30 atom vector,31 and one hot
encoding (atom frequency) as the inputs of our machine-
learning algorithms. Neither XRD data nor DFT calculation is
involved in feature calculations. Because of the fact that one
composition may correspond to multiple crystal structures,
four classifiers are developed to predict material structures in
terms of the crystal system and space group: one-versus-all
classifiers, multiclass classifiers, polymorphism classifiers, and
multilabel classifiers. We leverage multi layer perceptron
(MLP) and RF to analyze how those feature sets can help
determine the crystal structure using 10 fold cross-validation.

By evaluating with different combinations of feature sets and
machine-learning techniques, we find that RF with Magpie
features are the best in one-versus-all classification of space
groups; one hot encoding is better than other two when
classifying the multistructure polymorphism and multiple space
group labeling. Moreover, because most of the materials have a
single crystal system or space group, we apply RF and MLP to
assign these two labels to such materials. Our results indicate
that RF with Magpie performs the best in determining the
single crystal system or space group.

■ RESULTS AND DISCUSSION
Crystal System Prediction. Material Crystal System

Prediction from Composition Using One-Versus-All Binary
Classifiers. For each of the seven crystal systems, we train an
one-versus-all binary classifier with the formulas of the selected
crystal systems set as positive samples and all other samples as
negative ones. The sample distribution for all crystal systems is
shown in Figure 3b. Tables 1 and 2 show the F1 scores and

Matthews correlation coefficient (MCC) for predicting crystal
systems using RF and MLP, respectively. First, we find that RF
achieves the highest performance with F1 scores ranging from
0.723 to 0.844 for all crystal systems except triclinic, for which
the RF + atom frequency encoding achieves the best
performance with F1 score of 0.704 and MCC of 0.434. In
comparison, the atom vector encoding works the worst among
all three encoding methods with RF.
When we compare the performance of MLP with three

encoding methods, it is found that the atom frequency
encoding achieves the best performance for all the seven crystal
systems. Comparing the best combination of RF with Magpie
with the best combination of MLP with atom frequency, the
F1 score of RF with Magpie is slightly better than the MLP
with atom frequency in predicting some crystal systems (e.g.,
cubic, hexagonal, monoclinic, and tetragonal). For predicting
orthorhombic, triclinic, and trigonal, MLP with atom
frequency outperforms RF with Magpie slightly. However,
RF with Magpie is better than MLP with atom frequency

Table 1. Performance of RF for Predicting Crystal Systems

crystal system
Magpie

(F1-score/MCC)
atom vector

(F1-score/MCC)
atom frequency
(F1-score/MCC)

Cubic 0.844/0.698 0.753/0.538 0.775/0.457
Hexagonal 0.794/0.618 0.647/0.374 0.704/0.433
Monoclinic 0.736/0.482 0.670/0.360 0.730/0.467
orthorhombic 0.729/0.485 0.611/0.297 0.705/0.425
Tetragonal 0.797/0.623 0.654/0.388 0.723/0.477
Triclinic 0.686/0.412 0.644/0.337 0.704/0.434
Trigonal 0.723/0.498 0.616/0.320 0.703/0.436

Table 2. Performance of MLP for Predicting Crystal
Systems

crystal system
Magpie

(F1-score/MCC)
atom vector

(F1-score/MCC)
atom frequency
(F1-score/MCC)

Cubic 0.815/0.632 0.805/0.612 0.830/0.660
Hexagonal 0.774/0.553 0.741/0.486 0.781/0.566
Monoclinic 0.699/0.399 0.698/0.396 0.732/0.465
orthorhombic 0.692/0.385 0.689/0.380 0.731/0.463
Tetragonal 0.767/0.536 0.743/0.488 0.773/0.548
Triclinic 0.663/0.331 0.676/0.353 0.709/0.421
Trigonal 0.701/0.409 0.705/0.412 0.743/0.489
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overall in terms of the MCC. Indeed, we find that atom vectors
and atom frequency using MLP outperform their counterparts
using RF and that RF and MLP using Magpie have close
performance among all seven crystal systems. The possible
reason is that atom vectors and atom frequency encode the
internal connections inside a formula. Nonlinear operations by
MLP help discriminate objects well. Plus, MLP can efficiently
learn the mappings between the inputs and their labels.
Because an F1-score of 0.844 is a relatively high score, this
shows that the machine-learning algorithms have done a good
job in materials crystal system prediction from the
compositions.
The results by over-sampling are shown in Tables 3 and 4. It

