Biometrika (2018), 103, 1, pp. 1-19
Printed in Great Britain Advance Access publication on XX

High-dimensional Causal Discovery Under Non-Gaussianity

By Y. SAMUEL WANG

Booth School of Business, The University of Chicago
Chicago, Illinois 60615, U.S.A

swang24 @uchicago.edu

AND MATHIAS DRTON

Department of Mathematical Sciences, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen @, Denmark
Department of Statistics, University of Washington, Box 354322
Seattle, Washington 98195, U.S.A

md5 @uw.edu

SUMMARY

We consider graphical models based on a recursive system of linear structural equations. This
implies that there is an ordering, o, of the variables such that each observed variable Y, is a linear
function of a variable specific error term and the other observed variables Y,, with o(u) < o(v).
The causal relationships, i.e., which other variables the linear functions depend on, can be de-
scribed using a directed graph. It has been previously shown that when the variable specific error
terms are non-Gaussian, the exact causal graph, as opposed to a Markov equivalence class, can be
consistently estimated from observational data. We propose an algorithm that yields consistent
estimates of the graph also in high-dimensional settings in which the number of variables may
grow at a faster rate than the number of observations, but in which the underlying causal struc-
ture features suitable sparsity; specifically, the maximum in-degree of the graph is controlled.
Our theoretical analysis is couched in the setting of log-concave error distributions.

Some key words: Causal discovery; Directed graphical model; High-dimensional statistics; Structural equation model;
Non-Gaussian data

1. INTRODUCTION

Prior work shows the possibility of causal discovery with observational data in the frame-
work of linear structural equation models with non-Gaussian errors. However, existing meth-
ods for estimation of the causal structure are applicable only in low-dimensional settings, in
which the number of variables, p, is small compared to the sample size, n. In this paper, we de-
velop a method which, given suitable sparsity, recovers the exact causal structure consistently in
high-dimensional regimes where p grows along with n. Careful considerations of computational
aspects make our method a practical and statistically sound exploratory tool for the intended
high-dimensional settings.

Let Y1,...,Y, € R? be multivariate data from an observational study, specifically, the ob-
servations form an independent, identically distributed sample. We encode the causal structure
generating dependences in the underlying p-variate joint distribution by a graph G = (V, E)
with vertex set V = {1,...,p}. Each node, v € V, corresponds to an observed variable in
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Fig. 1: The Markov equivalence class of graph (a) is a singleton. However, graph (b), (c) and (d)
are Markov equivalent and imply the same set of conditional independences.

Y; = (Yyi)vev, and each directed edge, (u,v) € F, indicates that Y,,; has a direct causal effect
on Y,;. Thus, positing causal structure is equivalent to selecting a graph. We will only consider
directed acyclic graphs (DAGS), directed graphs which do not contain directed cycles. Given the
correspondence between a node v € V and the random variable Y,,;, we will at times let v stand
in for Y,;; for instance, when stating stochastic independence relations.

Discovery of causal structure from observational data is difficult because of the super-
exponential set of possible models, some of which may be indistinguishable from others. Despite
this difficulty, many methods for causal discovery have been developed and have seen fruitful ap-
plications; see the recent review of Drton and Maathuis (2017). In particular, the celebrated PC
algorithm (Spirtes et al., 2000) is a constraint-based method which first infers a set of condi-
tional independence relationships and then identifies the associated Markov equivalence class;
this class contains all DAGs compatible with the inferred conditional independences. Kalisch and
Biihlmann (2007) show if the maximum total degree of the graph is controlled and the data is
Gaussian, then the PC algorithm can consistently recover the true Markov equivalence class even
in high-dimensional settings where the number of variables grows with the number of samples.
Harris and Drton (2013) extend the result to Gaussian copula models using rank correlations.

However, graphs within the same Markov equivalence class may have drastically different
causal and scientific interpretations. For the graphs in Figure 1, conditional independence tests
can distinguish model (a) from the rest but cannot distinguish models (b), (c), and (d) from each
other. Although Maathuis et al. (2009) provide a procedure for bounding the size of a causal
effect over graphs within an equivalence class, interpretation of the set of possibly conflicting
graphs can remain difficult. Results on the size and number of Markov equivalence classes,
which may be exponentially large, can be found e.g. in Steinsky (2013).

In contrast, it has been shown that under various additional assumptions, the exact graph
structure, not just an equivalence class, can be identified from observational data (Loh and
Biihlmann, 2014; Peters and Biihlmann, 2014; Rothenhiusler et al., 2018). In particular, Shimizu
et al. (2006) show this to be the case under three main assumptions: (1) the data are generated
by a linear structural equation model, (2) the error terms in the structural equations are non-
Gaussian, and (3) there is no unobserved confounding among the observed variables; i.e., errors
are independent. These assumptions yield the linear non-Gaussian acyclic model, abbreviated as
LiNGAM, which is described formally in Section 2-1. Under the LINGAM framework, the four
models from Figure 1 are mutually distinguishable. Shimizu et al. (2006) use independent com-
ponent analysis to estimate the graph structure, and the subsequent DirectLINGAM (Shimizu
et al., 2011) and Pairwise LINGAM (Hyvérinen and Smith, 2013) methods iteratively select
a causal ordering by computing pairwise statistics. These methods are motivated by identifia-
bility results that are derived by iteratively forming conditional expectations. In practice, the
conditional expectations are estimated using larger and larger regression models. As a result, the
methods become inapplicable when the number of variables exceeds the sample size.

We develop a modification of the DirectLiNGAM algorithm that is suitable for high-
dimensional data and give guarantees for when our algorithm will consistently recover the true
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graph in high-dimensional asymptotic scenarios. Most notably, our analysis considers restricted
maximum in-degree of the graph and assumes log-concave distributions. The theory also applies
to hub graphs where the maximum out-degree may grow with the size of the graph, which is in
contrast to the conditions needed for high-dimensional consistency of the PC algorithm (Kalisch
and Biihlmann, 2007). Hub graphs appear in many biological networks (Hao et al., 2012).

