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SUMMARY

We consider graphical models based on a recursive system of linear structural equations. This

implies that there is an ordering, σ, of the variables such that each observed variable Yv is a linear

function of a variable specific error term and the other observed variables Yu with σ(u) < σ(v). 15

The causal relationships, i.e., which other variables the linear functions depend on, can be de-

scribed using a directed graph. It has been previously shown that when the variable specific error

terms are non-Gaussian, the exact causal graph, as opposed to a Markov equivalence class, can be

consistently estimated from observational data. We propose an algorithm that yields consistent

estimates of the graph also in high-dimensional settings in which the number of variables may 20

grow at a faster rate than the number of observations, but in which the underlying causal struc-

ture features suitable sparsity; specifically, the maximum in-degree of the graph is controlled.

Our theoretical analysis is couched in the setting of log-concave error distributions.

Some key words: Causal discovery; Directed graphical model; High-dimensional statistics; Structural equation model;
Non-Gaussian data 25

1. INTRODUCTION

Prior work shows the possibility of causal discovery with observational data in the frame-

work of linear structural equation models with non-Gaussian errors. However, existing meth-

ods for estimation of the causal structure are applicable only in low-dimensional settings, in

which the number of variables, p, is small compared to the sample size, n. In this paper, we de- 30

velop a method which, given suitable sparsity, recovers the exact causal structure consistently in

high-dimensional regimes where p grows along with n. Careful considerations of computational

aspects make our method a practical and statistically sound exploratory tool for the intended

high-dimensional settings.

Let Y1, . . . , Yn ∈ R
p be multivariate data from an observational study, specifically, the ob- 35

servations form an independent, identically distributed sample. We encode the causal structure

generating dependences in the underlying p-variate joint distribution by a graph G = (V,E)
with vertex set V = {1, . . . , p}. Each node, v ∈ V , corresponds to an observed variable in

C© 2017 Biometrika Trust
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Fig. 1: The Markov equivalence class of graph (a) is a singleton. However, graph (b), (c) and (d)

are Markov equivalent and imply the same set of conditional independences.

Yi = (Yvi)v∈V , and each directed edge, (u, v) ∈ E, indicates that Yui has a direct causal effect

on Yvi. Thus, positing causal structure is equivalent to selecting a graph. We will only consider40

directed acyclic graphs (DAGs), directed graphs which do not contain directed cycles. Given the

correspondence between a node v ∈ V and the random variable Yvi, we will at times let v stand

in for Yvi; for instance, when stating stochastic independence relations.

Discovery of causal structure from observational data is difficult because of the super-

exponential set of possible models, some of which may be indistinguishable from others. Despite45

this difficulty, many methods for causal discovery have been developed and have seen fruitful ap-

plications; see the recent review of Drton and Maathuis (2017). In particular, the celebrated PC

algorithm (Spirtes et al., 2000) is a constraint-based method which first infers a set of condi-

tional independence relationships and then identifies the associated Markov equivalence class;

this class contains all DAGs compatible with the inferred conditional independences. Kalisch and50

Bühlmann (2007) show if the maximum total degree of the graph is controlled and the data is

Gaussian, then the PC algorithm can consistently recover the true Markov equivalence class even

in high-dimensional settings where the number of variables grows with the number of samples.

Harris and Drton (2013) extend the result to Gaussian copula models using rank correlations.

However, graphs within the same Markov equivalence class may have drastically different55

causal and scientific interpretations. For the graphs in Figure 1, conditional independence tests

can distinguish model (a) from the rest but cannot distinguish models (b), (c), and (d) from each

other. Although Maathuis et al. (2009) provide a procedure for bounding the size of a causal

effect over graphs within an equivalence class, interpretation of the set of possibly conflicting

graphs can remain difficult. Results on the size and number of Markov equivalence classes,60

which may be exponentially large, can be found e.g. in Steinsky (2013).

In contrast, it has been shown that under various additional assumptions, the exact graph

structure, not just an equivalence class, can be identified from observational data (Loh and

Bühlmann, 2014; Peters and Bühlmann, 2014; Rothenhäusler et al., 2018). In particular, Shimizu

et al. (2006) show this to be the case under three main assumptions: (1) the data are generated65

by a linear structural equation model, (2) the error terms in the structural equations are non-

Gaussian, and (3) there is no unobserved confounding among the observed variables; i.e., errors

are independent. These assumptions yield the linear non-Gaussian acyclic model, abbreviated as

LiNGAM, which is described formally in Section 2·1. Under the LiNGAM framework, the four

models from Figure 1 are mutually distinguishable. Shimizu et al. (2006) use independent com-70

ponent analysis to estimate the graph structure, and the subsequent DirectLINGAM (Shimizu

et al., 2011) and Pairwise LiNGAM (Hyvärinen and Smith, 2013) methods iteratively select

a causal ordering by computing pairwise statistics. These methods are motivated by identifia-

bility results that are derived by iteratively forming conditional expectations. In practice, the

conditional expectations are estimated using larger and larger regression models. As a result, the75

methods become inapplicable when the number of variables exceeds the sample size.

We develop a modification of the DirectLiNGAM algorithm that is suitable for high-

dimensional data and give guarantees for when our algorithm will consistently recover the true
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graph in high-dimensional asymptotic scenarios. Most notably, our analysis considers restricted

maximum in-degree of the graph and assumes log-concave distributions. The theory also applies 80

to hub graphs where the maximum out-degree may grow with the size of the graph, which is in

contrast to the conditions needed for high-dimensional consistency of the PC algorithm (Kalisch

and Bühlmann, 2007). Hub graphs appear in many biological networks (Hao et al., 2012).

2. CAUSAL DISCOVERY ALGORITHM

2·1. Generative model and notation 85

We assume that the observations Y1, . . . , Yn ∈ R
p are independent, identically distributed

replications generated from a linear structural equation model so that the elements of each ran-

dom vector Yi satisfy

Yvi =
∑

u 6=v

βvuYui + εvi, (1)

where the βvu are unknown real parameters that quantify the direct linear effect of variable u on

variable v, and εvi is an error term of unknown distribution Pv. We assume εvi has mean 0 and 90

is independent of all other error terms. Our interest is in models that postulate that a particular

set of coefficients βvu is zero. In particular, the absence of an edge, (u, v) /∈ E, indicates that

the model constrains the parameter βvu to zero. We assume that the graph, G, representing the

model is a DAG, which implies that the structural equation model is recursive; i.e., there exists a

permutation of the variables, σ, such that βvu is constrained to be zero unless σ(u) < σ(v). 95

We denote the model given by graph G by P(G). Each distribution P ∈ P(G) is induced

through a choice of linear coefficients (βvu)(u,v)∈E and error distributions (Pv)v∈V . Let B =

(βvu) be the p× p matrix determined by the model constraints and the chosen free coefficients.

