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SUMMARY

Prior work has shown that causal structure can be uniquely identified from observational data
when these follow a structural equation model whose error terms have equal variances. We show
that this fact is implied by an ordering among (conditional) variances. We demonstrate that order-
ing estimates of these variances yields a simple yet state-of-the-art method for causal structure
learning that is readily extendable to high-dimensional problems.

Some key words: Causal discovery; Structural equation model; Equal variance

1. INTRODUCTION

A structural equation model for a random vector X = (X7, ..., X,) postulates causal rela-
tions in which each variable X; is a function of a subset of the other variables and a stochastic
error €. Causal discovery/structure learning is the problem of inferring which of other variables
each variable X; depends on. We consider this problem where only observational data, that is, a
sample from the joint distribution of X, is available. While in general only an equivalence class
of structures can then be inferred (Pearl, 2009; Spirtes et al., 2000), recent work stresses that
unique identification is possible under assumptions such as non-linearity with additive errors,
linearity with non-Gaussian errors, and linearity with errors of equal variance; see the reviews of
Drton and Maathuis (2017) and Heinze-Deml et al. (2018) or the book of Peters et al. (2017).

This note is concerned with the equal variance case treated by Peters and Biihlmann (2014)
and Loh and Biihlmann (2014) who prove identifiability of the causal structure and propose
greedy search methods for its estimation. Our key observation is that identifiability is implied by
an ordering among certain conditional variances. Ordering estimates of these variances yields a
fast method for estimation of the causal ordering of the variables. The precise causal structure
can then be inferred using variable selection techniques for regression (Shojaie and Michailidis,
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2010). Specifically, we develop a top-down approach that infers the ordering by successively
identifying sources. The method is developed for low- as well as high-dimensional problems.
Simulations show significant gains in computational efficiency when compared with greedy
search and increased accuracy when the number of variables p is large.

An earlier version of this note included a bottom-up method that identified the causal ordering
by successively finding sinks via minimal precisions. However, after the note was finished, we
became aware of Ghoshal and Honorio (2018) who proposed a similar bottom-up approach.
We emphasize that our top-down approach only requires control of the maximum in-degree as
opposed to the bottom-up approach which requires control of the maximum Markov blanket. This
is discussed further in Section 4-2 and a direct numerical comparison is given in Section 5-2.

2. STRUCTURAL EQUATION MODELS AND DIRECTED ACYCLIC GRAPHS

Suppose, without loss of generality, that the observed random vector X = (X1,...,X,) is
centered. In a linear structural equation model, X then solves an equation system
k#j

where the ¢; are independent random variables with mean zero, and the coefficients Bjk are
unknown parameters. Following Peters and Biihlmann (2014), we assume that all ¢; have a
common unknown variance o2 > 0. We will write X ~ (B, c?) to express the assumption that
there indeed exist independent errors €1, . . ., €, of equal variance o2 such that X solves (1) for
coefficients given by a real p X p matrix B = ([3;;,) with zeros along the diagonal.

The causal structure inherent to the equations in (1) is encoded in a directed graph G(B) with
vertex set V = {1,...,p} and edge set F(B) equal to the support of B. So, E(B) = {(k,j) :
Bjr # 0}. Inference of G(B) is the goal of causal discovery as considered in this paper. As in
related work, we assume G(B) to be a directed acyclic graph (DAG) so that B is permutation
similar to a triangular matrix. Then (1) admits the unique solution X = (I — B) ¢ where ¢ =
(¢1,...,€p). Hence, the covariance matrix of X ~ (B, c?) is

Y =EXXT)=0?(I-B)'(I-B)T. ()

We will invoke the following graphical concepts. If the considered graph G contains the edge
k — j, then k is a parent of its child j. We write pa(j) for the set of all parents of a node j.
Similarly, ch(j) is the set of children of j. If there exists a directed path kK — ... — j, then k is
an ancestor of its descendant j. The sets of ancestors and descendants of j are an(j) and de(j),
respectively. Here, j € an(j) and j € de(j). A set of nodes C'is ancestral if an(j) C C for all
j € C.If G is a DAG, then it admits a topological ordering of its vertices. In other words, there
exists a numbering o such that o(j) < o(k) only if k£ ¢ an(j). Finally, every DAG contains at
least one source, that is, a node j with pa(j) = (). Similarly, every DAG contains at least one
sink, which is a node j with ch(j) = 0.

3. IDENTIFIABILITY BY ORDERING VARIANCES
The main result of Peters and Biihlmann (2014) shows that the graph G(B) and the parameters
B and o are identifiable from the covariance in (2). No faithfulness assumptions are needed.

