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A B S T R A C T   

Much research in cognitive neuroscience supports prediction as a canonical computation of cognition across 
domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it 
locally implemented in domain-specific circuits? What information sources are used to generate these pre
dictions? This study addresses these two questions in the context of language processing. We present fMRI ev
idence from a naturalistic comprehension paradigm (1) that predictive coding in the brain’s response to language 
is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to 
hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that 
supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in 
response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the 
domain-general multiple-demand network, which supports executive control processes and has been previously 
implicated in language comprehension. Moreover, within the language network, surface-level and structural 
prediction effects were separable. The predictability effects in the language network were substantial, with the 
model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence 
processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive 
to hierarchical structure and specialized for language processing, rather than via feedback from high-level ex
ecutive control mechanisms.   

1. Introduction 

The human brain is an efficient prediction engine (James, 1890). 
Facilitation in processing expected information, as well as processing 
costs of violated expectations, have been reported in many domains. In 
the domain of language comprehension, various results show that lis
teners and readers actively predict upcoming linguistic material (e.g., 
Kutas and Hillyard, 1984; MacDonald et al., 1994; Tanenhaus et al., 
1995; Rayner et al., 2004; Frank and Bod, 2011; Smith & Levy, 2011, 
2013; Gagnepain et al., 2012; Staub and Benatar, 2013; Frank et al., 
2015; Kuperberg and Jaeger, 2016). However, the cognitive and neural 

mechanisms that support predictive language processing are not well 
understood. Under one widely held view, predictive language process
ing is implemented by domain-general executive (inhibitory control and 
working memory) resources. This perspective receives support from 
numerous studies showing that prediction effects during language 
comprehension are absent or less pronounced for populations with 
reduced executive resources, such as children, older individuals, and 
non-native speakers (e.g., Federmeier et al., 2002; Federmeier and 
Kutas, 2005; Dagerman et al., 2006; Federmeier et al., 2010; Mani and 
Huettig, 2012; Wlotko and Federmeier, 2012; Martin et al., 2013; Kaan, 
2014; Mitsugi and MacWhinney, 2016; Gambi et al., 2018; Payne and 
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Federmeier, 2018; cf. Dave et al., 2018; Havron et al., 2019). Further
more, several neuroimaging studies have reported sensitivity to lin
guistic manipulations in what appear to be cortical regions thought to 
support domain-general executive function (e.g., Kaan and Swaab, 
2002; Kuperberg et al., 2003; Novick et al., 2005; Rodd et al., 2005; 
Novais-Santos et al., 2007; January et al., 2009; Peelle et al., 2009; 
Rogalsky and Hickok, 2011; Nieuwland et al., 2012; Wild et al., 2012; 
McMillan et al., 2012, 2013), suggesting that such regions may also be 
implicated in language processing, including perhaps prediction. These 
results have led some to conclude that predictive coding for language is 
implemented by domain-general executive control resources (Linck 
et al., 2014; Huettig and Mani, 2016; Pickering and Gambi, 2018; 
Strijkers et al., 2019). 

However, this interpretation is subject to several objections. First, 
most prior work on linguistic prediction has relied on behavioral and 
electrophysiological measures which are well suited for identifying 
global response patterns but cannot spatially localize the source of these 
effects in the brain to a certain functional region or network (e.g., 
Mather et al., 2013). Second, the (alleged) between-population differ
ences in prediction noted above are consistent with accounts that do not 
directly invoke executive resources, including (1) possible qualitative 
differences between populations in the kind of information that is being 
predicted and the consequent need for population-specific norms to 
detect prediction effects, or (2) differences in how often predictions are 
correct, which may modulate the likelihood of engaging in predictive 
behavior (see Ryskin et al., this issue, for discussion). And third, past 
studies that did employ neuroimaging tools with high spatial resolution 
and consequently reported linguistic prediction responses—typically 
neural response increases for violations of linguistic structure—localized 
to executive control regions (e.g., Newman et al., 2001; Kuperberg et al., 
2003; Nieuwland et al., 2012; Schuster et al., 2016) may have been 
influenced by task artifacts; indeed, some have argued that artificially 
constructed laboratory stimuli and tasks increase general cognitive load 
in comparison to naturalistic language comprehension (e.g., Blanco-E
lorrieta and Pylkk€anen, 2017; Blank and Fedorenko, 2017; Campbell 
and Tyler, 2018; Wehbe et al., submitted; Diachek et al., 2019). To 
ensure that findings from the laboratory paradigms truly reflect the 
cognitive phenomenon of interest, it is important to validate them in 
more naturalistic experimental settings that better approximate the 
typical conditions of human sentence comprehension (Hasson and 
Honey, 2012; Hasson et al., 2018). 

Despite the growing number of fMRI studies of naturalistic language 
comprehension (e.g., Speer et al., 2007; Yarkoni et al., 2008; Speer et al., 
2009; Whitney et al., 2009; Wehbe et al., 2014; Hale et al., 2015; 
Henderson et al., 2015, 2016; Huth et al., 2016; Sood and Sereno, 2016; 
Brennan, 2016; Desai et al., 2016; de Heer et al., 2017, Dehghani et al., 
2017; Bhattasali et al., 2018), only a handful have directly investigated 
effects of word predictability (Willems et al., 2015; Brennan et al., 2016; 
Henderson et al., 2016; Lopopolo et al., 2017; see Table 1 for summary), 
a well-established predictor of behavioral measures in naturalistic lan
guage comprehension (Demberg and Keller, 2008; Frank and Bod, 2011; 
Smith and Levy, 2013; van Schijndel and Schuler, 2015). These previous 
naturalistic studies of linguistic prediction effects in the brain—using 
estimates of prediction effort such as surprisal (Hale, 2001; Levy, 2008), 
i.e., the negative log probability of a word given its context, or entropy 
(Hale, 2006), i.e., an information-theoretic measure of the degree of 

constraint placed by the context on upcoming words—have yielded 
mixed results on the existence, type, and functional location of such 
effects. For example, of the lexicalized and unlexicalized (part-of-
speech) bigram and trigram models of word surprisal explored in 
Brennan et al. (2016), only part-of-speech bigrams positively modulated 
neural responses in most regions of the functionally localized language 
network. Lexicalized bi- and trigrams and part-of-speech trigrams yiel
ded generally null or negative results (16 out of 18 comparisons). By 
contrast, Willems et al. (2015) found lexicalized trigram effects in re
gions typically associated with language processing (e.g., anterior and 
posterior temporal lobe). In addition, Willems et al. (2015) and Lopo
polo et al. (2017) found prediction effects in regions that are unlikely to 
be specialized for language processing, including (aggregating across 
both studies) the brain stem, amygdala, putamen, and hippocampus, as 
well as in superior frontal areas more typically associated with 
domain-general executive functions like self-awareness and coordina
tion of the sensory system (Goldberg et al., 2006). It is therefore not yet 
clear whether predictive coding for language relies on domain-general 
mechanisms in addition to, or instead of, language-specific ones, espe
cially in naturalistic contexts. 

In addition to questions about the functional localization of linguistic 
prediction, substantial prior work has also investigated the structure of 
the predictive model, seeking to shed light on the nature of linguistic 
representations in the mind. Specifically, if effects from theoretical 
constructs—such as hierarchical natural language syntax—can be 
detected in online processing measures (whether behavioral or neural), 
this would constitute evidence that such constructs are present in human 
mental representations and used to comprehend language. In the 
particular case of hierarchical representations, their psychological re
ality is widely supported by behavioral and electrophysiological ex
periments using constructed stimuli (see Lewis and Phillips, 2015 for 
review), by production experiments (Momma & Ferreira, 2019), and by 
some behavioral (Roark et al., 2009; Fossum and Levy, 2012; van 
Schijndel and Schuler, 2015; Shain et al., 2016), electrophysiological 
(Brennan and Hale, 2019) and neuroimaging (Brennan et al., 2016) 
experiments using naturalistic stimuli. However, other naturalistic 
studies reported null or negative syntactic effects (Frank and Bod, 2011; 
van Schijndel and Schuler, 2013; Shain and Schuler, 2018 contra Shain 
et al., 2016), or mixed syntactic results within the same set of experi
ments (Demberg and Keller, 2008; Henderson et al., 2016), leading some 
to argue that the representations used for language comprehension (in 
the absence of task artifacts from constructed stimuli) contain little hi
erarchical structure (Frank and Christiansen, 2018). Furthermore, the 
few naturalistic fMRI studies that have explored structural prediction 
effects have yielded inconsistent localization of these effects. For 
example, Brennan et al. (2016) found context-free grammar surprisal 
effects throughout the functional language network except in inferior 
frontal gyrus, whereas inferior frontal gyrus is the only region in which 
Henderson et al. (2016) found such effects. 

The current study thus used fMRI to determine whether signatures of 
predictive coding during naturalistic language compre
hension—increased response to less predictable words, i.e. surprisal 
effects (e.g., Smith and Levy, 2013), based on either linear word se
quences or hierarchical structures—are primarily evident in (1) the 
domain-specific, fronto-temporal language (LANG) network (Fedorenko 
et al., 2011), and/or (2) the domain-general, fronto-parietal multiple 

Table 1 
Previous fMRI studies of prediction effects in naturalistic sentence comprehension.  

Study # Participants Stimulus length HRF model Functional localization Out-of-sample evaluation 

Willems et al. (2015) 24 19 min Canonical No No 
Brennan et al. (2016) 26 12 min Canonical Yes No 
Henderson et al. (2016) 40 22 paragraphs Canonical No No 
Lopopolo et al. (2017) 22 19 min Canonical No No 
Current study 78 13.5 min (avg per participant) Data-driven (CDR) Yes Yes  
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demand (MD) network (Duncan, 2010). The MD network supports ex
ecutive functions (e.g., inhibitory control, attentional selection, conflict 
resolution, maintenance and manipulation of task sets) across both lin
guistic and non-linguistic tasks (e.g., Duncan and Owen, 2000; Fedor
enko et al., 2013; Hugdahl et al., 2015; for discussion, see: Fedorenko, 
2014) and has been shown to be sensitive to surprising events (Corbetta 
and Shulman, 2002). 

On the one hand, given that the language network plausibly stores 
linguistic knowledge, including the statistics of language input, it might 
directly carry out predictive processing. Such a result would align with a 
growing body of cognitive neuroscience research supporting prediction 
as a “canonical computation” (Keller and Mrsic-Flogel, 2018) locally 
implemented in domain-specific circuits (Montague et al., 1996; Rao 
and Ballard, 1999; Alink et al., 2010; Bubic et al., 2010; Bastos et al., 
2012; Wacongne et al., 2011, 2012; Singer et al., 2018). This hypothesis 
is also supported by prior findings of linguistic prediction effects in 
portions of the language network (Bonhage et al., 2015; Willems et al., 
2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo et al., 
2017; Matchin et al., 2018). 