2. CAUSAL DISCOVERY ALGORITHM
2-1.  Generative model and notation

We assume that the observations Y7, ..., Y, € R? are independent, identically distributed
replications generated from a linear structural equation model so that the elements of each ran-
dom vector Y; satisfy

Yoi = Y BouYui + v, )
uFv

where the (3, are unknown real parameters that quantify the direct linear effect of variable u on
variable v, and €,; is an error term of unknown distribution P,. We assume ¢,; has mean 0 and
is independent of all other error terms. Our interest is in models that postulate that a particular
set of coefficients 3,, is zero. In particular, the absence of an edge, (u,v) ¢ E, indicates that
the model constrains the parameter (3,,, to zero. We assume that the graph, G, representing the
model is a DAG, which implies that the structural equation model is recursive; i.e., there exists a
permutation of the variables, o, such that f3,,, is constrained to be zero unless o (u) < o(v).

We denote the model given by graph G' by P(G). Each distribution P € P(G) is induced
through a choice of linear coefficients (ﬁvu)(u,u)e  and error distributions (P,)ycv. Let B =
(Byu) be the p X p matrix determined by the model constraints and the chosen free coefficients.
Then the equations in (1) admit a unique solution with Y; = (I — B )_lsi. The error vectors ¢; =
(€vi)vev are independent and identically distributed and follow the product distribution ®,cy P, .
The distribution P is then the joint distribution for Y; that is induced by the transformation of ¢;.

Standard notation has the set pa(v) = {u : (u,v) € E} comprise the parents of a given node
v. The set of ancestors, an(v), contains any node u # v with a directed path from u to v; we let
An(v) = an(v) U {v}. The set of descendants, de(v), contains the nodes u with v € an(u).

2-2.  Parental faithfulness

An important approach to causal discovery begins by inferring relations such as conditional
independence and then determines graphs compatible with empirically found relations. For this
approach to succeed, the considered relations must correspond to structure in the graph G as
opposed to a special choice of parameters. In the context of conditional independence, the as-
sumption that any relation present in an underlying joint distribution P € P(G) corresponds to
the absence of certain paths in GG is known as the faithfulness assumption; see Uhler et al. (2013)
for a detailed discussion. For our work, we define a weaker condition, parental faithfulness. In
particular, if u € pa(v), we require that the total effect of u on v does not vanish when we modify
the considered distribution by regressing v onto any set of its non-descendants, as detailed next.

Let [ = (v1,...,v,) be a directed path in G, so (vj,vj4+1) € E for j =1,...,z — 1. Given
coefficients (ﬁvu)(um)e > the path has weight w(l) = Hj;% Buj10;- Let Loy, be the set of all
directed paths from u to v. Then the total effect of u on v is Ty, = D ;¢ Lo w(l), with my,, = 0if
u ¢ An(v) and 7,,, = 1 if u = v. The effect gives the conditional mean of v under interventions
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Fig. 2: In (a), the choice 531 = 21 = 1 and 32 = —1 results in parental unfaithfulness because
7319 = 0. Also, the choice 831 = (21 = f32 = 1 and E(e?) = FE(¢3) = E(e3) = 1 is not faith-
ful because the partial correlation of 2 and 1 given 3 is 0, but is still parentally faithful. In (b),
the choice 831 = B32 = Baa = 1, B41 = 2, and E(e7) = E(e3) = E(¢3) = 1 results in parental
unfaithfulness because 7493 = 0.

on u; i.e., my, = E(Yy |do(Yyi =y +1)) — E(Y,i | do(Y,; = y)) using the do-operator of
Pearl (2009). Total effects may be calculated by matrix inversion, Il = (myy),, ey = (I — B)~ L.

Let ¥ = E(Y;Y}") be the covariance matrix of the, for convenience, centered random vector
Y; ~ P. Let Xc¢ be the principal sub-matrix for a non-empty set of indices C' C V. For v €
V' \ C, let ¥, be the sub-vector comprised of the entries in places (¢, v) for ¢ € C'. Let

Boc = (Bue.c)eec = (Scc) ' Sew (2)

be the population regression coefficients when v is regressed onto C'. The quantity [3,..c is de-
fined even if (c,v) ¢ E, and in general Sy.c # Byc even if (¢,v) € E. A pair (u,v) € E is
parentally faithful if for any set C' C V' \ [de(v) U {v, u}], the residual total effect defined as

Tou.C = Tou — Z ﬁvc.Cﬂ-cu (3)

ceC

is nonzero. If this holds for every pair (u, v) € E, we say that the joint distribution P is parentally
faithful with respect to GG. Parental faithfulness only pertains to the linear coefficients and error
variances, and the choices for which parental faithfulness fails form a set of Lebesgue measure
zero. The concept is exemplified in Figure 2.

2-3.  Test statistic

Reliable determination of the causal direction between u and v generally requires removal of
all confounding. Thus, Shimizu et al. (2011) and Hyvérinen and Smith (2013) adjust v and u for
all z such that o(x) < o(v) and o(x) < o(u). However, adjusting by an increasingly larger set of
variables propagates error proportional to the number of variables, rendering high-dimensional
estimation inconsistent, or impossible when the size of the adjustment set exceeds the sample
size. On the other hand, restricting the size of the adjustment sets may not remove confounding
completely. The method we present solves this problem via a statistic that is conservative in the
sense that it does not mistakenly certify causal direction when confounding is present.

Shimizu et al. (2011) calculate the kernel-based mutual information between v and the residu-
als of u when it is regressed onto v. The corresponding population information is positive if and
only if v € de(u) or there is uncontrolled confounding between v and w, that is, u and v have a
common ancestor even when certain edges are removed from the graph. Hence, the mutual in-
formation can be used to test the hypothesis that v ¢ de(u) versus the hypothesis that v € de(u)
or there is confounding between u and v. Unfortunately, calculating the mutual information can
be computationally burdensome, so Hyvérinen and Smith (2013) propose a different parameter
R,,,. Without confounding, R, > 0if v € an(u) and R,,, < 0if u € an(v). With confounding,
however, the parameter can take either sign, so it cannot be reliably used if we remain uncertain
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about whether or not confounding occurs. We introduce a parameter that shares the favorable
properties of the mutual information but admits computationally inexpensive estimators that are
rational functions of the sample moments of Y, which facilitates analysis of error propagation.