can be found that with over-sampling, the best performance of

RF has not been improved by a large margin and instead scores
of MLP is decreased. The possible reason is that the ratios of
positive and negative labels of each dataset are between 1/11
and 1/4, which is acceptable to machine-learning algorithms.
On the contrary, one interesting finding is that the perform-
ance of RF with atom vectors is improved by SMOTE
significantly. On average, both F1-score and MCC are
increased by 0.05.
To show what features contribute most to the prediction of

crystal systems, we calculate and rank the top 20 features by
their feature importance scores for each crystal system when
the RF with Magpie (the best classifier) is applied for
classification. The results are shown in Figure 1 (i.e., from
subfigure 1a to subfigure 1g). We find that shared important
features include the following: mean and average deviation of
melting temperature, mean and average deviation of the
Mendeleev number, mean and average deviation of covalent
radius, mean, and average deviation of GS volume per pa,
mean and average deviation of electronegativity, mean atom
number, mean atomic weight, and mean Np valence. These
features describe physical properties which are known to be
involved in crystal system formation.

Crystal System Prediction Using Multiclass Prediction
Models. As shown in Figure 3a, 88.3% formulas (53,532 in
total) have a unique crystal system. It is reasonable to develop
a single classifier to assign the crystal system for a given
composition, which is much more efficient than predicting its
crystal system by running through seven binary classifiers.
Here, we train one single RF classifier and MLP classifier for
material crystal system prediction for each encoding approach.
We only choose the formulas with a single crystal system. A
stratified 10-fold cross-validation is used here for evaluating the
classifiers. The 10-fold cross-validation results are shown in
Table 5. Again, we find that RF with Magpie achieves the
strongest performance with F1 score and MCC of 0.650 and
0.591 against other combinations of models and feature sets.
Compared with RF, we find that MLP is inferior for all three
feature types. It is interesting that again, for MLP, the best
encoding is atom frequency rather than Magpie which achieves
the best performance with RF. It should be noted that while we
have spent sufficient effort for tuning the MLP model
parameters to maximize its performance, we find it is not
easy to further significantly improve the MLP performances
here by simple parameter tuning or structure modification.
New descriptors and machine-learning methods may be
needed to improve the predictive performance. In addition,
SMOTE shows inferior results across all combinations of
learning methods and feature sets except for RF with atom
vectors. The improvement for RF with atom vectors is only
marginal.

Crystal System Polymorphism Prediction Using Binary
Classifiers. Knowing whether or not a formula/composition
can form compounds of multiple crystal systems is interesting
to the material community. Here, we select all formula with
multiple crystal systems as positive samples (7104 samples in
total) while the remaining samples as negative ones (53,532
samples in total). Then, we train two binary classifiers using RF
and MLP, respectively, to predict whether a given material
composition can form multiple crystal systems or not. The 10-
fold cross-validation results are shown in Table 6.
First, we find that MLP with atom frequency encoding

achieves the best performance with an F1 score of 0.704 and
MCC of 0.409. The RF with atom frequency is the second with
an F1 score of 0.668 and MCC of 0.354. In comparison, the
MLP and RF with Magpie and MLP with an atom vector
achieve similar performance and are both much lower than
those of RF and MLP + atom frequency. Over-sampling
increases the F1 score of RF with all feature sets slightly but
decreases the MCC of them. However, over-sampling
decreases both F1 score and MCC of MLP with all feature sets.
Figure 1h shows the top 20 important features for crystal

system polymorphism prediction. The shared features of mean
and avg_devMendeleevNumber, mean and avg_dev GSvolu-
me_pa, mean and avg_dev electronegativity, mean and
avg_dev melting T, mean and avg_dev covalent radius, mean
number, and mean atomic weight with one-versus-all case are
keys for predicting the crystal system.

Crystal System Prediction Using Multilabel Classifiers. It is
known that many materials with different crystal systems can
share the same formula or composition. Therefore, the crystal
system prediction problem can be formulated as a multilabel
classification problem. Here, we apply multilabel classifiers to
explore how machine-learning algorithms perform as regard to
crystal system prediction from composition. We evaluate four
multilabel prediction algorithms, each with three encoding.