On the other hand, given that the MD network has been argued to 
encode predictive signals across domains and relay them as feedback to 
other regions (Strange et al., 2005; Cristescu et al., 2006; Egner et al., 
2008; Wacongne et al., 2011; Chao et al., 2018), it might be recruited to 
predict upcoming words and structures in language. There is an exten
sive literature on neural signatures of prediction, such as activity asso
ciated with prediction errors, in brain regions that appear to belong to 
the MD network, including bilateral areas in the dorsolateral pre-frontal 
cortex, the inferior frontal gyrus, the anterior cingulate cortex, and the 
parietal lobe (for a review, see Dehaene et al., 2015; for a meta-analysis, 
see D’Astolfo and Rief, 2017). These areas are sensitive to rule violations 
in non-linguistic sequences, including hierarchically structured ones, in 
different sensory domains (e.g., auditory and visual; Bekinschtein et al., 
2009; Ahlheim et al., 2014; Uhrig et al., 2014; Wang et al., 2015; Wang 
et al., 2017; Chao et al., 2018). In addition, they are recruited during 
learning of structured sequences in the motor domain (Bischoff-Grethe 
et al., 2004; Eickhoff et al., 2010). Beyond representing deterministic 
rules, such regions are also engaged in probabilistic predictions (Strange 
et al., 2005; Meyniel and Dehaene, 2017). Such predictions can be based 
on either inferring a generative model underlying the input sequence 
(Gl€ascher et al., 2010; Schapiro et al., 2013) or on reward contingencies 
(Koch et al., 2008; Zarr and Brown, 2016; Alexander and Brown, 2018; 
for a review, see: Rushworth and Behrens, 2008). 

There are two main hypotheses in the contemporary literature that 
link predictive processing in the MD network with increased activity to 
more surprising words. First, the MD network might provide additional 
resources (“cognitive juice”) to various cognitive processes, including 
language. Under this scenario, MD regions might “come to the rescue” of 
the language network when processing demands are increased, which 
would be the case when surprisal is higher. Indeed, prior work suggests 
that the MD network could be recruited when language processing be
comes effortful, e.g., under acoustic (Adank, 2012; Hervais-Adelman 
et al., 2012; Wild et al., 2012; Scott and McGettigan, 2013; Vaden et al., 
2013) or syntactic (Kuperberg et al., 2003; Nieuwland et al., 2012) 
noise; in healthy aging (for reviews, see Wingfield and Grossman, 2006; 
Shafto and Tyler, 2014); during recovery from aphasia (Brownsett et al., 
2014; Geranmayeh et al., 2014, 2016; 2017; Meier et al., 2016; Sims 
et al., 2016; Hartwigsen, 2018); and in L2 processing and multi-lingual 
control (e.g., Wartenburger et al., 2003; Rüschemeyer et al., 2005; 
Yokoyama et al., 2006; de Bruin et al., 2014; Grant et al., 2015; Kim 
et al., 2016; for reviews, see Perani and Abutalebi, 2005; Sakai, 2005; 
Abutalebi, 2008; Kotz, 2009; Hervais-Adelman et al., 2011; Pliatsikas 
and Luk, 2016). Second, the MD network, especially in the prefrontal 
cortex, may construct abstract representations of context, which serve as 
working memory for guiding behavior (Alexander and Brown, 2018). 
The main goal of such representations is to minimize prediction errors in 
other brain regions, so these representations are communicated in a 

top-down manner to the language network or other domain-specific 
networks (e.g., sensory areas). Such high-level, abstract predictive sig
nals are potentially useful because they could perhaps “explain away” 
some more local prediction errors computed in the language network (e. 
g., in a sentence like “the cat that the dog chased on the balcony 
escaped”, the verb “escaped” might be unexpected based on the local 
context of the previous few words, but its occurrence could be explained 
away by a more global and abstract representation that looks farther 
into the past and predicts a verb for “the cat” in the main clause). In 
essence, then, signals from the MD network could bias representations in 
the language network in favor of the features that are most relevant in a 
given context (for a similar reasoning for sensory cortices, see Miller and 
Cohen, 2001; Sreenivasan et al., 2014; D’Esposito and Postle, 2015). 
However, these higher-level predictions are still sometimes incorrect, 
and when errors propagate back to the MD network, its regions would be 
triggered to adjust their predictive model in order to minimize future 
errors. This “model revision” process may register as increased neural 
processing (Chao et al., 2018). 

Prior fMRI studies using hand-constructed sentences to probe effects 
of linguistic expectation have not yielded a clear answer as to the 
mechanisms—language-specific vs. domain-general—that support lin
guistic prediction. Numerous such studies have observed responses in 
areas of the language network to manipulations of word predictability 
(Kuperberg et al., 2000; Baumgaertner et al., 2002; Kiehl et al., 2002; 
Friederici et al., 2003; Gold et al., 2006; Obleser et al., 2007; Dien et al., 
2008; Obleser and Kotz, 2009; Bonhage et al., 2015; Schuster et al., 
2016, 2019; Hartwigsen et al., 2017; Matchin et al., 2018). However, as 
discussed above, many studies have also reported linguistic prediction 
effects in frontal, parietal, and cingulate cortical regions typically 
associated with the MD network (Kuperberg et al., 2000; Baumgaertner 
et al., 2002; Gold et al., 2006; Bonhage et al., 2015; Hartwigsen et al., 
2017), as well as in other parts of the brain like the fusiform gyrus 
(Kuperberg et al., 2000; Gold et al., 2006) and the cerebellum (Lesage 
et al., 2017). Although it is certainly possible that predictive coding for 
language is carried out by both the LANG and the MD networks, with 
additional contributions from other brain areas, it is important to ensure 
that the foregoing results are not due to task artifacts induced by the use 
of artificially constructed stimuli (see Discussion), through validation of 
these findings in more naturalistic comprehension conditions (Hasson 
et al., 2018). 

To distinguish between hypotheses above in a naturalistic compre
hension paradigm, we searched for neural responses in LANG vs. MD 
regions to the contextual predictability of words as estimated by two 
model implementations of surprisal: a surface-level 5-gram model, and a 
hierarchical probabilistic context-free grammar (PCFG) model. N-gram 
surprisal estimates are sensitive to word co-occurrence patterns but are 
limited in their ability to model hierarchical natural language syntax, 
since they contain no explicit representation of grammatical categories 
or syntactic composition and have limited memory for preceding words 
in the sentence (in our case, up to four preceding words). PCFG surprisal 
estimates, by contrast, are based on structured syntactic representations 
of the unfolding sentence but do not directly encode surface-level word 
co-occurrence patterns. Correlations between each of these two mea
sures and human neural responses would shed light on the relative 
importance assigned to these two information sources (word co- 
occurrences and syntactic structures) in computing predictions about 
upcoming words. Although surprisal is not the only extant measure of 
linguistic prediction (others include PCFG entropy, Roark et al., 2009; 
entropy reduction, Hale, 2006; and successor surprisal, Kliegl et al., 
2006), surprisal has received extensive consideration in the experi
mental literature (e.g., Demberg and Keller, 2008; Frank and Bod, 2011; 
Fossum and Levy, 2012; Frank et al., 2015; van Schijndel and Schuler, 
2015; Brennan et al., 2016; Henderson et al., 2016; Brennan and Hale, 
2019; Shain, 2019). We did not consider these related measures in order 
to avoid excessive statistical comparisons. 

Note that by estimating prediction effects using surprisal, we are 
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implicitly assuming a notion of linguistic prediction as a distributed pre- 
activation process, following e.g. Kuperberg and Jaeger (2016), rather 
than as an all-or-nothing commitment to a specific upcoming word. 
Thus, we are investigating the degree to which the statistics of the local 
lexical (n-gram) and structural (PCFG) linguistic context modulate 
neural recruitment during the sentence processing, and which cognitive 
systems (language-specific vs. domain-general) are subject to such 
modulation. We leave aside questions about the underlying mechanisms 
by which these effects arise: e.g. the extent to which they are “active” or 
“passive”, or the extent to which integrative structure-building opera
tions (e.g. composing words into syntactic constituents, constructing 
dependencies, etc.) underlie the observed facilitation effects (Altmann, 
1998; Hale, 2014) (See Discussion for elaboration on this point.) 

To identify language-specific and domain-general cortical regions 
without having to rely on the problematic practice of reverse inference 
from anatomy to function (Poldrack, 2006, 2011, Fig. 1), we function
ally defined the LANG and MD networks in each individual participant 
using an independent “localizer” task (Saxe et al., 2006; Fedorenko 
et al., 2010), and then examined the response of those functional regions 
to each estimate of surprisal during naturalistic comprehension. To 
foreshadow our results, we find significant independent effects of 
5-gram and PCFG surprisal in LANG, but no such effects in MD, as well as 
significant differences in surprisal effect sizes between the two net
works. This finding supports the hypothesis that predictive coding for 
language is primarily carried out by language-specialized rather than 
domain-general cortical circuits and exploits both surface-level and 
structural cues. 

2. Materials and methods 

2.1. General approach 

Several features set the current study apart from prior cognitive 

neuroscience investigations of linguistic prediction during 
comprehension. 

First, we used naturalistic language stimuli rather than controlled 
stimuli constructed for a particular experimental goal. Naturalistic 
stimuli improve ecological validity compared to isolated constructed 
stimuli that may introduce task artifacts and not generalize to everyday 
cognition (Demberg and Keller, 2008; Hasson and Honey, 2012; Richlan 
et al., 2013; Schuster et al., 2016; Campbell and Tyler, 2018). Mini
mizing such artifacts is crucial in studies of the MD network, which is 
highly sensitive to task variables (Miller and Cohen, 2001; Sreenivasan 
et al., 2014; D’Esposito and Postle, 2015; Diachek et al., 2019). More
over, prior work indicates that naturalistic stimuli yield more reliable 
fMRIBOLD signals than artificial tasks (Hasson et al., 2010). 