Then the equations in (1) admit a unique solution with Yi = (I −B)−1εi. The error vectors εi =
(εvi)v∈V are independent and identically distributed and follow the product distribution ⊗v∈V Pv. 100

The distribution P is then the joint distribution for Yi that is induced by the transformation of εi.
Standard notation has the set pa(v) = {u : (u, v) ∈ E} comprise the parents of a given node

v. The set of ancestors, an(v), contains any node u 6= v with a directed path from u to v; we let

An(v) = an(v) ∪ {v}. The set of descendants, de(v), contains the nodes u with v ∈ an(u).

2·2. Parental faithfulness 105

An important approach to causal discovery begins by inferring relations such as conditional

independence and then determines graphs compatible with empirically found relations. For this

approach to succeed, the considered relations must correspond to structure in the graph G as

opposed to a special choice of parameters. In the context of conditional independence, the as-

sumption that any relation present in an underlying joint distribution P ∈ P(G) corresponds to 110

the absence of certain paths in G is known as the faithfulness assumption; see Uhler et al. (2013)

for a detailed discussion. For our work, we define a weaker condition, parental faithfulness. In

particular, if u ∈ pa(v), we require that the total effect of u on v does not vanish when we modify

the considered distribution by regressing v onto any set of its non-descendants, as detailed next.

Let l = (v1, . . . , vz) be a directed path in G, so (vj , vj+1) ∈ E for j = 1, . . . , z − 1. Given 115

coefficients (βvu)(u,v)∈E , the path has weight w(l) =
∏z−1

j=1 βvj+1,vj . Let Lvu be the set of all

directed paths from u to v. Then the total effect of u on v is πvu =
∑

l∈Lvu
w(l), with πvu = 0 if

u 6∈ An(v) and πvu = 1 if u = v. The effect gives the conditional mean of v under interventions
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Fig. 2: In (a), the choice β31 = β21 = 1 and β32 = −1 results in parental unfaithfulness because

π31.∅ = 0. Also, the choice β31 = β21 = β32 = 1 and E(ε21) = E(ε22) = E(ε23) = 1 is not faith-

ful because the partial correlation of 2 and 1 given 3 is 0, but is still parentally faithful. In (b),

the choice β31 = β32 = β42 = 1, β41 = 2, and E(ε21) = E(ε22) = E(ε23) = 1 results in parental

unfaithfulness because π42.3 = 0.

on u; i.e., πvu = E(Yvi | do(Yui = y + 1))− E(Yvi | do(Yui = y)) using the do-operator of

Pearl (2009). Total effects may be calculated by matrix inversion, Π = (πvu)u,v∈V = (I −B)−1.120

Let Σ = E(YiY
t
i ) be the covariance matrix of the, for convenience, centered random vector

Yi ∼ P . Let ΣCC be the principal sub-matrix for a non-empty set of indices C ⊆ V . For v ∈
V \ C, let ΣCv be the sub-vector comprised of the entries in places (c, v) for c ∈ C. Let

βvC = (βvc.C)c∈C = (ΣCC)
−1ΣCv (2)

be the population regression coefficients when v is regressed onto C. The quantity βvc.C is de-

fined even if (c, v) 6∈ E, and in general βvc.C 6= βvc even if (c, v) ∈ E. A pair (u, v) ∈ E is125

parentally faithful if for any set C ⊆ V \ [de(v) ∪ {v, u}], the residual total effect defined as

πvu.C = πvu −
∑

c∈C

βvc.Cπcu (3)

is nonzero. If this holds for every pair (u, v) ∈ E, we say that the joint distribution P is parentally

faithful with respect to G. Parental faithfulness only pertains to the linear coefficients and error

variances, and the choices for which parental faithfulness fails form a set of Lebesgue measure

zero. The concept is exemplified in Figure 2.130

2·3. Test statistic

Reliable determination of the causal direction between u and v generally requires removal of

all confounding. Thus, Shimizu et al. (2011) and Hyvärinen and Smith (2013) adjust v and u for

all x such that σ(x) < σ(v) and σ(x) < σ(u). However, adjusting by an increasingly larger set of

variables propagates error proportional to the number of variables, rendering high-dimensional135

estimation inconsistent, or impossible when the size of the adjustment set exceeds the sample

size. On the other hand, restricting the size of the adjustment sets may not remove confounding

completely. The method we present solves this problem via a statistic that is conservative in the

sense that it does not mistakenly certify causal direction when confounding is present.

Shimizu et al. (2011) calculate the kernel-based mutual information between v and the residu-140

als of u when it is regressed onto v. The corresponding population information is positive if and

only if v ∈ de(u) or there is uncontrolled confounding between v and u, that is, u and v have a

common ancestor even when certain edges are removed from the graph. Hence, the mutual in-

formation can be used to test the hypothesis that v 6∈ de(u) versus the hypothesis that v ∈ de(u)
or there is confounding between u and v. Unfortunately, calculating the mutual information can145

be computationally burdensome, so Hyvärinen and Smith (2013) propose a different parameter

Rvu. Without confounding, Rvu > 0 if v ∈ an(u) and Rvu < 0 if u ∈ an(v). With confounding,

however, the parameter can take either sign, so it cannot be reliably used if we remain uncertain
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about whether or not confounding occurs. We introduce a parameter that shares the favorable

properties of the mutual information but admits computationally inexpensive estimators that are 150

rational functions of the sample moments of Y , which facilitates analysis of error propagation.

The parameter we consider is motivated by the following observation. Suppose the true gen-

erating mechanism is Y1 → Y2 so that Y1 = ε1 and Y2 = β21Y1 + ε2 for ε1 independent of

ε2. When the causal direction is correctly specified, the linear coefficient β21 is recovered by

E(Y K−1
1 Y2)/E(Y

K
1 ) for all integers K greater than 1 for which E(Y K

1 ) 6= 0. Of course, letting 155

K = 2 gives the typical least squares estimator. This leads to the identity E(Y K−1
1 Y2)/E(Y

K
1 ) =

E(Y1Y2)/E(Y
2
1 ) which implies E(Y K−1

1 Y2)E(Y
2
1 )− E(Y1Y2)E(Y

K
1 ) = 0, which holds even

when E(Y K
1 ) = 0. In general, however, when the errors are non-Gaussian and the roles of Y1

and Y2 are swapped, this identity does not hold. When there are more than 2 variables involved,

we reduce the problem to a bivariate problem by conditioning on an appropriate set C. To this 160

end, define for any i the residual

Yvi.C = Yvi −
∑

c∈C

βvc.CYci,

where βvc.C are the population regression coefficients from (2). When C = ∅, let Yvi.∅ = Yvi.

