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SUMMARY

Prior work has shown that causal structure can be uniquely identified from observational data 15

when these follow a structural equation model whose error terms have equal variances. We show

that this fact is implied by an ordering among (conditional) variances. We demonstrate that order-

ing estimates of these variances yields a simple yet state-of-the-art method for causal structure

learning that is readily extendable to high-dimensional problems.

Some key words: Causal discovery; Structural equation model; Equal variance 20

1. INTRODUCTION

A structural equation model for a random vector X = (X1, . . . , Xp) postulates causal rela-

tions in which each variable Xj is a function of a subset of the other variables and a stochastic

error εj . Causal discovery/structure learning is the problem of inferring which of other variables

each variable Xj depends on. We consider this problem where only observational data, that is, a 25

sample from the joint distribution of X , is available. While in general only an equivalence class

of structures can then be inferred (Pearl, 2009; Spirtes et al., 2000), recent work stresses that

unique identification is possible under assumptions such as non-linearity with additive errors,

linearity with non-Gaussian errors, and linearity with errors of equal variance; see the reviews of

Drton and Maathuis (2017) and Heinze-Deml et al. (2018) or the book of Peters et al. (2017). 30

This note is concerned with the equal variance case treated by Peters and Bühlmann (2014)

and Loh and Bühlmann (2014) who prove identifiability of the causal structure and propose

greedy search methods for its estimation. Our key observation is that identifiability is implied by

an ordering among certain conditional variances. Ordering estimates of these variances yields a

fast method for estimation of the causal ordering of the variables. The precise causal structure 35

can then be inferred using variable selection techniques for regression (Shojaie and Michailidis,
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2010). Specifically, we develop a top-down approach that infers the ordering by successively

identifying sources. The method is developed for low- as well as high-dimensional problems.

Simulations show significant gains in computational efficiency when compared with greedy

search and increased accuracy when the number of variables p is large.40

An earlier version of this note included a bottom-up method that identified the causal ordering

by successively finding sinks via minimal precisions. However, after the note was finished, we

became aware of Ghoshal and Honorio (2018) who proposed a similar bottom-up approach.

We emphasize that our top-down approach only requires control of the maximum in-degree as

opposed to the bottom-up approach which requires control of the maximum Markov blanket. This45

is discussed further in Section 4·2 and a direct numerical comparison is given in Section 5·2.

2. STRUCTURAL EQUATION MODELS AND DIRECTED ACYCLIC GRAPHS

Suppose, without loss of generality, that the observed random vector X = (X1, . . . , Xp) is

centered. In a linear structural equation model, X then solves an equation system

Xj =
∑

k 6=j

βjkXk + εj , j = 1, . . . , p, (1)

where the εj are independent random variables with mean zero, and the coefficients βjk are50

unknown parameters. Following Peters and Bühlmann (2014), we assume that all εj have a

common unknown variance σ2 > 0. We will write X ∼ (B, σ2) to express the assumption that

there indeed exist independent errors ε1, . . . , εp of equal variance σ2 such that X solves (1) for

coefficients given by a real p× p matrix B = (βjk) with zeros along the diagonal.

The causal structure inherent to the equations in (1) is encoded in a directed graph G(B) with55

vertex set V = {1, . . . , p} and edge set E(B) equal to the support of B. So, E(B) = {(k, j) :
βjk 6= 0}. Inference of G(B) is the goal of causal discovery as considered in this paper. As in

related work, we assume G(B) to be a directed acyclic graph (DAG) so that B is permutation

similar to a triangular matrix. Then (1) admits the unique solution X = (I −B)−1ε where ε =
(ε1, . . . , εp). Hence, the covariance matrix of X ∼ (B, σ2) is60

Σ := E(XXT ) = σ2(I −B)−1(I −B)−T . (2)

We will invoke the following graphical concepts. If the considered graph G contains the edge

k → j, then k is a parent of its child j. We write pa(j) for the set of all parents of a node j.

Similarly, ch(j) is the set of children of j. If there exists a directed path k → . . .→ j, then k is

an ancestor of its descendant j. The sets of ancestors and descendants of j are an(j) and de(j),
respectively. Here, j ∈ an(j) and j ∈ de(j). A set of nodes C is ancestral if an(j) ⊆ C for all65

j ∈ C. If G is a DAG, then it admits a topological ordering of its vertices. In other words, there

exists a numbering σ such that σ(j) < σ(k) only if k /∈ an(j). Finally, every DAG contains at

least one source, that is, a node j with pa(j) = ∅. Similarly, every DAG contains at least one

sink, which is a node j with ch(j) = ∅.

3. IDENTIFIABILITY BY ORDERING VARIANCES70

The main result of Peters and Bühlmann (2014) shows that the graph G(B) and the parameters

B and σ2 are identifiable from the covariance in (2). No faithfulness assumptions are needed.