Second, we used participant-specific functional localization to 
identify regions of interest constituting the LANG and MD networks 
(Fedorenko et al., 2010). This approach is crucial because many func
tional regions do not exhibit a consistent mapping onto 
macro-anatomical landmarks (e.g., Frost and Goebel, 2012; Tahmasebi 
et al., 2012; V�azquez-Rodríguez et al., 2019), and this variability is 
especially problematic when functionally distinct regions lie in close 
proximity to one another, as is the case in the frontal (Amunts et al., 
1999; Tomaiuolo et al., 1999), temporal (Jones and Powell, 1970; Gloor, 
1997; Wise et al., 2001) and parietal (Caspers et al., 2006, 2008; Sche
perjans et al., 2008) lobes, which house the LANG and MD networks. 
Due to this inconsistent functional-to-anatomical mapping, a given ste
reotactic coordinate might belong to the LANG network in some par
ticipants but to the MD network in others, as is indeed the case in our 
sample (Fig. 1) (see also Fedorenko et al., 2012a; Blank et al., 2017; 
Fedorenko & Blank, in press). Such inter-individual variability severely 
compromises the validity of both anatomical localization (Juch et al., 
2005; Poldrack, 2006; Fischl et al., 2007; Frost and Goebel, 2012; 
Tahmasebi et al., 2012) and group-based functional localization (Saxe 
et al., 2006; Fedorenko and Kanwisher, 2009): these approaches risk 

Fig. 1. Inter-individual variability in the mapping of 
function onto anatomy. Each column demonstrates 
variability in a different coordinate in MNI space, 
specified at the top (in mm). For each coordinate, 
sagittal T1 slices from four participants are shown, 
with the coordinate circled on each slice (participants 
differ across columns). In each case, the top two 
participants show a Sentences > Nonwords effect in 
this coordinate (colored in red-yellow), whereas the 
bottom two participants show the opposite, Non
words > Sentences effect in this same coordinate 
(colored in green-blue). In all cases, the effect size of 
the circled coordinate is strong enough to be included 
among the participant-specific fROIs. Other voxels 
exhibiting strong contrast effects in the localizer task 
(namely, among the top 10% of voxels across the 
neocortical gray matter) are superimposed onto the 
anatomical slices, in color. Colorbars show p-values 
associated with each of the two localizer contrasts. 
(For interpretation of the references to color in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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both decreased sensitivity (i.e. failing to identify a functional region due 
to insufficient spatial alignment across participants) and decreased 
functional resolution (i.e. mistaking two functionally distinct regions for 
a single region due to apparent spatial overlap across the sample). In 
contrast, participant-specific functional localization allows us to pool 
data from a given functional region across participants even in the 
absence of perfect anatomical alignment, and is therefore better suited 
for the kind of questions we study here (Nieto-Casta~n�on and Fedorenko, 
2012). Both networks we probe here have been extensively functionally 
characterized in prior work, so responses to linguistic surprisal therein 
can be taken to index the engagement of linguistic processing mecha
nisms vs. domain-general executive mechanisms (e.g., Mather et al., 
2013). 

Third, we analyzed the BOLD signal times-series using a recently 
developed statistical framework—continuous-time deconvolutional 
regression (CDR; Shain and Schuler, 2018, 2019)—that is designed to 
overcome problems in hemodynamic response modeling presented by 
naturalistic experiments. Namely, the variable spacing of words in 
naturalistic language prevents direct application of discrete-time, 
data-driven techniques for hemodynamic response function (HRF) dis
covery, such as finite impulse response modeling (FIR) or vector 
autoregression. Because CDR is a parametric continuous-time decon
volutional method, it can infer the hemodynamic response directly from 
naturalistic time series, without distortionary preprocessing steps such 
as predictor interpolation (cf. Huth et al., 2016). Thus, unlike prior 
naturalistic fMRI studies of prediction effects in language processing 
(Table 1), we do not assume the shape of the HRF. 

Fourth, unlike studies in Table 1, we evaluated hypotheses using 
non-parametric statistical tests of model fit to held-out (out-of-sample) 
data, an approach which builds external validity directly into the sta
tistical test and should thereby improve replicability (e.g., Dem�sar, 
2006). 

Finally, to our knowledge, this is the largest fMRI investigation to 
date (78 participants) of prediction effects in naturalistic language 
comprehension. 

3. Experimental design 

3.1. Participants 

Seventy-eight native English speakers (30 males), aged 18–60 
(M�SD ¼ 25.8 � 9, Med � SIQR ¼ 23 � 3), from MIT and the sur
rounding Boston community participated for payment. Each participant 
completed a passive story comprehension task (the critical experiment) 
and a functional localizer task designed to identify the LANG and MD 
networks. 

Sixty-nine participants (88%) were right-handed, as determined by 
either the Edinburgh handedness inventory (n ¼ 66) (Oldfield, 1971) or 
self-report (n ¼ 11) (handedness data were not collected for one 
participant). Eight participants were left-handed, but seven of these 
showed typical left-lateralized language activations, as determined by 
examining their activation patterns for the language localizer task (see 
below); the remaining participant had a right-lateralized language 
network. We chose to include the latter participant’s data in the ana
lyses, to err on the conservative side, and to be able to generalize the 
results to the population at large (see Willems et al., 2015; for 
discussion). 

All participants gave informed consent in accordance with the re
quirements of MIT’s Committee on the Use of Humans as Experimental 
Subjects (COUHES). 

3.2. Stimuli and procedure 

The localizer task and critical (story comprehension) experiment 
were run either in the same scanning session (67 participants) or in two 
separate sessions (11 participants, who have performed the localizer 

task while participating in other studies; see Mahowald and Fedorenko, 
2016, for evidence of high stability of language localizer activations 
across sessions). For the critical experiment, each participant listened to 
one or more stories (one story: n ¼ 34; two stories: n ¼ 14; three stories: 
n ¼ 13; four stories: n ¼ 2; five stories: n ¼ 4; six stories: n ¼ 5; seven 
stories: n ¼ 1; or eight stories: n ¼ 5). In each session, participants 
performed a few other, unrelated tasks, with scanning sessions lasting 
approximately 2 h. 

Localizer task. We used a single localizer task to identify functional 
regions of interest in both the LANG and MD networks, using opposite 
task contrasts across these networks as described below. This task, which 
has been described in more detail elsewhere (Fedorenko et al., 2010), 
consisted of reading sentences and lists of unconnected, pronounceable 
nonwords in a standard two-condition blocked design with a counter
balanced order across runs. Stimuli were presented one word/nonword 
at a time. The majority of participants (n ¼ 60) read these materials 
passively (and pressed a button at the end of each trial, to sustain 
alertness); for some participants (n ¼ 18), every trial ended with a 
memory probe item, and they had to indicate via a button press whether 
or not this probe had appeared in the preceding sentence/nonwords 
sequence. In addition, different participants performed versions of the 
task differing slightly in stimulus timing, number of blocks, etc., i.e. 
features that do not affect the robustness of the contrast (e.g., Fedorenko 
et al., 2010; Mahowald and Fedorenko, 2016) (for experimental pa
rameters, see Table 2). A version of this localizer is available at https://e 
vlab.mit.edu/funcloc/download-paradigms. 

To identify LANG regions, we used the contrast sentences > nonwords. 
This contrast targets higher-level aspects of language, to the exclusion of 
perceptual (speech/reading) and motor-articulatory processes (for dis
cussion, see Fedorenko and Thompson-Schill, 2014; or Fedorenko, in 
press). Critically, this localizer has been extensively validated over the 
past decade across diverse parameters: it generalizes across tasks (pas
sive reading vs. memory probe), presentation modalities (visual vs. 

Table 2 
Experimental parameters for the different versions of the localizer task.   

Version 

A B C D 

Number of 
participants 

60 6 5 7 

Task (Passive 
Reading/ 
Memory) 

PR M M M 

Words/nonwords 
per trial 

12 12 8 12 

Trial duration 
(ms) 

6000 6000 4800 6000 

Fixation 100 300 300 300 
Presentation of 
each word/ 
nonword 

450 350 350 350 

Probe (M) þ
button press 
(M/PR) 

400 1000 1350 1000 

Fixation 100 500 350 500 
Trials per block 3 3 5 3 
Block duration (s) 18 18 24 18 
Blocks per 

condition (per 
run) 

8 8 4 6 

Conditions Sentences 
Nonwords 

Sentences 
Nonwords 

Sentences 
Nonwords 
Word-listsa 

Sentences 
Nonwords 
Word-listsa 

Fixation block 
duration (s) 

14 18 16 18 

Number of 
fixation blocks 

5 5 3 4 

Total run time (s) 358 378 336 396 
Number of runs 2 2 3–4 2–3  

a Used for the purposes of another experiment; see (Fedorenko et al., 2010). 
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auditory), and materials (e.g., Fedorenko et al., 2010; Braze et al., 2011; 
Vagharchakian et al., 2012), including both coarser contrasts (e.g., be
tween natural speech and an acoustically degraded control: Scott et al., 
2017) and narrower contrasts (e.g., between lists of unconnected, real 
words and nonword lists, or between sentences and lists of real words: 
Fedorenko et al., 2010; Blank et al., 2016). Whereas there are many 
potential differences (linguistic and otherwise) between the processing 
of sentences vs. nonwords, all regions localized with the sentences >

nonwords contrast show a similar response profile: on the one hand, they 
exhibit sensitivity to various aspects of linguistic processing, including 
(but not limited to) lexical, phrasal, and sentence-level semantic and 
syntactic processing (e.g., Fedorenko et al., 2012b, 2018; Blank et al., 
2016; Mollica et al., 2018; Blank & Fedorenko, in revision; similar 
patterns obtain in electrocorticographic data with high temporal reso
lution: Fedorenko et al., 2016). On the other hand, they show robust 
language-selectivity in their responses, with little or no response to 
non-linguistic tasks, including domain-general contrasts targeting, e.g., 
working memory or inhibitory control (Fedorenko et al., 2011, 2012a). 
In other words, the localizer shows both convergent construct validity 
with other linguistic contrasts, and discriminant construct validity 
against non-linguistic contrasts. Moreover, the functional network 
identified by this contrast is internally synchronized yet strongly 
dissociated from other brain networks during naturalistic cognition (e. 
g., Blank et al., 2014; Paunov et al., 2019; Braga et al., 2019; for evi
dence from inter-individual effect-size differences, see: Mineroff et al., 
2018), providing evidence that the localizer task is ecologically valid. 
Thus, a breadth of evidence demonstrates that the sentences > nonwords 
contrast identifies a network that is engaged in language processing and 
appears to be a “natural kind” in the functional architecture of the 
human brain. 