The parameter we consider is motivated by the following observation. Suppose the true gen-
erating mechanism is Y7 — Y5 so that Y7 =1 and Yo = (821Y] + €2 for £; independent of
£2. When the causal direction is correctly specified, the linear coefficient 521 is recovered by
E(YE 1Y) /E(YE) for all integers K greater than 1 for which E(Y{) # 0. Of course, letting
K = 2 gives the typical least squares estimator. This leads to the identity E(Y,* ~1Y3) /E(Y}FK) =
E(Y1Y2)/E(Y?) which implies IE(YIK_IYQ)IE(Yf) — E(Y1Y2)E(Y¥) = 0, which holds even
when E(Y{) = 0. In general, however, when the errors are non-Gaussian and the roles of Y}
and Y, are swapped, this identity does not hold. When there are more than 2 variables involved,
we reduce the problem to a bivariate problem by conditioning on an appropriate set C. To this
end, define for any i the residual

Yiyic =Y — Z Bye.cYei,
ceC

where f3,..c are the population regression coefficients from (2). When C' = (), let Y,; g = Y.

THEOREM 1. Let P € P(G) be a distribution in the model given by a DAG G, and let Y; ~ P.
For K > 2, two distinct nodes w and v, and any set C C V' \ {u, v}, define

(K)
Ty.C—u

(i) If u & pa(v) and pa(v) C C C V \ [de(v) U {v,u}], then 5~

v.C—u
(ii) Suppose u € pa(v) with u,v parentally faithful under the covariance matrix of P. If C' C

V\ [de(v) U{v,u}], then T(.Ié)_m # 0 for generic error moments of order 3, . .., K.

v
Estimators ﬁf[é)Hu of the parameter from (4) are naturally obtained from empirical regression
coefficients and empirical moments.
In Theorem 1(ii), the term generic indicates that the set of error moments for which this state-
ment does not hold has Lebesgue measure zero. Given that there is a finite number of sets C' C V,
the union of all exceptional sets is also a null set. A detailed proof of Theorem 1 is included in

the supplement. Claim (i) can be shown via direct calculation, and we give a brief sketch of (ii)

here. For fixed coefficients (8yu)(u,0)er and set C C V/, qulé)_m

= Ep(YEC'Yu)Ep(Y2c) — Ep(YE ) Ep(YuicYu). @)

v v

is a rational function of the error

moments. Thus existence of a single choice of error moments for which Tlslé)_> ., 7 0is sufficient
to show that the statement holds for generic error moments. As the argument boils down to show-
ing that a certain polynomial is not the zero polynomial (Okamoto, 1973), the choice considered
need not necessarily be realizable by a particular distribution. In particular, we choose all mo-
ments of order less than K equal to those of the centered Gaussian distribution with variance

02 = E(£2), but for the K'th moment we add an offset 1, > 0, so

if K is odd,
B(ef)=4" X R )
(K —1D)lo,t +n, if K is even,
where ¢!! =[] qu/g ]_l(q — 2z) is the double factorial of q. If there is no confounding between
Y,.c and Yy, that is, no ancestor of w is the source of a directed path to v that avoids C' U {u},
then

K _
e = o (Tl E mol =m0 ©

150

155

160

165

170

175

180



185

190

195

200

205

210

215

220

6 Y. S. WANG AND M. DRTON

with m,u c #0, by the assumed parental faithfulness. Thus, a choice of offsets with
T, C N0 # ny,02 implies T(Ié) _,u 7 0. A more involved but similar argument can be made

in the case of confounding. Under a slightly stronger form of faithfulness, 7, 2 0 if there is

confounding regardless of whether v € pa(v); see supplement Remark 1.

’ vC—>u

COROLLARY 1. Let P, and P, be two distributions that each have all moments up to order K
equal to those of some Gaussian distribution. Then there exists a graph G, for which u € pa(v),

and distributions P which are parentally faithful with respect to G, but 7'( CL , = 0 for some set
C CV\ [de(v) U{v, u}].

Proof. The moments of P, and P, satisfy (5) with n, = 1, = 0. Consequently, if there exists
a set C' such that there is no confounding between Y,, o and Y, then 7, o_,, satisfies (6), the
right-hand side of which is zero when n, = n,, = 0. For example, if £, and ¢,, are both Gaussian
and the graph is u — v, Téi’u = 0 for all choices of 3,, and all K. O
Corollary 1 confirms that the null set to be avoided in Theorem 1(ii) contains points for which
all error moments are consistent with some Gaussian distribution. Thus, our identification of
causal direction requires that the error moments of order at most K be inconsistent with all
Gaussian distributions. In practice, we consider the case K = 3,4 and recommend K = 4 unless
one is certain the errors are not symmetric. We refer readers to Hoyer et al. (2008) for a full
characterization of when graphs with both Gaussian and non-Gaussian errors are identifiable.

At each step, the high-dimensional LINGAM algorithm presented in Section 3-1 considers a
sub-graph and searches for a root node, i.e., a node without any parents. Suppose de(Vs) = V, C
V; if v € V5 is not a root in the sub-graph induced by V5, then there must exist some u € V5
with 7, 0, # 0 for all sets C' which are upstream of v and V5. However, if v is a root, then
Tv.C—y = 0 forall u € Vo when C' = pa(v). Thus, to test whether v is a root in V5, we aggregate
the various 7 parameters corresponding to u € V5 and conditioning sets C'. Corollary 2 describes
two ways to do this aggregation. If v is a root, this quantity will be 0, and if v is not a root, it will
be positive.