THEOREM 1. Let P ∈ P(G) be a distribution in the model given by a DAG G, and let Yi ∼ P .

For K > 2, two distinct nodes u and v, and any set C ⊆ V \ {u, v}, define

τ
(K)
v.C→u = EP (Y

K−1
vi.C Yui)EP (Y

2
vi.C)− EP (Y

K
vi.C)EP (Yvi.CYui). (4)

(i) If u 6∈ pa(v) and pa(v) ⊆ C ⊆ V \ [de(v) ∪ {v, u}], then τ
(K)
v.C→u = 0. 165

(ii) Suppose u ∈ pa(v) with u, v parentally faithful under the covariance matrix of P . If C ⊆
V \ [de(v) ∪ {v, u}], then τ

(K)
v.C→u 6= 0 for generic error moments of order 3, . . . ,K.

Estimators τ̂
(K)
v.C→u of the parameter from (4) are naturally obtained from empirical regression

coefficients and empirical moments.

In Theorem 1(ii), the term generic indicates that the set of error moments for which this state- 170

ment does not hold has Lebesgue measure zero. Given that there is a finite number of sets C ⊂ V ,

the union of all exceptional sets is also a null set. A detailed proof of Theorem 1 is included in

the supplement. Claim (i) can be shown via direct calculation, and we give a brief sketch of (ii)

here. For fixed coefficients (βvu)(u,v)∈E and set C ⊂ V , τ
(K)
v.C→u is a rational function of the error

moments. Thus existence of a single choice of error moments for which τ
(K)
v.C→u 6= 0 is sufficient 175

to show that the statement holds for generic error moments. As the argument boils down to show-

ing that a certain polynomial is not the zero polynomial (Okamoto, 1973), the choice considered

need not necessarily be realizable by a particular distribution. In particular, we choose all mo-

ments of order less than K equal to those of the centered Gaussian distribution with variance

σ2
v = E(ε2v), but for the Kth moment we add an offset ηv > 0, so 180

E(εKv ) =

{

ηv if K is odd,

(K − 1)!!σK
v + ηv if K is even,

(5)

where q!! =
∏dq/2e−1

z=0 (q − 2z) is the double factorial of q. If there is no confounding between

Yv.C and Yu, that is, no ancestor of u is the source of a directed path to v that avoids C ∪ {u},

then

τ
(K)
v.C→u = πvu.C

(

πK−2
vu.C ηuσ

2
v − ηvσ

2
u

)

(6)
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with πvu.C 6= 0, by the assumed parental faithfulness. Thus, a choice of offsets with

πK−2
vu.C ηuσ

2
v 6= ηvσ

2
u implies τ

(K)
v.C→u 6= 0. A more involved but similar argument can be made185

in the case of confounding. Under a slightly stronger form of faithfulness, τ
(k)
v.C→u 6= 0 if there is

confounding regardless of whether u ∈ pa(v); see supplement Remark 1.

COROLLARY 1. Let Pv and Pu be two distributions that each have all moments up to order K
equal to those of some Gaussian distribution. Then there exists a graph G, for which u ∈ pa(v),

and distributions P which are parentally faithful with respect to G, but τ
(K)
v.C→u = 0 for some set190

C ⊆ V \ [de(v) ∪ {v, u}].
Proof. The moments of Pv and Pu satisfy (5) with ηv = ηu = 0. Consequently, if there exists

a set C such that there is no confounding between Yv.C and Yu, then τv.C→u satisfies (6), the

right-hand side of which is zero when ηv = ηu = 0. For example, if εv and εu are both Gaussian

and the graph is u → v, τ
(K)
v→u = 0 for all choices of βvu and all K. �195

Corollary 1 confirms that the null set to be avoided in Theorem 1(ii) contains points for which

all error moments are consistent with some Gaussian distribution. Thus, our identification of

causal direction requires that the error moments of order at most K be inconsistent with all

Gaussian distributions. In practice, we consider the case K = 3, 4 and recommend K = 4 unless

one is certain the errors are not symmetric. We refer readers to Hoyer et al. (2008) for a full200

characterization of when graphs with both Gaussian and non-Gaussian errors are identifiable.

At each step, the high-dimensional LiNGAM algorithm presented in Section 3·1 considers a

sub-graph and searches for a root node, i.e., a node without any parents. Suppose de(V2) = V2 ⊆
V ; if v ∈ V2 is not a root in the sub-graph induced by V2, then there must exist some u ∈ V2

with τv.C→u 6= 0 for all sets C which are upstream of v and V2. However, if v is a root, then205

τv.C→u = 0 for all u ∈ V2 when C = pa(v). Thus, to test whether v is a root in V2, we aggregate

the various τ parameters corresponding to u ∈ V2 and conditioning sets C. Corollary 2 describes

two ways to do this aggregation. If v is a root, this quantity will be 0, and if v is not a root, it will

be positive.

COROLLARY 2. Let P ∈ P(G), let v ∈ V , and consider two disjoint sets V1, V2 ⊆ V \ {v}.210

For a chosen non-negative integer J , define

T
(K)
1 (v, V1, V2) = min

C∈V1(J)
max
u∈V2

|τ (K)
v.C→u|, T

(K)
2 (v, V1, V2) = max

u∈V2

min
C∈V1(J)

|τ (K)
v.C→u|,

where V1(J) = {C ⊆ V1 : |C| = J} if J ≤ |V1| and V1(J) = V1 if J ≥ |V1|.
(i) If |pa(v)| ≤ J and pa(v) ⊆ V1 ⊆ V \ de(v), then

T
(K)
1 (v, V1, V2) = T

(K)
2 (v, V1, V2) = 0.

(ii) Suppose βvu 6= 0 for all u ∈ pa(v). If de(V2 ∪ {v}) ⊆ V2 ∪ {v} and pa(v) ∩ V2 6= ∅,215

then for generic error moments of order up to K, we have T
(K)
1 (v, V1, V2) > 0 and

T
(K)
2 (v, V1, V2) > 0.

Proof. (i) The statement follows immediately from Theorem 1. (ii) Since, pa(v) ∩ V2 6= ∅,

but de(V2 ∪ {v}) ⊆ V2 ∪ {v}, there exists some u ∈ pa(v) ∩ V2 such that de(u) ∩ pa(v) = ∅.

For that u and any C ⊆ V1, the residual total effect is πvu.C = βvu −∑c∈C βvc.Cπcu = βvu220

because the assumed facts de(V2 ∪ {v}) ∩ V1 = ∅ and de(v) ∩ pa(v) = ∅ imply that πcu = 0 for

all c ∈ C and πvu = βvu. We have assumed βvu 6= 0, so, by Theorem 1, generic error moments

ensure that |τ (K)
v.C→u| > 0 for all C, which in turn implies T

(K)
j (v, V1, V2) > 0 for j = 1, 2. �
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When (i) is satisfied, there may be more than one set C which makes all pairwise statistics 0.