THEOREM 1. Let X ~ (Bx,0%) andY ~ (By,o%) with both G(Bx) and G(By) directed
and acyclic. If var(X) = var(Y), then G(Bx) = G(By), Bx = By, and 0% = 0%..
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In this section we first give an inductive proof of Theorem 1 that proceeds by recursively
identifying source nodes for G(B) and subgraphs. We then clarify that alternatively one could
identify sink nodes. Our first lemma clarifies that the sources in G(B) are characterized by min-
imal variances. We define

=({(B) = i e
C=UB) = o) Pk

3)

LEMMA 1. Let X ~ (B, 0?) with G(B) directed and acyclic. If pa(j) = 0, then var(X;) =
o2 Ifpa(j) # 0, then var(X;) > o(1 + () > o

Proof. Let1l = (m;) = (I — B)~'. Each total effect 7, is the sum over directed paths from
k to j of products of coefficients 3, along each path. In particular, 7;; = 1. From (2), var(X;) =
0® Y h_y ™3 Hence, if pa(j) = 0, then var(X) = o° because 75, = 0 forall k # j.If pa(j) #
() then by acyclicity of G(B) there exists a node ¢ € pa(j) such that de(¢) N pa(j) = {¢}. Then

var(X;) = o? <1 + Zﬂ'jzk> > o2 (1+ 7r]2-e) > % (14C).
k#j
The next lemma shows that by conditioning on a source, or more generally an ancestral set,
one recovers a structural equation model with equal error variance whose graph has the source

node or the entire ancestral set removed. For a variable X; and a vector X¢ = (X}, : k € C), we
define Xj.C = Xj — E(X]’Xc)

LEMMA 2. Let X ~ (B, 0?) with G(B) directed and acyclic. Let C be an ancestral set in
G(B). Then (Xjc:j¢C)~ (B[—C],ag)for submatrix B[—C| = (5jk)j,k¢0-

Proof. Let j ¢ C. Since C'is ancestral, X is a function of ¢ only and thus independent
of ¢;. Hence, E(¢j|X¢) = E(g;) = 0. Because it also holds that Xj, ¢ = 0 for k € C, we have
from (1) that

Xjc = BikXk.c + €j.
kepa(j)\C
The lemmas can be combined to identify a topological ordering of G(B) and prove Theorem 1.

Proof of Theorem 1. Given any topological ordering of G(B), o2 is the variance of the first
node in the ordering and each column of B is determined by the regression coefficients of the
corresponding variable when conditioning on all preceding variables; see e.g. Drton (2018, §7).
An induction on the number of variables p shows that a topological ordering can indeed by
found. For p = 1, the ordering is trivial. If p > 1, then Lemma 1 identifies a source c by variance
minimization. Conditioning on ¢ as in Lemma 2 reduces the problem to size p — 1, and the
variables involved can be ordered by the induction assumption. O

Alternatively, one may minimize precisions to identify a sink node and then marginalize out
this sink. This approach is justified by the following two lemmas.

LEMMA 3. Let X ~ (B, c?) with G(B) directed and acyclic. Let Y be the covariance matrix
of X, and ® = X1 the precision matrix. If ch(j) =0, then ®;; = 1/02. If ch(j) # 0, then
©j; > {1+ (lch(j)[}/o? > 1/0%

Proof. The diagonal entries of ® = (I — B)(I — B)T are ®; = £;(1+ 2kech(s) Bis)-
So ®;; = 1/0%if ch(j) = 0, and ®;; > {1 + |ch(j)|(}/o? if ch(j) # 0. 0
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4 W. CHEN, M. DRTON AND Y.S. WANG
Algorithm 1. Topological Ordering: General procedure with criterion f

Input : 3 € RPXP (estimated) covariance of X
Output: ©
00 ¢,
forz=1,...,pdo
0 « argmin ;i g(=-1) f(2,0ED ).
Append 0 to ©—1 to form ©(*)
return the ordered set ©®).

Marginalization of a sink is possible ‘by the following well-known fact (e.g. Drton, 2018, §5).

LEMMA 4. Let X ~ (B, 0?) with G(B) directed and acyclic. Let C be an ancestral set in
G(B). Then X¢ ~ (B[C), 0?) for submatrix B[C] = (Bjk)jkec-

4. ESTIMATION ALGORITHMS
4.-1.  Low-dimensional Problems

The results from Section 3 naturally yield an iterative top-down algorithm for estimation of a
topological ordering for G(B). In each step of the procedure we select a source node by com-
paring variances conditional on the previously selected variables, so the criterion minimized in
Algorithm 1 is the variance

1

[(2,0,5) = 3%, - %030 0%e = 4)

{Ceuyreuyy) i
where ¥ is the sample covariance matrix. Alternatively, and as also observed by Ghoshal and
Honorio (2018), a bottom-up procedure could construct the reverse causal ordering by succes-
sively minimizing precisions (or in other words, full conditional variances).