To identify MD regions, we used the nonwords > sentences contrast, 
targeting regions that increase their response with the more effortful 
reading of nonwords compared to that of sentences. This “cognitive 
effort” contrast robustly engages the MD network and can reliably 
localize it. Moreover, it generalizes across a wide array of stimuli and 
tasks, both linguistic and non-linguistic including, critically, contrasts 
targeting executive functions such as working-memory and inhibitory 
control (Fedorenko et al., 2013; Mineroff et al., 2018). Supplementary 
Figs. 1 and 2 demonstrate that the MD regions thus localized robustly 
respond to a difficulty (i.e. memory load) manipulation in a 
non-linguistic, spatial working-memory task (administered to a subset of 
participants in the current dataset). 

Main (story comprehension) task. Participants listened to stories from 
the publicly available Natural Stories Corpus (Futrell et al., 2018). These 
stories were adapted from existing texts (fairy tales and short stories) to 
be “deceptively naturalistic”: they contained an over-representation of 
rare words and syntactic constructions embedded in otherwise natural 
linguistic context. Behavioral data indicate that these stories effectively 
manipulate predictive processing, as self-paced reading times from an 
independent sample show robust effects of surprisal (Futrell et al., 
2018). Stories were recorded by two native English speakers (one male, 
one female) at a 44.1 kHz sampling rate, ranged in length from 4m46s to 
6m29s (983–1099 words), and were played over scanner-safe head
phones (Sensimetrics, Malden, MA). 

Following each story, some participants answered six (n ¼ 29) or 
twelve (n ¼ 12) comprehension questions, presented in a two- 
alternative forced-choice format. For all but 4 of these participants, 
accuracy was significantly above chance (binomial test for each partic
ipant: all ps < 0.046, uncorrected). For the remaining participants, 
comprehension questions were not part of the experimental design (n ¼
30), were not collected due to equipment malfunction (n ¼ 4), or were 
lost (n ¼ 3). We note that BOLD signal time-series show indistinguish
able levels of stimulus-locked activity regardless of whether compre
hension questions are administered or not, at least in the networks 
studied here (Blank and Fedorenko, 2017). 

3.3. Data acquisition and preprocessing 

Data acquisition. Structural and functional data were collected on a 
whole-body 3 Tesla Siemens Trio scanner with a 32-channel head coil at 
the Athinoula A. Martinos Imaging Center at the McGovern Institute for 
Brain Research at MIT. T1-weighted structural images were collected in 
176 axial slices with 1 mm isotropic voxels (repetition time (TR) ¼
2,530 ms; echo time (TE) ¼ 3.48 ms). Functional, blood oxygenation 
level-dependent (BOLD) data were acquired using an EPI (echo-planar 
imaging) sequence with a 90� flip angle and using GRAPPA (GeneRal
ized Autocalibrating Partial Parallel Acquisition) with an acceleration 
factor of 2; the following parameters were used: thirty-one 4.4 mm thick 
near-axial slices acquired in an interleaved order (with 10% distance 
factor), with an in-plane resolution of 2.1 mm � 2.1 mm, FoV (field of 
view) in the phase encoding (Anterior » Posterior) direction 200 mm and 
matrix size 96 mm � 96 mm, TR ¼ 2000 ms and TE ¼ 30 ms. The first 10 
s of each run were excluded to allow for steady state magnetization. 

Spatial preprocessing. Data preprocessing was carried out with SPM5 
and custom MATLAB scripts. Preprocessing of anatomical data included 
normalization into a common space (Montreal Neurological Institute 
(MNI) template), resampling into 2 mm isotropic voxels, and segmen
tation into probabilistic maps of the gray matter, white matter (WM) and 
cerebrospinal fluid (CSF). Preprocessing of functional data included 
motion correction, normalization, resampling into 2 mm isotropic vox
els, smoothing with a 4 mm FWHM Gaussian kernel and high-pass 
filtering at 200s. Note that SPM was only used for preprocessing and 
basic first-level modeling, aspects that have not changed much in later 
versions; we used an older version of SPM because data for this study are 
used across other projects spanning many years and hundreds of par
ticipants, and we wanted to keep the SPM version the same across all the 
participants. 

Temporal preprocessing. Data from the story comprehension runs were 
additionally preprocessed using the CONN toolbox (Whitfield-Gabrieli 
and Nieto-Castanon, 2012) with default parameters, unless specified 
otherwise. Five temporal principal components of the BOLD signal 
time-series from the WM were regressed out of each voxel’s time-course; 
signal originating in the CSF was similarly regressed out. Six principal 
components of the six motion parameters estimated during offline mo
tion correction were also regressed out, as well as their first time 
derivative. 

3.4. Participant-specific functional localization of the LANG and MD 
networks 

Modeling localizer data. A general linear model estimated the voxel- 
wise effect size of each condition in each experimental run of the 
localizer task. These effects were each modeled with a boxcar function 
(representing entire blocks/events) convolved with the canonical He
modynamic Response Function (HRF). The model also included first- 
order temporal derivatives of these effects, as well as nuisance re
gressors representing entire experimental runs and offline-estimated 
motion parameters. The obtained beta weights were then used to 
compute the two functional contrasts of interest: sentences > nonwords 
for identifying LANG regions, and nonwords > sentences for identifying 
MD regions. These contrasts were computed only for voxels whose 
probability of belonging to the gray matter was greater than 1/3, based 
on the segmentation of the participant’s anatomical data. All other 
voxels were not considered further. 

Defining functional regions of interest (fROIs). For each participant, 
functional ROIs were defined by combining two sources of information 
(Fedorenko et al., 2010; Julian et al., 2012): (i) the participant’s acti
vation map for the relevant localizer contrast (converted from beta 
weights to t-scores), and (ii) group-level constraints (“masks”; available 
for download from https://evlab.mit.edu/funcloc/download-parcels). 
The latter demarcated brain areas within which most or all individuals 
in prior studies showed activity for the localizer contrasts (Fig. 2). 
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For the LANG fROIs, we used masks derived from a group-level 
probabilistic representation of the sentences > nonwords contrast in a 
set of 220 participants. These masks were similar to the masks derived 
from 25 participants, as originally reported in Fedorenko et al. (2010), 
and covered extensive portions of the left lateral frontal, temporal, and 
parietal cortices. In particular, six masks were used: in the inferior 
frontal gyrus (IFG) and its orbital part (IFGorb), middle frontal gyrus 
(MFG), anterior temporal cortex (AntTemp), posterior temporal cortex 
(PostTemp), and angular gyrus (AngG). 

For the MD fROIs, we used masks derived from a group-level prob
abilistic representation of data from a previously validated MD-localizer 
task in a set of 197 participants. The task, described in detail in Fedor
enko et al. (2011), contrasted hard and easy versions of a visuo-spatial 
working memory task (we did not use masks based on the nonwords 
> sentences contrast in order to maintain consistency with other current 
projects in our lab, and because prior work has established the similarity 
of the activation landscapes for these two contrasts; Fedorenko et al., 
2013). These masks were constrained to be bilaterally symmetric by 
averaging individual hard > easy contrast maps across the two hemi
spheres prior to generating the group-level representation (only the 
group-based masks, covering large swaths of cortex, were constrained in 
this way; fROIs in the current study were free to vary in their location 
across hemispheres, within the borders of these masks). The topography 
of these masks largely overlapped with anatomically based masks that 
we had used in previous work (e.g., Fedorenko et al., 2013; Blank et al., 
2014; Paunov et al., 2019). In particular, 10 masks were used in each 
hemisphere: in the posterior (PostPar), middle (MidPar), and anterior 
(AntPar) parietal cortex, precentral gyrus (PrecG), superior frontal gyrus 
(SFG), middle frontal gyrus (MFG) and its orbital part (MFGorb), oper
cular part of the inferior frontal gyrus (IFGop), the anterior cingulate 
cortex and pre-supplementary motor cortex (ACC/pSMA), and the insula 
(Insula). 

These group-level masks, in the form of binary maps, were used to 
constrain the selection of participant-specific fROIs. In particular, for 
each participant, 6 LANG fROIs were created by (i) intersecting each 
LANG mask with each individual participant’s unthresholded t-map for 
the sentences > nonwords contrast; and then (ii) choosing the 10% of 

voxels with highest t-scores in the intersection. Similarly, 20 MD fROIs 
were created by intersecting each MD mask with each participant’s 
unthresholded t-map for the nonwords > sentences contrast and selecting 
the 10% of voxels with the highest t-scores within each intersection. This 
top-10% criterion balances the trade-off between choosing only voxels 
that respond robustly to the relevant contrast and having a sufficient 
number of voxels in each fROI of each participant. Moreover, this cri
terion guarantees fROIs of identical size across participants (occupying 
10% of each mask). Few exceptions to this criterion were made for those 
cases where less than 10% of the voxels in a mask showed a t-score 
greater than 0; here, we only included the subset of voxels with positive 
t-scores in the fROI, and excluded those voxels showing effects in the 
opposite direction. 

Prior to the critical statistical analyses, we ensured that all fROIs 
showed the expected functional signatures, i.e. a sentences > nonwords 
effect for the LANG fROIs, and a nonwords > sentences effect for the MD 
fROIs. To this end, the reliability of each contrast effect (i.e. the differ
ence between the beta estimates of the two localizer conditions) was 
tested using a 2-fold across-run cross-validation: for each participant, 
fROIs were defined based on odd (even) run(s) and, subsequently, in
dependent estimates of the relevant contrast effect were obtained from 
the left-out even (odd) run(s). These contrast effects were averaged 
across the two partitions (odd/even) and tested for significance across 
participants, via a dependent samples t-test (FDR-corrected for the 
number of fROIs within each network). The sentence > nonwords effect 
was highly reliable throughout the language network (for all six fROIs: 
t(77) > 9.5, p < 10 12 corrected; conservative effect size based on an 
independent samples test: Cohen’s d > 0.82), and the nonwords > sen
tences effect was highly reliable throughout the MD network (for all 20 
fROIs: t(77) > 2.25, p < 0.05; conservative effect size based on an inde
pendent samples test: Cohen’s d > 0.16) (see also Supplementary Figs. 1 
and 2 for evidence of overlap with a spatial working memory contrast, as 
in Fedorenko et al., 2013). 