COROLLARY 2. Let P € P(G), let v € V, and consider two disjoint sets V1,V C V \ {v}.
For a chosen non-negative integer J, define

(K) ] TQ(K

Tyl )(0,V1,Va) = max min |[r) |

K)
T( v,V1,V5) = min max
1 ( ) ) ) | ueVs CEVi(J) v.C—ul’

CeVy(J)uevs
where Vi(J) = {C C Vi |C| = JY if J < |Vi| and Vi(J) = Vi if J > |Vi|
() If |pa(v)| < J and pa(v) C Vi C V' \ de(v), then
7 (0,1, Vo) = T3 (0,11, Vo) = 0.
(i) Suppose By # 0 for all u € pa(v). If de(VoU{v}) C Vo U {v} and pa(v) NVy # 0,

then for generic error moments of order up to K, we have TI(K) (v,V1,V2) > 0 and
7% (0,1, V3) > 0.

Proof. (i) The statement follows immediately from Theorem 1. (ii) Since, pa(v) N Vs # 0,
but de(Va U {v}) C Vo U {v}, there exists some u € pa(v) N Va such that de(u) N pa(v) = 0.
For that u and any C' C Vj, the residual total effect is my,.c = Bow — . cec Boe.cTeu = Bou
because the assumed facts de(Va U {v}) N Vi = () and de(v) N pa(v) = (@ imply that 7., = 0 for
all c € C' and 7rvu = Byu- We have assumed (3, # 0, so, by Theorem 1, generic error moments

ensure that | | > 0 for all C, which in turn implies T( )(v, Vi,Va) >0forj=1,2. O

T. C%u
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When (i) is satisfied, there may be more than one set C' which makes all pairwise statistics 0.
T is calculated by finding a single conditioning set C' which minimizes the maximum pairwise
statistic 7 across all u € Vb; in contrast, 75 allows for a different conditioning set for each w.
For fixed v, Vi, and V5, the signs, either positive or zero, of 7} (min-max) and 75 (max-min)
will always agree, but when pa(v) N Vs # () and both quantities are positive, 71 > T5. Thus,
the min-max statistic may be more robust to sampling error when testing if the parameters are
non-zero. However, as discussed in Section 3-1, 75 can be computed more efficiently than 77.
Theorem 1(ii) requires parental faithfulness since we consider arbitrary u € pa(v), whereas
Corollary 2(ii) only requires that 3,,, # 0 since we maximize over V5. Use of sample moments

yields estimates 7, .c_,,, Which in turn yields estimates Tj(K) (v,V1,V3) of Tj(K) (v, V1, Va) for
7 = 1, 2. In the remainder of the paper, we drop the subscript j in statements that apply to both
parameters/estimators. Moreover, as we always fix K, we lighten notation by omitting the super-

script, writing T'(v, V1, Va), Ty.c—v and Ty 0.

3. GRAPH ESTIMATION PROCEDURE
3-1. Algorithm

We now present a modified DirectLiNGAM algorithm which estimates the underlying causal
structure (Algorithm 1). As in the original algorithm, we identify a root and recur on the sub-
graph that has the identified root removed. After step z, we have a z-tuple, ©(%), which gives
an ordering of the roots identified so far, and the remaining nodes ¥(?) = v\ ©(*)_ In contrast
to DirectLiNGAM, the proposed algorithm does not adjust for all non-descendants, but only for
subsets of limited size. This gives meaningful regression residuals also when the number of vari-

ables exceeds the sample size and limits error propagation from the estimated linear coefficients.

At each step z, we consider subsets of Céz) C ©==1 | which we use to denote the set of

possible parents for v. Naively allowing Céz) = ©(*~1 is not precluded by theory, but the number
of subsets C' C ©~1) such that |C| = J grows at O(z”). Thus, for computational reasons, we

prune nodes which are not parents of v by letting

c) = {p eC* Y. min |Tv.cp| > g(z)} U @;:11) (7)
cep®

where D{?) = Uge1C:C C e \ {p};|C] < J}, Q(;__ll) is the node selected at the previous

step, and ¢(®) is some cut-off value. Selecting a good value for ¢(*) is difficult because it should

depend on the unknown signal strength. However, under the assumptions of Theorem 2, if r

is the root selected at step z — 1 and « is some tuning parameter in [0, 1], then letting g =

max(g(zfl), oT (r, Cﬁz) ) \I/(zfl))) will not mistakenly prune parents from Cq(,z). In Algorithm 1,
we do not update Cq(jz) after v is selected as a root. Since the final cut-off, ¢(*), may be larger than

the cut-off used to select ng), a final pruning step uses the criteria from (7) with g to prune

away nodes in Cl()p ) that may be ancestors but not parents.

A larger value of « prunes more aggressively, decreasing the computational effort. However,
setting « too large could result in incorrect estimates if some parent of v is incorrectly pruned

from Cl(,z). Section 3-2 discusses selecting an appropriate o and a more detailed discussion of
computational savings from the pruning procedure is given in the supplement.
As discussed in Section 2-3, 77 may be more robust to sampling error than 75 but comes at

greater computational cost. At each step, ¥(?) decreases by a single node and Ci(,z) may grow by
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8 Y. S. WANG AND M. DRTON
Algorithm 1. Estimate Causal DAG.

Set ©©) = @ and O = [p].
Forz=1,...,p:
Forv e =1 .

Select the set of possible parents c{? ¢ @1 and compute 7'(v, Cl(,z), W=D {v}).

Let r = argmin,_g 1) (v, C57, WED\ {v}).