Table 3. Performance of RF for Predicting Crystal Systems
by Over-Sampling

crystal system
Magpie

(F1-score/MCC)
atom vector

(F1-score/MCC)
atom frequency
(F1-score/MCC)

Cubic 0.846/0.693 0.779/0.557 0.777/0.556
Hexagonal 0.808/0.622 0.714/0.428 0.674/0.361
Monoclinic 0.750/0.500 0.707/0.418 0.725/0.450
orthorhombic 0.739/0.485 0.667/0.336 0.698/0.405
Tetragonal 0.803/0.613 0.720/0.441 0.695/0.409
Triclinic 0.714/0.429 0.690/0.383 0.707/0.419
Trigonal 0.742/0.494 0.680/0.360 0.693/0.402

Table 4. Performance of MLP for Predicting Crystal
Systems by Over-Sampling

crystal system
Magpie

(F1-score/MCC)
atom vector

(F1-score/MCC)
atom frequency
(F1-score/MCC)

Cubic 0.806/0.613 0.788/0.575 0.820/0.640
Hexagonal 0.752/0.507 0.717/0.435 0.759/0.518
Monoclinic 0.701/0.410 0.696/0.393 0.731/0.463
orthorhombic 0.682/0.365 0.678/0.358 0.727/0.454
Tetragonal 0.749/0.501 0.725/0.450 0.757/0.517
Triclinic 0.677/0.368 0.682/0.366 0.705/0.410
Trigonal 0.683/0.372 0.686/0.372 0.722/0.445

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.9b04012
ACS Omega 2020, 5, 3596−3606

3598



The algorithms include MLP and three transformation
algorithms (BinaryRelevance,32 ClassifierChain,33 and Label-
Powerset32) for multilabel classification, all using the RF as the
base classifier. Tenfold cross-validation is applied for perform-
ance evaluation. Table 7 shows the best results for each
evaluated algorithm.

We find that LabelPowerset with Magpie and MLP with
atom frequency achieve close performance, and they are much
better than other two transformation methods. LabelPowerset
has the best performance with Exact MR of 0.598, accuracy of
0.638, precision of 0.673, recall of 0.649, and F1 score of 0.652,
of which recall is 0.010 lower than MLP with atom frequency.

Figure 1. Ranking of Magpie Features for crystal system prediction.

Table 5. Performance for Multiclass Prediction of the Crystal System

Magpie (F1-score/MCC) atom vector (F1-score/MCC) atom frequency (F1-score/MCC)

RF 0.650/0.591 0.511/0.445 0.575/0.511
MLP 0.559/0.486 0.559/0.489 0.615/0.551
RF-oversample 0.644/0.585 0.524/0.448 0.562/0.494
MLP-oversample 0.509/0.424 0.541/0.469 0.598/0.533
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BinaryRelevance has the worst results, which is reasonable,
because MLP, ClassifierChain, and LabelPowerset take the
internal label relationships into account in the label space.
Instead, BinaryRelevance assumes an independent classifier for
each label.
Space Group Prediction. Determining the space group

for a given material composition tells a lot of information
about its physical properties. However, compared to 7 crystal
systems, there are 223 space groups in total in the Materials
Project dataset, which makes it much more challenging to
build the prediction models. Here, we select top 18 space
groups, each having more than 1000 compositions for
exploring four classifiers for space group prediction from
composition. We show the results of machine-learning models
for space group prediction as evaluated via 10-fold cross-
validation.
Materials Space Group Prediction from Composition

Using One-Versus-All Binary Classifiers. For each of the 18
space groups and with selected machine learning algorithm
(RF or MLP) and selected encoding methods, we train 10
binary classifiers for 10 fold cross-validation. Together, we have
trained 180 space group classifiers. Therefore, instead of
reporting the classifier performances for each of the space
groups, we merely calculate the average F1 score and MCC for
the 10 fold cross-validation performances of each space group
over all space group categories, and the results are shown in
Table 8.
Table 8 shows the average F1 score and MCC over 18 space

groups using RF and MLP with different material encoding.
Without oversampling, we can find that RF with Magpie and
MLP with atom frequency are the best combinations for
predicting the space groups of inorganic materials using
composition. The MCC of RF with Magpie is slightly better
than that of MCC of MLP with atom frequency. However, the
F1 score of RF with Magpie is slightly worse than MCC of