THEOREM 1. Let X ∼ (BX , σ2
X) and Y ∼ (BY , σ

2
Y ) with both G(BX) and G(BY ) directed

and acyclic. If var(X) = var(Y ), then G(BX) = G(BY ), BX = BY , and σ2
X = σ2

Y .
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In this section we first give an inductive proof of Theorem 1 that proceeds by recursively 75

identifying source nodes for G(B) and subgraphs. We then clarify that alternatively one could

identify sink nodes. Our first lemma clarifies that the sources in G(B) are characterized by min-

imal variances. We define

ζ ≡ ζ(B) = min
(k,j)∈E(B)

β2
jk. (3)

LEMMA 1. Let X ∼ (B, σ2) with G(B) directed and acyclic. If pa(j) = ∅, then var(Xj) =
σ2. If pa(j) 6= ∅, then var(Xj) ≥ σ2(1 + ζ) > σ2. 80

Proof. Let Π = (πjk) = (I −B)−1. Each total effect πjk is the sum over directed paths from

k to j of products of coefficients βab along each path. In particular, πjj = 1. From (2), var(Xj) =
σ2

∑p
k=1 π

2
jk. Hence, if pa(j) = ∅, then var(Xj) = σ2 because π2

jk = 0 for all k 6= j. If pa(j) 6=

∅ then by acyclicity of G(B) there exists a node ` ∈ pa(j) such that de(`) ∩ pa(j) = {`}. Then

π2
j` = β2

j` ≥ ζ and 85

var(Xj) = σ2

(
1 +

∑

k 6=j

π2
jk

)
≥ σ2

(
1 + π2

j`

)
≥ σ2 (1 + ζ) .

The next lemma shows that by conditioning on a source, or more generally an ancestral set,

one recovers a structural equation model with equal error variance whose graph has the source

node or the entire ancestral set removed. For a variable Xj and a vector XC = (Xk : k ∈ C), we

define Xj.C = Xj − E(Xj |XC).

LEMMA 2. Let X ∼ (B, σ2) with G(B) directed and acyclic. Let C be an ancestral set in 90

G(B). Then (Xj.C : j /∈ C) ∼ (B[−C], σ2) for submatrix B[−C] = (βjk)j,k/∈C .

Proof. Let j /∈ C. Since C is ancestral, XC is a function of εC only and thus independent

of εj . Hence, E(εj |XC) = E(εj) = 0. Because it also holds that Xk.C = 0 for k ∈ C, we have

from (1) that

Xj.C =
∑

k∈pa(j)\C

βjkXk.C + εj .

The lemmas can be combined to identify a topological ordering of G(B) and prove Theorem 1. 95

Proof of Theorem 1. Given any topological ordering of G(B), σ2 is the variance of the first

node in the ordering and each column of B is determined by the regression coefficients of the

corresponding variable when conditioning on all preceding variables; see e.g. Drton (2018, §7).

An induction on the number of variables p shows that a topological ordering can indeed by

found. For p = 1, the ordering is trivial. If p > 1, then Lemma 1 identifies a source c by variance 100

minimization. Conditioning on c as in Lemma 2 reduces the problem to size p− 1, and the

variables involved can be ordered by the induction assumption. �

Alternatively, one may minimize precisions to identify a sink node and then marginalize out

this sink. This approach is justified by the following two lemmas.

LEMMA 3. Let X ∼ (B, σ2) with G(B) directed and acyclic. Let Σ be the covariance matrix 105

of X , and Φ = Σ−1 the precision matrix. If ch(j) = ∅, then Φjj = 1/σ2. If ch(j) 6= ∅, then

Φjj ≥ {1 + ζ|ch(j)|}/σ2 > 1/σ2.

Proof. The diagonal entries of Φ = 1
σ2 (I −B)(I −B)T are Φjj =

1
σ2 (1 +

∑
k∈ch(j) β

2
kj).

So Φjj = 1/σ2 if ch(j) = ∅, and Φjj ≥ {1 + |ch(j)|ζ}/σ
2 if ch(j) 6= ∅. �



4 W. CHEN, M. DRTON AND Y.S. WANG

Algorithm 1. Topological Ordering: General procedure with criterion f

Input : Σ̂ ∈ R
p×p (estimated) covariance of X

Output: Θ
Θ(0) ← ∅;
for z = 1, . . . , p do

θ ← argminj∈V \Θ(z−1) f(Σ̂,Θ(z−1), j);

Append θ to Θ(z−1) to form Θ(z)

return the ordered set Θ(p).

Marginalization of a sink is possible ‘by the following well-known fact (e.g. Drton, 2018, §5).110

LEMMA 4. Let X ∼ (B, σ2) with G(B) directed and acyclic. Let C be an ancestral set in

G(B). Then XC ∼ (B[C], σ2) for submatrix B[C] = (βjk)j,k∈C .