To facilitate theoretical statements about our top-down procedure, we assume that the errors
€ in (1) are all sub-Gaussian with maximal sub-Gaussian parameter v > 0. We indicate this by
writing X ~ (B, 02, ). Our analysis is restricted to inference of a topological ordering. Shojaie
and Michailidis (2010) give results on lasso-based inference of the graph given an ordering.

THEOREM 2. Let X ~ (B, 0?%,7) with G(B) directed and acyclic. Suppose the covariance
matrix ¥ = BE(X XT) has minimum eigenvalue A, > 0. If

2 2 2 2\ 2 2 )\min 2 2 1 2
n > p*log <W> 128 <1+472> <mavxzj,j> (C JQF“)\; ( +C)> |
¢ g 7€ min

then Algorithm 1 using criterion criterion (4) recovers a topological ordering of G(B) with
probability at least 1 — e.

The result follows using concentration for sample covariances (Ravikumar et al., 2011, Lemma
1) and error propagation analysis as in Harris and Drton (2013, Lemma 5). We give details in
Appendix A, which is found in the supplementary materials.

4.2, High-dimensional Problems

The consistency result in Theorem 2 requires the sample size n to exceed a multiple of
p?log(p) and only applies to low-dimensional problems. If p > n, method will stop at the nth
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step when the estimated conditional variances in (4) becomes zero for all j ¢ ©. However, in the
high-dimensional setting if G(B) has maximum in-degree bounded by a small integer ¢, we may
modify the criterion from (4) to

A A A

$,0,5) = i $,.0,5) = in Xi—-3cCcc) e 5
f2(%,0,7) coin IO EN)) cclin_ Fig ic(Xoc) Yeg )
The intuition is that in the population case, adjusting by a smaller set C' C ©(*) with pa(j) C C
yields the same results as adjusting by all of ©(*). The next lemma makes the idea rigorous.

LEMMA 5. Let X ~ (B,0?) with G(B) directed and acyclic with maximum in-degree at
most q. Let ¥ = E(XXT), and suppose S C V \ {j} is an ancestral set. If pa(j) C S, then
f2(8,8,5) = o® If pa(j) € S, then fo(X, 8, j) = o*(1 + ().

Proof. The conditional variance of X; given Xg is the variance of the residual X;g. By
Lemma 2, X ¢ has the same distribution as X} when X' ~ (B[-S], 0?). Now, j is a source
of G(B[—S)) if and only if pa(j) C S. Lemma 1 implies that var(X;|X¢) = o2 if pa(j) C S
and var(X;| X¢) > 02(1 + ¢) otherwise. The claim about f2(3, S, j) now follows. O

Based on Lemma 5, we have the following result whose proof is analogous to that of Theo-
rem 2. The key feature of the result is a drop from p? to (g + 1)? in the sample size requirement.

THEOREM 3. Let X ~ (B, 02, 7) with G(B) directed and acyclic with of maximum in-degree
at most q. Suppose all (¢ + 1) x (q + 1) principal submatrices of ¥ = E (X X T) have minimum
eigenvalue at least Ay, > 0. If

2p + 2p 72\ 2 Cmin + 2021 + O\
2

then Algorithm 1 using criterion (5) recovers a topological ordering of G(B) with probability at
least 1 — e.

We contrast our guarantees with those for the bottom-up method of Ghoshal and Hono-
rio (2018) which selects sinks by minimizing conditional precisions that are estimated using
the CLIME estimator (Cai et al., 2011). Because CLIME requires small Markov blankets, the
bottom-up procedure has sample complexity O (d8 log p) where d is the maximum total degree.
This implies that the procedure cannot consistently discover graphs with hubs, i.e., nodes with
very large out-degree, in the high-dimensional setting. This said, the computational complexity
of the bottom-up procedure is polynomial in d, while our top-down procedure is exponential in
the maximum in-degree. In practice, we use a branch-and-bound procedure (Lumley, 2017) to
efficiently select the set which minimizes the conditional variance; see Section 5-2.

5. NUMERICAL RESULTS
5-1. Low-dimensional Setting

We first assess performance in the low-dimensional setting. Random DAGs with p nodes and
a unique topological ordering are generated by: (1) always including edge v — v + 1 for v < p,
and (2) including edge v — w with probability p,. for all v < u — 1. We consider a sparse set-
ting with p. = 3/(2p — 2) and a dense setting with p. = 0.3. All linear coefficients are drawn
uniformly from =+[.3, 1]. The error terms are standard normal. Performance is measured using
Kendall’s 7 between rankings of variables according to the true and estimated topological or-
derings. Although the true graph admits a unique ordering by construction, the graph estimated
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6 W. CHEN, M. DRTON AND Y.S. WANG

Table 1. Low-dimensional dense setting with edge v — w included with probability p. = .3 for
all v < u — 1. The considered methods are top-down (TD), bottom-up (BU), and greedy DAG
search (GDS). For Kendall’s T and Recall a larger value indicates better performance; for
Flipped and False Discovery Rate (FDR) a smaller value indicates better performance.