Fig. 2. Defining participant-specific fROIs in the language (top) and MD (bottom) networks (only the left-hemisphere is shown). All images show approximated 
projections from functional volumes onto the surface of an inflated brain in common space. (A) Group-based masks used to constrain the location of fROIs. Contours 
of these masks are depicted in white on all brains in (B)–(D). (B) Overlap maps of localizer contrast effects (sentence > nonwords for the language network, nonwords 
> sentences for the MD network) across the 78 participants in the current sample (these maps were not used in the process of defining fROIs and are shown for 
illustration purposes). Each non gray-scale coordinate is colored according to the percentage of participants for whom that coordinate was among the top 10% of 
voxels showing the strongest localizer contrast effects across the neocortical gray matter. (C) Overlap map of fROI locations. Each non gray-scale coordinate is colored 
according to the number of participants for whom that coordinate was included within their individual fROIs. (D) Example fROIs of three participants. Apparent 
overlap across language and MD fROIs within an individual is illusory and due to projection onto the cortical surface. Note that, because data were analyzed in 
volume (not surface) form, some parts of a given fROI that appear discontinuous in the figure (e.g., separated by a sulcus) are contiguous in volumetric space. 
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4. Statistical analysis 

4.1. Predictor definitions 

To estimate word predictability in naturalistic data, we used an 
information-theoretic measure known as surprisal (Shannon, 1948; Hale, 
2001): the negative log probability of a word given its context. Surprisal 
can be computed in many ways, depending on the choice of probability 
model. Three previous naturalistic fMRI studies (Willems et al., 2015; 
Brennan et al., 2016; Lopopolo et al., 2017) searched for surface-level 
n-gram surprisal effects, using words and/or parts of speech as the 
token-level representation. In addition, two previous naturalistic fMRI 
studies (Brennan et al., 2016; Henderson et al., 2016) probed 
structure-sensitive PCFG surprisal measures (Hale, 2001; Roark et al., 
2009). As discussed in the Introduction, results from these studies failed 
to converge on a clear answer as to the nature and functional location of 
surprisal effects. In this study, we therefore used the following surprisal 
estimates:  

� 5-gramSurprisal: 5-gram surprisal for each word in the stimulus set 
from a KenLM (Heafield et al., 2013) language model with default 
smoothing parameters trained on the Gigaword 3 corpus (Graff et al., 
2007). 5-gram surprisal quantifies the predictability of words as the 
negative log probability of a word given the four words preceding it 
in context.  

� PCFG Surprisal: Lexicalized probabilistic context-free grammar 
surprisal computed using the incremental left-corner parser of van 
Schijndel et al. (2013) trained on a generalized categorial grammar 
(Nguyen et al., 2012) reannotation of Wall Street Journal sections 2 
through 21 of the Penn Treebank (Marcus et al., 1993). 

Models also included the control variables Sound Power, Repetition 
Time (TR) Number, Rate, Frequency, and Network, which were oper
ationalized as follows:  

� Sound Power: Frame-by-frame root mean squared energy (RMSE) of 
the audio stimuli computed using the Librosa software library 
(McFee et al., 2015).  

� TR Number: Integer index of the current fMRI sample within the 
current scan.  

� Rate: Deconvolutional intercept. A vector of ones time-aligned with 
the word onsets of the audio stimuli. Rate captures influences of 
stimulus timing independently of stimulus properties (see e.g., 
Brennan et al., 2016; Shain and Schuler, 2018).  

� Frequency: Corpus frequency computed using a KenLM unigram 
model trained on Gigaword 3. For ease of comparison to surprisal, 
frequency is represented here on a surprisal scale (negative log 
probability), such that larger values index less frequent words (and 
thus greater expected processing cost).  

� Network: Numeric predictor for network ID, 0 for MD and 1 for 
LANG. 

Models additionally included the mixed-effects random grouping 
factors Participant and fROI. Prior to regression, all predictors were 
rescaled by their standard deviations in the training set except Rate 
(which has no variance) and Network (which is an indicator variable). 
Reported effect sizes are therefore in standard units. 

4.2. Continuous-time deconvolutional regression 

Naturalistic language stimuli pose a challenge for established sta
tistical methods in fMRI because the stimuli (words) (1) are variably 
spaced in time and (2) do not temporally align with response samples 
recorded by the scanner. Previous approaches to address this issue have 
various drawbacks. Some fMRI studies of naturalistic language pro
cessing have assumed a canonical shape for the hemodynamic response 

function (Boynton et al., 1996) and used it to convolve stimulus prop
erties into response-aligned measures (Willems et al., 2015; Brennan 
et al., 2016; Lopopolo et al., 2017). This approach is unable to account 
for regional variation in the shape of the hemodynamic response, even 
though the canonical HRF is known to be a poor fit to some brain regions 
(Handwerker et al., 2004). Discrete-time methods for data-driven HRF 
identification such as finite impulse response modeling (FIR; Dayal and 
MacGregor, 1996) and vector autoregression (VAR; Sims, 1980) are 
widely used to overcome the limitations of the canonical HRF for fMRI 
research (e.g., Friston et al., 1994; Harrison et al., 2003) but are of 
limited use in the naturalistic setting because they assume (multiples of) 
a fixed time interval between stimuli that does not apply to words in 
naturally-occurring speech. Some studies (e.g. Huth et al., 2016) address 
this problem by continuously interpolating word properties, resampling 
the interpolated signal so that it temporally aligns with the fMRI record, 
and fitting FIR models using the resampled design matrix. However, this 
approach can be distortionary in that word properties (e.g., surprisal) 
are not temporally continuous. 

Our study employed a recently developed continuous-time decon
volutional regression (CDR) technique that accurately infers parametric 
continuous-time impulse response functions—such as the HRF—from 
arbitrary time series (Shain and Schuler, 2018, 2019). Because CDR is 
data-driven, it can address the potential impact of poor fit in the ca
nonical HRF, and because it is defined in continuous time, it eliminates 
the need for distortionary preprocessing steps like continuous interpo
lation. CDR models in this study used the following two-parameter HRF 
kernel based on the widely-used double-gamma canonical HRF (Lind
quist et al., 2009): 

hðx; α; βÞ¼
βαxα 1e

 x
β

ΓðαÞ  
1
6

βαþ10xαþ9e
 x
β

Γðαþ 10Þ

where α and β are initialized to the SPM defaults of 6 and 1, respectively. 
More complex kernels (e.g., that fit the amplitude of the second term, 
rather than fixing it at 1/6) were avoided because of their potential to 
overfit. 

The parametric continuous-time nature of CDR is similar to that of 
models used, for example, by Kruggel and von Cramon (1999), Kruggel 
et al. (2000), Miezin et al. (2000), Lindquist and Wager (2007), and 
Lindquist et al. (2009) for nonlinear estimation of gamma-shaped HRFs. 
The main advantages of CDR over these approaches are that (1) it ex
ploits the Tensorflow (Abadi et al., 2015) and Edward (Tran et al., 2016) 
libraries for optimizing large-scale variational Bayesian computation 
graphs using state of the art estimation techniques from deep lear
ning—this study used the Adam optimizer with Nesterov momentum 
(Kingma and Ba, 2014; Nesterov, 1983; Dozat, 2016); (2) it supports 
mixed effects modeling of effect coefficients and HRF parameters; and 
(3) it supports parameter tying, constraining the solution space by 
ensuring that all predictors share a common HRF shape in a given region 
(with potentially differing amplitudes). Predictors in these models were 
given their own coefficients (which rescale h above), but the parameters 
α and β of h were tied across predictors, modeling the assumption of a 
fixed-shape blood oxygenation response to neural activity in a given 
cortical region. 

The CDR models applied in this study assumed improper uniform 
priors over all parameters in the variational posterior and were opti
mized using a learning rate of 0.001 and stochastic minibatches of size 
1024. Following standard practice from linear mixed-effects regression 
(Bates et al., 2015), random effects were L2-regularized toward zero at a 
rate of 1.0. Convergence was declared when the loss was uncorrelated 
with training time by t-test at the 0.5 level for at least 250 of the past 500 
training epochs. For computational efficiency, predictor histories were 
truncated at 256 timesteps (words), which yields a maximum temporal 
coverage in our data of 48.34s (substantially longer than the effective 
influence of the canonical HRF). Prediction from the network used an 
exponential moving average of parameter iterates (Polyak and Juditsky, 
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1992) with a decay rate of 0.999, and models were evaluated using 
maximum a posteriori estimates obtained by setting all parameters in the 
variational posterior to their means. This approach is valid because all 
parameters are independent Gaussian in the CDR variational posterior 
(Shain and Schuler, 2018). 

4.3. Model specification 

The following CDR model specification was fitted to responses from 
each of the LANG and MD fROIs, where italics indicate predictors 
convolved using the fitted HRF and bold indicates predictors that were 
ablated for hypothesis tests: 

BOLD ~ TRNumber þ soundPower þ Rate þ Frequency þ 5-gramþ
PCFG þ (TRNumber þ soundPower þ Rate þ Frequency þ 5-gram þ PCFG 
| fROI) þ (1 | Participant). 

The random effect by fROI indicates that the model included zero- 
centered by-fROI random variation in response amplitude and HRF 
parameters for each functional region of interest. As shown, the model 
also included a random intercept by participant (the data do not appear 
to support richer by-participant random effects, e.g. including random 
slopes and HRF shapes, since such models explained no held-out vari
ance in early analyses, indicating overfitting). The above model can test 
whether the surprisal variables help predict neural activation in a given 
cortical region. However, it cannot be used to compare the magnitudes 
of response to surprisal across networks (Nieuwenhuis et al., 2011). 
Therefore, we directly tested for a difference in influence by fitting the 
combined responses from both LANG and MD using the following model 
specification with the indicator variable Network: 

BOLD ~ TRNumber þ soundPower þ Rate þ Frequency þ 5-gramþ
PCFG þ Network þ TRNumber:Network þ soundPower:Network þ Rate: 
Network þ Frequency:Network þ 5-gram:Network þ PCFG:Network þ
(1 | fROI) þ (1 | Participant). 

The random effects by fROI were simplified in comparison to that of 
the single-network models because the Network variable exactly parti
tions the fROIs. Thus ablated models can fully capture network differ
ences as long as they have by-fROI random effects for surprisal. Indeed, 
initial tests showed virtually no difference in held-out likelihood be
tween full and ablated combined models when those models included 
full by-fROI random effects despite large-magnitude estimates for the 
interactions with Network in the full model. Furthermore, the fitted 
parameters suggested that the by-fROI term was being appropriated in 
ablated models to capture between-network differences. In the full 
model, the 5-gram Surprisal estimates for 50% of LANG fROIs and 45% of 
MD fROIs were positive, while in the model with 5-gram:Network abla
ted, 100% of LANG fROIs and only 20% of MD fROIs were positive, 
indicating that differences in response to 5-gram Surprisal had been 
"pushed" into the by-fROI random term. For this reason, we used simpler 
models for the combined test, despite their insensitivity to by-fROI 
variation in HRF shape or response amplitude. 