4. ESTIMATION ALGORITHMS

4·1. Low-dimensional Problems

The results from Section 3 naturally yield an iterative top-down algorithm for estimation of a115

topological ordering for G(B). In each step of the procedure we select a source node by com-

paring variances conditional on the previously selected variables, so the criterion minimized in

Algorithm 1 is the variance

f1(Σ̂,Θ, j) = Σ̂j,j − Σ̂j,ΘΣ̂
−1
Θ,ΘΣ̂Θ,j =

1

{(Σ̂Θ∪{j},Θ∪{j})−1}j,j
, (4)

where Σ̂ is the sample covariance matrix. Alternatively, and as also observed by Ghoshal and

Honorio (2018), a bottom-up procedure could construct the reverse causal ordering by succes-120

sively minimizing precisions (or in other words, full conditional variances).

To facilitate theoretical statements about our top-down procedure, we assume that the errors

εj in (1) are all sub-Gaussian with maximal sub-Gaussian parameter γ > 0. We indicate this by

writing X ∼ (B, σ2, γ). Our analysis is restricted to inference of a topological ordering. Shojaie

and Michailidis (2010) give results on lasso-based inference of the graph given an ordering.125

THEOREM 2. Let X ∼ (B, σ2, γ) with G(B) directed and acyclic. Suppose the covariance

matrix Σ = E(XXT ) has minimum eigenvalue λmin > 0. If

n > p2 log

(
2p2 + 2p

ε

)
128

(
1 + 4

γ2

σ2

)2(
max
j∈V

Σj,j

)2(ζλmin + 2σ2(1 + ζ)

ζλ2
min

)2

,

then Algorithm 1 using criterion criterion (4) recovers a topological ordering of G(B) with

probability at least 1− ε.

The result follows using concentration for sample covariances (Ravikumar et al., 2011, Lemma130

1) and error propagation analysis as in Harris and Drton (2013, Lemma 5). We give details in

Appendix A, which is found in the supplementary materials.

4·2. High-dimensional Problems

The consistency result in Theorem 2 requires the sample size n to exceed a multiple of

p2 log(p) and only applies to low-dimensional problems. If p > n, method will stop at the nth135
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step when the estimated conditional variances in (4) becomes zero for all j /∈ Θ. However, in the

high-dimensional setting if G(B) has maximum in-degree bounded by a small integer q, we may

modify the criterion from (4) to

f2(Σ̂,Θ, j) = min
C⊆Θ,|C|=q

f1(Σ̂, C, j) = min
C⊆Θ,|C|=q

Σ̂j,j − Σ̂j,C(Σ̂C,C)
−1Σ̂C,j . (5)

The intuition is that in the population case, adjusting by a smaller set C ⊆ Θ(z) with pa(j) ⊆ C
yields the same results as adjusting by all of Θ(z). The next lemma makes the idea rigorous. 140

LEMMA 5. Let X ∼ (B, σ2) with G(B) directed and acyclic with maximum in-degree at

most q. Let Σ = E(XXT ), and suppose S ⊆ V \ {j} is an ancestral set. If pa(j) ⊆ S, then

f2(Σ, S, j) = σ2. If pa(j) 6⊆ S, then f2(Σ, S, j) ≥ σ2(1 + ζ).

Proof. The conditional variance of Xj given XS is the variance of the residual Xj.S . By

Lemma 2, Xj.S has the same distribution as X ′
j when X ′ ∼ (B[−S], σ2). Now, j is a source 145

of G(B[−S]) if and only if pa(j) ⊆ S. Lemma 1 implies that var(Xj |XC) = σ2 if pa(j) ⊆ S
and var(Xj |XC) ≥ σ2(1 + ζ) otherwise. The claim about f2(Σ, S, j) now follows. �

Based on Lemma 5, we have the following result whose proof is analogous to that of Theo-

rem 2. The key feature of the result is a drop from p2 to (q + 1)2 in the sample size requirement.

THEOREM 3. Let X ∼ (B, σ2, γ) with G(B) directed and acyclic with of maximum in-degree 150

at most q. Suppose all (q + 1)× (q + 1) principal submatrices of Σ = E
(
XXT

)
have minimum

eigenvalue at least λmin > 0. If

n > (q + 1)2 log

(
2p2 + 2p

ε

)
128

(
1 + 4

γ2

σ2

)2(
max
j∈V

Σj,j

)2(ζλmin + 2σ2(1 + ζ)

ζλ2
min

)2

,

then Algorithm 1 using criterion (5) recovers a topological ordering of G(B) with probability at

least 1− ε.