MLP with atom frequency. These scores are considerably
lower compared with the performance scores for predicting
crystal systems because there are much more categories of
space groups than crystal systems. Both the F1 score and MCC
of RF are improved by oversampling. The best combination
becomes RF with Magpie after oversampling. The scores for
MLP are decreased slightly by oversampling for all feature sets.
For instance, F1 score and MCC of MLP with atom frequency
are decreased to 0.753 and 0.508, respectively. The biggest
improvement achieved by SMOTE is RF with atom vectors,
whose F1 score and MCC are increased by 0.077 and 0.089,
respectively.

Space Group Prediction Using Multiclass Prediction
Models. Instead of building 18 binary classifiers for space
group prediction, here, we build a multiclass predictor for
determining the space group, given a material composition. We
focus on the materials with a single space group. The stratified
10 fold cross-validation results are shown in Table 9.
Similar to multiclass prediction for crystal systems, the

combination of RF and Magpie features has the best
performance with the F1 score and MCC of 0.652 and
0.627, as shown in Table 9, respectively. In this case, the
performance of each case is worse than the counterparts in the
multiclass prediction of crystal systems. The possible reason is
that the number of space groups is larger than the number of
crystal systems so that the samples in each group are more
sparse compared to crystal systems. Again, oversampling
slightly decreases the performance of all combinations except
for RF with an atom vector.

Space Group Polymorphism Prediction Using Binary
Classifiers. Here, we develop algorithms for predicting whether
a material composition can form materials of multiple space
groups. We set the compositions with multiple space groups in
the dataset as positive samples and the remaining as negative
ones. Then, RF- or MLP-based predictors combined with one
of three encoding methods are evaluated in terms of their
prediction power. The 10 fold cross-validation results are
shown in Table 10.
It is found that MLP with atom frequency achieves the best

result for predicting space group polymorphism with an F1
score and MCC of 0.670 and 0.342, respectively. RF with
Magpie features by oversampling achieves comparable but
slightly lower performance (F1-score 0.651) as MLP with atom
frequency. SMOTE improves the performance of all cases
other than the combination MLP with frequency. MLP with
Magpie and RF with the atom vector have the largest
improvement by SMOTE. Both scores are improved by 0.05

Table 6. Performance for Crystal System Polymorphism Prediction

Magpie (F1-score/MCC) atom vector (F1-score/MCC) atom frequency (F1-score/MCC)

RF 0.652/0.350 0.610/0.293 0.668/0.354
MLP 0.646/0.308 0.642/0.289 0.704/0.409
RF-oversample 0.670/0.343 0.636/0.272 0.672/0.348
MLP-oversample 0.646/0.304 0.633/0.267 0.699/0.399

Table 7. Performance for Multilabel Crystal System
Predictiona

AF + MLP Magpie + BR Magpie + CC Magpie + LP

exact MR 0.579 0.469 0.534 0.598
accuracy 0.631 0.504 0.568 0.638
precision 0.660 0.531 0.601 0.673
recall 0.659 0.516 0.574 0.649
F1-score 0.650 0.516 0.580 0.652

aAF = atom frequency, BR = BinaryRelevance, CC = ClassifierChain,
LP = LabelPowerset.

Table 8. Average Performance for Predicting the Space Group Using RF and MLP

Magpie (F1-score/MCC) atom vector (F1-score/MCC) atom frequency (F1-score/MCC)

RF 0.765/0.566 0.649/0.365 0.722/0.470
MLP 0.751/0.507 0.729/0.461 0.768/0.540
RF-oversample 0.787/0.579 0.726/0.454 0.725/0.459
MLP-oversample 0.743/0.493 0.718/0.437 0.753/0.508
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on average. Figure 2 shows the top 20 important features for
space group polymorphism prediction. It is interesting, but as

expected, that the top features here overlap a lot with those top
20 important features for predicting crystal systems. It means
these features such as electronegativity, GSVolume, and
Mendeleev Number play a critical role in predicting the
crystal symmetry.
Space Group Prediction Using Multilabel Classifiers.