In interactions between Network and convolved predictors, the 
interaction was computed following convolution but prior to rescaling 
with that predictor’s coefficient. Thus, the interaction term represents 
the offset in the estimated coefficient from the MD network to the LANG 
network, as is the case for binary interaction terms in linear regression 
models. 

Finally, exact deconvolution from continuous predictors like Sound 
Power is not possible, since such predictors do not have an analytical 
form that can be integrated. Instead, we sampled sound power at fixed 
intervals (100 ms), in which case the event-based CDR procedure re
duces to a Riemann sum approximation of the continuous convolution 
integral. Note that the word-aligned predictors (e.g. 5-gram Surprisal) 
therefore have different timestamps than Sound Power, and as a result 
the history window spans different regions of time (up to 128 words into 
the past for the word-aligned predictors and up to 100 ms � 128 ¼ 12.8s 
of previous Sound Power samples). 

4.4. Ablative statistical testing 

In order to avoid confounds from (1) collinearity in the predictors 
and/or (2) overfitting to the training data, we followed a standard 
testing protocol from machine learning of evaluating differences in 
prediction performance on out-of-sample data using ablative non- 
parametric paired permutation tests for significance (Dem�sar, 2006). 
This approach can be used to assess the presence of an effect by 
comparing the prediction performance of a model that contains the ef
fect against that of an ablated model that does not contain it. Specif
ically, given two pre-trained nested models, we computed the 
out-of-sample by-item likelihoods from each model over the evalua
tion set and constructed an empirical p value for the likelihood differ
ence test statistic by randomly swapping by-item likelihoods n times 
(where n ¼ 10,000) and computing the proportion of obtained likeli
hood differences whose magnitude exceeded that observed between the 
two models. To ensure a single degree of freedom for each comparison, 
only fixed effects were ablated, with all random effects retained in all 
models. 

The data partition was created by cycling TR numbers e into different 
bins of the partition with a different phase for each participant u: 

partition
�

e; u
�
¼

eþ u
30

mod 2  

assigning output 0 to the training set and 1 to the evaluation set. Since 
TR duration is 2s, this procedure splits the BOLD times series into 60 s 
chunks, alternating assignment of chunks into training and evaluation 
sets with a different phase for each participant. Partitioning in this way 
allowed us to (1) obtain a model of each participant, (2) cover the entire 
time series, and (3) sub-sample different parts of the time series for each 
participant during training, while at the same time suppressing corre
lation between the training and evaluation responses by using a rela
tively long period of alternation (30 TRs or 60s). 

4.5. Accessibility 

Access instructions for software and supplementary data needed to 
replicate these experiments (e.g. librosa, PyMVPA, CDR, KenLM, Giga
word 3, etc.) are given in the publications cited above. Post-processed 
fMRI timeseries are publicly available at the following URL: htt 
ps://osf.io/eyp8q/. These experiments were not pre-registered. 

5. Results 

The CDR-estimated mean double-gamma hemodynamic response 
functions (HRFs) for the LANG and MD networks are given in Fig. 3, the 
estimated HRFs by fROI in LANG regions are shown in Fig. 4, surprisal 
estimates and percent variance explained by fROI are given in Tables 3 
and 4, and population-level effect estimates (i.e. areas under the esti
mated HRFs) are reported in Table 5. MD estimates by region are plotted 
in Supplementary Figs. 3 and 4; they are of little relevance because they 
do not generalize (Tables 4 and 6). As shown, HRF shapes resemble but 
deviate slightly from the canonical HRF (Boynton et al., 1996) to varying 
degrees in each region, highlighting both consistency with HRF esti
mates established by prior research as well as the potential of CDR to 
discover subtle differences in HRF shape between cortical regions 
(Handwerker et al., 2004) in naturalistic data. The models find positive 
effects of similar strength for both 5-gram Surprisal and PCFG Surprisal in 
LANG, and smaller effects of surprisal (even negative in the case of 
5-gram Surprisal) in MD. 

At the level of individual regions, the models explained held-out 
variance in all but one of the LANG fROIs (the exception was the 
AngG fROI). In contrast, the models explained no held-out variance in 
any but one MD fROI (the left MFGorb fROI). We leave these two ex
ceptions to future research, but overall, the results demonstrate that 
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surprisal effects are generally present throughout the LANG network and 
generally absent throughout the MD network. The differences between 
the individual-network models are largely replicated in the Combined 
model (Table 5), where main effects represent the estimated mean 
response in MD while interactions with Network represent the estimated 
difference in mean response between LANG and MD. As shown, Com
bined model estimates of both 5-gram:Network and PCFG:Network are 
positive and large-magnitude, indicating that the model estimates these 
variables to yield greater increases in neural activity in LANG over MD. 

Table 6 reports model percent variance explained compared to a 
theoretical ceiling computed by regressing individual participants’ 

Fig. 3. Estimated overall double-gamma hemodynamic response functions (HRFs) by network. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.). 

Fig. 4. Estimated language-network HRFs by fROI.  

Table 3 
LANG surprisal estimates by fROI. Estimates given are the area under the 
fitted HRF. Models explain held-out variance in all regions but AngG.  

fROI Hemisphere 5-gram 
estimate 

PCFG 
estimate 

% Held-Out Variance 
Explained 

AngG L 0.030 0.156 0.0% 
AntTemp L 0.215 0.017 5.1% 
IFG L 0.287 0.309 2.2% 
IFGorb L 0.010 0.318 1.3% 
MFG L 0.382 0.346 2.3% 
PostTemp L 0.242 0.258 6.1%  
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responses against responses from the same brain region in all other 
participants exposed to that stimulus. This ceiling is designed to quantify 
the variance that can be explained based on the stimuli alone, inde
pendently of inter-participant variation. As shown, models explain a 
substantial amount of the available variance in LANG. MD models 
explain no variance on the evaluation set, suggesting that the MD model 
did not learn generalizable patterns. 

Because fROIs were modeled as random effects in these analyses, 
pairwise statistical testing of between-region differences in effect 
amplitude is not straightforward, and systematic investigation of re
gions/subnetworks within each broader functional network is left to 
future work. However, a qualitative examination of the by-region esti
mates suggests potentially interesting functional differences within the 
language network (Table 3). In particular, the IFG, MFG, and PostTemp 
fROIs all responded roughly equally to both measures of surprisal. The 

IFGorb fROI responded more to PCFG than 5-gram Surprisal (an unex
pected finding given that this is not the language region that is tradi
tionally most strongly associated with syntactic processing; e.g., 
Friederici, 2011; Blank et al., 2016). The AngG fROI showed a similar 
pattern, but the models did not explain held-out variance for this fROI. 
And the AntTemp fROI responded more to 5-gram than PCFG Surprisal (a 
finding which bears on debates about the functional role of this brain 
region in language processing; see Discussion). Although the differences 
in effect sizes between the two surprisals are significant in each of 
IFGorb, AngG, and AntTemp by Monte Carlo estimated credible in
tervals tests, such tests are anticonservative in CDR (Shain and Schuler, 
2019). Nonetheless, they suggest that different regions of the language 
network might be differentially sensitive to surface-level vs. structural 
properties of language. The internal architecture of the language 
network has been long debated, and a number of proposals have been 
put forward (e.g., Friederici, 2011, 2012; Baggio and Hagoort, 2011; 
Tyler et al., 2011; Duffau et al., 2014; Ullman, 2016). However, no 
consensus has yet been reached about whether different regions support 
different aspects of language processing, and, if so, which regions sup
port which linguistic computations (see e.g., Fedorenko et al., 2018, for 
discussion). Perhaps neural investigations of naturalistic language 
comprehension, combined with the power of the novel CDR approach 
and stringent statistical evaluation, can help inform this ongoing debate. 

Tables 7–9 show the main finding of this study: fixed effects for 5- 
gram Surprisal and PCFG Surprisal significantly improve held-out likeli
hood in the LANG network over a model containing neither, as well as 
over one another. The difference in effect size between the LANG and 
MD networks is statistically significant, as shown by the significant 
likelihood improvements yielded by interactions of the surprisal vari
ables with Network. 

As shown in Fig. 3, the effects signs for Frequency in both networks 
are negative. Because the Frequency predictor was inverse-scaled (i.e., 
mesaured as negative log probability), this result means that more 
infrequent words are associated with lower BOLD signal. This effect is 
not what would be expected if word frequency modulated neural ac
tivity (Staub, 2015), but it is consistent with recent naturalistic behav
ioral evidence against distinct effects of frequency and predictability 
(Shain, 2019), as well as with previous theoretical claims that apparent 
frequency effects are underlyingly effects of predictability (Levy, 2008). 
Negative effects like these indicate suppression of the BOLD response 
and pose a challenge for interpretation (Harel et al., 2002). Prior work 
has suggested that such negative effects can arise from increased 

Table 4 
MD surprisal estimates by fROI. Estimates given are the area under the fitted 
HRF. Models explain no held-out variance in any region except left MFGorb.  

fROI Hemisphere 5-gram 
estimate 

PCFG 
estimate 

% Held-Out Variance 
Explained 

AntPar L 0.102  0.523 0.0% 
IFGop L 0.009 0.141 0.0% 
Insula L  0.200 0.284 0.0% 
MFG L 0.074  0.026 0.0% 
MFGorb L  0.215 0.252 0.5% 
MidPar L 0.116  0.051 0.0% 
mPFC L  0.125 0.257 0.0% 
PostPar L 0.083  0.006 0.0% 
PrecG L 0.078 0.048 0.0% 
SFG L 0.180 0.025 0.0% 
AntPar R 0.016  0.077 0.0% 
IFGop R  0.011 0.075 0.0% 
Insula R  0.185 0.227 0.0% 
MFG R 0.058  0.006 0.0% 
MFGorb R  0.004 0.019 0.0% 
MidPar R 0.040  0.110 0.0% 
mPFC R  0.321 0.440 0.0% 
PostPar R  0.312 0.434 0.0% 
PrecG R 0.034 0.118 0.0% 
SFG R 0.066  0.034 0.0%  

Table 5 
Model effect estimates.  