We contrast our guarantees with those for the bottom-up method of Ghoshal and Hono- 155

rio (2018) which selects sinks by minimizing conditional precisions that are estimated using

the CLIME estimator (Cai et al., 2011). Because CLIME requires small Markov blankets, the

bottom-up procedure has sample complexity O
(
d8 log p

)
where d is the maximum total degree.

This implies that the procedure cannot consistently discover graphs with hubs, i.e., nodes with

very large out-degree, in the high-dimensional setting. This said, the computational complexity 160

of the bottom-up procedure is polynomial in d, while our top-down procedure is exponential in

the maximum in-degree. In practice, we use a branch-and-bound procedure (Lumley, 2017) to

efficiently select the set which minimizes the conditional variance; see Section 5·2.

5. NUMERICAL RESULTS

5·1. Low-dimensional Setting 165

We first assess performance in the low-dimensional setting. Random DAGs with p nodes and

a unique topological ordering are generated by: (1) always including edge v → v + 1 for v < p,

and (2) including edge v → u with probability pc for all v < u− 1. We consider a sparse set-

ting with pc = 3/(2p− 2) and a dense setting with pc = 0.3. All linear coefficients are drawn

uniformly from ±[.3, 1]. The error terms are standard normal. Performance is measured using 170

Kendall’s τ between rankings of variables according to the true and estimated topological or-

derings. Although the true graph admits a unique ordering by construction, the graph estimated
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Table 1. Low-dimensional dense setting with edge v → u included with probability pc = .3 for

all v < u− 1. The considered methods are top-down (TD), bottom-up (BU), and greedy DAG

search (GDS). For Kendall’s τ and Recall a larger value indicates better performance; for

Flipped and False Discovery Rate (FDR) a smaller value indicates better performance.

Kendall’s τ Recall % Flipped % FDR %

p n TD BU GDS TD BU GDS TD BU GDS TD BU GDS

5

100 0.85 0.82 0.88 91 89 91 7 8 6 17 18 9

500 0.98 0.97 0.98 99 98 99 1 1 1 4 4 2

1000 0.99 0.98 0.99 99 99 99 1 1 1 3 3 1

20

100 0.92 0.85 0.61 85 83 62 3 5 13 32 35 43

500 0.99 0.97 0.75 99 98 81 1 1 11 28 29 35

1000 1.00 0.99 0.82 100 100 88 0 0 8 26 26 28

40

100 0.96 0.91 0.53 71 69 44 2 3 11 41 43 58

500 0.99 0.98 0.59 96 96 63 0 1 14 41 42 57

1000 1.00 0.99 0.64 97 97 71 0 0 14 40 41 57

Table 2. Low-dimensional sparse setting with edge v → u included with probability pc =
3/(2p− 2) for all v < u− 1. The considered methods are top-down (TD), bottom-up (BU),

and greedy DAG search (GDS). For Kendall’s τ and Recall a larger value indicates better

performance; for Flipped and False Discovery Rate (FDR) a smaller value indicates better

performance.

Kendall’s τ Recall % Flipped % FDR %

p n TD BU GDS TD BU GDS TD BU GDS TD BU GDS

5

100 0.87 0.84 0.88 91 89 90 6 7 6 16 17 9

500 0.98 0.96 0.98 98 98 99 1 2 1 5 5 2

1000 0.99 0.98 0.99 99 99 99 1 1 1 3 4 1

20

100 0.77 0.59 0.60 85 79 77 9 13 15 35 40 39

500 0.96 0.88 0.77 98 96 89 2 4 10 19 22 26

1000 0.99 0.94 0.81 100 98 90 0 2 9 14 16 23

40

100 0.72 0.44 0.47 81 72 72 10 16 20 38 46 54

500 0.96 0.80 0.58 98 94 81 2 5 18 24 31 47

1000 0.99 0.91 0.61 99 98 82 1 2 17 17 22 48

by the greedy search may not admit a unique ordering. Nevertheless, the ranking of variables

according to the estimated graph is unique if we allow ties, and Kendall’s τ remains a good mea-

sure for all the methods. We also compute the percentage of true edges discovered (Recall), the175

percentage of estimated edges that are flipped in the true graph (Flipped), and the proportion of

estimated edges which are either flipped or not present in the true graph (false discovery rate;

FDR). Tables 1 and 2 show averages over 500 random realizations for our top-down procedure,

the bottom-up procedure of Ghoshal and Honorio (2018), and greedy DAG search. In low di-

mensions, the precision estimates needed in the bottom up procedure may simply be obtained by180

inverting the sample covariance. After estimating the ordering in the top-down and the bottom-up

procedure, we infer the graph by lasso (Shojaie and Michailidis, 2010), which we tune via the

Extended Bayesian Information Criterion with γ = 0.5 (Chen and Chen, 2008). For the greedy

search, we allow for 5 random restarts using the same procedure as Peters and Bühlmann (2014).
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In both dense and sparse settings, when p = 5, greedy search performs best in all metrics. 185

However, for p = 20 and 40, the top-down approach does best, followed by bottom-up, and

finally greedy search. The top-down and bottom-up method both have a substantially higher

average Kendall’s τ than greedy search.