Because each elemental composition may form materials of
multiple different space groups, here, we evaluate how current
machine-learning algorithms can predict all the multiple space
groups for a given composition. Similar to multilabel
predictions for crystal systems, we use BinaryRelevance,32

ClassifierChain,33 and LabelPowerset32 plus MLP as multilabel
classifiers, each evaluated with three features sets. Tenfold
cross-validation results for the best combinations of algorithms
and features sets are shown in Table 11. We can find that the

performance of multilabel predictors for space group
prediction is slightly inferior to their counterparts in the
multilabel classification of crystal systems, which is expected
because of the large number of space groups compared to the
number of samples. Similar observations apply to space group
predictions. LabelPowerset with Magpie has the best learning
power and MLP with atom frequency comes next with close
performance. BinaryRelevance is still the worst one because of
the assumed independence of binary classifiers.

■ CONCLUSIONS

We propose and evaluate machine-learning algorithms for
predicting the crystal systems and space groups of materials
merely from their compositions. Two popular machine-
learning algorithms including RFs and multilayered perceptron
neural networks combined with three material representations
are evaluated for four types of structure classification problems
for both crystal system prediction and space group prediction:
one-vs-all binary classification, multiclass classification, poly-
morphism prediction, and multilabel classification. Our
extensive experiments show that the RF with Magpie features
achieves the highest performance for one-vs-all binary
classification, multilabel prediction, and multiclass classification
of both crystal systems and space groups. In contrast, RF with
atom frequency obtains the best results for polymorphism
prediction of both crystal systems and space groups. However,
the modest MCC scores of 0.591 and 0.627 for the multiclass
crystal system and space group prediction shows current
machine-learning algorithms and descriptors are far from
achieving satisfactory performance, which calls for develop-
ment of more advanced algorithms. One possible reason is that
some artificial compounds have very high energy above hull,
which might lead to unreasonable and misleading prediction
over the crystal system and space group. In the future work, we
may try to set a formation energy threshold to filter out those
materials in the Materials Project dataset. In addition, our
feature importance analysis shows that electronegativity,
covalent radius, Mendeleev number, melting temperature,
GAS volume pascal, and mean atomic weight are crucial factors
for predicting the crystal system and space group for a given
material composition. We also found that the ML performance
for space group prediction is much lower than that of materials
crystal system prediction given their composition. That is
because the data is distributed more unevenly over 18 space
groups in our study, which may call for more advanced
techniques to address this issue.

Table 9. Performance for Multi-Class Prediction of Space Groups

Magpie (F1-score/MCC) atom vector (F1-score/MCC) atom frequency (F1-score/MCC)

RF 0.652/0.627 0.519/0.501 0.576/0.556
MLP 0.571/0.540 0.540/0.517 0.616/0.591
RF-oversample 0.643/0.619 0.531/0.505 0.566/0.543
MLP-oversample 0.557/0.528 0.525/0.502 0.597/0.573

Table 10. Performance for Space Group Polymorphism Prediction

Magpie (F1-score/MCC) atom vector (F1-score/MCC) atom frequency (F1-score/MCC)

RF 0.610/0.273 0.540/0.147 0.614/0.253
MLP 0.582/0.205 0.591/0.190 0.670/0.342
RF-oversample 0.651/0.305 0.607/0.218 0.635/0.275
MLP-oversample 0.626/0.267 0.597/0.198 0.663/0.326

Figure 2. Magpie feature importance ranking for space group
polymorphism prediction.

Table 11. Performance for Multilabel Space Group
Prediction Using MLPa

AF + MLP Magpie + BR Magpie + CC Magpie + LP

exact MR 0.569 0.446 0.472 0.597
accuracy 0.612 0.467 0.491 0.626
precision 0.633 0.485 0.510 0.651
recall 0.634 0.472 0.495 0.636
F1-score 0.626 0.474 0.498 0.637

aAF = atom frequency, BR = BinaryRelevance, CC = ClassifierChain,
LP = LabelPowerset.
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Our prediction models for crystal systems and space groups
pave a way for performing large-scale fast structural screening
of materials when only compositions are available. This is
especially true when compared to XRD data and DFT-based
approaches for space group determination, which is too
expensive or slow for large-scale screening.