Kendall’s 7 Recall % Flipped % FDR %
lp [n TD | BU [GDS | TD | BU | GDS [ TD | BU | GDS | TD | BU | GDS

100 | 0.85]082| 0.88 | 91 | &9 91 6 17 | 18 9
5 | 500 (098|097 | 098 | 99 | 98 99 1 4 4 2
1000 | 0.99 | 098 | 0.99 | 99 | 99 99 1 3 3 1

100 [092]085] 061 | 85 | 83 | 62 13 |32 ] 35| 43
20 [ 500 | 0.99 | 0.97 | 0.75 | 99 | 98 | 8I 1T | 2829 35
1000 | 1.00 | 0.99 | 0.82 | 100 | 100 | 88 8 | 26| 26| 28
100 [ 096|091 ] 053 | 71 | 69 | 44 11 | 41 | 43 | 58
40 [500 [ 0.99 [0.98 | 059 | 96 | 96 | 63 4 |41 | 42| 57
1000 | 1.00 | 0.99 | 0.64 | 97 | 97 | 71 4 |40 | 41 | 57

OO | O —=| W ==
Ol = W|| O =] || ==| —| OO

Table 2. Low-dimensional sparse setting with edge v — u included with probability p. =
3/(2p — 2) for all v < u — 1. The considered methods are top-down (TD), bottom-up (BU),
and greedy DAG search (GDS). For Kendall’s T and Recall a larger value indicates better
performance; for Flipped and False Discovery Rate (FDR) a smaller value indicates better
performance.

Kendall’s 7 Recall % Flipped % FDR %
lp [n TD | BU [GDS | TD | BU | GDS [ TD | BU | GDS | TD | BU | GDS
100 [0.87 08408 [ 91 [8 [ 9 [6 [ 7 [ 6 [16]17] 9
5 [500 [098]096]098 98 |98 9 [1 |2 1 |[5]5] 2
1000 [0.99 09809999 [99] 99 [ 1 [ 1 [ 1 [3[4]1
100 [0.77]059[060 [ 85 [ 79 77 [ 9 [ 13 ] 15 [35[40 [ 39
20 [500 [0.96 [0.88 077 | 98 [ 96 [ 89 [ 2 [ 4 [ 10 [ 19 |22 | 26
1000 [ 0.99 [ 0.94 [ 0.81 [100 [ 98 | 90 | 0 [ 2 | 9 [14[ 16 [ 23
100 [072]044]047 [ 81 [ 72 72 [ 10 [ 16 [ 20 [38 ] 46 [ 54
40 [500 [ 096 [0.80 | 058 | 98 | 94 [ 81 [ 2 | 5 | 18 |24 |31 | 47
1000 [ 0.99 [091 [ 061 [ 99 [ 98 | 82 | 1 | 2 | 17 [17[22 ] 48

by the greedy search may not admit a unique ordering. Nevertheless, the ranking of variables
according to the estimated graph is unique if we allow ties, and Kendall’s 7 remains a good mea-
sure for all the methods. We also compute the percentage of true edges discovered (Recall), the
percentage of estimated edges that are flipped in the true graph (Flipped), and the proportion of
estimated edges which are either flipped or not present in the true graph (false discovery rate;
FDR). Tables 1 and 2 show averages over 500 random realizations for our top-down procedure,
the bottom-up procedure of Ghoshal and Honorio (2018), and greedy DAG search. In low di-
mensions, the precision estimates needed in the bottom up procedure may simply be obtained by
inverting the sample covariance. After estimating the ordering in the top-down and the bottom-up
procedure, we infer the graph by lasso (Shojaie and Michailidis, 2010), which we tune via the
Extended Bayesian Information Criterion with v = 0.5 (Chen and Chen, 2008). For the greedy
search, we allow for 5 random restarts using the same procedure as Peters and Biihlmann (2014).
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In both dense and sparse settings, when p = 5, greedy search performs best in all metrics.
However, for p = 20 and 40, the top-down approach does best, followed by bottom-up, and
finally greedy search. The top-down and bottom-up method both have a substantially higher
average Kendall’s 7 than greedy search.

In our experiments, the proposed methods are roughly 50 to 500 times faster than greedy
search as graph size and density increases. On our personal computer, the average run time in the
dense setting with p = 40 and n = 1000 is 8 seconds for the top-down and bottom-up methods,
but 4,500 seconds for the greedy search.