Append 7 to ©~1 to form ©(*) and set ¥(*) = =D\ {7},
Prune ancestors to form parents C;; forall v € V.
Return O?) as the topological ordering; {Cx}yev as the set of parents.

one node. If the |\Il(z) |2 values of min ceczD Tv.C—, have been stored, updating TQ, the max-
CEIN b

J-1 °
previous step. Updating the min-max statistic 77 without redundant computation would require
storing the O ((p — 2)?z”) values of |7,.c—|. In practice, we completely recompute it at each
step. Section 4 demonstrates this trade-off between computational burden and robustness.

min, only requires testing the ( ) subsets of Cf,(f) which include the variable selected at the

3.2. Deterministic statement

Theorem 2 below makes a deterministic statement about sufficient conditions under which
Algorithm 1 will output a specific graph G when given data Y = (Y7,...,Y,). We assume
each Y; ~ Py but allow model misspecification so that Py may not be in P(G) for any
DAG G. However, we require that the sample moments of Y are close enough to the popu-
lation moments for some distribution P € P(G). For notational convenience, for H C V' and
o € R Tet Ha = % > (Hve I YUC;“) denote a sample moment estimated from data Y, and
letmpy o= FEp (Hve I ZS”) denote a population moment for Z ~ P.

Condition 1. For some p-variate distribution P, there exists a DAG G with |pa(v)| < J for
all v € V such that:

(a) Forall v,u € Vand C C V \ {u,v} with |C| < J and C Nde(v) = 0; if u € pa(v) then

the population quantities for P satisfy )ng _m‘ > >0.

(b) For all v,u € V and C C V \ {v,u} with |C| < J and pa(v) C C C V \ de(v), if u &

pa(v), then the population quantities for P satisfy 7'15]2« —u = 0.

Condition 2. All J x J principal submatrices of the population covariance of P have mini-
mum eigenvalue greater or equal to A, > 0.

Condition 3. All population moments of P up to degree K, my, for ) a, < K, are
bounded by a constant co > M > max(1, Amin/J) for positive integer J.

Condition 4. All sample moments of Y up to degree K, my,, for ) «, < K, are within
01 < Amin/(2J) of the corresponding population values of P.

The constraint in Condition 3 that M > max(1, A\yin/J) is only used to facilitate simplifi-
cation of the error bounds and is not otherwise necessary. Condition 1 is a faithfulness type
assumption on P, and in Theorem 2 we make a further assumption on  which ensures strong
faithfulness. However, it is not strictly stronger or weaker than the Gaussian strong faithfulness
type assumption. In particular we require the linear coefficients and error moments considered
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to be jointly “sufficiently parentally faithful and non-Gaussian.” So for a fixed sample size, there
may be cases where the linear coefficients and error covariances do not satisfy Gaussian strong
faithfulness, but do satisfy the non-Gaussian condition because the higher order moments are suf-
ficiently non-Gaussian. However, the opposite may also occur where a set of linear coefficients
and error moments satisfy Gaussian strong faithfulness but not the non-Gaussian condition.

Finally, let Pr, (G) be the subset of distributions P € P(G) with 7'15'}2«) . 7 0 whenever
u € pa(v) and C C V' \ ({u,v} Ude(v)). Then the set of linear coefficients and error moments
that induce an element of P(G) \ P, (G) has measure zero. This set difference includes distri-
butions which are not parentally faithful with respect to G and distributions for which there exist
a parent/child pair for which both error distributions have Gaussian moments up to order K.

THEOREM 2. For some p-variate distribution P and dataY = (Y1,...,Y,):

(i) Suppose Condition 1 holds. Then among all DAGs with maximum in-degree at most J,
there exists a unique DAG G such that P € Pr, (G)
(ii) Suppose Conditions 1-4 hold for constants which satisfy

J(K+4)/2MK+1
)\K—i—l

min

v/2 > 831 = 4M6; {16(3K)(J + K)fK
@)

JEFD/2rK+1 2
+2 .

)\K—i-l

min

61 {16(3K)(J + KK

Then with pruning parameter g = /2, Algorithm 1 will output G=0G.

The main result of Theorem 2 is part (ii). The identifiability of a DAG was previously shown
by Shimizu et al. (2006) by appealing to results for independent component analysis; however,
our direct analysis of rational functions of Y allows for an explicit tolerance for how sample
moments of Y may deviate from corresponding population moments of P. This implicitly allows
for model misspecification; see Corollary 3. The proof of Theorem 2 requires Lemmas 1-3, which
we develop first. The lemmas are proven in the supplement. Recall that 3, are the population
regression coefficients from (2), and let Bvc denote the coefficients estimated from Y.

LEMMA 1. Suppose Conditions 2, 3, and 4 hold. Then for any v € V, C CV, and |C| < J,

J32 M6y
A2

min

1Boc — Bucloe < 62 = 4

Recall, that Y,; 0 = Yy — ZCGC Buve.cYei. Let Z, o denote the analogous quantity for Z ~ P,
and let Y0 = Yo — Y e Boe.cYei-

LEMMA 2. Suppose that Conditions 2, 3, and 4 hold. Let s, v be non-negative integers such
that s +r < K, and let Z ~ P. For any v,u € V and C C V \ {u,v} such that |C| < J,

< 51(13(J, K, M, /\min)

1 .
S VoV - E(ZicZ)
%

where

€))

(K+4)/2MK+1

)\K-‘rl

min
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The proof of Lemma 2 relies on the fact that the map from moments of Z to the quantities of
interest are Lipschitz continuous within a bounded domain.

LEMMA 3. Suppose that Conditions 2, 3, and 4 hold. Then
|70.0u — To.Cosu| < AM1®(J, K, M, Amin) + 2 {619 (J, K, M, Ain)}> = 83
for the function ®(J, K, M, Ain) given in Lemma 2.
The proof of Lemma 3 is an application of the triangle inequality.

Proof of Theorem 2. (ii) We proceed by induction. By Lemma 3 and assuming (8), each statis-
tic 7.0 18 Within 03 < 7/2 of the corresponding population quantity. Thus, any statistic cor-
responding to a parameter with value 0 is less than -y/2 and, by Condition 1 and the condition on
~v in (8), all statistics corresponding to a non-zero parameter are greater than /2.

Recall that ©©) is a topological ordering of nodes. Assume for some step z, that 01 is
consistent with a valid ordering of G. Let R®*) = {v € ¥*~ : an(r) C O~} so that any
r € R%) is a root in the subgraph induced by ¥~ and ©) = (=1 U {r}) is consistent
with G. The base case for z = 1 is trivially satisfied since ©(©) = 0.