In our experiments, the proposed methods are roughly 50 to 500 times faster than greedy

search as graph size and density increases. On our personal computer, the average run time in the 190

dense setting with p = 40 and n = 1000 is 8 seconds for the top-down and bottom-up methods,

but 4,500 seconds for the greedy search.

5·2. High-dimensional Setting

We now test the proposed procedures in a high-dimensional setting with p > n in two scenar-

ios. Random DAGs with p nodes and a unique topological ordering are generated by: (1) always 195

including edge v → v + 1 for v < p, and either (2a) for each v > 2, including u1, u2 → v, where

ui < v, and ui has out-degree dout(ui) < 4, or (2b) for each v > 2, including u1, u2 → v, where

ui < min(v, 10). In both scenarios, the maximum in-degree is fixed to be q = 3. In the first sce-

nario, the maximum Markov blanket size k is small, with k ≤ 15. In the second scenario when

there are hubs in the graph, the maximum Markov blanket size grows with p, with k ≥ 0.2p. All 200

linear coefficients are drawn uniformly from ±[.6, 1]. The errors are standard normal.

We compare the high-dimensional top-down method, Algorithm 1 with (5), to the high-

dimensional bottom-up method of Ghoshal and Honorio (2018). Table 3 shows averages over

100 random realizations for the two methods. The best subset search step in the top-down pro-

cedure is carried out with subset size q = 3; increasing q beyond the true maximum in-degree 205

does not change performance substantially. In the bottom-up method we use the penalization

constant λn = 0.5
√

log(p)/n. Greedy search is not considered due its large computational cost

for p > 100. Performance is measured by Kendall’s τ .

Table 3 demonstrates that both methods perform well in the first scenario, where the true

graph has small Markov blankets. The high-dimensional top-down procedure performs the best 210

in low-dimensional and moderately high-dimensional settings, and both methods have similar

performance in very high-dimensional settings. However, when there exist nodes with very large

Markov blanket, the top-down method substantially outperforms the bottom-up method.

On our personal computer, the average run time in the first scenario for problems of size

p = 200 is 650 seconds for the high-dimensional top-down method with q = 3 and 250 seconds 215

for the high-dimensional bottom-up method.

Additional simulation settings are presented in Appendix B-E in the supplement including a

setting with Rademacher errors as considered by Ghoshal and Honorio (2018).

6. DISCUSSION

In comparison to the related work of Ghoshal and Honorio (2018), our approach is compu- 220

tationally more demanding for graphs with higher in-degree but requires only control over the

maximum in-degree of the graph as opposed to the maximum degree. As shown in simulations

in Appendix E, a hybrid method in which greedy search is initialized at estimates obtained from

our variance ordering procedures can yield further improvements in performance.

Finally, all discussed methods extend to structural equation models where the error variances 225

are unequal, but known up to ratio. Indeed, if var(εj) = a2jσ
2 for some unknown σ2 but known

a1, . . . , ap, we may consider X̃j = Xj/aj instead of the original variables.
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Table 3. High-dimensional setting with maximum in-degree q = 3. We consider two settings:

Small k, where the maximum out-degree is less than 4, and Hub graph, where the maximum out-

degree grows with the size of the graph. We display the Kendall’s τ between the true ordering

and the estimated ordering for the high-dimensional top-down (HTD) and high-dimensional

bottom-up (HBU) procedures. A larger value indicates better performance.

Small k Hub graph

n p HTD HBU HTD HBU

80

0.5n 0.99 0.89 1.00 0.70

0.75n 0.98 0.89 0.99 0.52

n 0.95 0.87 0.95 0.39

1.5n 0.84 0.83 0.77 0.25

2n 0.72 0.73 0.55 0.16

100

0.5n 1.00 0.93 1.00 0.70

0.75n 0.99 0.92 1.00 0.50

n 0.97 0.87 0.97 0.38

1.5n 0.86 0.84 0.74 0.26

2n 0.73 0.78 0.63 0.12

200

0.5n 1.00 0.95 1.00 0.77

0.75n 1.00 0.90 1.00 0.61

n 0.99 0.79 0.99 0.48

1.5n 0.87 0.74 0.80 0.20

2n 0.74 0.64 0.65 0.13
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The methods are implemented in an R package titled ‘EqVarDAG’ available at

https://github.com/WY-Chen/EqVarDAG.265

A. PROOF OF THEOREMS 2 AND 3

We first give a lemma that addresses the estimation error for inverse covariances.