5-2.  High-dimensional Setting

We now test the proposed procedures in a high-dimensional setting with p > n in two scenar-
ios. Random DAGs with p nodes and a unique topological ordering are generated by: (1) always
including edge v — v + 1 for v < p, and either (2a) for each v > 2, including u1, us — v, where
u; < v, and u; has out-degree doy(u;) < 4, or (2b) for each v > 2, including u;, ug — v, where
u; < min(v, 10). In both scenarios, the maximum in-degree is fixed to be ¢ = 3. In the first sce-
nario, the maximum Markov blanket size k is small, with & < 15. In the second scenario when
there are hubs in the graph, the maximum Markov blanket size grows with p, with k£ > 0.2p. All
linear coefficients are drawn uniformly from +[.6, 1]. The errors are standard normal.

We compare the high-dimensional top-down method, Algorithm 1 with (5), to the high-
dimensional bottom-up method of Ghoshal and Honorio (2018). Table 3 shows averages over
100 random realizations for the two methods. The best subset search step in the top-down pro-
cedure is carried out with subset size ¢ = 3; increasing ¢ beyond the true maximum in-degree
does not change performance substantially. In the bottom-up method we use the penalization
constant \,, = 0.54/log(p)/n. Greedy search is not considered due its large computational cost
for p > 100. Performance is measured by Kendall’s 7.

Table 3 demonstrates that both methods perform well in the first scenario, where the true
graph has small Markov blankets. The high-dimensional top-down procedure performs the best
in low-dimensional and moderately high-dimensional settings, and both methods have similar
performance in very high-dimensional settings. However, when there exist nodes with very large
Markov blanket, the top-down method substantially outperforms the bottom-up method.

On our personal computer, the average run time in the first scenario for problems of size
p = 200 is 650 seconds for the high-dimensional top-down method with ¢ = 3 and 250 seconds
for the high-dimensional bottom-up method.

Additional simulation settings are presented in Appendix B-E in the supplement including a
setting with Rademacher errors as considered by Ghoshal and Honorio (2018).

6. DISCUSSION

In comparison to the related work of Ghoshal and Honorio (2018), our approach is compu-
tationally more demanding for graphs with higher in-degree but requires only control over the
maximum in-degree of the graph as opposed to the maximum degree. As shown in simulations
in Appendix E, a hybrid method in which greedy search is initialized at estimates obtained from
our variance ordering procedures can yield further improvements in performance.

Finally, all discussed methods extend to structural equation models where the error variances
are unequal, but known up to ratio. Indeed, if var(e;) = a? o2 for some unknown o2 but known

ai,...,ap, we may consider X ; = X /a; instead of the original variables.
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8 W. CHEN, M. DRTON AND Y.S. WANG

Table 3. High-dimensional setting with maximum in-degree q = 3. We consider two settings:
Small k, where the maximum out-degree is less than 4, and Hub graph, where the maximum out-
degree grows with the size of the graph. We display the Kendall’s T between the true ordering
and the estimated ordering for the high-dimensional top-down (HTD) and high-dimensional
bottom-up (HBU) procedures. A larger value indicates better performance.

Small k Hub graph
n p | HTD [ HBU | HTD | HBU

0.57» | 0.99 | 0.89 | 1.00 | 0.70
0.75n | 0.98 | 0.89 | 0.99 | 0.52
80 n 095 | 0.87 | 095 | 0.39
1.5n | 0.84 | 0.83 | 0.77 | 0.25
2n 0.72 | 0.73 | 0.55 | 0.16

0.5n» | 1.00 | 0.93 | 1.00 | 0.70
0.75n | 0.99 | 092 | 1.00 | 0.50
100 n 097 | 0.87 | 0.97 | 0.38
1.5n | 0.86 | 0.84 | 0.74 | 0.26

2n 0.73 | 0.78 | 0.63 | 0.12

0.5n | 1.00 | 095 | 1.00 | 0.77
0.75n | 1.00 | 0.90 | 1.00 | 0.61
200 n 099 | 0.79 | 0.99 | 0.48
1.5n | 0.87 | 0.74 | 0.80 | 0.20

2n 0.74 | 0.64 | 0.65 | 0.13
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Supplementary material for On Causal Discovery
with Equal Variance Assumption

The methods are implemented in an R package titled ‘EqVarDAG’ available at
https://github.com/WY-Chen/EqVarDAG.

A. PROOF OF THEOREMS 2 AND 3

We first give a lemma that addresses the estimation error for inverse covariances.

LEMMA 6. Assume X ~ (B,0?,v). Suppose all (q+ 1) x (q+ 1) principal submatrices of ¥ =
E(X XT) have minimum eigenvalue at least Ay, > 0. If for €, > 0 we have

2p + 2p ~? 2 2 N Amin + 1 2
2 I S . Jmin T 7
n > (¢g+1) {log ( c )}128 <1+4 5 r]neaXE“ e . 1)

a » -1_ (% -1 <
CQV{I‘lCéqJ,»] 1Ee.e) (o) oo <n

then

with probability at least 1 — e.