Predictor Coefficient 

LANG MD Combined 

Sound Power  0.055  0.006  0.003 
TR Number  0.148 0.048  0.005 
Rate 0.242 0.146 0.048 
Frequency  0.060  0.199  0.134 
5-gram Surprisal 0.209  0.025 0.003 
PCFG Surprisal 0.235 0.097 0.038 
Network – –  1.32 
Sound Power by Network – –  0.050 
TR Number by Network – –  0.008 
Rate by Network – – 0.269 
Frequency by Network – – 0.040 
5-gram Surprisal by Network – – 0.212 
PCFG Surprisal by Network – – 0.193  

Table 6 
Model percent variance explained compared to a “ceiling” linear model regressing against the mean response of all other participants for a particular story/fROI. “% 
Total” columns show absolute percent variance explained, while “% Relative” columns show percent variance explained relative to the ceiling.   

LANG MD Combined 

% Total % Relative % Total % Relative % Total % Relative 

Ceiling 6.18% 100% 1.34% 100% 2.63% 100% 
Model (train) 3.68% 59.5% 0.75% 56.0% 1.18% 44.9% 
Model (evaluation) 2.30% 37.2% 0.00% 0.00% 0.71% 27.0%  

Table 7 
LANG result. Significance in LANG by paired permutation test of log-likelihood 
improvement on the evaluation set from including a fixed effect for each of 5- 
gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed effect 
and (2) baselines containing the other fixed effect only. The Effect Estimate 
column shows the estimated effect size from the model containing the fixed 
effect (i.e. the area under the estimated HRF).  

Comparison p LL Improvement Effect Estimate 

5-gram over neither 0.0001*** 182 0.307 
PCFG over neither 0.0001*** 183 0.352 
5-gram over PCFG 0.0001*** 61 0.209 
PCFG over 5-gram 0.0001*** 61 0.235  
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processing load elsewhere in the brain through hemodynamic factors 
(“vascular steal”) (Lee et al., 1995; Saad et al., 2001; Harel et al., 2002; 
Kannurpatti and Biswal, 2004) and/or neuronal ones such as inhibition 
by an attention mechanism (Smith et al., 2000; Shmuel et al., 2002, 
2006). The means by which such mechanisms might give rise to negative 
frequency effects in our data are not currently clear. Since frequency 
effects are not central to our present research question, we leave tar
geted investigation of their existence and direction to future research. 

Fig. 5 and Table 10 assess the generalizability of surprisal effects 
across participants. Fig. 5 shows most by-participant improvements 
clustered around a positive median, without strong visual indication of 
large-magnitude positive outliers that might exclusively drive the effect. 
This intuition is quantified in Table 10. As shown, held-out likelihood 

improves for most participants in all comparisons. Furthermore, at least 
5 of the most responsive participants in each comparison can be 
removed without changing the significance of the effect. Participant 
removal is a stringent criterion not only because it excludes the most 
responsive participants from consideration but also because it reduces 
the power of the permutation test by shrinking the evaluation set. These 
participant-level analyses demonstrate that surprisal effects in LANG 
fROIs are not merely driven by a small number of outlier participants. 

6. Discussion 

The current study examined signatures of predictive processing 
during naturalistic story comprehension in two functionally distinct 
cortical networks: the domain-specific language (LANG) network, and 
the domain-general multiple demand (MD) network. Specifically, we 
tested which of these networks increased their responses with lower 
word predictability, operationalized using both 5-gram and probabilistic 
context-free grammar (PCFG) surprisal. The main results, yielded by 
continuous-time deconvolutional regression (CDR) analysis of surprisal 
effects in the two networks, are shown in Tables 7–9: in LANG, both 5- 
gram Surprisal and PCFG Surprisal have positive effects that yield sta
tistically significant improvements to held-out likelihood, both over a 
baseline containing neither fixed effect as well as over one another. By 
contrast, in MD, neither surprisal effect is significant in any comparison. 
A direct test for a difference in surprisal effects across the two networks 
(Table 9) shows that the interactions of both surprisals with network are 
positive and statistically significant, indicating that the BOLD response 
to both surface-level (5-gram) and structural (PCFG) word predictability 
is larger in LANG than MD. These results are over a baseline that in
cludes an effect for lexical frequency (log unigram probability), which is 
notable given the strong natural correlation between surprisal and fre
quency, both generally (Demberg and Keller, 2008) and in the current 
experimental materials (r ¼ 0.78 overall). This finding suggests that the 
surprisal effects reported here are indeed driven by predictive coding 
and not merely by the cost of retrieving infrequent words. Together, 
these results demonstrate that predictive coding for upcoming words is 
primarily a canonical computation carried out by domain-specific 
cortical circuits, rather than by feedback from higher, domain-general 
executive control circuits, and that these predictions depend on both 
surface-level and structural information sources. Our finding of a 
generalized effect of PCFG Surprisal throughout the language network 
aligns with prior findings of evidence for linguistic prediction (e.g. 
Kuperberg et al., 2000; Baumgaertner et al., 2002; Friederici et al., 2003; 
Obleser et al., 2007) and syntactic processing (e.g., Blank et al., 2016; 
see Zaccarella et al., 2017 for review) in these regions, but suggests that 
prior evidence of linguistic prediction effects in MD (e.g. Kuperberg 

Table 8 
MD result. Significance in MD by paired permutation test of log-likelihood 
improvement on the evaluation set from including a fixed effect for each of 5- 
gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed effect 
and (2) baselines containing the other fixed effect only. A p-value of 1.0 is 
assigned by default to comparisons in which held-out likelihood improved under 
ablation. The Effect Estimate column shows the estimated effect size from the 
model containing the fixed effect (i.e. the area under the estimated HRF).  

Comparison p LL Improvement Effect Estimate 

5-gram over neither 0.137 3 0.019 
PCFG over neither 1.0  29 0.081 
5-gram over PCFG 1.0  8  0.025 
PCFG over 5-gram 1.0  40 0.097  

Table 9 
Combined result. Significance in the combined data by paired permutation test 
of log-likelihood improvement on the evaluation set from including a fixed 
interaction for each of 5-gram Surprisal and PCFG Surprisal with Network, over (1) 
a baseline with neither fixed interaction and (2) baselines containing the other 
fixed interaction only. The Effect Estimate column shows the estimated interac
tion size from the model containing the fixed interaction (i.e. the difference in 
effect estimate between LANG and MD).  

Comparison p LL 
Improvement 

Effect 
Estimate 

5-gram:Network over neither 0.0001*** 144 0.212 
PCFG:Network over neither 0.0001*** 144 0.193 
5-gram:Network over PCFG: 

Network 
0.0001*** 53 0.301 

PCFG:Network over 5-gram: 
Network 

0.0001*** 53 0.317  

Fig. 5. LANG likelihood improvement by participant. Spread of by- 
participant likelihood improvements in each comparison. Most improvements 
are positive, and effects are not driven by large positive outliers (see Table 10). 

Table 10 
Generality of LANG surprisal effects across participants. Median likelihood 
improvement in LANG on the evaluation set by participant, percent of partici
pants whose held-out predictions improved due to surprisal effects, and the 
number of participants with the largest held-out improvement whose data can be 
removed without changing the significance of the effect at a 0.05 level. Held-out 
likelihood improves for most participants in every comparison, and at least 5 of 
the most responsive participants can be removed in each comparison without 
changing the significance of the effect.  

Comparison Median LL Improvement 
by Participant 

% Participants 
Improved 

Num 
Removable  
Participants 

5-gram over 
neither 

1.236 71.8% 19 

PCFG over 
neither 

0.732 64.1% 14 

5-gram over 
PCFG 

0.335 61.5% 7 

PCFG over 5- 
gram 

0.498 60.3% 5  
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et al., 2000; Baumgaertner et al., 2002; Gold et al., 2006; Bonhage et al., 
2015; Hartwigsen et al., 2017) may have been influenced by the use of 
artificially constructed linguistic stimuli and/or task artifacts. 

This finding bears on an ongoing discussion in cognitive neurosci
ence about the compartmentalization of language processing. Early in
vestigations of the functional organization of the brain argued for the 
existence of neuroanatomical modules dedicated to specific linguistic 
functions, from lower-level perceptual and motor components of lan
guage to higher-level ones like phonological, lexical, and combinatorial 
syntactic and semantic processing (Broca, 1861; Dax, 1863; Wernicke, 
1874; Fodor, 1983; Petersen et al., 1988; Levelt, 1989; Pinker, 1994). 
This position has been called into question by subsequent work stressing 
the distributed nature of cognition (e.g., Mesulam, 1998; Thompson-S
chill et al., 2005; Blumstein and Amso, 2013), based on evidence both 
(1) that brain regions conventionally believed to be language-specific 
are also recruited for non-linguistic tasks (e.g., Dehaene et al., 1999; 
Stanescu-Cosson et al., 2000; Maess et al., 2001; Kaan and Swaab, 2002; 
Koelsch et al., 2002; Koechlin and Jubault, 2006; Hein and Knight, 2008; 
Blumstein, 2009; January et al., 2009), and (2) that brain regions 
conventionally believed to support domain-general cognitive control are 
also recruited for language processing, especially under difficult 
comprehension conditions (e.g., Kaan and Swaab, 2002; Kuperberg 
et al., 2003; Novick et al., 2005; Rodd et al., 2005; Novais-Santos et al., 
2007; January et al., 2009; Peelle et al., 2009; Rogalsky and Hickok, 
2011; Nieuwland et al., 2012; Wild et al., 2012; McMillan et al., 2012, 
2013, Hsu and Novick, 2016). Although such results might raise doubts 
about the necessity and sufficiency of the putative language network for 
language processing, they are counterbalanced by rigorous 
non-replications of (1) the engagement of language regions in, e.g., 
arithmetic, working memory, or cognitive control tasks (Fedorenko 
et al., 2011; Monti et al., 2012; Amalric & Dehaene, 2019), and (2) the 
engagement of cognitive control (MD) regions in language processing 
(Blank and Fedorenko, 2017; Wehbe et al., submitted). Based on this 
evidence, some have concluded that there does indeed exist a func
tionally specific cortical language network (Fedorenko, 2014; Fedor
enko and Thompson-Schill, 2014; see also Hagoort, 2005; Friederici 
et al., 2011; Matchin et al., 2014; Rogalsky et al., 2015; Matchin et al., 
2017, for proposals that are compatible with the idea that at least some 
of the language-responsive areas are specific to language) and that MD 
engagement in many previous studies of language processing was 
induced by experimental task artifacts (Campbell and Tyler, 2018; 
Wehbe et al., submitted; Diachek et al., 2019). 

The aforementioned debate about the compartmentalization of lan
guage processing has largely focused on controlled experimental para
digms, which are prone to induce task artifacts that confound functional 
differentiation of neural structures. The present study, by showing 
strong prediction-based functional differentiation between the LANG 
and MD networks during naturalistic language comprehension, provides 
evidence that predictive coding for language is primarily carried out by 
language-specific rather than domain-general mechanisms. 