LEMMA 6. Assume X ∼ (B, σ2, γ). Suppose all (q + 1)× (q + 1) principal submatrices of Σ =
E(XXT ) have minimum eigenvalue at least λmin > 0. If for ε, η > 0 we have

n > (q + 1)2
{
log

(
2p2 + 2p

ε

)}
128

(
1 + 4

γ2

σ2

)2 (
max
j∈V

Σj,j

)2 (
ηλmin + 1

ηλ2
min

)2

. (1)

then

max
C⊆V,|C|≤q+1

‖(ΣC,C)
−1 − (Σ̂C,C)

−1‖∞ ≤ η

with probability at least 1− ε.270

Proof. Let δ =
ηλ2

min

(q+1)(ηλmin+1) . Because δ < λmin

q+1 , by Lemma 5 from Harris and Drton (2013), we

have

max
C⊆V,|C|≤(q+1)

‖(ΣC,C)
−1 − (Σ̂C,C)

−1‖∞ ≤
(q + 1)δ/λ2

min

1− (q + 1)δ/λmin
= η

provided ‖Σ̂− Σ‖∞ ≤ δ. The proof is thus complete if we show that P
(
‖Σ̂− Σ‖∞ > δ

)
≤ ε.

Note that Xj = εj +
∑

k∈an(j) πjkεk has variance σ2(1 +
∑

k∈an(j) π
2
jk). Since γ is a bound on the

sub-Gaussian parameters of all εl, it follows that Xj/
√

var(Xj) is sub-Gaussian with parameter at most275

γ/σ. Lemma 1 of Ravikumar et al. (2011) applies and gives

P{|Σ̂i,j − Σi,j | > δ} ≤ 4 exp

{
−

nδ2

128(1 + 4γ2/σ2)2 maxj(Σj,j)2

}
≤

2

p(p+ 1)
ε.

A union bound over the entries of Σ yields that indeed P

(
‖Σ̂− Σ‖∞ > δ

)
≤ ε. �

Proof of Theorems 2 and 3. Our assumption on n is as in (1) with η = ζ/(2σ2(1 + ζ)). Lemma 6 thus

implies that, with probability at least 1− ε, we have for all subsets Θ ⊆ V with |Θ| < q + 1 that

‖(Σ̂Θ,Θ)
−1 − (ΣΘ,Θ)

−1‖∞ ≤
ζ

2σ2(1 + ζ)
. (2)

Let j be a source in G(B), and let k be a non-source. Note that variance of j conditional on some set280

C1 is

σ2
j|C1

=
1{

(ΣC1∪{j},C1∪{j})−1
}
j,j

.

By Lemma 5, for any C1, C2 ⊆ Θ ⊆ V \ {j, k} such that Θ is an ancestral set and pa(j) ⊆ C1

{
(ΣC1∪{j},C1∪{j})

−1
}
j,j
−
{
(ΣC2∪{k},C2∪{k})

−1
}
k,k
≥

1

σ2
−

1

σ2(1 + ζ)
=

ζ

σ2(1 + ζ)
(3)
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Using (2), when |C1| and |C2| are both at most q, we obtain that

{
(Σ̂C1∪{j},C1∪{j})

−1
}
j,j
−
{
(Σ̂C2∪{k},C2∪{k})

−1
}
k,k

> 0. (4)

Thus σ̂2
j|C1

< σ̂2
k|C2

which implies that Algorithm 1 correctly selects a source node at each step. On the

first step, Θ = ∅ which is trivially an ancestral set. By induction, each subsequent step then correctly adds 285

a sink to Θ so Θ remains ancestral and a correct ordering is recovered. �

B. SIMULATIONS AS IN PETERS AND BÜHLMANN (2014)

We revisit the simulation study of Peters and Bühlmann (2014). DAGs are generated by first creating

a random topological ordering, then between any two nodes, an edge is included with probability pc. We

simulate a sparse setting with pc = 3/(2p− 2) and a dense setting with pc = 0.3. The linear coefficients 290

are drawn uniformly from [−1,−.1] ∪ [.1, 1] and the errors are drawn from a standard Gaussian distribu-

tion. Following Peters and Bühlmann (2014), we compute the Hamming distance between the true and

estimated adjacency matrix.

Tables 4 and 5 demonstrate that in both settings, the greedy algorithm performs better when p is small.

However, when p = 40 the top-down and bottom-up algorithms infer the graph more accurately. In the 295

dense setting, the proposed methods have similar FDR to greedy search, but substantially higher recall. In

the sparse setting, the proposed methods have lower recall than greedy search, but also substantially lower

FDR.