T1 is calculated by finding a single conditioning set C which minimizes the maximum pairwise 225

statistic τ across all u ∈ V2; in contrast, T2 allows for a different conditioning set for each u.

For fixed v, V1, and V2, the signs, either positive or zero, of T1 (min-max) and T2 (max-min)

will always agree, but when pa(v) ∩ V2 6= ∅ and both quantities are positive, T1 ≥ T2. Thus,

the min-max statistic may be more robust to sampling error when testing if the parameters are

non-zero. However, as discussed in Section 3·1, T2 can be computed more efficiently than T1. 230

Theorem 1(ii) requires parental faithfulness since we consider arbitrary u ∈ pa(v), whereas

Corollary 2(ii) only requires that βvu 6= 0 since we maximize over V2. Use of sample moments

yields estimates τ̂v.C→u, which in turn yields estimates T̂
(K)
j (v, V1, V2) of T

(K)
j (v, V1, V2) for

j = 1, 2. In the remainder of the paper, we drop the subscript j in statements that apply to both

parameters/estimators. Moreover, as we always fix K, we lighten notation by omitting the super- 235

script, writing T (v, V1, V2), τv.C→u and τ̂v.C→u.

3. GRAPH ESTIMATION PROCEDURE

3·1. Algorithm

We now present a modified DirectLiNGAM algorithm which estimates the underlying causal

structure (Algorithm 1). As in the original algorithm, we identify a root and recur on the sub- 240

graph that has the identified root removed. After step z, we have a z-tuple, Θ(z), which gives

an ordering of the roots identified so far, and the remaining nodes Ψ(z) = V \Θ(z). In contrast

to DirectLiNGAM, the proposed algorithm does not adjust for all non-descendants, but only for

subsets of limited size. This gives meaningful regression residuals also when the number of vari-

ables exceeds the sample size and limits error propagation from the estimated linear coefficients. 245

At each step z, we consider subsets of C(z)
v ⊆ Θ(z−1), which we use to denote the set of

possible parents for v. Naively allowing C(z)
v = Θ(z−1) is not precluded by theory, but the number

of subsets C ⊂ Θ(z−1) such that |C| = J grows at O(zJ). Thus, for computational reasons, we

prune nodes which are not parents of v by letting

C(z)
v =

{

p ∈ C(z−1)
v : min

C∈D
(z)
v

|τ̂v.C→p| > g(z)

}

∪ Θ
(z−1)
z−1 (7)

where D
(z)
v =

⋃

d<z{C : C ⊆ C(d)
v \ {p}; |C| ≤ J}, Θ

(z−1)
z−1 is the node selected at the previous 250

step, and g(z) is some cut-off value. Selecting a good value for g(z) is difficult because it should

depend on the unknown signal strength. However, under the assumptions of Theorem 2, if r
is the root selected at step z − 1 and α is some tuning parameter in [0, 1], then letting g(z) =

max(g(z−1), αT̂ (r, C(z)
r ,Ψ(z−1))) will not mistakenly prune parents from C(z)

v . In Algorithm 1,

we do not update C(z)
v after v is selected as a root. Since the final cut-off, g(p), may be larger than 255

the cut-off used to select C(z)
v , a final pruning step uses the criteria from (7) with g(p) to prune

away nodes in C(p)
v that may be ancestors but not parents.

A larger value of α prunes more aggressively, decreasing the computational effort. However,

setting α too large could result in incorrect estimates if some parent of v is incorrectly pruned

from C(z)
v . Section 3·2 discusses selecting an appropriate α and a more detailed discussion of 260

computational savings from the pruning procedure is given in the supplement.

As discussed in Section 2·3, T1 may be more robust to sampling error than T2 but comes at

greater computational cost. At each step, Ψ(z) decreases by a single node and C(z)
v may grow by
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Algorithm 1. Estimate Causal DAG.

Set Θ(0) = ∅ and Ψ(0) = [p].
For z = 1, . . . , p :

For v ∈ Ψ(z−1) :

Select the set of possible parents C(z)
v ⊆ Θ(z−1) and compute T̂ (v, C(z)

v ,Ψ(z−1) \ {v}).
Let r = argminv∈Ψ(z−1) T̂ (v, C(z)

v ,Ψ(z−1) \ {v}).
Append r to Θ(z−1) to form Θ(z) and set Ψ(z) = Ψ(z−1) \ {r}.

Prune ancestors to form parents C?
v for all v ∈ V .

Return Θ(p) as the topological ordering; {C?
v}v∈V as the set of parents.

one node. If the |Ψ(z)|2 values of min
C∈C

(z−1)
v

τ̂v.C→u have been stored, updating T̂2, the max-

min, only requires testing the
(|C(z−1)|

J−1

)

subsets of C(z)
v which include the variable selected at the265

previous step. Updating the min-max statistic T̂1 without redundant computation would require

storing the O
(

(p− z)2zJ
)

values of |τv.C→u|. In practice, we completely recompute it at each

step. Section 4 demonstrates this trade-off between computational burden and robustness.

3·2. Deterministic statement

Theorem 2 below makes a deterministic statement about sufficient conditions under which270

Algorithm 1 will output a specific graph G when given data Y = (Y1, . . . , Yn). We assume

each Yi ∼ PY but allow model misspecification so that PY may not be in P(G) for any

DAG G. However, we require that the sample moments of Y are close enough to the popu-

lation moments for some distribution P ∈ P(G). For notational convenience, for H ⊆ V and

α ∈ R
|H|, let m̂H,α = 1

n

∑n
i

(
∏

v∈H Y αv

vi

)

denote a sample moment estimated from data Y , and275

let mH,α = EP

(
∏

v∈H Zαv
v

)

denote a population moment for Z ∼ P .

Condition 1. For some p-variate distribution P , there exists a DAG G with |pa(v)| ≤ J for

all v ∈ V such that:

(a) For all v, u ∈ V and C ⊆ V \ {u, v} with |C| ≤ J and C ∩ de(v) = ∅; if u ∈ pa(v) then

the population quantities for P satisfy

∣

∣

∣
τ
(K)
v.C→u

∣

∣

∣
> γ > 0.280

(b) For all v, u ∈ V and C ⊆ V \ {v, u} with |C| ≤ J and pa(v) ⊆ C ⊆ V \ de(v), if u 6∈
pa(v), then the population quantities for P satisfy τ

(K)
v.C→u = 0.

Condition 2. All J × J principal submatrices of the population covariance of P have mini-

mum eigenvalue greater or equal to λmin > 0.