Setting g = ~y/2 does not incorrectly prune any parents, so pa(r) = ¢'¥), which im-
plies T(r, Cﬁz), dC=1) < 4/2 for all + € R, Similarly, for any v € ¥(*~D\ R(*) there
exists w e D with |Tv.cmu| > /2 for all C C ©E=1 " Thus, T(r, CT(-'Z), \IJ(Z*U) <
T(v, e, U=D) forevery r € R®) andv € U(*=1\ R(). This implies the next root selected,

argmin, g (-—1) T(v, ngz), \11(2_1)) must be in R(®), and thus ©(*) remains consistent with G.
(i) The fact that P € Pp, (G) follows directly from the definition. To show uniqueness, we

use population quantities so that §; = 0 which in turn implies 3 = 0. Then for any v > 0, Al-

gorithm 1 will return G. Thus, by 2(ii), G must be unique. O

Remark 1. As stated Theorem 2 concerns an explicit cut-off g, whereas in practice we specify
a tuning parameter « that is easier to interpret and tune. If o < 1, it holds under the conditions
of Theorem 2 that Algorithm 1 returns a topological ordering consistent with GG, but E may be a
superset of E. However, there exists o > 1 which will recover the exact graph.

To see this note that o < 1 ensures that ¢(*) < ~/2 under the specified conditions, so no
parents are pruned incorrectly and the estimated topological ordering is correct. This, however,
may not remove all ancestors that are not parents, so the estimated edge set may be a superset of
the true edge set. Letting instead

min,, minaépa(v) minCﬂde(v)z@ |7A-U.C'%a|

o =

maXxy MaXgcan(v)\pa(v) minCr‘lde(v)ZQ) ‘%U-C—m‘ , 10
will correctly prune ancestors and not parents. Because all sample moments are close to their
population values, the denominator must be less than /2 and strong parental faithfulness further
implies that the numerator is greater than /2 so (10) is greater than 1. However, setting o too
large may result in an incorrect estimate of the ordering since a true parent may be errantly
pruned. Thus, we advocate a more conservative approach of setting o < 1 which is more robust
to violations of strong faithfulness.

Remark 2. Suppose Py € P(G) but is not necessarily parentally faithful with respect to G.
If o = 0 and S, # O for all (u,v) € E, then for generic error moments a correct ordering will
still be recovered consistently as 6; — 0.
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Indeed, Corollary 2(ii) holds without parental faithfulness. So for generic error moments,
there exists v > 0 such that 7'(v, Cq(f_l), ®E=1) > ~ for all v € @1\ R for all steps =.
However, without parental faithfulness, a parent node may be errantly pruned if o > 0. To en-
sure Corollary 2(i) holds, we need pa(r) C ¢ for all r € R, which is satisfied by letting
CT(,Z) = ©=1)_ For fixed v, since 63 — 0 as 91 — 0, there exists a d; so that v > 2Js.

3-3. High-dimensional consistency

We now consider a sequence of graphs, observations, and distributions indexed by the number
of variables p. For notational brevity, we do not explicitly include the index p in the notation,
and keep simply writing GG, Y, Py and P for these sequences. The following corollary states
conditions sufficient for the conditions of Theorem 2 to hold with probability tending to 1. We
first make explicit assumptions on Py, with mj, , denoting the population moments of Py .
Again, we allow for misspecification, but require control of the Lo, distance between population
moments of Py and some P € Pr, (G).

Condition 5. Py is a log-concave distribution.

Condition 6. All population moments of Py up to degree 2K, my,, for > o, < 2K, are
bounded by M — & > max(1, Amin/J).

Condition 7. Each population moment of Y up to degree K, m@ . for > a, < K, is within
¢ of the corresponding population moment of P.

When Y is actually generated from a recursive linear structural equation model, Condition 7
trivially holds with & = 0 and log-concave errors imply that Y is log-concave.

COROLLARY 3. For a sequence of distributions P and data Y assume Conditiqns 1, 2, 5,
6, and 7 hold. For pruning parameter g = vy /2, Algorithm 1 will return the graph G = G with
probability tending to 1 if

lo J5/2K5/2M2 3KKK+1J(3K)/2+2MK+2
1%((2];()) 52 0 § K+l —0 (1D
n ’71/2)‘min ’7>\min

when p — 0o and vy, Adpin < 1 < M.

Proof. Conditions 6 and 7 imply Condition 3. It remains to be shown that Condition 4 and
(8) hold for the « specified in Condition 1. Solving the inequality in Lemma 3 for J; shows (8)
will be satisfied if the sample moments of Y are within § of the population moments such that
0 + & < 61 with §7 less than
—8M® + {(8M®)? + 16027 }* A ] ,{(M2+7Mf”—A4Amﬂ}

M| = min

min

8?2 T 2J ¢ T 2J

for ® defined in (9). Since J, K, M > 1, 7, Apmin < 1 ensure that first term is the relevant term.
We further simplify the expression since

8(M2+W/4)1/2
M2 N> v '
(M9 /4) 77 2 My min =

Y
8 (M2 + v /4)Y?

Thus, the conditions of Theorem 2 will be satisfied if

v
S+¢< -
8 (M2 +~/4)"* @
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Specifically, we analyze the case when { < d4/2 and |1y, — myq| < 0 < d4/2forall |a| < K.
If Y, follows a log-concave distribution, we can apply Lemma B.3 of Lin et al. (2016) which
states for f, some K degree polynomial of log-concave random variables Y = (Y1,...,Y,),
and some absolute constant, L, if

9 5 1/K
— > 92
L <<e> [var{f(Y)}]1/2> -

then

1/K
Pr{If(Y) ~ E{7(V)}] >8] < expy (W)

Letting f(Y") be the sample moments of Y up to degree K, Condition 6 implies the variance
is bounded by M /n. When p > 2, there are (p ;K ) < p moments with degree at most K, then
by a union bound, when 0 < § < d4/2,

Pr (G’ = G) > 1 —Pr (v, —mya| > 64/2 forany |a| < K)
o a2 VN
K - 4

when

1/(2K) /K
2n 04/2 > 9. (12)
L eM1/?