2
Proof. Let § = M}% Because § < zr_ff, by Lemma 5 from Harris and Drton (2013), we
have

- (q + 1)5/>\min

1(Be.e) ™ = (See) oo < : =7

max
CCV,|C|<(q+1)

provided || — ¥[|oo < 6. The proof is thus complete if we show that P (Hi = Yloo > 6) <e.
Note that X; = & + 3 c.n(j) Tjkex has variance o?(1+ 32, ;) 75,). Since «y is a bound on the

sub-Gaussian parameters of all ¢, it follows that X; /4/var(X;) is sub-Gaussian with parameter at most
~/o. Lemma 1 of Ravikumar et al. (2011) applies and gives

~ né? 2
P{|>%;; — %] >0} <4 — < .
(1% = iyl > 0} < eXp{ 128(1 +472/a2)2maxj(zj_j)2} =+ 1)
A union bound over the entries of X yields that indeed P (||§3 =Yoo > 5) <e O

Proof of Theorems 2 and 3. Our assumption on n is as in (1) with = (/(20%(1 + ¢)). Lemma 6 thus
implies that, with probability at least 1 — €, we have for all subsets © C V with |O| < ¢ + 1 that

L _ ¢
[(Ze,0)" = (Ze,0) oo < (10

Let j be a source in G(B), and let k be a non-source. Note that variance of j conditional on some set

Cl is

2

1
Eclu{j},clu{j})_l}j,j.

2
9jicn = {(
By Lemma 3, for any Cy,Co C © C V' \ {4, k} such that © is an ancestral set and pa(j) C C;

1o ¢

{(Eclu{j}aclu{j})il}j,j - {(EczU{k}CzU{k’})il}mk = o2 o2(1+¢) o021+ @)
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Using (2), when |C'y | and |C3| are both at most ¢, we obtain that

{(201u{j},clu{j})_l}jj - {(202U{k},CQU{k})_1}k s 0. “4)

A 2 A 2 . . . .
Thus & Slor < Okics which implies that Algorithm 1 correctly selects a source node at each step. On the

first step, © = () which is trivially an ancestral set. By induction, each subsequent step then correctly adds
a sink to © so © remains ancestral and a correct ordering is recovered. g

B. SIMULATIONS AS IN PETERS AND BUHLMANN (2014)

We revisit the simulation study of Peters and Biihlmann (2014). DAGs are generated by first creating
a random topological ordering, then between any two nodes, an edge is included with probability p.. We
simulate a sparse setting with p. = 3/(2p — 2) and a dense setting with p. = 0.3. The linear coefficients
are drawn uniformly from [—1, —.1] U [.1, 1] and the errors are drawn from a standard Gaussian distribu-
tion. Following Peters and Biihlmann (2014), we compute the Hamming distance between the true and
estimated adjacency matrix.

Tables 4 and 5 demonstrate that in both settings, the greedy algorithm performs better when p is small.
However, when p = 40 the top-down and bottom-up algorithms infer the graph more accurately. In the
dense setting, the proposed methods have similar FDR to greedy search, but substantially higher recall. In
the sparse setting, the proposed methods have lower recall than greedy search, but also substantially lower
FDR.

Table 4. Dense setting considered by Peters and Biihlmann (2014) where the edge v — u is
included with probability p. = .3 for all v < u — 1. The methods included in the table are top-
down (TD), bottom-up (BU), and greedy DAG search (GDS). For Hamming distance, Flipped,
and False Discovery Rate (FDR) a smaller value indicates better performance; for Recall a
larger value indicates better performance.

Hamming Dist. Recall % Flipped % FDR %

(p |n TD | BU | GDS [ TD | BU | GDS | TD | BU | GDS | TD | BU | GDS
100 [13[13[ 1.1 [73 [73 [ 78 7177 [16][15] 18

5 [500 [07[07] 05 |80 [80 |88 41745 817719
1000 [ 0.5 [ 0.5 [ 04 [85 [84 [92 3 [ 3] 5 [ 5[5 ] 7

100 [ 31 [32] 30 [73 [73 [74 413 6 [27]28] 25
20500 [ 22 [ 22 | 14 [91 |91 |91 2 [ 3] 4 [24[24] 13
1000 | 28 [ 28 [ 8 [94 [94 [96 2 [ 2] 2 J21[21] 10