Condition 3. All population moments of P up to degree K, mV,α for
∑

v αv ≤ K, are285

bounded by a constant ∞ > M > max(1, λmin/J) for positive integer J .

Condition 4. All sample moments of Y up to degree K, m̂V,α for
∑

v αv ≤ K, are within

δ1 < λmin/(2J) of the corresponding population values of P .

The constraint in Condition 3 that M > max(1, λmin/J) is only used to facilitate simplifi-

cation of the error bounds and is not otherwise necessary. Condition 1 is a faithfulness type290

assumption on P , and in Theorem 2 we make a further assumption on γ which ensures strong

faithfulness. However, it is not strictly stronger or weaker than the Gaussian strong faithfulness

type assumption. In particular we require the linear coefficients and error moments considered



High-dimensional Causal Discovery Under Non-Gaussianity 9

to be jointly “sufficiently parentally faithful and non-Gaussian.” So for a fixed sample size, there

may be cases where the linear coefficients and error covariances do not satisfy Gaussian strong 295

faithfulness, but do satisfy the non-Gaussian condition because the higher order moments are suf-

ficiently non-Gaussian. However, the opposite may also occur where a set of linear coefficients

and error moments satisfy Gaussian strong faithfulness but not the non-Gaussian condition.

Finally, let PFK
(G) be the subset of distributions P ∈ P(G) with τ

(K)
v.C→u 6= 0 whenever

u ∈ pa(v) and C ⊆ V \ ({u, v} ∪ de(v)). Then the set of linear coefficients and error moments 300

that induce an element of P(G) \ PFK
(G) has measure zero. This set difference includes distri-

butions which are not parentally faithful with respect to G and distributions for which there exist

a parent/child pair for which both error distributions have Gaussian moments up to order K.

THEOREM 2. For some p-variate distribution P and data Y = (Y1, . . . , Yn):

(i) Suppose Condition 1 holds. Then among all DAGs with maximum in-degree at most J , 305

there exists a unique DAG G such that P ∈ PFK
(G)

(ii) Suppose Conditions 1-4 hold for constants which satisfy

γ/2 > δ3 : = 4Mδ1

{

16(3K)(J +K)KK
J (K+4)/2MK+1

λK+1
min

}

+ 2

[

δ1

{

16(3K)(J +K)KK
J (K+4)/2MK+1

λK+1
min

}]2

.

(8)

Then with pruning parameter g = γ/2, Algorithm 1 will output Ĝ = G.

The main result of Theorem 2 is part (ii). The identifiability of a DAG was previously shown

by Shimizu et al. (2006) by appealing to results for independent component analysis; however, 310

our direct analysis of rational functions of Y allows for an explicit tolerance for how sample

moments of Y may deviate from corresponding population moments of P . This implicitly allows

for model misspecification; see Corollary 3. The proof of Theorem 2 requires Lemmas 1-3, which

we develop first. The lemmas are proven in the supplement. Recall that βvC are the population

regression coefficients from (2), and let β̂vC denote the coefficients estimated from Y . 315

LEMMA 1. Suppose Conditions 2, 3, and 4 hold. Then for any v ∈ V , C ⊆ V , and |C| ≤ J ,

‖β̂vC − βvC‖∞ < δ2 = 4
J3/2Mδ1
λ2
min

.

Recall, that Yvi.C = Yvi −
∑

c∈C βvc.CYci. Let Zv.C denote the analogous quantity for Z ∼ P ,

and let Ŷvi.C = Yvi −
∑

c∈C β̂vc.CYci.

LEMMA 2. Suppose that Conditions 2, 3, and 4 hold. Let s, r be non-negative integers such

that s+ r ≤ K, and let Z ∼ P . For any v, u ∈ V and C ⊆ V \ {u, v} such that |C| ≤ J , 320

∣

∣

∣

∣

∣

1

n

∑

i

Ŷ s
vi.CY

r
ui − E (Zs

v.CZ
r
u)

∣

∣

∣

∣

∣

< δ1Φ(J,K,M, λmin)

where

Φ(J,K,M, λmin) =

{

16(3K)(J +K)KK
J (K+4)/2MK+1

λK+1
min

}

. (9)
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The proof of Lemma 2 relies on the fact that the map from moments of Z to the quantities of

interest are Lipschitz continuous within a bounded domain.

LEMMA 3. Suppose that Conditions 2, 3, and 4 hold. Then

|τ̂v.C→u − τv.C→u| < 4Mδ1Φ(J,K,M, λmin) + 2 {δ1Φ(J,K,M, λmin)}2 = δ3

for the function Φ(J,K,M, λmin) given in Lemma 2.325

The proof of Lemma 3 is an application of the triangle inequality.

Proof of Theorem 2. (ii) We proceed by induction. By Lemma 3 and assuming (8), each statis-

tic τ̂v.C→u is within δ3 < γ/2 of the corresponding population quantity. Thus, any statistic cor-

responding to a parameter with value 0 is less than γ/2 and, by Condition 1 and the condition on

γ in (8), all statistics corresponding to a non-zero parameter are greater than γ/2.330

Recall that Θ(z) is a topological ordering of nodes. Assume for some step z, that Θ(z−1) is

consistent with a valid ordering of G. Let R(z) = {v ∈ Ψ(z−1) : an(r) ⊆ Θ(z−1)} so that any

r ∈ R(z) is a root in the subgraph induced by Ψ(z−1) and Θ(z) = (Θ(z−1) ∪ {r}) is consistent

with G. The base case for z = 1 is trivially satisfied since Θ(0) = ∅.

Setting g = γ/2 does not incorrectly prune any parents, so pa(r) = C(z)
r , which im-335

plies T̂ (r, C(z)
r ,Φ(z−1)) < γ/2 for all r ∈ R(z). Similarly, for any v ∈ Ψ(z−1) \R(z), there

exists u ∈ Ψ(z−1) with |τ̂v.C→u| > γ/2 for all C ⊆ Θ(z−1). Thus, T̂
(

r, C(z)
r ,Ψ(z−1)

)

<

T̂
(

v, C(z)
v ,Ψ(z−1)

)

for every r ∈ R(z) and v ∈ Ψ(z−1) \R(z). This implies the next root selected,

argminv∈Ψ(z−1) T̂
(

v, C(z)
v ,Ψ(z−1)

)

must be in R(z), and thus Θ(z) remains consistent with G.

(i) The fact that P ∈ PFK
(G) follows directly from the definition. To show uniqueness, we340

use population quantities so that δ1 = 0 which in turn implies δ3 = 0. Then for any γ > 0, Al-

gorithm 1 will return G. Thus, by 2(ii), G must be unique. �

Remark 1. As stated Theorem 2 concerns an explicit cut-off g, whereas in practice we specify

a tuning parameter α that is easier to interpret and tune. If α ≤ 1, it holds under the conditions

of Theorem 2 that Algorithm 1 returns a topological ordering consistent with G, but Ê may be a345

superset of E. However, there exists α ≥ 1 which will recover the exact graph.