Table 4. Dense setting considered by Peters and Bühlmann (2014) where the edge v → u is

included with probability pc = .3 for all v < u− 1. The methods included in the table are top-

down (TD), bottom-up (BU), and greedy DAG search (GDS). For Hamming distance, Flipped,

and False Discovery Rate (FDR) a smaller value indicates better performance; for Recall a

larger value indicates better performance.

Hamming Dist. Recall % Flipped % FDR %

p n TD BU GDS TD BU GDS TD BU GDS TD BU GDS

5

100 1.3 1.3 1.1 73 73 78 7 7 7 16 15 18

500 0.7 0.7 0.5 80 80 88 4 4 5 8 7 9

1000 0.5 0.5 0.4 85 84 92 3 3 5 5 5 7

20

100 31 32 30 73 73 74 4 3 6 27 28 25

500 22 22 14 91 91 91 2 3 4 24 24 13

1000 28 28 8 94 94 96 2 2 2 21 21 10

40

100 170 174 215 66 65 54 2 3 8 36 37 45

500 152 155 186 93 93 76 2 2 9 38 39 42

1000 136 137 168 96 95 83 1 1 8 36 36 38

C. SIMULATIONS AS IN GHOSHAL AND HONORIO (2018)

We construct random graphs as in Section 5·2, but we follow the data sampling procedure as used in 300

Ghoshal and Honorio (2018). All linear coefficients are drawn uniformly from ±[.5, 1], and errors are

drawn from the Rademacher distribution and scaled to have σ2
i = 0.8. Table 6 demonstrates that both

methods perform reasonably well when Markov blankets are restricted to be small, and the top-down

approach performs substantially better when there are hubs.
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Table 5. Sparse setting considered by Peters and Bühlmann (2014) where the edge v → u is

included with probability pc = 3/(2p− 2) for all v < u− 1. The methods included in the table

are top-down (TD), bottom-up (BU), and greedy DAG search (GDS). For Hamming distance,

Flipped, and False Discovery Rate (FDR) a smaller value indicates better performance; for

Recall a larger value indicates better performance.

Hamming Dist. Recall % Flipped % FDR %

p n TD BU GDS TD BU GDS TD BU GDS TD BU GDS

5

100 1.6 1.7 1.4 74 73 78 8 8 8 18 18 17

500 0.8 0.9 0.6 85 84 91 3 4 5 7 7 9

1000 0.6 0.6 0.4 88 88 94 3 4 5 6 6 7

20

100 7 7 12 69 69 81 4 4 6 16 17 43

500 3.5 3.5 4.5 85 84 93 4 4 4 9 8 21

1000 2.2 2.2 2.8 90 90 97 3 2 3 5 5 14

40

100 14 15 45 64 63 78 3 4 8 16 18 62

500 7 7 16 84 84 94 3 3 3 8 7 33

1000 5 5 10 90 89 97 3 3 3 6 6 24

Table 6. High-dimensional setting considered in Ghoshal and Honorio (2018) with Rademacher

noise and maximum in-degree q = 3. We consider two settings: Small k, where the maximum

out-degree is less than 4, and Hub graph, where the maximum out-degree grows with the size

of the graph. We display the Kendall’s τ between the true ordering and the estimated ordering

for the high-dimensional top-down (HTD) and high-dimensional bottom-up (HBU) procedures.

A larger value indicates better performance.

Small k Hub graph

n p HTD HBU HTD HBU

80

0.5n 0.99 0.95 0.98 0.73

0.75n 0.98 0.90 0.89 0.46

n 0.96 0.90 0.76 0.36

1.5n 0.84 0.86 0.52 0.23

2n 0.71 0.80 0.35 0.10

100

0.5n 0.99 0.97 0.99 0.69

0.75n 0.99 0.95 0.92 0.46

n 0.96 0.93 0.76 0.34

1.5n 0.84 0.88 0.52 0.26

2n 0.72 0.82 0.39 0.13

200

0.5n 1.00 0.99 1.00 0.79

0.75n 1.00 0.98 0.98 0.59

n 0.98 0.97 0.86 0.47

1.5n 0.86 0.84 0.61 0.20

2n 0.73 0.77 0.48 0.10

D. SIMULATIONS OF FULLY CONNECTED GRAPHS305

We run simulations with fully connected graphs, as suggested by a reviewer. The linear coefficients are

drawn uniformly from±[.3, 1] and the errors are drawn from a standard Gaussian distribution. The results

confirm the advantages of the proposed methods and are shown in Table 7. In general, the estimated graphs
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from the top-down and bottom-up procedure differ only slightly, and the values reported in the table differ

in the 3rd or 4th digit. 310

Table 7. Fully connected setting where each node v is a child of all nodes u < v. The methods

included in the table are top-down (TD), bottom-up (BU), and greedy DAG search (GDS). For

Flipped, and False Discovery Rate (FDR) a smaller value indicates better performance; for

Kendall’s τ and Recall a larger value indicates better performance.