100 [170 [ 174 [ 215 [66 |65 [ 54 2 [ 3] 8 [36][37] 45

40 [ 500 [ 152 [ 155 ] 186 |93 [93 |76 2 [ 2] 9 [38[39] 42
1000 | 136 [ 137 [ 168 [ 96 |95 [ 83 1L [ 1 [ 8 [36]36] 38

C. SIMULATIONS AS IN GHOSHAL AND HONORIO (2018)

We construct random graphs as in Section 5-2, but we follow the data sampling procedure as used in
Ghoshal and Honorio (2018). All linear coefficients are drawn uniformly from =+[.5,1], and errors are
drawn from the Rademacher distribution and scaled to have o2 = 0.8. Table 6 demonstrates that both
methods perform reasonably well when Markov blankets are restricted to be small, and the top-down
approach performs substantially better when there are hubs.
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Table 5. Sparse setting considered by Peters and Biihlmann (2014) where the edge v — u is
included with probability p. = 3/(2p — 2) for all v < u — 1. The methods included in the table
are top-down (TD), bottom-up (BU), and greedy DAG search (GDS). For Hamming distance,
Flipped, and False Discovery Rate (FDR) a smaller value indicates better performance; for
Recall a larger value indicates better performance.

Hamming Dist. Recall % Flipped % FDR %

lp |n TD [ BU [GDS | TD [ BU [ GDS | TD | BU | GDS | TD | BU | GDS
100 16 [1.7] 1.4 [74 [73 |78 8 [ 8 8 [I8[18] 17

5 [500 [08[09] 06 [8 [84 |91 3415 777109
1000 [ 0.6 [ 0.6 | 0.4 |88 [88 |94 3[4 5 667

100 [ 7 7] 12769 [69 81 474 6 [16]17] 43

20 [500 [35[35[ 45 [85 |84 [93 414 4 98] 2
1000 [ 22 (22| 28 [90 [90 |97 3 [ 2] 3 [ 5[5 ] 14

100 [14 [ 15 ] 45 [64 [63 |78 3[4 8 [16]18] 62

40 [500 | 7 [ 7 [ 16 [84 |84 [94 3 [ 3] 3 [ 8[ 7133
1000 5 [ 5] 10 [9 [89 |97 3 [ 3] 3 [ 6]6] 24

Table 6. High-dimensional setting considered in Ghoshal and Honorio (2018) with Rademacher
noise and maximum in-degree q = 3. We consider two settings: Small k, where the maximum
out-degree is less than 4, and Hub graph, where the maximum out-degree grows with the size
of the graph. We display the Kendall’s T between the true ordering and the estimated ordering
for the high-dimensional top-down (HTD) and high-dimensional bottom-up (HBU) procedures.
A larger value indicates better performance.

Small k& Hub graph
n p | HTD | HBU | HTD | HBU

0.5n | 099 | 095 | 098 | 0.73
0.75n | 098 | 090 | 0.89 | 0.46
80 n 096 | 090 | 0.76 | 0.36
1.5n | 0.84 | 0.86 | 0.52 | 0.23
2n 0.71 | 0.80 | 0.35 | 0.10

0.5n | 099 | 097 | 0.99 | 0.69
0.75n | 099 | 095 | 0.92 | 0.46
100 n 096 | 093 | 0.76 | 0.34
1.5n | 0.84 | 0.88 | 0.52 | 0.26
2n 072 | 0.82 | 0.39 | 0.13

0.5n | 1.00 | 099 | 1.00 | 0.79
0.75n | 1.00 | 098 | 0.98 | 0.59
200 n 098 | 097 | 0.86 | 0.47
1.5n | 0.86 | 0.84 | 0.61 | 0.20

2n 0.73 | 0.77 | 048 | 0.10

D. SIMULATIONS OF FULLY CONNECTED GRAPHS

We run simulations with fully connected graphs, as suggested by a reviewer. The linear coefficients are
drawn uniformly from +[.3, 1] and the errors are drawn from a standard Gaussian distribution. The results
confirm the advantages of the proposed methods and are shown in Table 7. In general, the estimated graphs
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from the top-down and bottom-up procedure differ only slightly, and the values reported in the table differ
in the 3rd or 4th digit.

Table 7. Fully connected setting where each node v is a child of all nodes u < v. The methods
included in the table are top-down (TD), bottom-up (BU), and greedy DAG search (GDS). For
Flipped, and False Discovery Rate (FDR) a smaller value indicates better performance; for
Kendall’s T and Recall a larger value indicates better performance.

Kendall’s 7 Recall % Flipped % FDR %

]p\n TD\BU\GDS TD\BU\GDS TD\BU\GDS TD\BU\GDS
100 [ 092|093 | 0.83 | 91 | 92 80 4 3 7 4 4 9

5 [ 500 [099]099 | 097 | 98 | 98 98 1 1 1 1 1 1
1000 | 1.00 | 1.00 | 0.99 | 99 | 100 | 99 0 0 1 0 0 1

100 | 098 | 098 | 0.62 | 74 | 74 45 1 1 9 1 1 17

20 | 500 | 1.00 | 1.00 | 0.73 | 90 | 90 66 0 0 8 0 0 12
1000 | 1.00 | 1.00 | 0.81 | 92 | 92 76 0 0 7 0 0 8