■ METHODS
Datasets. We describe how we create the datasets for

training and evaluating our prediction models. Our material
samples are extracted from the Materials Project,17 which is an
extensive database that deposits the properties (e.g., crystallo-
graphic parameters, formation energy, and band gap) of all
known inorganic materials.17 It is continuously growing and
when we started this work, it contained 86,106 compounds in
total. Table 12 summarizes the distribution of compounds as

regard to the number of elements existent in the compounds.
We find that the number of composition elements ranges from
2 to 8 and materials with 2, 3, 4, and 5 elements occupy 98.9%
of the database (we exclude those materials of a single
element).
We eliminate duplicate entries with identical formulas and

space group information by keeping one sample for each such
group. In addition, we remove a material (HeSiO2) that has no
values in its Magpie features.30 After this preprocessing, the
total number of samples in our dataset is 60,636. These
materials can be classified into 7 crystal systems and 223 space
groups which we aim to predict. For each material, we generate
three types of features merely based on its composition
including Magpie, atom vector,31 and one-hot encoding (atom
frequency), which are detailed in the next section.
The goal of this paper is to develop classification algorithms

to predict the crystal systems and space groups from material
compositions. Because each inorganic compound formula

might correspond to materials with multiple different crystal
systems or space groups, the crystal system/space group
assignment problem can be mapped as a multilabel
classification problem. To understand the distribution of
samples in these crystal systems and space groups, Figures 3
and 4 show the distributions of samples in these categories.
Figure 3a shows that most of the formulas in the dataset
(88.3% or 53,532 formulas) have unique crystal systems.
Similar observation applies to the space group (85.7% or
51,988 formulas), as shown in Figure 4a. Among those
formulas having multiple crystal systems, the number of 2-
element formula is the largest, 3-element formula is the second,
and few formulas have more than 3 elements. Figure 3b shows
the distribution of materials in each crystal systems. We can
find that the number of formulas is above 10,000 in
orthorhombic, monoclinic, and cubic systems. In addition,
the number is close to 10,000 for the tetragonal system. For
the other three remaining systems, they have around 5000
formulas.
There are 223 unique space groups in our dataset. Some

formulas may correspond to materials with multiple space
groups. Figure 4a shows the distribution of formula with
different numbers of space groups. It shows that a majority of
compositions (51,993) only exist with one space group, and
5977 formulas have two space groups. In Figure 4b, we can
find that most of the space groups have a number of formulas
less than 1000. In our space group classification problems, we
only consider those space groups that have more than 1000
formulas, and the total number of space groups is 18. The
space group symbols are Fm3̅m, P2_1/c, Pnma, P1̅, P1, C2/c,
C2/m, Immm, Pm3̅m, I4/mmm, P6_3/mmc, Ccmm, P4/mmm,
R3̅m, Cm2m, P2_1/m, Cm, and F4̅3m. From the space group
and crystal system classification system, we find that 8 out of
these top 10 space groups belong to the top 4 crystal
systems:34 2647 Immm and 3891 Pnma belong to the
orthorhombic crystal system, 5220 P2_1/c, 2707 C2/c, and
2647 C2/m belong to the monoclinic crystal system, 6171
Fm3̅m and 2142 Pm3̅m belong to the cubic crystal system, and
2124 I4/mmm belong to the tetragonal crystal system.
We develop four types of classifiers to predict the crystal

systems and space groups of the materials:

•One-versus-all classifier, which predicts whether a given
composition/formula can form compounds of a specific
crystal system or space group. We need to train one
classifier for each crystal system or space group.

Table 12. Distribution of Materials with Respect to the No.
of Elements

no. of elements no. of compounds

2 14,026
3 41,751
4 22,798
5 6585
6 874
7 67
8 5

Figure 3. Distribution of crystal systems in the dataset.
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•Multiclass classifier, which determines the single label
for the materials with unique crystal system or space
group. We only need to train one classifier for crystal
system prediction and another classifier for space group
prediction.
•Polymorphism classifier, which predicts whether a
composition can form compounds of multiple (≥2)
crystal systems or space groups.
•Multilabel classifier, which predicts with what crystal
systems or space groups a composition can form
compounds.