In the asymptotic regime, where p is increasing,
LMY CE) K log(p)
(54/2)1/K nl/(2K)
implies that the inequality in (12) will be satisfied and

o[ a2 7N
Kep |20 02 L
o L{<M/n>1/2

Plugging in the expression for 4, we find

LMY 2K K log(p) _ LMY K K log(p)
(54/2)1/K onl/(2K) onl/(2K)

1/K
16 (M2 + 7/4) "% 16(35) (J + K)K K JE+H/2rK+1 /

Ymin '
This quantity is of order O((10g(p)J5/2K5/2M2)/(nl/(QK)fylm)\i{ii)) when assuming that
~v < M. In addition, £ < /2 will be satisfied if % — 0. This ratio is

- K
01 MAmin.
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Fig. 3: Each bar represents the results from 500 randomly drawn graphs and data. In each group,
from left to right, the bars represent (1) min-max 77, (2) max-min 75, (3) Shimizu et al. (2011),
and (4) Hyvirinen and Smith (2013). In the left panel n = 50p and the right panel n = 10p.

which is O( (¢3K KK+ JBR/242 1 K42) /(4 \KH1)) when v < M. O

min

When fixing the other terms, Corollary 3 requires log(p) = o(n'/(2%)). Corollary 3 does not

preclude J from growing with n and p; however, the computational complexity of Algorithm 1
is exponential in J, so in practice J must remain relatively small.

4. NUMERICAL RESULTS
4-1.  Simulations: low dimensional performance

We first compare the proposed method using: (1) min-max T and (2) max-min 75 against
(3) DirectLiNGAM (Shimizu et al., 2011) and (4) Pairwise LINGAM (Hyvirinen and Smith,
2013, Section 3.2). We randomly generate graphs and corresponding data with the following
procedure. For each node v, select the number of parents d,, uniformly from 1,. .., min(v, J).
We include edge (v — 1,v) to ensure that the ordering is unique and draw f3,,—; uniformly
from (—1,—.5) U (.5,1). The remaining parents are selected uniformly from [v — 2] and the
corresponding edge weights are set to +1/5. The n error terms for variable v are generated by
selecting o, ~ unif(.8, 1) and then drawing e,; ~ o unif(—+/3,/3).

We use K = 4, fix the max in-degree J = 3, let p = 5,10, 15, 20, and let n = 50p and n =
10p. We set o = .8 and compare performance by measuring Kendall’s 7 between the returned
ordering and the true ordering; i.e., the number of concordant pairs in the ordering minus the
number of discordant pairs, normalized by the number of total pairs. The procedure is repeated
500 times for each setting of p and n.

Figure 3 shows that in the low-dimensional case with n = 50p, the Pairwise LINGAM and Di-
rectLINGAM methods outperform the proposed method, with either statistic. However, already
with n = 10p, our method begins to give improvements. The min-max statistic 77 does slightly
better than 75, the max-min. However, Figure 4 shows a large difference in computational effort;
p = 40, 80 are included for further contrast. In the sequel, we use the max-min statistic, 75.

The proposed method compares favorably to the DirectLiNGAM method in computational ef-
fort because of the expensive kernel mutual information calculation and is comparable to the Pair-
wise LINGAM. However, we refrain from a direct timing comparison because DirectLiNGAM
and Pairwise LINGAM are both implemented in Matlab while our proposed method is imple-
mented in R and C++ (R Core Team, 2017; Eddelbuettel and Francois, 2011). In the supplement,
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Fig. 4: Timing results from 500 randomly drawn graphs and data with n = 50p. In each pair, the
left represents min-max, T and the right max-min, T5. The y-axis is on a log scale.
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Fig. 5: Each boxplot represents the results of 20 simulations. In all cases, we let n = 3/4p.
The top panels show results from randomly drawn DAGs while the bottom panel shows results
from DAGs constructed to have hub structure. The left plots show performance as measured by
Kendall’s 7 and the right plots show computational time when using 16 CPUs in parallel.

we also provide a direct comparison between the proposed statistic and those used by Shimizu
et al. (2011) and Hyvérinen and Smith (2013).

4.2,  Simulations: high-dimensional consistency

To illustrate high-dimensional consistency, we generate the graph and coefficients as in Section
4.1 but with n = 3/4p for p = 100, 200, 500, 1000, 1500, 2000. We first consider random DAGs
and data generated as before, but with J = 2. We also consider graphs with hubs, that is, nodes
with large out-degree. These are generated by including a directed edge from v — 1 to v for all
nodes v = 2,. .., p and drawing the edge weight uniformly from (—1, —.65) U (.65, 1). We then
set nodes {1, 2,3} as hubs and include an edge with weight +1/5 to each non-hub node from
a randomly selected hub. Thus, the out-degree for each of the hub nodes grows linearly with p,
but the maximum in-degree remains bounded by 2. For both cases, the results for 20 runs at each
value of p are shown in Figure 5. In the supplement, we show simulations with gamma errors
and also consider a setting with Gaussian errors, where our method should not be consistent.
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Fig. 6: Each boxplot represents 20 simulations with random DAGs when using a pre-selection
step; in each case n = 3/4p. From left to right the methods are: the proposed high-dimensional
LiNGAM procedure, same as Figure 5; the proposed high-dimensional LINGAM procedure with
pre-selection; the two stage pairwise procedure from Hyvérinen and Smith (2013).

4.3.  Pre-selection of neighborhoods

As with the original DirectLiNGAM procedure, any edges or non-edges known in advance can
be accounted for. Such information could, for instance, be obtained by applying neighborhood
selection (Meinshausen and Biihlmann, 2006) to estimate the Markov blanket of each node. This
blanket consists of parents, children, and parents of children. For sparse graphs, Hyvirinen and
Smith (2013, Section 3.3) propose first using such a pre-selection step, then directly estimating
the direction of each edge using pairwise measures without any additional adjustment. To create
a total ordering, Alg B and Alg C of Shimizu et al. (2006) can be used. This does not require
specifying a maximum in-degree, but in general, the neighborhood selection procedure will only
be consistent if the total degree is controlled.