To see this note that α ≤ 1 ensures that g(z) < γ/2 under the specified conditions, so no

parents are pruned incorrectly and the estimated topological ordering is correct. This, however,

may not remove all ancestors that are not parents, so the estimated edge set may be a superset of

the true edge set. Letting instead350

α =
minv mina∈pa(v)minC∩de(v)=∅ |τ̂v.C→a|

maxv maxa∈an(v)\pa(v)minC∩de(v)=∅ |τ̂v.C→a|
, (10)

will correctly prune ancestors and not parents. Because all sample moments are close to their

population values, the denominator must be less than γ/2 and strong parental faithfulness further

implies that the numerator is greater than γ/2 so (10) is greater than 1. However, setting α too

large may result in an incorrect estimate of the ordering since a true parent may be errantly

pruned. Thus, we advocate a more conservative approach of setting α ≤ 1 which is more robust355

to violations of strong faithfulness.

Remark 2. Suppose PY ∈ P(G) but is not necessarily parentally faithful with respect to G.

If α = 0 and βvu 6= 0 for all (u, v) ∈ E, then for generic error moments a correct ordering will

still be recovered consistently as δ1 → 0.
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Indeed, Corollary 2(ii) holds without parental faithfulness. So for generic error moments, 360

there exists γ > 0 such that T (v, C(z−1)
v ,Φ(z−1)) > γ for all v ∈ Φ(z−1) \R(z) for all steps z.

However, without parental faithfulness, a parent node may be errantly pruned if α > 0. To en-

sure Corollary 2(i) holds, we need pa(r) ⊆ C(z)
v for all r ∈ R(z), which is satisfied by letting

C(z)
r = Θ(z−1). For fixed γ, since δ3 → 0 as δ1 → 0, there exists a δ1 so that γ > 2δ3.

3·3. High-dimensional consistency 365

We now consider a sequence of graphs, observations, and distributions indexed by the number

of variables p. For notational brevity, we do not explicitly include the index p in the notation,

and keep simply writing G, Y , PY and P for these sequences. The following corollary states

conditions sufficient for the conditions of Theorem 2 to hold with probability tending to 1. We

first make explicit assumptions on PY , with m?
V,α denoting the population moments of PY . 370

Again, we allow for misspecification, but require control of the L∞ distance between population

moments of PY and some P ∈ PFK
(G).

Condition 5. PY is a log-concave distribution.

Condition 6. All population moments of PY up to degree 2K, m?
V,α for

∑

v αv ≤ 2K, are

bounded by M − ξ > max(1, λmin/J). 375

Condition 7. Each population moment of Y up to degree K, m?
V,α for

∑

v αv ≤ K, is within

ξ of the corresponding population moment of P .

When Y is actually generated from a recursive linear structural equation model, Condition 7

trivially holds with ξ = 0 and log-concave errors imply that Y is log-concave.

COROLLARY 3. For a sequence of distributions P and data Y assume Conditions 1, 2, 5, 380

6, and 7 hold. For pruning parameter g = γ/2, Algorithm 1 will return the graph Ĝ = G with

probability tending to 1 if

log(p)

n1/(2K)

J5/2K5/2M2

γ1/2λ
3/2
min

→ 0, ξ
3KKK+1J (3K)/2+2MK+2

γλK+1
min

→ 0 (11)

when p → ∞ and γ, λmin < 1 < M .

Proof. Conditions 6 and 7 imply Condition 3. It remains to be shown that Condition 4 and 385

(8) hold for the γ specified in Condition 1. Solving the inequality in Lemma 3 for δ1 shows (8)

will be satisfied if the sample moments of Y are within δ of the population moments such that

δ + ξ ≤ δ1 with δ1 less than

min

[

−8MΦ+
{

(8MΦ)2 + 16Φ2γ
}1/2

8Φ2
,
λmin

2J
,M

]

= min

{

(

M2 + γ/4
)1/2 −M

Φ
,
λmin

2J

}

for Φ defined in (9). Since J,K,M > 1, γ, λmin < 1 ensure that first term is the relevant term.

We further simplify the expression since 390

(

M2 + γ/4
)1/2 ≥ M + γ min

t∈(0,γ)

∂
(

M2 + γ/4
)1/2

∂γ

∣

∣

∣

∣

∣

γ=t

= M +
γ

8 (M2 + γ/4)1/2
.

Thus, the conditions of Theorem 2 will be satisfied if

δ + ξ ≤ γ

8 (M2 + γ/4)1/2Φ
=: δ4.
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Specifically, we analyze the case when ξ < δ4/2 and |m̂V,a −mV,a| < δ < δ4/2 for all |a| ≤ K.

If Yv follows a log-concave distribution, we can apply Lemma B.3 of Lin et al. (2016) which

states for f , some K degree polynomial of log-concave random variables Y = (Y1, . . . , Yn),395

and some absolute constant, L, if

2

L

(

δ

(e) [var {f(Y )}]1/2

)1/K

≥ 2

then

Pr [|f(Y )− E {f(Y )} | > δ] ≤ exp







−2

L

(

δ

[var {f(Y )}]1/2

)1/K






.

Letting f(Y ) be the sample moments of Y up to degree K, Condition 6 implies the variance

is bounded by M/n. When p > 2, there are
(

p+K
p

)

< pK moments with degree at most K, then

by a union bound, when 0 < ξ < δ4/2,400

Pr
(

Ĝ = G
)

≥ 1− Pr (|m̂V,a −mV,a| > δ4/2 for any |a| ≤ K)

≥ 1− pK exp





−2

L

{

δ4/2

(M/n)1/2

}1/K




when

2n1/(2K)

L

(

δ4/2

eM1/2

)1/K

≥ 2. (12)

In the asymptotic regime, where p is increasing,

LM1/(2K)K log(p)

(δ4/2)
1/K n1/(2K)

→ 0

implies that the inequality in (12) will be satisfied and

pK exp





−2

L

{

δ4/2

(M/n)1/2

}1/K


→ 0.

Plugging in the expression for δ4, we find

LM1/(2K)K log(p)

(δ4/2)
1/K 2n1/(2K)

=
LM1/(2K)K log(p)

2n1/(2K)
×405

{

16
(

M2 + γ/4
)1/2

16(3K)(J +K)KKJ (K+4)/2MK+1

γλK+1
min

}1/K

.