Descriptors. The machine-learning classifiers that we aim
to develop are based on combinations of different machine-
learning algorithms and feature encodings. In this paper, we
explore three kinds of features for predicting the crystal system
and space group from material compositions: Magpie,30 atom
vector,31 and one-hot encoding (atom frequency). These
features depend only on materials compositions or the formula
themselves. In other words, we will not use any other structure
information or physical properties calculated from the first
principle.
Magpie Features. Magpie (Materials-Agnostic Platform for

Informatics and Exploration)30 is an extensive set of features
related to the constituent elements in materials. The set covers
a broad range of physical and chemical properties that fall into
four different categories: stoichiometric features, elemental
property statistics, electronic structure features, and ionic
compound features. Stoichiometric features only contain the
number of elements in the compound and their several Lp

norms. Elemental property statistics are calculated by
computing several statistics (i.e., average, minimum, maximum,
range, mean absolute deviation, and mode) of 22 different
elemental properties. Electronic structure features are the
average fraction of s, p, d, and f valence electrons.35 Ionic
compound features are the possibility of forming an ionic
compound when we assume all elements present in a single
oxidation state and two adaptions for calculating the fractions
of a compound based on electronegativity.36 Compared to the
atom vector and one-hot encoding, Magpie is a general-
purpose feature type that can be used to predict the properties
of materials based on their formulas, for example, it can
describe the difference of heavy atoms and light atoms in a
compound and link it to, for example, thermal conductivity
prediction. Matminer37 is used to retrieve the features, and we
remove the features with respect to the crystal space group.
Atom2vec. Atom2vec31 is a representation scheme for

elements, which is calculated based on learning the relationship
of elements among known materials. These learned properties

are represented in terms of high-dimensional vectors for all
elements. Atom-environment pairs are invented. The model
maps the collection of all atoms in the environment to a
feature vector for the composition. Suppose a n × d matrix V =
[v1, v2, ..., vn] is given, where n is the number of atoms and d is
the dimension of atom vector, assume that the environment
contains k atoms, then, the environment vector can be
represented as follows

=E C v v v( , , ..., )k1 2

where C is the summation over all atoms in our work. A score
function (i.e., normalization score) is defined as S(vi,E) which
evaluates the likelihood of the target atom vi and it appears
with the environment E. Atom vectors are trained by
maximizing the normalization score over the whole dataset.
Compared to other representations, Atom2vec represents
atoms in terms of high-dimensional vectors that capture how
atoms relate to each other in a high-dimensional space. Based
on the atom/element vectors calculated by Atom2vec for all
elements, for a given formula, we sum up all the atom vectors
for the elements in the formula as the representation vector for
the material.

One-Hot Encoding (Atom Frequency). This encoding
approach represents each compound by a vector of atom
numbers of each element. We first count the frequency of
atoms for each element in the given inorganic compound.
Then, a vector with 87 values is used to represent a formula
because there are 87 unique elements in our dataset. Each
component of the vector stores the frequency of a given
element that exists in the formula or set to zero if a specific
element is not available. Despite its simplicity,1 it is shown that
with large dataset and powerful models such as deep neural
networks, even one-hot encoding can achieve highly predictive
models.

Machine-Learning Methods. Two widely used machine-
learning algorithms including MLP and RF and three
multilabel learning algorithms are evaluated in this study:

•We design two MLP structures. The first structure is
for one-versus-all, multiclass and polymorphism classi-
fiers. It has 11 layers, and the numbers of nodes on
hidden layers are 1024, 1024, 1024, 512, 512, 512, 256,
128, 64, 32, respectively. The second structure is only for
multilabel classifiers. It has 13 layers, and the numbers of
nodes on hidden layers are 4096, 2048, 2048, 2048,
1024, 1024, 512, 512, 256, 256, 128, 32, respectively.
The number of neurons on last layers of both structures
is decided by the specific classifier. For instance, the last
layer of the first structure has seven neurons in

Figure 4. Distribution of space groups in the dataset.
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predicting the multilabel crystal structure. ReLU38 is
used to activate neurons except for the last output layers.
The activation function on last layers depends on the
classification problem. We use sigmoid for one-versus-
all, multilabel, and polymorphism classifiers and softmax
normalization for the multiclass classifier. It should be
noted that two basic deep fully connected MLP
architectures are used here because of their demon-
strated performance in material property prediction.1