100 | 099 | 099 | 0.55 | 42 | 42 33 0 0 7 1 1 17

40 | 500 | 1.00 | 1.00 | 0.62 | 50 | 50 49 0 0 8 0 0 14
1000 | 1.00 | 1.00 | 0.67 | 52 | 52 59 0 0 8 0 0 12

E. AS INITIALIZER FOR GREEDY SEARCH

As suggested by a reviewer, we explore the performance of the greedy DAG search algorithm initialized
with the estimates from the top-down procedure. We run simulations with the same data as in Section 5-1.
Tables 8 and 9 show averages over 500 random realizations for the top-down procedure, the greedy DAG
search with random initialization, and the greedy DAG search with a warm initialization. The greedy
search with a random initialization is identical to the greedy procedure described in Section 5-1 and Peters
and Biihlmann (2014). In the greedy search with a warm initialization, we initialize with the output from
the top-down method, then search through a large number of graph neighbors (k = 300) at each greedy
step. Since the warm start procedure is supplied with a good initialization, we do not restart the greedy
search after it terminates; 5 random restarts with graph neighbors k& = p, 2p, 3p, 5p, 300 are used in the
random initialization procedure. For simplicity, we omitted the experiment with the bottom-up procedure.

Tables 8 and 9 shows that in all the settings, warm initialization performs better than the other two
methods, especially when p is large. For reference, the average run time in the dense setting with p = 40
and n = 1000 is 8 seconds for the top-down method, 4,500 seconds for greedy random initialization, and
400 seconds for greedy warm initialization.

[Received 2 January 2017. Editorial decision on 1 April 2017]
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Table 8. Low-dimensional dense settings v — w is included with probability p. = .3 for all
v < u — 1. The methods included in the table are top-down (TD), Greedy search with random
initialization (GR), and Greedy search initialized by the top-down estimate (GW). For Kendall’s
T and Recall a larger value indicates better performance; for Flipped and False Discovery Rate
(FDR) a smaller value indicates better performance.

Kendall’s 7 Recall % Flipped % FDR %
lp [n TD | GR [GW | TD |[GR [GW [TD [GR [ GW | TD | GR | GW
100 [085[088[088]91 [91 91 [ 7 [6] 6 [17]9]10
5 [500 (098109809999 [99 9 [ 1 [ 1 [ 1 [4][2]2
1000 [ 09909909999 [ 99 [ 99 [ 1 [ 1 [ 1 [ 3] 1] 1
100 [092]061[094] 8 [62] 9 [ 3 [13] 3 [32]43] 15
20 [500 [0.99 1075709999 [81 99 [ 1 [11 ][ 0 [28[35] 3
1000 | 1.00 [ 0.82 [ 1.00 [ 100 | 88 [ 100 | O [ 8 [ 0 [26 [ 28 | 2
100 [ 096053096 71 [ 44 | 84 [ 2 [ 11 [ 2 |41 58] 20
40 [500 099 [059[1.00] 96 | 63 [100 [ 0 [ 14 [ 0 [41 |57 | 4
1000 | 1.00 [ 0.64 [ 1.00 | 97 | 71 [ 100 [ 0 [ 14 [ 0 |40 |57 | 2

Table 9. Low-dimensional sparse setting where the edge v — w is included with probability p. =
3/(2p — 2) for all v < u — 1. The methods included in the table are top-down (TD), Greedy
search with random initialization (GR), and Greedy search initialized by the top-down estimate
(GW). For Kendall’s T and Recall a larger value indicates better performance; for Flipped and
False Discovery Rate (FDR) a smaller value indicates better performance.

Kendall’s 7 Recall % Flipped % FDR %
p |n TD [ GR [GW | TD [GR |GW [ TD [ GR | GW | TD | GR | GW
100 [0.87[0.88[087[91 [9 [ 91 [ 6 [ 6] 6 [16] 910
5 [500 (098109810981 98 99 [ 99 [1 [ 1T [ 1 [5[2]2
1000 099099099199 [99 [ 9 [ 1 [ 1 [ 1 [3]1]1
100 [0.77]060[082] 85 [77 [ 90 [ 9 [15] 7 [35]39]25
20 [500 [0.96 [0.77 098 98 [ 89 [ 99 [ 2 [ 10| 1 [ 1926 8
1000 [ 0.99 [0.81 [0.99 100 90 [100 [ 0 [ 9 [ 0 [14[23 ] 4
100 [0.72[047[079[ 81 [ 728 [10[ 20 7 [38 ][54 36
40 [500 [0.96 [058 098 98 |81 [ 99 [ 2 [ 18 1 [24[47] 13
1000 [ 0.99 [0.61 [0.99] 99 [ 82 [ 100 | 1 [17 | 0 [ 17 [ 48| 8