This finding also contributes to the growing literature on predictive 
coding in the mammalian brain, which has recently produced evidence 
that neurons are tuned to predict upcoming inputs but has also primarily 
focused on low-level perceptual processing (Rao and Ballard, 1999; 
Alink et al., 2010; Bubic et al., 2010; Keller and Mrsic-Flogel, 2018; 
Singer et al., 2018). The present study suggests that prediction extends 
to high-level cognitive functions like language comprehension and is 
similarly implemented as a domain-specific canonical computation in 
regions that plausibly store linguistic knowledge (e.g., Hagoort, 2005; 
Fedorenko, 2014). 

The finding that surprisal computed by marginalizing over syntactic 
structures (PCFG Surprisal) modulates the LANG response indepen
dently of surface-level n-gram surprisal is evidence that participants are 
indeed computing such structures during incremental sentence pro
cessing (Hale, 2001; Levy, 2008; Fossum and Levy, 2012; van Scijndel 
and Schuler, 2015; Rasmussen and Schuler, 2018) and is inconsistent 

with previous arguments that the human sentence processing response is 
largely insensitive to such structures (Frank and Bod, 2011; Frank et al., 
2012; Frank and Christiansen, 2018). At the same time, the finding that 
5-gram Surprisal modulates the LANG response independently of PCFG 
Surprisal is evidence that the human sentence processing mechanism is 
sensitive to word co-occurrence patterns in ways that are not well 
captured by a strictly context-free parser. This suggests either (1) that 
the human parser is not strictly context-free (see e.g., tree-adjoining 
grammars, Joshi, 1985; combinatory categorial grammars, Steedman, 
2000; and other context-sensitive grammar formalisms for natural lan
guage), or (2) that participants track both hierarchical structure and 
word co-occurrence patterns separately and simultaneously when 
generating predictions, and that these two kinds of processes take place 
in overlapping brain areas. Evaluating these hypotheses is left to future 
work. The lack of structured prediction effects in MD is of interest given 
prior proposals that ground structural effects in constraints on working 
memory (Abney and Johnson, 1991; Resnik, 1992; van Schijndel et al., 
2013; Rasmussen and Schuler, 2018). These theories view the process
ing of hierarchical language structures as a special case of a domain 
general capacity for hierarchic sequential prediction (Botvinick, 2007), 
which is at least consistent with the hypothesis that the resources 
recruited for prediction are also domain general (see e.g. Smith and 
Levy, 2013). However, to the extent that the memory resources used for 
prediction are also expected to activate in response to prediction error 
(e.g., by undergoing model revision, Chao et al., 2018, see Introduction), 
the failure to find such a signal in MD suggests that these memory re
sources may also be specific to the functional language network, rather 
than domain general (e.g., Caplan and Waters, 1999; Matchin et al., 
2017). 

Estimates at the fROI level shed light on results from prior natural
istic fMRI experiments (Willems et al., 2015; Brennan et al., 2016; 
Henderson et al., 2016; Lopopolo et al., 2017). We found strong effects 
of both surface-level and structural estimates of word predictability in 
roughly the union of left-hemisphere language regions for which such 
effects have been reported in prior work (e.g., temporal and inferior 
frontal regions). At the same time, we did not find clear evidence of 
predictive coding in regions linked with the multiple demand network, 
like superior frontal gyrus (cf. Lopopolo et al., 2017), in part because our 
use of held-out significance tests helped us avoid reporting MD surprisal 
effects that fail to generalize (e.g., left-hemisphere SFG, Table 4). The 
lack of held-out testing in earlier studies may therefore have contributed 
to prior findings of surprisal effects in MD regions. Finally, we obtained 
significant positive effects for surprisal implementations in language 
regions that have previously been reported null or negative (e.g., lex
icalized trigrams in IFG and posterior temporal cortex or PCFG surprisal 
in IFG, per Brennan et al., 2016; PCFG surprisal in the temporal lobe, per 
Henderson et al., 2016). It is possible that the size of the present study 
increased sensitivity to these effects, since studies using less data are 
more likely to yield sign and magnitude errors (Gelman and Carlin, 
2014). The picture that emerges more clearly from our results than from 
those of prior studies is of a predictive coding mechanism that is specific 
to the functional language network, generalized throughout it, and 
sensitive to both surface-level word co-occurrence patterns and hierar
chical structure. 

In focusing on prediction effects, we recognize that language 
comprehension involves a good deal more than simply minimizing 
surprise—meanings conveyed by partially-complete words and syntac
tic structures are rapidly and incrementally recognized, stored, and in
tegrated into existing knowledge representations as the discourse 
unfolds (Tanenhaus et al., 1995; Altmann and Kamide, 1999). Numerous 
studies have probed the computations involved in storage, retrieval, and 
integration during human sentence comprehension (MacDonald et al., 
1992; Kluender and Kutas, 1993; Gibson and Ko, 1998; Felser et al., 
2003; Hsiao and Gibson, 2003; Aoshima et al., 2004; Grodner and 
Gibson, 2005; Lewis and Vasishth, 2005; Fiebach et al., 2005; Fedorenko 
et al., 2006, 2007; Rasmussen and Schuler, 2018), and several 
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memory-based estimators of structural processing have been studied 
across behavioral and cognitive neuroscience investigations, including 
embedding difference (Wu et al., 2010), the number of open nodes based 
on a particular parsing strategy (top-down, bottom-up, or left-corner; 
Nelson et al., 2017; Brennan & Pylkk€anen, 2017), dependency locality 
costs (storage or integration cost from maintaining and retrieving syn
tactic dependencies; Gibson, 2000), and encoding or retrieval interfer
ence (i.e. processing costs in the ACT-R framework; Lewis and Vasishth, 
2005). Effort due to memory storage and retrieval is plausibly distinct 
from effort due to reallocating resources between competing structural 
interpretations of the unfolding sentence (a standard interpretation of 
surprisal effects, e.g. Hale, 2001; Levy, 2008) (but see Futrell & Levy, 
2017), and a complete account of human language processing will likely 
involve both prediction-based and integration-based computations 
(Levy et al., 2013; Levy & Gibson, 2013). Although these kinds of 
integration effects are outside the scope of the present study of predic
tive coding, we note that some have argued that prediction may sub
serve memory retrieval and therefore interact with integrative 
processing (Altmann, 1998). Therefore, the prediction effects reported 
here may, to some extent, be amenable to interpretation as effects of 
integration. That is, researchers who view “prediction” as a conscious 
lexically specific activity may view these results as evidence of con
ceptual pre-activation or preparedness that eases integration once a 
word is observed (see Ferreira and Chantavarin, 2018, for an overview 
of this distinction). We leave to future work a fuller investigation of this 
distinction and simply note that our results indicate that any such 
pre-activation processes appear to be restricted to the LANG network, 
rather than invoking the MD network, and are strongly correlated with 
probabilistic measures of word predictability. The fMRI dataset pro
duced by this study will hopefully support further investigation into the 
interplay of memory and expectation in the language-selective and 
domain-general networks. 

Our emphasis on structural influences on prediction, rather than 
sensitivity to syntactic structure more generally, is a possible explana
tion for one apparent discrepancy between our results and those of some 
previous studies. In particular, we do not find clear evidence of PCFG 
Surprisal effects in the AntTemp language fROI (relative to other effect 
sizes in this study, the PCFG Surprisal estimate in AntTemp – 0.017 – is 
close to zero), whereas numerous previous studies have argued for 
syntactic effects in left anterior temporal cortex, both using hand- 
constructed stimuli (Mazoyer et al., 1993; Stowe et al., 1998; Frieder
ici et al., 2003; Vandenberghe et al., 2002; Dronkers et al., 2004; 
Humphries et al., 2006; Rogalsky and Hickok, 2011; Pallier et al., 2011; 
Brennan & Pylkk€anen, 2012; Nelson et al., 2017) and naturalistic stimuli 
(Brennan et al., 2012; Brennan & Pylkk€anen, 2017; Bhattasali et al., 
2018, 2019). The role of the left anterior temporal cortex in syntactic 
processing has been called into question by an absence of syntactic 
deficits in patients with anterior temporal damage (e.g., Wilson et al., 
2012), and some have argued that parts of the anterior temporal lobe 
primarily carry out lexical and semantic processing, including perhaps 
semantic composition (e.g., Bemis and Pylkk€anen, 2011), rather than 
syntactic structure building (Visser et al., 2010; Wilson et al., 2014; 
Lambon Ralph et al., 2017; see also Matchin et al., 2018). However, even 
granting that the left anterior temporal cortex is implicated in syntactic 
processing, prior studies by and large have focused on structural mea
sures that are arguably integrative in nature (syntactic node count, 
number of parser operations, etc.) or have used manipulations that are 
too broad to target prediction vs. integration (sentences vs. list of words 
or “Jabberwocky” sentences). Indeed, claims about syntactic processing 
in the left anterior temporal cortex tend to focus on composition rather 
than on structured prediction. Our results thus do not preclude a role for 
the left anterior temporal cortex in structure-building broadly 
construed; they simply fail to show strong evidence in this brain area of 
effects of structural context on word predictability. Prior studies of 
structured prediction effects in the left anterior temporal cortex have 
yielded mixed results: although Brennan et al. (2016) found evidence of 

part-of-speech n-gram and PCFG surprisal in the anterior temporal 
cortex over bi- and tri-gram effects, Lopopolo et al. (2017) did not find a 
response to part-of-speech n-gram surprisal, and the response to syn
tactic PCFG surprisal in Henderson et al. (2016) was too weak to achieve 
significance. Prediction effects based on lexical context in the left ante
rior temporal cortex (i.e. lexical n-grams) are better attested (Willems 
et al., 2015; Lopopolo et al., 2017), and some have explicitly argued that 
this area plays a central role in lexical-semantic prediction (Lau et al., 
2016). Our findings in the AntTemp fROI (large effects of 5-gram Sur
prisal in the AntTemp language fROI) contribute to this debate, sug
gesting that lexical predictability does modulate activity in the left 
anterior temporal cortex (among other regions), whereas syntactic 
prediction likely occurs elsewhere. The left anterior temporal cortex 
may therefore be an important object of study in teasing apart predictive 
vs. integrative processing during language comprehension, and further 
investigation is warranted. 

In summary, our findings based on a large-scale naturalistic fMRI 
experiment support a view of linguistic prediction as implemented by 
domain-specific cortical circuits, sensitive to both surface-level and 
syntactic information sources, and generalized across the functional 
language network. 
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