Kendall’s τ Recall % Flipped % FDR %

p n TD BU GDS TD BU GDS TD BU GDS TD BU GDS

5

100 0.92 0.93 0.83 91 92 80 4 3 7 4 4 9

500 0.99 0.99 0.97 98 98 98 1 1 1 1 1 1

1000 1.00 1.00 0.99 99 100 99 0 0 1 0 0 1

20

100 0.98 0.98 0.62 74 74 45 1 1 9 1 1 17

500 1.00 1.00 0.73 90 90 66 0 0 8 0 0 12

1000 1.00 1.00 0.81 92 92 76 0 0 7 0 0 8

40

100 0.99 0.99 0.55 42 42 33 0 0 7 1 1 17

500 1.00 1.00 0.62 50 50 49 0 0 8 0 0 14

1000 1.00 1.00 0.67 52 52 59 0 0 8 0 0 12

E. AS INITIALIZER FOR GREEDY SEARCH

As suggested by a reviewer, we explore the performance of the greedy DAG search algorithm initialized

with the estimates from the top-down procedure. We run simulations with the same data as in Section 5·1.

Tables 8 and 9 show averages over 500 random realizations for the top-down procedure, the greedy DAG

search with random initialization, and the greedy DAG search with a warm initialization. The greedy 315

search with a random initialization is identical to the greedy procedure described in Section 5·1 and Peters

and Bühlmann (2014). In the greedy search with a warm initialization, we initialize with the output from

the top-down method, then search through a large number of graph neighbors (k = 300) at each greedy

step. Since the warm start procedure is supplied with a good initialization, we do not restart the greedy

search after it terminates; 5 random restarts with graph neighbors k = p, 2p, 3p, 5p, 300 are used in the 320

random initialization procedure. For simplicity, we omitted the experiment with the bottom-up procedure.

Tables 8 and 9 shows that in all the settings, warm initialization performs better than the other two

methods, especially when p is large. For reference, the average run time in the dense setting with p = 40
and n = 1000 is 8 seconds for the top-down method, 4,500 seconds for greedy random initialization, and

400 seconds for greedy warm initialization. 325

[Received 2 January 2017. Editorial decision on 1 April 2017]
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Table 8. Low-dimensional dense settings v → u is included with probability pc = .3 for all

v < u− 1. The methods included in the table are top-down (TD), Greedy search with random

initialization (GR), and Greedy search initialized by the top-down estimate (GW). For Kendall’s

τ and Recall a larger value indicates better performance; for Flipped and False Discovery Rate

(FDR) a smaller value indicates better performance.

Kendall’s τ Recall % Flipped % FDR %

p n TD GR GW TD GR GW TD GR GW TD GR GW

5

100 0.85 0.88 0.88 91 91 91 7 6 6 17 9 10

500 0.98 0.98 0.99 99 99 99 1 1 1 4 2 2

1000 0.99 0.99 0.99 99 99 99 1 1 1 3 1 1

20

100 0.92 0.61 0.94 85 62 90 3 13 3 32 43 15

500 0.99 0.75 0.99 99 81 99 1 11 0 28 35 3

1000 1.00 0.82 1.00 100 88 100 0 8 0 26 28 2

40

100 0.96 0.53 0.96 71 44 84 2 11 2 41 58 20

500 0.99 0.59 1.00 96 63 100 0 14 0 41 57 4

1000 1.00 0.64 1.00 97 71 100 0 14 0 40 57 2

Table 9. Low-dimensional sparse setting where the edge v → u is included with probability pc =
3/(2p− 2) for all v < u− 1. The methods included in the table are top-down (TD), Greedy

search with random initialization (GR), and Greedy search initialized by the top-down estimate

(GW). For Kendall’s τ and Recall a larger value indicates better performance; for Flipped and

False Discovery Rate (FDR) a smaller value indicates better performance.

Kendall’s τ Recall % Flipped % FDR %

p n TD GR GW TD GR GW TD GR GW TD GR GW

5

100 0.87 0.88 0.87 91 90 91 6 6 6 16 9 10

500 0.98 0.98 0.98 98 99 99 1 1 1 5 2 2

1000 0.99 0.99 0.99 99 99 99 1 1 1 3 1 1

20

100 0.77 0.60 0.82 85 77 90 9 15 7 35 39 25

500 0.96 0.77 0.98 98 89 99 2 10 1 19 26 8

1000 0.99 0.81 0.99 100 90 100 0 9 0 14 23 4

40

100 0.72 0.47 0.79 81 72 89 10 20 7 38 54 36

500 0.96 0.58 0.98 98 81 99 2 18 1 24 47 13

1000 0.99 0.61 0.99 99 82 100 1 17 0 17 48 8