This quantity is of order O
((

log(p)J5/2K5/2M2
)

/
(

n1/(2K)γ1/2λ
3/2
min

))

when assuming that

γ < M . In addition, ξ < δ4/2 will be satisfied if 2ξ
δ4

→ 0. This ratio is

2ξ

δ4
= 2ξ

{

16
(

M2 + γ/4
)1/2

16(3K)(J +K)KKJ (K+4)/2MK+1

γλK+1
min

}
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Fig. 3: Each bar represents the results from 500 randomly drawn graphs and data. In each group,

from left to right, the bars represent (1) min-max T̂1, (2) max-min T̂2, (3) Shimizu et al. (2011),

and (4) Hyvärinen and Smith (2013). In the left panel n = 50p and the right panel n = 10p.

which is O
( (

ξ3KKK+1J (3K)/2+2MK+2
)

/
(

γλK+1
min

))

when γ < M . � 410

When fixing the other terms, Corollary 3 requires log(p) = o(n1/(2K)). Corollary 3 does not

preclude J from growing with n and p; however, the computational complexity of Algorithm 1

is exponential in J , so in practice J must remain relatively small.

4. NUMERICAL RESULTS

4·1. Simulations: low dimensional performance 415

We first compare the proposed method using: (1) min-max T̂1 and (2) max-min T̂2 against

(3) DirectLiNGAM (Shimizu et al., 2011) and (4) Pairwise LiNGAM (Hyvärinen and Smith,

2013, Section 3.2). We randomly generate graphs and corresponding data with the following

procedure. For each node v, select the number of parents dv uniformly from 1, . . . ,min(v, J).
We include edge (v − 1, v) to ensure that the ordering is unique and draw βv,v−1 uniformly 420

from (−1,−.5) ∪ (.5, 1). The remaining parents are selected uniformly from [v − 2] and the

corresponding edge weights are set to ±1/5. The n error terms for variable v are generated by

selecting σv ∼ unif(.8, 1) and then drawing εvi ∼ σvunif(−
√
3,
√
3).

We use K = 4, fix the max in-degree J = 3, let p = 5, 10, 15, 20, and let n = 50p and n =
10p. We set α = .8 and compare performance by measuring Kendall’s τ between the returned 425

ordering and the true ordering; i.e., the number of concordant pairs in the ordering minus the

number of discordant pairs, normalized by the number of total pairs. The procedure is repeated

500 times for each setting of p and n.

Figure 3 shows that in the low-dimensional case with n = 50p, the Pairwise LiNGAM and Di-

rectLiNGAM methods outperform the proposed method, with either statistic. However, already 430

with n = 10p, our method begins to give improvements. The min-max statistic T1 does slightly

better than T2, the max-min. However, Figure 4 shows a large difference in computational effort;

p = 40, 80 are included for further contrast. In the sequel, we use the max-min statistic, T2.

The proposed method compares favorably to the DirectLiNGAM method in computational ef-

fort because of the expensive kernel mutual information calculation and is comparable to the Pair- 435

wise LiNGAM. However, we refrain from a direct timing comparison because DirectLiNGAM

and Pairwise LiNGAM are both implemented in Matlab while our proposed method is imple-

mented in R and C++ (R Core Team, 2017; Eddelbuettel and François, 2011). In the supplement,
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Fig. 4: Timing results from 500 randomly drawn graphs and data with n = 50p. In each pair, the

left represents min-max, T̂1 and the right max-min, T̂2. The y-axis is on a log scale.
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Fig. 5: Each boxplot represents the results of 20 simulations. In all cases, we let n = 3/4p.

The top panels show results from randomly drawn DAGs while the bottom panel shows results

from DAGs constructed to have hub structure. The left plots show performance as measured by

Kendall’s τ and the right plots show computational time when using 16 CPUs in parallel.

we also provide a direct comparison between the proposed statistic and those used by Shimizu

et al. (2011) and Hyvärinen and Smith (2013).440

4·2. Simulations: high-dimensional consistency

To illustrate high-dimensional consistency, we generate the graph and coefficients as in Section

4·1 but with n = 3/4p for p = 100, 200, 500, 1000, 1500, 2000. We first consider random DAGs

and data generated as before, but with J = 2. We also consider graphs with hubs, that is, nodes

with large out-degree. These are generated by including a directed edge from v − 1 to v for all445

nodes v = 2, . . . , p and drawing the edge weight uniformly from (−1,−.65) ∪ (.65, 1). We then

set nodes {1, 2, 3} as hubs and include an edge with weight ±1/5 to each non-hub node from

a randomly selected hub. Thus, the out-degree for each of the hub nodes grows linearly with p,

but the maximum in-degree remains bounded by 2. For both cases, the results for 20 runs at each

value of p are shown in Figure 5. In the supplement, we show simulations with gamma errors450

and also consider a setting with Gaussian errors, where our method should not be consistent.
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Fig. 6: Each boxplot represents 20 simulations with random DAGs when using a pre-selection

step; in each case n = 3/4p. From left to right the methods are: the proposed high-dimensional

LiNGAM procedure, same as Figure 5; the proposed high-dimensional LiNGAM procedure with

pre-selection; the two stage pairwise procedure from Hyvärinen and Smith (2013).

4·3. Pre-selection of neighborhoods

As with the original DirectLiNGAM procedure, any edges or non-edges known in advance can

be accounted for. Such information could, for instance, be obtained by applying neighborhood

selection (Meinshausen and Bühlmann, 2006) to estimate the Markov blanket of each node. This 455

blanket consists of parents, children, and parents of children. For sparse graphs, Hyvärinen and

Smith (2013, Section 3.3) propose first using such a pre-selection step, then directly estimating

the direction of each edge using pairwise measures without any additional adjustment. To create

a total ordering, Alg B and Alg C of Shimizu et al. (2006) can be used. This does not require

specifying a maximum in-degree, but in general, the neighborhood selection procedure will only 460

be consistent if the total degree is controlled.

In our proposed procedure, we may incorporate estimated Markov blankets by limiting, at

each step z, for each remaining node v, the set of potential parents, C
(z)
v , to the intersection of the

estimated Markov blanket of v and the previously ordered nodes, Θ(z−1). We do not otherwise

prune the set of potential parents. Figure 6 shows results from using the pre-selection step under 465

the setting from Section 4·2 for general random graphs. The pre-selection procedure improves the

performance of our proposed high-dimensional LiNGAM procedure, but the proposed procedure

without pre-selection still outperforms the two-stage procedure of Hyvärinen and Smith (2013,

Section 3.3). Similar results for the hub graph setting are shown in the supplement.