While more advanced deep neural networks such as
convolutional or recurrent neural networks may be used
and explored for each predicting task, however, tuning of
model hyperparameters and architectures is left for
future work.
•RF39 is a popular machine-learning algorithm widely
used in material informatics because of its robustness
and capability to train with large datasets.2,38,40 As an
ensemble algorithm, RF aggregates the results of
different decision trees (in our work, the number of
decision tree is set as 50) to make more accurate models.
Each decision tree is trained with a randomly selected
subset of samples and features. The output of the final
model either votes or averages the output of each
decision tree depending on the specific task of regression
or classification.
•BinaryRelevance (BR)41−43 is considered as the most
intuitive solution for multilabel classification. It trans-
forms a multilabel problem into multiple independent
binary-learning problems. The number of independent
binary classifiers is reliant on the number of unique
labels in the dataset. Each binary classifier corresponds
to one label in the label space. All binary classifiers are
trained on the decomposed dataset. For example, we
have 7 crystal systems, and the dataset is decomposed
into 7 datasets, of which labels in each dataset belong to
one crystal system or not.
•ClassifierChain (CC)33 is also a binary relevance
method. However, CC differs from BR in that the
feature space is augmented by the predictions of all
previous binary classifiers in the chain. The added label
information allows CC to take into account correlations
among labels. If strong correlations exist in the label
space, CC gives each base binary classifier relatively
more predictive power.
•LabelPowerset32 transforms the multilabel problem
into a multiclass problem with one multiclass trained on
all unique label combinations formed in the dataset. In
other words, it considers each combination in the power
set as a single label in the dataset. This technique needs
the worst case of 2L classifiers, where L is the number of
labels in the label space. When L increases, the distinct
label combinations can grow exponentially, which leads
to memory and computing time explosion easily.

In addition, because of the imbalanced datasets, we
investigate whether the over-sampling method [i.e., Synthetic
Minority Over-sampling Technique (SMOTE)44 improves the
performance in predicting crystal systems and space groups
using one-versus-all, multiclass, and polymorphism classifiers.
To illustrate how SMOTE works, we take Magpie features as
an example. For the minority class (e.g. cubic), we take a
sample from the dataset and consider its k nearest neighbors in
the Magpie feature space. To synthesize a new sample, we take

one sample from current sample and its k nearest neighbors.
Then, we multiply the Magpie feature with a random real
number between 0 and 1.

Evaluation Metrics. Because our datasets are imbalanced,
we use F1-score and MCC to evaluate the performances of
one-vs-all classifiers and polymorphism classifiers. F1-score is
the harmonic mean of precision and recall with the maximum
value of 1 and minimum value of 0 as the worst. MCC is also
used to measure the quality of binary and multiclass classifiers,
which takes into account the balance ratios of true positive,
true negative, false positive, and false negative of the
predictions. A MCC of 1 means prefect prediction, 0 is an
average random guess, and −1 is inverse prediction.
In multilabel classification problems, a sample can be labeled

with one or more categories. The predicted labels for each
sample can thus be fully correct, partially correct, or fully
incorrect. Traditional evaluation metrics such as precision or
recall no longer apply to multilabel classifiers for performance
evaluation. Thus, we redefined the accuracy, precision, recall,
and F1 score to evaluate the performance according to ref 45
In addition, we add the Exact Match Ratio45 as one additional
performance measure. Assuming n is the number of samples
and Ti and Pi are real and predicted labels that the sample i
have, the precision, recall, F1 score, and ExactMatchRatio can
be calculated as follows
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where accuracy is the intersection over union between real and
predicted labels. Precision is the average of the ratio of
predicted correct labels over the total number of real labels.
Recall is the average of the ratio of predicted correct labels over
the total number of predicted labels. F1 score is the harmonic
mean of precision and recall mentioned above. The Exact
Math Ratio is the proportion of entirely correct predictions
over the total number of samples, where I is the indicator
function.
We use 10 fold cross-validation to evaluate the performance

of all classifiers composed of different machine learning
algorithms and features sets. This evaluation strategy randomly
splits the whole dataset into 10 equal partitions. Then, for each
fold, training of a classification model over 9 of the 10
partitions and testing of the model over the remaining partition
are done. The process is repeated until all 10 partitions are
used as test sets once for each. The final performance is
aggregated as the average performance over the whole dataset.
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