In our proposed procedure, we may incorporate estimated Markov blankets by limiting, at
each step z, for each remaining node v, the set of potential parents, Céz), to the intersection of the
estimated Markov blanket of v and the previously ordered nodes, ©(*~2). We do not otherwise
prune the set of potential parents. Figure 6 shows results from using the pre-selection step under
the setting from Section 4-2 for general random graphs. The pre-selection procedure improves the
performance of our proposed high-dimensional LINGAM procedure, but the proposed procedure
without pre-selection still outperforms the two-stage procedure of Hyvérinen and Smith (2013,
Section 3.3). Similar results for the hub graph setting are shown in the supplement.

4-4.  Data example: high-dimensional performance

We estimate causal structure among the stocks in the Standard and Poor’s 500. Specifically, we
consider the percentage increase/decrease for each share price for each trading day between Jan
2007 to Sep 2017. We consider the p = 442 companies for which data is available for the entire
period, and we scale and center the data so that each variable has mean O and variance 1. As
structure may vary over time, we estimate the causal structure for each of the following periods
separately with J = 3 and K = 4: 2007-2009, 2010-2011, 2012-2013, 2014-2015, 2016-2017
(ending in September). Across these periods, the sample size, n, ranges from 425 to 755.

The underlying structure is unlikely to be causally sufficient or acyclic. In addition, although
it is common to assume that daily returns are independent, this assumption may not hold in
practice. Nonetheless, the method still recovers reasonable structure. We first consider the most
recent Jan 2016 - Sep 2017 period. Figure 7 shows a boxplot for the estimated ordering of the
companies within each sector. The sectors are sorted top to bottom by median ordering. Near
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Ordering of SP 500 Constituents
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Fig. 7: Estimated causal ordering of the stocks in the Standard and Poor’s 500 for Jan 2016 - Sep
2017. The stocks are grouped by sector, and the sectors are arranged by median causal ordering.

the top, we see utilities, energy, real estate, and finance. Since energy is an input for almost
every other sector, intuitively price movements in energy should be causally upstream of other
sectors. The estimated ordering of utilities might seem surprising; however, utility stocks are
typically thought of as a proxy for bond prices. Thus, the estimated ordering may reflect the fact
that changes in utility stocks capture much of the causal effect of interest rates, which had stayed
constant for much of 2011-2015 but began moving again in 2016. Real estate and finance, sectors
that are highly impacted by interest rates, are also estimated to be early in the causal ordering.
Figure 8 ranks each sector by the median topological ordering for each period. The orderings
are relatively stable over time, but there are a few notable changes. In 2007, real estate was esti-
mated to be the “root sector” while finance is in the middle. This aligns with the idea that the root
of the 2008 financial crisis was actually failing mortgage backed securities in real estate, which
had a causal effect on finance. However, over time, real estate has moved more downstream.

5. DISCUSSION

We proposed a causal discovery method that was proven consistent for specific test statistics
and log concave errors. Similar analyses could be given for other statistics that are Lipschitz
continuous in the sample moments over a bounded domain, can distinguish causal direction, and
indicate the presence of confounding. This would include a normalized version of the proposed
test statistics which accounts for the scaling of the data. Log-concavity was assumed for exponen-
tial concentration of sample moments and other distributional assumptions could be considered
instead if analogous concentration results can be obtained and traced throughout the analysis.

The proposed algorithm requires selecting a bound on the in-degree J and a pruning parameter
a. The in-degree is typically unknown, but a reasonable upper bound may be used as a “bet on
sparsity”. If the maximum in-degree of the true graph is larger than the specified J but the “extra
edges” have small enough edge-weights, the “closest” DAG with maximum in-degree .J is still
recovered with high probability. The pruning parameter « plays a similar role to the nominal
level for each conditional independence test in the PC algorithm. Both parameters have an effect
on the sparsity of the estimated graph and regulate the maximum size of conditioning sets.

At each step, instead of taking the minimum |7| over all subsets of potential parents, one could
also pick parents for every unordered node using a variable selection procedure and then only
calculate |7| using the selected parents. Such a procedure would also consistently estimate the
causal ordering as long as the variable selection procedure is consistent. Slightly different condi-
tions, such as a beta-min condition, would be needed when adopting standard methods based on
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Fig. 8: Sectors ranked by median estimated topological ordering across each time period.

least squares, but in practice the resulting method performs quite well as shown in simulations
in the supplement. This could be explained as being due to use of only second moments for the
variable selection.

In (8), we have made a key restriction that the error moments must be adequately different
from the moments of any Gaussian and the edge weights must be strongly parentally faithful.
In practice, this is a difficult condition to satisfy, and Uhler et al. (2013) show that strong faith-
fulness type restrictions can be problematic in practice. However, even if the distribution is not
strongly parentally faithful, we can still consistently recover the correct ordering as long as each
individual linear coefficient is non-zero and the errors are sufficiently non-Gaussian. Sokol et al.
(2014) consider identifiability of independent component analysis for fixed p when the error
terms are Gaussians contaminated with non-Gaussian noise. In particular, when the effect of the
non-Gaussian contamination decreases at an adequately slow rate, the entire mixing matrix is
identifiable asymptotically. In our analysis, the measure of non-Gaussianity is treated by our as-
sumptions on y. Our results suggest that the results of Sokol et al. (2014) can also be extended,
given suitable sparsity, to the asymptotic regime where the number of variables is increasing.

The modified procedure we propose retains the existing benefits of the original Di-
rectLiNGAM procedure. In particular, the output of algorithm is independent of the ordering
of the variables in the input data. Although this is typically not an issue in the low-dimensional
case, in the high-dimensional setting, the output of causal discovery methods may be highly
dependent on ordering (Colombo and Maathuis, 2014).
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