4·4. Data example: high-dimensional performance 470

We estimate causal structure among the stocks in the Standard and Poor’s 500. Specifically, we

consider the percentage increase/decrease for each share price for each trading day between Jan

2007 to Sep 2017. We consider the p = 442 companies for which data is available for the entire

period, and we scale and center the data so that each variable has mean 0 and variance 1. As

structure may vary over time, we estimate the causal structure for each of the following periods 475

separately with J = 3 and K = 4: 2007-2009, 2010-2011, 2012-2013, 2014-2015, 2016-2017

(ending in September). Across these periods, the sample size, n, ranges from 425 to 755.

The underlying structure is unlikely to be causally sufficient or acyclic. In addition, although

it is common to assume that daily returns are independent, this assumption may not hold in

practice. Nonetheless, the method still recovers reasonable structure. We first consider the most 480

recent Jan 2016 - Sep 2017 period. Figure 7 shows a boxplot for the estimated ordering of the

companies within each sector. The sectors are sorted top to bottom by median ordering. Near
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Fig. 7: Estimated causal ordering of the stocks in the Standard and Poor’s 500 for Jan 2016 - Sep

2017. The stocks are grouped by sector, and the sectors are arranged by median causal ordering.

the top, we see utilities, energy, real estate, and finance. Since energy is an input for almost

every other sector, intuitively price movements in energy should be causally upstream of other

sectors. The estimated ordering of utilities might seem surprising; however, utility stocks are485

typically thought of as a proxy for bond prices. Thus, the estimated ordering may reflect the fact

that changes in utility stocks capture much of the causal effect of interest rates, which had stayed

constant for much of 2011-2015 but began moving again in 2016. Real estate and finance, sectors

that are highly impacted by interest rates, are also estimated to be early in the causal ordering.

Figure 8 ranks each sector by the median topological ordering for each period. The orderings490

are relatively stable over time, but there are a few notable changes. In 2007, real estate was esti-

mated to be the “root sector” while finance is in the middle. This aligns with the idea that the root

of the 2008 financial crisis was actually failing mortgage backed securities in real estate, which

had a causal effect on finance. However, over time, real estate has moved more downstream.

5. DISCUSSION495

We proposed a causal discovery method that was proven consistent for specific test statistics

and log concave errors. Similar analyses could be given for other statistics that are Lipschitz

continuous in the sample moments over a bounded domain, can distinguish causal direction, and

indicate the presence of confounding. This would include a normalized version of the proposed

test statistics which accounts for the scaling of the data. Log-concavity was assumed for exponen-500

tial concentration of sample moments and other distributional assumptions could be considered

instead if analogous concentration results can be obtained and traced throughout the analysis.

The proposed algorithm requires selecting a bound on the in-degree J and a pruning parameter

α. The in-degree is typically unknown, but a reasonable upper bound may be used as a “bet on

sparsity”. If the maximum in-degree of the true graph is larger than the specified J but the “extra505

edges” have small enough edge-weights, the “closest” DAG with maximum in-degree J is still

recovered with high probability. The pruning parameter α plays a similar role to the nominal

level for each conditional independence test in the PC algorithm. Both parameters have an effect

on the sparsity of the estimated graph and regulate the maximum size of conditioning sets.

At each step, instead of taking the minimum |τ | over all subsets of potential parents, one could510

also pick parents for every unordered node using a variable selection procedure and then only

calculate |τ | using the selected parents. Such a procedure would also consistently estimate the

causal ordering as long as the variable selection procedure is consistent. Slightly different condi-

tions, such as a beta-min condition, would be needed when adopting standard methods based on
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Fig. 8: Sectors ranked by median estimated topological ordering across each time period.

least squares, but in practice the resulting method performs quite well as shown in simulations 515

in the supplement. This could be explained as being due to use of only second moments for the

variable selection.

In (8), we have made a key restriction that the error moments must be adequately different

from the moments of any Gaussian and the edge weights must be strongly parentally faithful.

In practice, this is a difficult condition to satisfy, and Uhler et al. (2013) show that strong faith- 520

fulness type restrictions can be problematic in practice. However, even if the distribution is not

strongly parentally faithful, we can still consistently recover the correct ordering as long as each

individual linear coefficient is non-zero and the errors are sufficiently non-Gaussian. Sokol et al.

(2014) consider identifiability of independent component analysis for fixed p when the error

terms are Gaussians contaminated with non-Gaussian noise. In particular, when the effect of the 525

non-Gaussian contamination decreases at an adequately slow rate, the entire mixing matrix is

identifiable asymptotically. In our analysis, the measure of non-Gaussianity is treated by our as-

sumptions on γ. Our results suggest that the results of Sokol et al. (2014) can also be extended,

given suitable sparsity, to the asymptotic regime where the number of variables is increasing.

The modified procedure we propose retains the existing benefits of the original Di- 530

rectLiNGAM procedure. In particular, the output of algorithm is independent of the ordering

of the variables in the input data. Although this is typically not an issue in the low-dimensional

case, in the high-dimensional setting, the output of causal discovery methods may be highly

dependent on ordering (Colombo and Maathuis, 2014).

ACKNOWLEDGMENT 535

This work was supported by the U.S. National Science Foundation under Grant No. DMS

1712535. Thomas S. Richardson gave helpful feedback on an advance copy of the manuscript.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of Theorem 1 and

Lemmas 1,2, and 3. Additional simulations are also included. 540

REFERENCES

Colombo, D. and Maathuis, M. H. (2014). Order-independent constraint-based causal structure learning. J. Mach.
Learn. Res., 15:3741–3782.



18 Y. S. WANG AND M. DRTON

Drton, M. and Maathuis, M. H. (2017). Structure learning in graphical modeling. Annual Review of Statistics and Its
Application, 4(1):365–393.545

Eddelbuettel, D. and François, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18.

Hao, D., Ren, C., and Li, C. (2012). Revisiting the variation of clustering coefficient of biological networks suggests
new modular structure. BMC Systems Biology, 6(1):34.

Harris, N. and Drton, M. (2013). PC algorithm for nonparanormal graphical models. J. Mach. Learn. Res., 14:3365–550

3383.
Hoyer, P. O., Hyvärinen, A., Scheines, R., Spirtes, P., Ramsey, J., Lacerda, G., and Shimizu, S. (2008). Causal

discovery of linear acyclic models with arbitrary distributions. In UAI 2008, Proceedings of the 24th Conference
in Uncertainty in Artificial Intelligence, Helsinki, Finland, July 9-12, 2008, pages 282–289.

Hyvärinen, A. and Smith, S. M. (2013). Pairwise likelihood ratios for estimation of non-Gaussian structural equation555

models. J. Mach. Learn. Res., 14:111–152.
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Uhler, C., Raskutti, G., Bühlmann, P., and Yu, B. (2013). Geometry of the faithfulness assumption in causal inference.

Ann. Statist., 41(2):436–463.

[Received 30 Mar 2018. Editorial decision on 30 Sep 2018]


